Diffusion-based smoothers for spatial filtering of gridded geophysical data

Ian Grooms^{1,1}, Nora Loose^{1,1}, Ryan Abernathey^{2,2}, Jacob Steinberg^{3,3}, Scott Daniel Bachman^{4,4}, Gustavo Marques^{4,4}, Arthur Paul Guillaumin^{5,5}, and Elizabeth Yankovsky^{6,6}

¹University of Colorado Boulder ²Columbia University ³University of Washington ⁴NCAR ⁵NYU ⁶Princeton University, NOAA-GFDL

November 30, 2022

Abstract

We describe a new way to apply a spatial filter to gridded data from models or observations, focusing on low-pass filters. The new method is analogous to smoothing via diffusion, and its implementation requires only a discrete Laplacian operator appropriate to the data. The new method can approximate arbitrary filter shapes, including Gaussian and boxcar filters, and can be extended to spatially-varying and anisotropic filters. The new diffusion-based smoother's properties are illustrated with examples from ocean model data and ocean observational products. An open-source python package implementing this algorithm, called gcm-filters, is currently under development.

Diffusion-based smoothers for spatial filtering of gridded geophysical data

I. Grooms¹, N. Loose¹, R. Abernathey², J. M. Steinberg³, S. D. Bachman⁴, G. Marques⁴, A. P. Guillaumin⁵, and E. Yankovsky⁵

¹Department of Applied Mathematics, University of Colorado, Boulder, Colorado, USA
 ²Lamont Doherty Earth Observatory of Columbia University, Palisades, New York, USA
 ³Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
 ⁴Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA
 ⁵Courant Institute of Mathematical Sciences, New York University, New York, New York, USA

Key Points:

1

2

11

12	•	A new way to apply a spatial low-pass filter to gridded data is developed
13	•	The new method can be applied in any geometry since it only requires a discrete
14		Laplacian operator
15	•	The algorithm's flexibility is illustrated using a range of examples from simula-
16		tion and observation data

Corresponding author: Ian Grooms, ian.grooms@colorado.edu

17 Abstract

We describe a new way to apply a spatial filter to gridded data from models or obser-18 vations, focusing on low-pass filters. The new method is analogous to smoothing via 19 diffusion, and its implementation requires only a discrete Laplacian operator appropri-20 ate to the data. The new method can approximate arbitrary filter shapes, including 21 Gaussian filters, and can be extended to spatially-varying and anisotropic filters. The 22 new diffusion-based smoother's properties are illustrated with examples from ocean 23 model data and ocean observational products. An open-source python package imple-24 menting this algorithm, called gcm-filters, is currently under development. 25

²⁶ Plain Language Summary

²⁷ "The large scale part" and "the small scale part" of quantities like velocity,
temperature, and pressure fluctuations are important for a range of questions in Earth
system science. This paper describes a precise way of defining these quantities, as
well as an efficient method for diagnosing them from gridded data, especially the data
produced by Earth system models.

32 1 Introduction

Spatial scale is an organizing concept in Earth system science: atmospheric syn-33 optic scales and convective scales, and oceanic mesoscales and submesoscales, for exam-34 ple, are ubiquitous touchstones in atmospheric and oceanic dynamics. The pervasive 35 idea of an energy spectrum is fundamentally based on the idea of partitioning en-36 ergy (or variance) across a range of spatial scales. Despite this central importance, 37 diagnosing dynamics at different spatial scales remains challenging. When analysing 38 remote-sensing or simulation data, scientists instead often rely on time averaging as 39 proxy for separating scales, which is more computationally convenient than spatial 40 filtering. Temporal filtering is often of interest in its own right, but in situations where 41 spatial filtering is called for this trade of spatial for temporal filtering can be justified 42 by the fact that dynamics at different spatial scales are frequently also associated with 43 different time scales. 44

45 Spatial filtering, long a staple of large eddy simulation (LES; Sagaut, 2006),
46 has recently begun to replace time averages and zonal averages in *a priori* studies
47 of subgrid-scale parameterization for ocean models. A canonical model for spatial
48 filtering is given by kernel convolution

$$\bar{f}(\mathbf{x}) = \int_{\mathbb{R}^d} G(\mathbf{x} - \mathbf{x}') f(\mathbf{x}') \mathrm{d}\mathbf{x}',\tag{1}$$

where G is the convolution kernel, \mathbf{x}' is a dummy integration variable, and \mathbb{R}^d denotes 49 the set of all real vectors of dimension d. Berloff (2018), Bolton and Zanna (2019), 50 Ryzhov et al. (2019), and Haigh et al. (2020) all used convolution filters to study 51 subgrid-scale parameterization in the context of quasigeostrophic dynamics in a rect-52 angular Cartesian domain. Lu et al. (2016), Aluie et al. (2018), Khani et al. (2019), 53 Stanley, Bachman, and Grooms (2020), and Guillaumin and Zanna (2021) used ap-54 proximate spatial convolutions on the sphere to filter ocean general circulation model 55 output, and Aluie (2019) showed how to correctly define convolution on the sphere in 56 such a way that the filter commutes with spatial derivatives. A 'top hat' or 'boxcar' 57 kernel (i.e. an indicator function over a circle or a square, respectively) is used in all 58 these studies, except for Bolton and Zanna (2019), Stanley, Bachman, and Grooms 59 (2020), and Guillaumin and Zanna (2021) who used Gaussian kernels. Spatial convo-60 lution is not the only way to define or implement spatial filters. For example, Nadiga 61 (2008) and Grooms et al. (2013) used an elliptic inversion to define spatial filters for 62 quasigeostrophic model output, and Grooms and Kleiber (2019) used Fourier-based 63

filtering methods for primitive equation model output, all in rectangular Cartesian
domains. Fourier methods with windowing can be used for filtering over local patches
(e.g. Arbic et al., 2013), though this can lead to artifacts, as shown by Aluie et al.
(2018).

We make a semantic distinction between spatial filtering and coarse graining. In 68 our use of the terms, coarse graining is an operation that produces output at a lower 69 resolution (i.e. smaller number of grid points) than the input, whereas spatial filtering 70 produces output at the same resolution as the input. (Note that this terminology 71 is not uniformly adopted in the literature; cf. Aluie et al. (2018).) Berloff (2005), 72 Porta Mana and Zanna (2014), Williams et al. (2016), Stanley, Grooms, et al. (2020), 73 and Zanna and Bolton (2020) are all examples where coarse graining was used in 74 the context of ocean model subgrid-scale parameterization. The term 'averaging' is 75 sometimes used instead of filtering. They are essentially synonymous when the filter 76 kernel G is non-negative, but a filter whose kernel has negative values cannot be 77 described as an average, so we opt to use the more general term. A low-pass filter can 78 be described as a smoother, which is the focus here, but the methods described here 79 can be straightforwardly adapted to band-pass or high-pass filters. 80

This paper introduces a new way of designing and implementing spatial filters 81 that relies only on a discrete Laplacian operator for the data. Because it relies on the 82 discrete Laplacian to smooth a field through an iterative process reminiscent of diffu-83 sion, we refer to the new method as diffusion-based filters. The paper is structured as 84 follows. Section 2 describes the new filters along with their properties. Examples using 85 model data and observations are provided in section 3 to illustrate the various filter 86 properties described in section 2. Conclusions are offered in section 4. Appendix A 87 provides some details of the filter specification, and Appendix B discusses commutation 88 of the filter with derivatives. 89

⁹⁰ 2 Spatial filtering of gridded data

2.1 Review

91

Spatial filtering of gridded data is a well developed field, both for general applications and in the context of geophysical data. The focus here is on filtering in the
 context of fluid models, especially atmosphere and ocean models. To place our new
 method into context, we review existing filtering techniques, and distinguish between
 implicit and explicit filters.

Shapiro (1970) introduced a class of filters, widely used to improve the perfor-97 mance of early finite-difference weather models by removing energy near the grid scale 98 and thereby preventing accumulation leading to blowup. Shapiro filters are essentially 99 discrete spatial convolution filters optimized to remove the smallest scales that can 100 be represented on a logically-rectangular grid, while leaving the other scales as close 101 to unchanged as possible. Sagaut and Grohens (1999) reviewed some of the more re-102 cent approaches to convolution-based filtering for large-eddy simulation. Sadek and 103 Aluie (2018) developed two discrete convolution kernels for the purpose of accurately 104 extracting the energy spectrum using convolution filters rather than Fourier methods. 105

Germano (1986) introduced an implicit differential filter of the form

$$(1 - L^2 \Delta)\bar{f} = f, \tag{2}$$

where \bar{f} is the filtered field, L is the filter length scale, and Δ is the Laplacian. It is 'implicit' because applying the filter to data involves solving a system of equations; the convolution filters of Shapiro (1970) and Sagaut and Grohens (1999) are called 'explicit' in contrast. Germano's implicit filter appears in the Leray- α and Lagrangian-averaged Navier-Stokes- α models (Chen et al., 1998). Implicit differential filters were used by

Nadiga (2008) and Grooms et al. (2013) in the context of subgrid-scale parameteriza-111 tion in quasigeostrophic ocean models, and a similar fractional elliptic equation under-112 lies the approach to spatial filtering of scattered data recently developed by Robinson 113 and Grooms (2020). Raymond (1988) and Raymond and Garder (1991) developed 114 implicit filters for meteorological applications using higher order differential operators. 115 Guedot et al. (2015) developed higher order implicit differential filters on unstruc-116 tured meshes for engineering applications. Note that the term 'high order' here refers 117 to the differential operator, though it has been used elsewhere with different meanings 118 (Sagaut & Grohens, 1999; Sadek & Aluie, 2018). 119

The new approach developed here results in high order explicit differential filters, meaning that they use a discrete Laplacian, but that they do not require solving a system of equations.

123

2.2 Spatial filtering basics

Most intuition about spatial filtering and spatial scales is built on the foundation of kernel convolution and Fourier analysis, in the context of equation (1). The wellknown convolution theorem (e.g. Hunter & Nachtergaele, 2001, Theorem 11.35) states that the Fourier transform of \bar{f} is proportional to $\hat{G}\hat{f}$, where $\hat{\cdot}$ denotes the Fourier transform and the proportionality constant depends on the dimension d and on the normalization convention chosen in the definition of the Fourier transform.

Fourier analysis enables us to understand the effect of spatial convolution filtering 130 in terms of length scales. We consider the function f to be a sum of many Fourier 131 132 modes, each of which has a distinct spatial scale. The Fourier transform of the kernel, G, then describes how each Fourier mode is modified by the spatial filtering operation. 133 Filter kernels are usually symmetric about the origin, which makes \hat{G} real-valued, so 134 that spatial filtering only changes the amplitude of the Fourier modes and not their 135 phase. If G(k) = 1 for a particular Fourier mode then the corresponding length scale 136 is left unchanged in \overline{f} , whereas if $\hat{G}(k) = 0$ for a particular Fourier mode then the 137 corresponding length scale is removed from f. By modifying the amplitudes of the 138 Fourier modes, spatial filtering controls the scale content of f. 139

One of the simplest kernels is the so-called boxcar function, defined in one spatial dimension as

$$G_L(x) = \begin{cases} 1/L & |x| < L/2\\ 0 & |x| \ge L/2 \end{cases}$$
(3)

Convolution against this kernel represents averaging all the points in the neighborhood with the same weight, and the parameter L defines the size of the neighborhood. (In higher dimensions the boxcar filter is nonzero over a square region, while a 'top-hat' filter is nonzero over a circular or spherical region.) The Fourier transform of the boxcar filter of width L is

$$\hat{G}_L(k) = \operatorname{sinc}\left(\frac{kL}{2\pi}\right) \tag{4}$$

where $\operatorname{sin}(x) = \frac{\sin(\pi x)}{(\pi x)}$ and k is the wavenumber. This function decays only 145 as 1/k at large k, so it does not correspond to a sharp separation between length 146 scales. Conversely, a 'spectral truncation' filter has a kernel whose Fourier transform 147 is a boxcar, and the kernel itself is a sinc function. The boxcar and spectral truncation 148 filters illustrate the concept that a short-range kernel does not separate scales well, 149 and a filter that makes a sharp separation between scales requires a very long-range 150 kernel. Figure 1 shows the boxcar and sinc convolution kernels, to illustrate that 151 the more scale-selective sinc kernel has a much longer range. In practice there is a 152 tradeoff between choosing a kernel that makes as clean a scale separation as possible 153 and choosing a kernel whose range is short enough to apply efficiently, analogous to 154 the uncertainty principle in quantum physics. 155

Figure 1. The boxcar function of width 1 and sinc(x).

It is usually desirable for the filter to preserve the integral, and to commute withderivatives, i.e.

$$\int_{\mathbb{R}^d} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbb{R}^d} \bar{f}(\mathbf{x}) d\mathbf{x},$$
(5)

$$\frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial x_i}.$$
(6)

Any convolution filter commutes with derivatives, and preservation of the integral is easily ensured by the condition

$$\int_{\mathbb{R}^d} G(\mathbf{x}) \mathrm{d}\mathbf{x} = 1.$$
(7)

In the presence of boundaries the convolution formula (1) no longer works, since $f(\mathbf{x})$ is not defined on \mathbb{R}^d . One option, used by Aluie et al. (2018), is to simply extend $f(\mathbf{x}) = 0$ outside the domain boundaries. For velocity the values on land can be set to zero, though for tracers it is less clear how to set values on land. The more common option is to vary the kernel near the boundaries so that the filter formula changes to

$$\bar{f}(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') \mathrm{d}\mathbf{x}', \qquad (8)$$

where $\Omega \subset \mathbb{R}^d$ is the spatial domain and \mathbf{x}' is a dummy integration variable. Unlike the convolution filter (1) the kernel G is now a function of two arguments, to emphasize that the shape of the kernel can change over the spatial domain. This kind of spatial filter (8) no longer commutes with spatial derivatives, though it still preserves the integral as long as the kernel is appropriately normalized.

The background intuition for kernel-based spatial filters in this subsection is developed entirely for functions on Euclidean spaces. The definition of convolutionbased spatial filters is considerably more complicated on a sphere; see Aluie (2019) for details. **2.3 Diffusion-based smoothers**

175 2.3.1 Discrete integral & Laplacian

To generalize the foregoing ideas to more complicated domains and grid geometries we begin with a transition to the discrete representation. The field to be filtered is no longer a continuous function, but a vector \mathbf{f} ; for example, if we wish to filter temperature on a grid of n points, then we think of the values of temperature on the grid as a vector in \mathbb{R}^n . To lay a foundation for the analysis we need two ingredients; the first is a discrete integral

$$\int_{\Omega} f(\mathbf{x}) \mathrm{d}\mathbf{x} \approx \sum_{i} w_{i} f_{i}, \tag{9}$$

where Ω denotes the spatial domain and w_i are positive weights. Cartesian geometry is assumed for ease of presentation, but the discrete integral could easily approximate an integral over the sphere or some other smooth manifold without changing the analysis. For a typical finite-volume model the weight w_i will simply be the area (or volume, if the integral is over three spatial dimensions) of the i^{th} grid cell. If the weights w_i are all positive then we can define a discrete inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \sum_{i} w_i f_i g_i. \tag{10}$$

The area integral can be expressed in terms of the inner product as $\langle 1, f \rangle$, where 1 is a vector whose entries are all 1.

The second ingredient is a discrete Laplacian, i.e. some operation on \mathbf{f} that 190 191 produces an approximation of Δf on the grid. The development in this section does not explicitly require Cartesian or spherical geometry; it only requires a discretization 192 of a Laplacian operator that is appropriate to the geometry of the data. We write 193 this operation in matrix form as Lf, though it is certainly not necessary to actually 194 construct the matrix \mathbf{L} . We assume that the discrete Laplacian is negative semi-195 definite, and self-adjoint with respect to the discrete inner product, i.e for any \mathbf{f} and 196 \mathbf{g} 197

$$\langle \mathbf{f}, \mathbf{L}\mathbf{f} \rangle \leq 0, \text{ and } \langle \mathbf{f}, \mathbf{L}\mathbf{g} \rangle = \langle \mathbf{L}\mathbf{f}, \mathbf{g} \rangle.$$
 (11)

This is automatically guaranteed for finite-volume discretizations of the Laplacian withno-flux boundary conditions.

200

2.3.2 Connecting the discrete Laplacian to spatial scales

Since the discrete Laplacian is self-adjoint and negative semi-definite, the eigen-201 values of L are all real and non-positive, and there is an eigenvector basis $\mathbf{q}_1, \ldots, \mathbf{q}_n$ 202 of \mathbb{R}^n that is orthonormal with respect to the discrete inner product. This is directly 203 analogous to the Fourier analysis of the foregoing section: Fourier modes on \mathbb{R}^d are 204 eigenfunctions of the Laplacian on \mathbb{R}^d . In fact, with an equispaced grid and periodic 205 boundaries the eigenvectors \mathbf{q}_i are exactly the discrete Fourier modes. In both the 206 Fourier version and the discrete version the eigenvalues can be interpreted as describ-207 ing the spatial scale of the corresponding eigenfunction: 208

$$\Delta e^{\mathbf{i}\mathbf{k}\cdot\mathbf{x}} = -k^2 e^{\mathbf{i}\mathbf{k}\cdot\mathbf{x}}, \quad \mathbf{L}\mathbf{q}_i = -k_i^2 \mathbf{q}_i. \tag{12}$$

On the left in the above expression $k = \|\mathbf{k}\|$ represents the familiar Fourier wavenumber corresponding to a wavelength of $2\pi/k$, while on the right the eigenvalue $-k_i^2$ has been written with similar notation to emphasize the similarity. Precisely because \mathbf{L} is a discretization of the Laplacian, the length $2\pi/k_i$ should roughly correspond to the length scale of the eigenvector \mathbf{q}_i . We assume that the eigenvalues are ordered such that $k_1 \leq k_2 \leq \ldots \leq k_n$.

Continuing the analogy with the previous section, it is possible to write the vector 215 to be filtered as a sum over eigenfunctions of the discrete Laplacian: 216

$$\mathbf{f} = \sum_{i=1}^{n} \hat{f}_i \mathbf{q}_i. \tag{13}$$

We next show that we can filter **f** by applying a function $p(-\mathbf{L})$ to it. From equation 217

(13), we see that this results in 218

$$p(-\mathbf{L})\mathbf{f} = \sum_{i=1}^{n} \hat{f}_i p(k_i^2) \mathbf{q}_i = \sum_{i=1}^{n} \hat{f}_i \hat{G}(k_i) \mathbf{q}_i, \qquad (14)$$

where the notation $\hat{G}(k) = p(k^2)$ has been deliberately used to emphasize the connec-219 tion to the Fourier convolution theorem recalled in the previous section: if the expan-220 sion coefficients of **f** are \hat{f}_i , then the expansion coefficients of $p(-\mathbf{L})\mathbf{f}$ are $\hat{G}(k_i)\hat{f}_i$. (The 221 notation p is used for both the matrix and scalar versions of the function; a familiar 222 example might be $p(-\mathbf{L}t) = e^{-\mathbf{L}t}$ and $p(0) = e^0 = 1$.) If one defined the function p in 223 such a way that 224

$$\hat{G}(k) = \begin{cases} 1 & k < k_* \\ 0 & k \ge k_* \end{cases},$$
(15)

then multiplying **f** by $p(-\mathbf{L})$ would correspond to projecting **f** onto large-scale modes 225 defined by $k_i < k_*$. This would be analogous to a spectral truncation filter. Since the 226 discrete filter is a function of a discrete Laplacian, it is natural to suspect that the 227 filter should commute with derivatives; this question is addressed in Appendix B. 228

The assumption that the eigenvalue $-k_i^2$ corresponds to a physical length scale 229 $2\pi/k_i$ for the eigenvector is crucial. It is not typically possible in realistic applications 230 to derive the eigenvalues and eigenvectors in closed form in order to verify this assump-231 tion, nor is it practical to compute them numerically. The assumption is nevertheless 232 expected to hold except possibly in non-smooth geometries. 233

2.3.3 Polynomial approximation of the target filter

For the large data sets produced by Earth system models computing the eigen-235 values and eigenvectors of \mathbf{L} is prohibitively expensive, and even solving linear systems 236 involving L can be expensive. By contrast, simply applying L is usually inexpensive. 237 In practice this means that it is inexpensive to compute $p(-\mathbf{L})\mathbf{f}$ when p is a poly-238 nomial. (The implicit differential filters of Germano (1986) and Guedot et al. (2015) 239 correspond to letting 1/p be a polynomial.) 240

241

234

We propose to define our new filters as $\overline{\mathbf{f}} = p(-\mathbf{L})\mathbf{f}$, where p is a polynomial

$$p(-\mathbf{L}) = a_0 \mathbf{I} + a_1 (-\mathbf{L}) + \ldots + a_N (-\mathbf{L})^N.$$
(16)

The polynomial coefficients a_l will be chosen as described below to obtain the desired 242 filter shape, and I is the identity matrix. To show that such a filter preserves the 243 integral, note that $p(-\mathbf{L})$ is self-adjoint with respect to the discrete inner product, 244 and 245

$$\langle \mathbf{1}, \bar{\mathbf{f}} \rangle = \langle \mathbf{1}, p(-\mathbf{L})\mathbf{f} \rangle = \langle p(-\mathbf{L})\mathbf{1}, \mathbf{f} \rangle = \langle a_0 \mathbf{1}, \mathbf{f} \rangle, \tag{17}$$

where we have used the fact that L1 = 0 for any consistent discretization of the Lapla-246 cian with no-flux boundary conditions. The condition $a_0 = p(0) = 1$ thus guarantees 247 that the spatial filter will preserve the integral. It also ensures that the filter will leave 248 large scales approximately unchanged; in order to remove small scales p should decay 249 towards zero as k increases. 250

We can choose a specific shape for p by means of standard polynomial approx-251 imation of a 'target' filter \hat{G}_t . For example, note that the Fourier transform of a 252

Figure 2. Left: Target filters $\hat{G}_t(k)$ and their approximations $p(k^2)$. Right: The equivalent kernel weights in one dimension on an equispaced grid of size 1. Top Row: A boxcar filter of width 8; Middle Row: A Gaussian filter with standard deviation $4/\sqrt{3}$; Bottom Row: The taper filter. All length scales in this figure are nondimensional. There is no blue line in the lower right panel because the taper filter is defined directly in terms of its target $\hat{G}_t(k)$, rather than via its convolution kernel, as for the boxcar and Gaussian filters.

$_{253}$ Gaussian convolution kernel with standard deviation L is

$$\hat{G}(k) = \exp\left\{-\frac{L^2k^2}{2}\right\}.$$
(18)

In order to construct a filter that acts like a convolution-based spatial filter with a Gaussian kernel of standard deviation L, one might choose a target filter of the form $\hat{G}_t(k) = \hat{G}(k)$. It is worth emphasizing that the connection to convolution is only heuristic; near boundaries or in non-Euclidean geometry the target filter is not exactly the same as a convolution-based spatial filter. The precise interpretation of $\hat{G}_t(k)$ is based on (14): the expansion coefficient \hat{f}_i is multiplied by $\hat{G}_t(k_i)$.

The goal would then be to find a polynomial p such that $p(k^2) \approx \hat{G}_t(k)$. In 260 general this is not possible with an explicit filter because polynomials grow without 261 bound as $k \to \pm \infty$; thankfully it is only necessary for the approximation to hold over 262 the range of scales represented on the grid, specifically for $0 \leq k \leq k_n$ where $-k_n^2$ 263 is the most-negative eigenvalue of **L**. If k_n is not known, some reasonable proxy can 264 be used to define the range of scales over which p should act like a spatial filter. For 265 example, on a quadrilateral grid one might use $0 \le k \le \sqrt{d\pi/dx_{\min}}$ where dx_{\min} is 266 the length of the smallest grid cell edge and d is the spatial dimension of the grid. 267

In Appendix A we present a least-squares approach for finding a polynomial psuch that $p(k^2)$ approximates $\hat{G}_t(k)$. The left column of Figure 2 shows three examples of target filters, along with their approximations $p(k^2)$ using polynomials of degree N = 3, 5, and 21. The top row shows the boxcar target shown in equation (4) with length scale L = 8 (nondimensional), and the middle row shows the Gaussian target that corresponds to a Gaussian kernel with standard deviation $4/\sqrt{3}$ (nondimensional). The bottom row shows a target that we here label 'taper.'

The taper target is developed as an example of a filter that is more scale-selective 275 than the Gaussian; it is a smooth approximation of a spectral cutoff filter. The taper 276 target is a piecewise polynomial with a continuous first derivative. It is $\hat{G}_t(k) = 0$ 277 for k above some cutoff $k_c = 2\pi/L$, with L = 8 (nondimensional) in Figure 2. For 278 $0 \le k \le k_c/X$ it takes the value $G_t(k) = 1$ where X controls the width of the transition 279 region; $X = \pi$ in Figure 2. For wavenumbers in the transition region $k_c/X \leq k \leq k_c$ 280 the taper target is a cubic polynomial. As the width of the transition region goes to 281 zero $(X \to 1)$ the taper target approaches the spectral truncation filter, which is a step 282 function at wavenumber k_c . The left column of Figure 2 shows that the number of 283 steps N required to achieve an accurate approximation of the target filter depends on 284 the shape of the target filter, with more scale-selective targets like the taper requiring 285 more steps N. 286

287

2.3.4 Definition of filter scale

We provide a single convention linking the 'filter scale' for the boxcar, Gaussian, 288 and taper targets as follows. The filter scale for a boxcar kernel is simply the width of 289 the kernel L (not the half-width). Per equation (4), the boxcar filter exactly zeros out 290 the wavenumber $k = 2\pi/L$. Since the taper filter also zeros out wavenumber $2\pi/L$, it 291 is natural to let L define the 'filter scale' for both the boxcar and taper filters. The 292 filter scale for a Gaussian is chosen so that the standard deviation of the Gaussian and 293 boxcar kernels match for a given filter scale (cf. Sagaut & Grohens, 1999). This is 294 achieved by defining the 'filter scale' L for a Gaussian to be $\sqrt{12}$ times the standard 295 deviation of the Gaussian kernel, i.e. to extract the standard deviation σ from the 296 filter scale L use $\sigma = L/(2\sqrt{3})$. This convention is developed based on convolution 297 over a Euclidean space, but once developed it simply serves to link the definition of 298 the filter scale L across target filters, which can be used in non-Euclidean geometry, 299 e.g. on the sphere. 300

301

2.3.5 Filter algorithm

Once the approximating polynomial has been found, the filtered field $p(-\mathbf{L})\mathbf{f}$ can be efficiently computed using an iterative algorithm based on the polynomial roots. In general, any polynomial with real coefficients has roots that are either real, or come in complex-conjugate pairs. We can thus write

$$p(s) = a_N(s - s_1) \cdots (s - s_M)(s^2 - 2sR\{s_{M+2}\} + |s_{M+2}|^2) \cdots (s^2 - 2sR\{s_N\} + |s_N|^2),$$
(19)

where M is the number of real roots, the roots are s_1, \ldots, s_N , and $R\{\cdot\}$ and $I\{\cdot\}$ denote the real and imaginary parts of a complex number, respectively. The quadratic terms can also be written $|s - s_k|^2 = (s - R\{s_{M+2}\})^2 + (I\{s_{M+2}\})^2$. The condition p(0) = 1 implies

$$p(s) = \left(1 - \frac{s}{s_1}\right) \cdots \left(1 - \frac{s}{s_M}\right) \left(1 + \frac{-2sR\{s_{M+2}\} + s^2}{|s_{M+2}|^2}\right) \cdots \left(1 + \frac{-2sR\{s_N\} + s^2}{|s_N|^2}\right).$$
(20)

Based on this representation, the filtered field $\mathbf{\bar{f}} = p(-\mathbf{L})\mathbf{f}$ can be computed in M + (N-M)/2 stages as follows. First the real roots are dealt with via

$$\bar{\mathbf{f}}_0 = \mathbf{f}$$
 (21a)

$$\bar{\mathbf{f}}_k = \bar{\mathbf{f}}_{k-1} + \frac{1}{s_k} \mathbf{L} \bar{\mathbf{f}}_{k-1}, \quad k = 1, \dots, M.$$
(21b)

These stages are called Laplacian stages. Next the complex roots are dealt with via

$$\bar{\mathbf{f}}_{k} = \bar{\mathbf{f}}_{k-2} + \frac{2R\{s_{k}\}}{|s_{k}|^{2}} \mathbf{L} \bar{\mathbf{f}}_{k-2} + \frac{1}{|s_{k}|^{2}} \mathbf{L}^{2} \bar{\mathbf{f}}_{k-2}, \quad k = M+2, M+4, \dots, N$$
(22a)
$$\bar{\mathbf{f}} = \bar{\mathbf{f}}_{N}.$$
(22b)

These stages are called biharmonic stages because of the need to apply the discrete biharmonic operator L^2 .

In the absence of roundoff errors the Laplacian and biharmonic stages can be applied in any order, and once they are both complete $\bar{\mathbf{f}}$ contains the filtered field (though at any point in the middle of the iterations $\bar{\mathbf{f}}$ has no particular meaning). However, in practice the order can have an impact on numerical stability. This issue is discussed in section 2.4.

320

2.3.6 Scalar, Vector, and Tensor Laplacians on Curved Surfaces

The development thus far is based on a discrete approximation of a scalar Lapla-321 cian, or of the Laplace-Beltrami operator on a curved surface like the sphere. In 322 Euclidean space the Laplacian of a vector or a tensor is obtained by applying the 323 scalar Laplacian to the elements of the vector or tensor. This is no longer the case 324 on a curved surface like the sphere, as can be seen, for example, in the fact that the 325 discretizations of viscosity and diffusion are different on the sphere. The algorithm 326 described in the foregoing section can be directly extended to filtering vectors or ten-327 sors on curved surfaces by simply taking **L** to be a discretization of the appropriate 328 continuous operator, e.g. the vector Laplacian on a sphere. In this case \mathbf{f} should be 329 understood to include all components of the vector or tensor being filtered. For exam-330 ple, the grid values of zonal velocity could be arranged as the first half of \mathbf{f} while the 331 grid values of meridional velocity could be arranged as the second half of \mathbf{f} . 332

333

2.3.7 Computational Cost

Typically the computational cost (in terms of floating point operations) of applying the discrete Laplacian \mathbf{L} is $\mathcal{O}(n)$ where n is the number of grid points. The total number of discrete applications of the Laplacian is N, so the cost to apply the filter is $\mathcal{O}(Nn)$. The number of stages N depends on the shape of the target filter and the ratio of the filter scale to the grid scale, called the filter factor F. For both the Gaussian and taper filters the number of stages needed to achieve a fixed accuracy scales (empirically) linearly with F, so the overall cost of applying the filter is $\mathcal{O}(Fn)$.

This is directly comparable to a convolution-type filter implemented using quadra-341 ture. In a convolution-type filter, one is required to compute a quadrature at each of 342 the n grid points. The number of nonzero elements in the kernel, and thus the number 343 of floating-point operations required to compute the quadrature, is linearly related 344 to the ratio of the grid scale to the width of the kernel, i.e. the filter factor. The 345 cost of applying a convolution-type filter is thus also $\mathcal{O}(Fn)$: at each of n grid points 346 one must compute a quadrature that costs $\mathcal{O}(F)$ floating point operations. Naturally 347 the performance in practice depends heavily on the details of the implementation, the 348 coding language, the machine architecture, etc. 349

350

2.4 Floating Point Roundoff Errors

Recall that per equation (13) we can formally expand the field to be filtered as a sum of eigenvectors of the discrete Laplacian, and that per equation (14) the effect of the filter is simply to modify the coefficients in this expansion. The same idea applies to a single stage in the iterative application of the filter. A single Laplacian stage ³⁵⁵ multiplies the expansion coefficients by

$$1 - \frac{k_i^2}{s_k}.\tag{23}$$

Any modes *i* such that $k_i^2 > 2s_k$ will have their coefficients \hat{f}_i amplified at this stage, and smaller scales will experience greater amplification. (The sign of the coefficients will also be changed; the real roots s_k are generally positive.) In contrast, when $|1 - k_n^2/s_k| < 1$ none of the modes will experience amplification and the smallest scales will be damped.

361

A single biharmonic stage multiplies the expansion coefficients by

$$\left|1 - \frac{k_i^2}{s_k}\right|^2. \tag{24}$$

As a function of k_i^2 this is a positive parabola that equals 1 at $k_i = 0$. When the real part of s_k is negative all modes are amplified with increasing amplification at small scales. When the real part of s_k is positive, modes with $k_i^2 > 2\mathcal{R}\{s_k\}$ will be amplified, with increasing amplification at small scales.

Consider a filter that attempts to remove a wide range of scales, i.e. one where 366 the filter scale is much larger than the grid scale. To achieve this, the polynomial 367 approximation algorithm from Appendix A selects a range of roots s_k , with some of 368 the roots corresponding to scales much larger than the grid scale $\sqrt{s_k} \ll k_n$. The stages 369 with $\sqrt{s_k} \ll k_n$ amplify the small scales while damping the large scales. Taken together 370 the stages end up producing smoothing over a wide range of scales, but if the iteration 371 (21b) is stopped partway, there can be ranges of scales that are amplified rather than 372 damped. In particular, if there are several stages in succession that cause amplification 373 at the small scales (near the grid scale), it can lead to extreme amplification at small 374 scales, including extreme amplification of any roundoff errors present in the small 375 scales. This combination of many stages that amplify small scales, together with a 376 large number of stages for roundoff errors to accumulate, can lead to inaccurate results 377 or even blowup of the filtered field. To avoid this we recommend choosing a specific 378 order for the roots s_k , such that stages that amplify small scales are always followed 379 by stages that damp small scales. 380

To illustrate these ideas we set up a simple toy problem with a one-dimensional, 381 periodic, equispaced grid of 256 points in a nondimensional domain of size 2π , and a 382 spectral discrete Laplacian. The eigenvectors of the discrete Laplacian are the discrete 383 Fourier modes with wavenumbers $k = -127, \ldots, 128$, and the eigenvalues are exactly $-k^2$. The filter polynomial p is constructed by directly specifying the roots s_k , rather 385 than by approximating some target filter \hat{G}_t . The roots s_k are the integers from 43 386 to 170, squared, i.e. there are N = 128 stages with roots on both sides of the cutoff 387 scale $k_n = 128$. This filter should thus exactly zero out all discrete wavenumbers with $|k| \ge 43$, while smoothly damping wavenumbers with |k| < 43. The field to 389 be filtered is constructed to have discrete Fourier transform $\hat{f}_k = e^{i\theta_k}$ where θ_k are 390 independent and uniformly distributed on $[0, 2\pi)$. This initial condition is chosen so 391 that the discrete Fourier transform of the final filtered field should, in the absence of 392 roundoff errors, have absolute value equal to $|p(k^2)|$. 393

Figure 3 shows the amplitude of the Fourier modes of the field as it progresses through the stages of the filter. The left panel shows the result for a filter where s_k are ordered from least to greatest, such that the first stages amplify the small scales while the last stages damp them. The small scales grow to amplitudes on the order of 10^{21} within the first 50 stages. The subsequent stages manage to damp these small scales back out, but the solution is so corrupted by the effect of roundoff errors that the final solution is completely inaccurate: the large scales have amplitudes on the order of 10^{4} .

Figure 3. Amplitude of the Fourier coefficients of $\overline{\mathbf{f}}$ as it proceeds through the filter stages. In each panel the abscissa is filter stage while the ordinate is the wavenumber. In the left panel s_k are arranged in increasing order. In the center panel the s_k are decreasing. In the right panel the damping and amplifying stages alternate.

The center panel of Figure 3 shows the effect of arranging s_k in decreasing order, such that the last stages amplify the small scales while the first stages damp them. The filter behaves quite well until the final few stages, where the small scales are amplified to the order of 10^4 . Evidently the initial damping stages introduce small amplitude roundoff errors into the small scales which are then amplified in the final stages.

The right panel of Figure 3 shows the effect of arranging the s_k so that the small scales are alternately amplified and then damped. In the early stages of the filter there is a range of intermediate scales that begins to amplify, though they maintain modest amplitudes less than 100. These intermediate scales are eventually damped back out in the later stages, leading to a well-behaved and accurate solution.

The stages in the right panel of Figure 3 are arranged in the following simple way. We first compute the impact of each stage on the smallest scale, given by setting $k_i = k_{\text{max}}$ in the absolute value of expression (23) and in expression (24). These values are then ordered, and the stage order is set by selecting the smallest value (strongest damping) first, followed by the largest value (strongest amplification), followed by the next-smallest value, etc.

417

2.4.1 Connection to Diffusion

The form of equation (21b) is reminiscent of time integration of the diffusion 418 equation via an explicit Euler discretization with variable time steps, and in some 419 sense the method can be thought of as smoothing through diffusion. To be explicit, 420 if we assume a diffusivity of κ_* then the time step sizes are $dt_k = 1/(\kappa_* s_k)$. (The 421 subscript $_*$ serves to distinguish this κ_* , which is dimensional, from the κ introduced 422 in section 2.6, which is nondimensional). There is no analogy for the biharmonic stages, 423 or for negative s_k , so the analogy only holds when all the s_k are real and positive. The 424 usual stability analysis for time integration of the diffusion equation corresponds to 425 the case where all the time steps are of equal size, i.e. all the s_k must be real, positive, 426 and equal. In this case the Courant-Friedrichs-Lewy (CFL) condition corresponds to 427 requiring that a single step does not amplify any component of the solution; if this 428

condition is violated, then as the number of steps proceeds to infinity the solution will also grow to infinity, even in exact arithmetic. Per the discussion above, requiring no growth of any part of the solution in a single step corresponds to the condition $|1 - k_n^2/s_k| < 1$. Written in terms of the time step this CFL condition takes the form $dt_k < 1/(\kappa_*k_n^2)$. Inserting the approximation $k_n \approx \sqrt{d\pi/dx_{\min}}$ yields a more familiar form for the CFL condition for diffusion: $h_k < dx_{\min}^2/(\pi^2\kappa_*d)$ (recall that d is the dimension of the physical domain).

The instability associated with violating the CFL condition for diffusion is not 436 the same as the one described above, nor is it relevant for analyzing the stability of 437 our filtering algorithm. That they are not the same can be seen from the fact that the 438 instability analyzed above is entirely a result of roundoff errors, whereas the instability 439 associated with violating a CFL condition occurs even in exact arithmetic. The CFL 440 condition is not relevant for our algorithm because our algorithm is not solving the 441 heat equation except in special cases, and even in those cases the size of the time step 442 varies and the number of time steps N is finite. 443

444

2.5 Impact of the order of accuracy of the discrete Laplacian

This section gives a simple example to show that higher-order discretizations of 445 the Laplacian should be better able to sharply distinguish between scales near the grid 446 scale. Throughout this section 'small' length scales refer to scales near the grid scale. 447 The fundamental idea of section 2.3 is that the eigenvalues of the discrete Laplacian 448 correspond to the spatial length scale of the eigenvector in the same way that this 449 correspondence works for the continuous Fourier problem, i.e. if $-k_i^2$ is an eigenvalue 450 of the discrete Laplacian then the length scale of the corresponding eigenvector \mathbf{q}_i is 451 assumed to be $2\pi/k_i$. This connection between eigenvalues and length scales can be 452 inaccurate at small length scales. 453

454 For example, consider the following two discrete Laplacians on an infinite or 455 periodic one-dimensional equispaced grid with grid spacing 1 (nondimensional)

$$(\mathbf{L}_2 \mathbf{f})_j = f_{j-1} - 2f_j + f_{j+1} \tag{25}$$

$$\left(\mathbf{L}_{4}\mathbf{f}\right)_{j} = -\frac{1}{12}f_{j-2} + \frac{4}{3}f_{j-1} - \frac{5}{2}f_{j} + \frac{4}{3}f_{j+1} - \frac{1}{12}f_{j+2}.$$
(26)

⁴⁵⁶ For both of these Laplacians the discrete Fourier modes

$$\left(\mathbf{q}_k\right)_i = e^{\mathbf{i}kj} \tag{27}$$

are eigenvectors, where $0 \le k \le \pi$ is the discrete wavenumber, \mathbf{L}_2 is second order, and \mathbf{L}_4 is fourth order. (Note that notation has been changed from \mathbf{q}_i in section 2.3 to \mathbf{q}_k here, so that k is the discrete wavenumber rather than i.) For a spectral discretization the eigenvalues would be $-k^2$, but the eigenvalues for the second and fourth order Laplacians are

$$\mathbf{L}_2 \mathbf{q}_k = -4\sin^2\left(\frac{k}{2}\right) \mathbf{q}_k \tag{28}$$

$$\mathbf{L}_4 \mathbf{q}_k = -\frac{2}{3} \left(7 - \cos(k)\right) \sin^2\left(\frac{k}{2}\right) \mathbf{q}_k.$$
(29)

The fact that these are not equal to $-k^2$ is tantamount to saying that the filter will incorrectly identify the length scales of the eigenfunctions. Figure 4 shows the ratio of the discrete eigenvalues (28) and (29) to the correct value $-k^2$. In both cases the wavenumber implied by the eigenvalue is smaller than the true wavenumber k, meaning that these Laplacians treat small scales as if they were larger-scale than they really are. Both Laplacians have accurate eigenvalues at large scales, but the fourth order Laplacian's eigenvalues are more accurate at small scales. A filter that uses the

Figure 4. The ratio of the eigenvalues $-k_i^2$ of the discrete Laplacians to the true value $-k^2$. The second-order Laplacian is shown in blue and the fourth-order Laplacian is shown in green. $k = \pi$ corresponds to the Nyquist wavenumber, i.e. the wavenumber associated with the grid scale.

fourth order Laplacian will thus be more accurate when the filter is attempting to 469 separate scales near the limit of resolution. If one is attempting, for example, to get 470 an accurate estimate of the energy spectrum at scales near the grid scale using the 471 diffusion-based filter of section 2.3 in combination with the method of Sadek and Aluie 472 (2018) for estimating the spectrum, then it would be important to use a high-order 473 discretization of the Laplacian. On the other hand, if the filter is attempting to remove 474 the entire range of small scales where the second-order Laplacian is inaccurate, then 475 the second order Laplacian will work as well as higher-order Laplacians. 476

A user might attempt to filter two different data sets, each with a different resolution, to the same filter scale. The results will be similar provided that the filter scale is well-resolved in both data sets. If the filter scale is close to the grid scale of one of the data sets and the discrete Laplacian uses a low-order approximation, then the results could differ.

482

2.6 Spatially varying filter properties

The filters developed in section 2.3 are based on the isotropic Laplacian, and are 483 therefore isotropic in the sense that they provide an equal amount of smoothing in every 484 direction. The filter coefficients are the same over the whole domain, so the degree of 485 smoothing is also constant over the domain. This can be generalized to anisotropic 486 and spatially-varying filters by letting **L** be a discretization of $\nabla \cdot \mathbf{K}(\mathbf{x}) \nabla$ where $\mathbf{K}(\mathbf{x})$ 487 is a symmetric and positive definite tensor that varies in space (cf. Báez Vidal et al., 488 2016). (In this context \mathbf{K} is nondimensional, since the dimensions are carried by the 489 polynomial roots s_i .) 490

Figure 5. The effect of changing κ on the filter polynomial $p(\kappa k^2)$ for the polynomial p from equation (30).

⁴⁹¹ Consider first the isotropic case $\mathbf{K} = \kappa \mathbf{I}$ with constant κ , and assume that the ⁴⁹² filter polynomial $p(k^2)$ has been designed as described in section 2.3 under the as-⁴⁹³ sumption $\kappa = 1$. If the filter polynomial is used with constant $\kappa \neq 1$ then the filter ⁴⁹⁴ polynomial $p(k^2)$ is replaced by $p(\kappa k^2)$. This is tantamount to rescaling the filter ⁴⁹⁵ length scale by $\sqrt{\kappa}$. For example, if the original filter with $\kappa = 1$ had a characteristic ⁴⁹⁶ length scale of L then the filter using $\kappa \neq 1$ has a characteristic length scale of $\sqrt{\kappa L}$.

⁴⁹⁷ Next consider the case of an isotropic Laplacian with spatially-varying κ , and ⁴⁹⁸ assume that κ varies slowly over the domain. The filter polynomial p is designed to ⁴⁹⁹ have length scale L if $\kappa = 1$. In regions where $\kappa > 1$ the filter will have a longer length ⁵⁰⁰ scale $\sqrt{\kappa}L$, while in regions where $\kappa < 1$ the filter will have a smaller length scale. (If ⁵⁰¹ κ varies on length scales smaller than the filter scale then the behavior of the filter is ⁵⁰² hard to predict, so this situation should be avoided.)

Finally, consider the case of an anisotropic Laplacian with symmetric and pos-503 itive definite \mathbf{K} that varies over the domain. At each point in the domain \mathbf{K} has 504 two orthogonal eigenvectors corresponding to different directions, and the eigenvalues 505 indicate the strength of smoothing in each direction. One natural application of the 506 anistropic Laplacian is to apply a filter whose length scale is tied to the local grid scale, 507 which is especially relevant for Earth system models whose grid cell sizes vary in space. 508 This can be achieved by aligning the eigenvectors of \mathbf{K} with the local orthogonal grid 509 directions, and letting the respective eigenvalues determine the amount of filtering in 510 each direction. 511

⁵¹² A major caveat to the above discussion is that values of $\kappa > 1$ can lead to ⁵¹³ unexpected behavior. Consider, for example, the filter polynomial

$$p(\kappa k^2) = (1 - 0.7\kappa k^2)(1 - 0.8\kappa k^2)\cdots(1 - 1.2\kappa k^2),$$
(30)

where the scales that can be represented on the grid are associated with wavenumbers 514 $0 \leq k \leq 1$ and the standard case uses $\kappa = 1$. The blue line in Figure 5 shows that 515 $p(k^2)$ only acts as a smoother over the range of scales associated with $0 \le k \le 1$; at 516 larger k that are not represented on the grid the filter will significantly amplify these 517 scales. Using $\kappa > 1$ has the effect of bringing this undesirable filter behavior into the 518 range of scales represented on the grid, as can be seen in the green line corresponding 519 to $\kappa = 2$ in Figure 5. In contrast, using $\kappa \leq 1$ has no such problems (blue and red in 520 Figure 5). It is thus desirable to specify $\kappa \leq 1$ whenever possible. 521

522 Consider, for example, a one-dimensional non-uniform grid with maximum grid spacing h_{max} , minimum grid spacing h_{min} , and local grid spacing h. To apply a filter 523 that smooths locally to a scale m times larger than the local grid, one could choose 524 the filter scale to be $L = mh_{\min}$ and then set $\kappa = (h/h_{\min})^2$. Locally the filter scale 525 is rescaled to $\sqrt{\kappa}L = (h/h_{\min})(mh_{\min}) = mh$ as desired, but at the same time $\kappa \geq 1$ 526 which will lead to undesirable behavior at the small scales. Instead, one can achieve the 527 same effect by setting the filter scale to $L = mh_{\text{max}}$, and then setting $\kappa = (h/h_{\text{max}})^2$. 528 The local filter scale is again L = mh, but with $\kappa \leq 1$ over the whole domain. 529

We next describe a more *ad hoc* method of tying the local filter scale to the local grid scale. This method is not without drawbacks, but it is simpler and faster than the method based on an anisotropic and spatially-varying Laplacian. We call this filter the simple fixed factor filter.

Let \mathbf{L}_0 be the discretization of the Laplacian if all the cells had the same size. Since the cell sizes are assumed equal, the matrix \mathbf{L}_0 should be symmetric. If we simply replaced $p(-\mathbf{L})$ by $p(-\mathbf{L}_0)$ in the definition of the filter it would imply that we were filtering *as if* all the grid cells were the same size, which is equivalent to making the scale of the filter relative to the scale of the local grid. Unfortunately this would no longer preserve the integral. To rectify this problem we propose a cell-size weighted filter, which amounts to the following recipe:

- Weight the input data by cell sizes
- Apply the filter assuming the cell sizes are equal
- Divide the result by the cell sizes.

We next show that this filter preserves the integral at the discrete level. First note that weighting by the cell size is equivalent to multiplication by a diagonal matrix W whose diagonal entries are the cell sizes, so the above filter corresponds to

$$\bar{\mathbf{f}} = \mathbf{W}^{-1} p(-\mathbf{L}_0) \mathbf{W} \mathbf{f}.$$
(31)

The inner product (10) can be written in the form $\langle \mathbf{f}, \mathbf{g} \rangle = \mathbf{f}^T \mathbf{W} \mathbf{g}$, and recall that the discrete integral is $\langle \mathbf{1}, \mathbf{f} \rangle$. To prove that the new filter conserves the integral we follow (17), and find that

$$\langle \mathbf{1}, \bar{\mathbf{f}} \rangle = \mathbf{1}^T \mathbf{W} \mathbf{W}^{-1} p(-\mathbf{L}_0) \mathbf{W} \mathbf{f} = p(0) \mathbf{1}^T \mathbf{W} \mathbf{f} = \langle \mathbf{1}, \mathbf{f} \rangle.$$
(32)

The above sequence uses the facts that \mathbf{L}_0 is symmetric, which implies $\mathbf{1}^T \mathbf{L}_0 = (\mathbf{L}_0 \mathbf{1})^T$, that any consistent discretization of the Laplacian with no-flux boundary conditions will have $\mathbf{L}_0 \mathbf{1} = \mathbf{0}$, and that p(0) = 1.

Applying the discrete Laplacian under the assumption that all cell sizes are equal is much simpler than using an anisotropic Laplacian, and the algorithm can thus be much faster. On the other hand, this ad hoc method no longer has the property that the constant vector is left unchanged by the filter. Note that the simple fixed factor filter is anisotropic whenever the grid spacing is anisotropic, and it is spatially-varying whenever the grid spacing is non-uniform.

559 2.7 Variance reduction

In some situations it is desirable to enforce that the filtered field has less total variance than the unfiltered field, i.e. for functions

$$\int_{\Omega} f(\mathbf{x})^2 \mathrm{d}\mathbf{x} \ge \int_{\Omega} \bar{f}(\mathbf{x})^2 \mathrm{d}\mathbf{x}$$
(33)

⁵⁶² and for the discrete case

$$\langle \mathbf{f}, \mathbf{f} \rangle \ge \langle \bar{\mathbf{f}}, \bar{\mathbf{f}} \rangle.$$
 (34)

To translate this into a condition on the diffusion-based smoothers developed here, expand \mathbf{f} in the orthonormal basis of eigenvectors of \mathbf{L}

$$\mathbf{f} = \sum_{i=1}^{n} \hat{f}_i \mathbf{q}_i. \tag{35}$$

565 The condition of variance reduction becomes

$$\sum_{i=1}^{n} \hat{f}_{i}^{2} \ge \sum_{i=1}^{n} \hat{f}_{i}^{2} \left(p(k_{i}^{2}) \right)^{2}.$$
(36)

In order for this to be satisfied for any possible vector **f** this requires $|p(k_i)^2| \leq 1$ for 566 every k_i up to the largest one represented on the model grid, i.e. k_n . The eigenvalues 567 $-k_i^2$ of the discrete Laplacian are usually not known exactly, so a sufficient condition for 568 variance reduction would be that $|p(k^2)| \leq 1$ for every $0 \leq k \leq k_{\max}$ where $k_{\max} \geq k_n$. 569 It is worth noting that this condition applies to p and not to the target filter. Even if 570 the target filter satisfies this condition, the polynomial p might not satisfy it. (In all 571 examples in the left column of Figure 2 both the target filter and the approximating 572 polynomials do satisfy this condition.) It is also worth noting that failure to satisfy 573 this condition does not guarantee that the filtered field has more total variance than 574 the unfiltered field, but only that it might happen in some cases. 575

⁵⁷⁶ 2.8 The effective kernel implied by the diffusion-based filter

If the spatial filter were defined by a discrete approximation of a kernel-based spatial filter (8) then the value of \bar{f} at the i^{th} grid cell would be

$$\bar{f}_i = \langle \mathbf{g}_i, \mathbf{f} \rangle = \sum_j w_j g_{ij} f_j, \tag{37}$$

where \mathbf{g}_i is the effective filter kernel corresponding to the i^{th} cell. Note that $\bar{f}_i = \langle \mathbf{e}_i, \bar{\mathbf{f}} \rangle / w_i$, where \mathbf{e}_i is a vector of zeros with 1 at the i^{th} grid cell. Next note that

$$\bar{f}_i = \frac{1}{w_i} \langle \boldsymbol{e}_i, p(-\mathbf{L}) \mathbf{f} \rangle = \frac{1}{w_i} \langle p(-\mathbf{L}) \mathbf{e}_i, \mathbf{f} \rangle,$$
(38)

which implies that $\mathbf{g}_i = p(-\mathbf{L})\mathbf{e}_i/w_i$. We can thus compute the effective filter kernel that corresponds to $p(-\mathbf{L})$ at the *i*th grid cell by applying the filter to \mathbf{e}_i and then dividing the result by w_i . The same arguments can be used to find the effective filter kernel associated with the spatially-varying filters of section 2.6.

Note that if the filter kernel is non-negative $g_{ij} \ge 0$, then applying the filter to a positive quantity will yield a positive result, since the sum in (37) has both positive and zero terms, but no negative terms. In particular, if the weights are non-negative it will guarantee that the variance is also non-negative. To see this, note

$$0 \le \sum_{j} w_{j} g_{ij} (f_{j} - \bar{f}_{i})^{2} = \left(\sum_{j} w_{j} g_{ij} f_{j}^{2} \right) - \bar{f}_{i}^{2}$$
(39)

which uses the fact that $\sum_{j} w_{j} g_{ij} = 1$ and the definition of \bar{f}_{i} (37), and assumes $g_{ij} \geq 0$. Equation (39) directly implies that $\bar{f}_{i}^{2} - \bar{f}_{i}^{2} \geq 0$.

The proof above can be lifted to the continuous case as follows. Supposing that the convolution kernel $G \ge 0$ in (8), we may define

$$0 \le D(\mathbf{x}, \mathbf{y}) = \int_{\mathbb{R}^d} G(\mathbf{x}, \mathbf{x}') \left(f(\mathbf{x}') - \bar{f}(\mathbf{y}) \right)^2 \mathrm{d}\mathbf{x}' = \overline{f^2}(\mathbf{x}) - 2\bar{f}(\mathbf{x})\bar{f}(\mathbf{y}) + \left(\bar{f}(\mathbf{y})\right)^2 \tag{40}$$

The result that $\overline{f^2}(\mathbf{x}) - (\overline{f}(\mathbf{x}))^2 \ge 0$ follows by plugging in $\mathbf{y} = \mathbf{x}$.

Note that if the filter kernel ever takes a negative value, then it is no longer guaranteed to preserve positivity in the sense that $\overline{\mathbf{f}}$ may have negative values even when all the values in \mathbf{f} are positive. Similarly if the filter kernel ever takes a negative value then it could produce a negative local variance $\overline{\mathbf{f}^2} - \overline{\mathbf{f}}^2$. The spectral truncation filter is such an example having negative weights.

The right column of Figure 2 computes the filter kernels associated with the 599 polynomial approximations of the boxcar, Gaussian, and taper filters in the left column 600 of Figure 2. The standard equispaced, second-order Laplacian (25) was used, with 601 a nondimensional grid size of 1. The upper right panel illustrates that the kernel 602 associated with the polynomial approximation of the boxcar filter does not converge 603 to the actual boxcar kernel, though it is close. One reason for this discrepancy is the fact that the boxcar target (4) was formulated by reference to a continuous Fourier 605 transform, which is not a one-to-one match to the discrete version. Another reason 606 is that the effective kernel depends on the discretization of the Laplacian; a higher-607 order discretization would result in a slightly different effective kernel. Despite these discrepancies, the effective kernel of the polynomial approximation to a Gaussian target 609 still converges to a close approximation of the expected Gaussian kernel, as can be seen 610 in the middle right panel of Figure 2. 611

3 Illustrative Examples

In this section we present examples using model output and observational data 613 to illustrate the various filter properties and capabilities. An open-source python 614 package implementing the diffusion-based filters described in section 2, called gcm-615 filters, is currently under development and will be described elsewhere. This Python 616 code includes implementations of the discrete scalar and vector Laplacians on a variety 617 of spherical grids for different ocean general circulation models. All examples that 618 show the filtering of two-dimensional data use a second-order discrete Laplacian (on a 619 5-point stencil) with no-flux boundary condition. 620

621

3.1 Effective Kernels

We begin with an example showing effective filter kernels (see section 2.8) for 622 various configurations of the filters, noting especially how the filter kernel adapts near 623 boundaries. Figure 6 shows effective kernels centered at four locations in the Antarctic 624 Circumpolar Current. The grid is a 2/3 degree nominal resolution tripole grid of the 625 Modular Ocean Model version 6 (MOM6). The top row shows filters with a Gaussian 626 target, while the bottom row shows filters with the taper target. It is clear that the 627 taper target produces kernels with negative weights, while the Gaussian target does 628 not. In the top left panel, we chose a filter scale of 100 km for the kernel centered at 629 $(100^{\circ}W, 50^{\circ}S)$, and 1000 km for the remaining three kernels. In the bottom left, we 630 reduced the large filter scale from 1000 km to 300 km, because the Taper filter became 631 numerically unstable at high latitudes for a filter scale of 1000 km. The right column 632 shows the anisotropic versions of the filters in the right column where the filter scale 633 has been decreased by a factor of 3 in the meridional direction. It is interesting to note 634

Figure 6. Effective filter kernels for Gaussian (top) and Taper (bottom) filters with various filter scales on the 2/3 degree MOM6 grid, centered at 4 points in the Antarctic Circumpolar Current. Top left: Filter scale is 100 km for the effective kernel centered at $(100^{\circ}W, 50^{\circ}S)$, and 1000 km for the remaining three kernels. Bottom left: Same filter scales as top left, except that the large filter scale was reduced from 1000 km to 300 km. Right column: The anisotropic versions of the filters in the left column, but with a third of the length scale in the meridional direction. MOM6 land points are shaded in gray.

that the kernel in the upper left panel near the southern tip of South America does not curl around into the Argentine basin, as might be expected for a convolution-type filter.

638

3.2 Spatially varying filter scale

Figure 7 illustrates the ability of our filters to vary their length scales over the 639 domain by using variable κ as described in Section 2.6. We filter the vertical com-640 ponent of relative vorticity at the surface from the submesoscale-resolving MITgcm 641 simulation of the Scotia Sea with a resolution of $1/192^{\circ}$ described in Bachman et al. 642 (2017). In the map of the unfiltered vorticity (top panel) large scales are evident 643 in the Antarctic Circumpolar Current to the east of Drake Passage, where the first 644 baroclinic deformation radius tends to be O(10) km and is generally smaller than the 645 eddies themselves. Small scales are ubiquitous over the continental shelf off the eastern 646 coast of Argentina, where the deformation radius is O(1) km and is much closer to the 647 eddy scale. We demonstrate the spatially-varying filter by choosing the length scale 648 of the Gaussian filter so that the filter scale is proportional to the local first baroclinic 649 deformation radius. In making this choice we expect that more features will be filtered 650 out in the areas where the dynamics tend to be larger than the deformation scale, as 651 shown in the map of the filtered vorticity (middle panel) and the difference, i.e. the 652 eddy vorticity field (lower panel). 653

654

3.3 Non-commutation of the filter and spatial derivatives

Figure 8 illustrates the lack of commutation of the filters with spatial derivatives 655 in the presence of boundaries. We compute a large-scale part of the vertical component 656 of relative vorticity in two ways, first by filtering the velocity and then computing 657 vorticity as $\hat{z} \cdot \nabla \times \overline{\mathbf{u}}$, and second by computing the vertical vorticity directly from 658 the velocity and then applying the filter to the result $\hat{z} \cdot \nabla \times \mathbf{u}$. The filter is isotropic, 659 and uses a Gaussian target with a length scale of 300 km. The data is from a state-660 of-the-art climate model, GFDL-CM2.6 (Delworth et al., 2012; Griffies et al., 2015), 661 obtained through the Pangeo cloud data library (Abernathey et al., 2021). The ocean 662 component of GFDL-CM2.6 utilizes the GFDL-MOM5 numerical ocean code with a 663 nominal resolution of 0.1 degrees. The upper left panel shows the raw vorticity in the 664 northwest Pacific, while the upper right and lower left panels show the filtered vorticity 665 and the vorticity obtained from the filtered velocity, respectively. The lower right panel 666 shows the difference between the two smoothed vorticities, and it is clear that the 667 differences are extremely small over most of the domain. Significant differences arise 668 only near the boundaries, as can be seen especially in the vicinity of the Philippines, 669 which serves to illustrate the fact that the filter does not commute with derivatives 670 near boundaries. 671

The ability to commute the filter with spatial derivatives can be restored by 672 treating velocity values on land as zero, following Aluie et al. (2018). To illustrate 673 the difference of this approach compared to using stress-free boundary conditions in 674 the vector Laplacian, we compare in Figure 9 the filtered surface velocity that results 675 from the two approaches. The left column shows the zonal component of velocity and 676 the right column shows the meridional component. The top row shows the unfiltered 677 velocity; the second row shows the velocity filtered using the stress-free condition on 678 the discrete vector Laplacian; the third row shows the filtered velocity that results from 679 setting velocity to zero over land; the fourth row is the second row minus the third row. 680 Setting the velocity to zero over land allows the filter to commute with derivatives, but 681 at the cost of reducing the strength of currents near land. For example, the Florida 682 Current is much weaker in the third row than in the second row. It is thus clear that 683 both methods have pros and cons near boundaries. The data used in Figure 9 are from 684

Figure 7. Surface relative vorticity from the MITgcm simulation in Bachman et al. (2017) demonstrating a spatially variable filter scale using a Gaussian target filter. The filter applied to the raw field (top panel) results in smoothing where the first baroclinic deformation radius is small compared to the scale of the motion (middle panel), which is reflected in the difference between the raw and filtered fields (bottom panel). Units are s^{-1} .

Figure 8. Surface relative vorticity fields taken from GFDL-CM2.6 data. The upper left panel shows the unfiltered vorticity, the upper right shows the filtered vorticity, the bottom left panel shows the vorticity computed from filtered velocities, and the bottom right panel shows the difference between the latter two fields. The filter length scale is 300 km.

a JRA55-forced 2/3 degree MOM6 simulation; the filter has a length scale of 500 km and a Gaussian target.

687

3.4 Negative weights and eddy kinetic energy

The Gaussian filter's effective kernel has positive weights, while the more scaleselective taper filter's effective kernel typically has negative weights reminiscent of the sinc kernel that corresponds to the spectral truncation filter. These negative weights can produce negative values for non-negative quantities like eddy kinetic energy. We define eddy kinetic energy (EKE) as

$$EKE = \frac{1}{2} \overline{|\mathbf{u}|^2} - \frac{1}{2} |\overline{\mathbf{u}}|^2.$$
(41)

This definition of EKE has the virtue that the total kinetic energy is exactly the sum of the mean and eddy kinetic energies. When the weights are non-negative this definition of EKE will also be non-negative, as discussed in section 2.8. An alternative proof based only on having a convex kernel is given by Sadek and Aluie (2018). A proof specific to EKE can be found in (Vreman et al., 1994).

Figure 10 illustrates the application of our filters to a single five-day average of 698 AVISO estimates of absolute geostrophic velocity on a 0.25 degree grid obtained from 699 Copernicus European Earth Observation program [https://marine.copernicus.eu] 700 via Pangeo (Abernathey et al., 2021). The upper left panel shows the unfiltered surface 701 kinetic energy defined as $|\mathbf{u}|^2/2$. To compute mean surface kinetic energy we use the 702 simple fixed factor Laplacian with a filter scale four times the local grid scale, i.e. a 703 filter scale of 1 degree. The center panel in the upper row shows the mean kinetic 704 energy defined as $|\bar{\mathbf{u}}|^2/2$ using a Gaussian target, while the upper right panel shows 705 the mean kinetic energy obtained using the taper target. The lower panels show the 706 surface eddy kinetic energy defined according to (41). It is clear that the negative 707 weights in the taper filter lead to locally negative values of surface EKE. 708

The alternative definition $|\mathbf{u}'|^2/2$ where $\mathbf{u}' = \mathbf{u} - \overline{\mathbf{u}}$ can also produce negative values of EKE when the filter has negative weights. As a simple example consider the case where \mathbf{u}' is nonzero at only one grid point. Then $|\mathbf{u}'|^2$ is proportional to the effective kernel centered at that point, and Figure 6 shows that the taper filter's effective kernel has negative weights.

714

3.5 Application to one-dimensional observational data

Our final example in Figure 11 illustrates the application of our filters to one-715 dimensional data, specifically along-track altimeter observations of absolute dynamic 716 topography used to estimate cross-track geostrophic velocity. This example is in-717 cluded not only to highlight additional capabilities of this filtering framework, but 718 also to encourage its use on in-situ velocity or tracer measurements to permit scale-719 aware observational-model comparisons. We apply three filters (boxcar, Gaussian, and 720 taper) to cross-track geostrophic velocity estimates along a single track of the Jason-2 721 altimeter located in the Western North Atlantic. Velocities are interpolated to 20 km 722 spacing and then filtered to a 100 km filter scale. The upper panel shows a single 723 cycle of cross-track geostrophic velocity as a function of along-track distance moving 724 north to south (grey lines show all cycles completed at 10 day intervals over a two year 725 period). The single cycle (black) is then filtered using each of the three filter types 726 with EKE shown in the lower panel. The three filters produce nearly indistinguishable 727 large-scale fields, but the EKE defined according to equation (41), shown in the lower 728 panel, displays notable differences. Specifically, the taper filter's negative weights lead 729 to occasional negative values for EKE. 730

Figure 9. The upper two panels show surface velocity of a JRA55-forced 2/3 degree MOM6 simulation averaged over one month. The second row shows the velocities filtered with a Gaussian target and a filter scale of 500 km. The filter uses a vector Laplacian with a stress-free boundary condition. The third row shows filtered velocities as in the second row, but ignoring land boundaries with velocity values set to zero on land. The fourth row is the second row minus the third row. The left column shows zonal components of velocity while the right column shows meridional components.

Figure 10. The left panel shows surface kinetic energy calculated from absolute geostrophic velocities estimated using AVISO measurements of sea surface height. Velocities are provided on a $1/4^{\circ}$ degree grid and filtered using a Gaussian (middle column) and taper (right column) simple fixed filter with filter scale 4 times the local grid scale. Definitions of mean kinetic energy (MKE) and eddy kinetic energy (EKE) are provided in the text.

Figure 11. The upper panel shows cross-track geostrophic velocities along the Jason-2 altimeter track number 176 spanning a two-year period (grey). A single cycle is selected (black) and filtered using the boxcar (blue), taper (red), and Gaussian (green) filters using a 100 km filter scale. The inset figure locates track 176 in the Western North Atlantic with along-track distance increasing north to south. The lower panel shows eddy kinetic energy defined using the cross-track geostrophic velocities above and filtered using boxcar, taper, and Gaussian filters. Shaded black regions identify locations of negative EKE associated with the taper filter.

731 4 Conclusions

We have presented a new method for spatially filtering gridded data that only 732 relies on the availability of a discrete Laplacian operator. The method involves re-733 peated steps of the form (21b), and is therefore analogous to smoothing via diffusion. 734 (More details on this point are provided in section 2.4.1.) The new filters provide an 735 efficient way of implementing something close to a Gaussian kernel convolution; they 736 also allow the scale selectiveness (i.e. the shape) of the filter to be tuned as desired. As 737 they require only the ability to apply a discrete Laplacian operator, these filters can be 738 used with a wide range of data types, including output from models on unstructured 739 grids, and gridded observational data sets. 740

The only time the filter commutes with derivatives is when the domain has no 741 boundaries and the filter scale is constant over the domain. If desired, ocean boundaries 742 can be eliminated by treating velocity values on land as zero, following Aluie et al. 743 (2018); however, in order to preserve the integral with this method, the integral has to 744 be extended over land. The basic method can be generalized to allow for anisotropic, 745 i.e direction-dependent, as well as spatially-varying filter scales. It is our hope that 746 the new method and forthcoming software package will enable an increase in scale-747 dependent analysis of Earth system data, particularly for the purposes of subgrid-scale 748 parameterization, though by no means limited to such. 749

750 Acknowledgments

We are grateful to the editor, S.M. Griffies, and to H. Aluie and two anonymous 751 reviewers for their efforts to improve the clarity and scope of the manuscript. We 752 are grateful to J. Busecke for help with setting up the gcm-filters Python package, 753 and to H. Khatri for discovering the numerical instability described in section 2.4. 754 We thank A. Adcroft for helpful discussions on the design of spatially-varying filters. 755 Scripts used to generate the figures, including links to the publicly-available data, can 756 be found at (Loose et al., 2021). We are grateful to J. Kenigson for providing us with 757 output from a MOM6 model simulation. A open-source python package implementing 758 this algorithm, called gcm-filters, is currently under development (see (*qcm-filters*, 759 2021)). An early version of the package was used to generate the results in this paper. 760 A paper describing the software itself is in preparation for Journal of Open Source 761 Software, to coincide with the first release. In the present manuscript, our focus is the 762 algorithm itself, not the implementation. I.G. and N.L. are supported by NSF OCE 763 1912332. R.A. is supported by NSF OCE 1912325. J.S. is supported by NSF OCE 764 1912302. S.B. and G.M. are supported by NSF OCE 1912420. A.G. and E.Y. are 765 supported by NSF GEO 1912357 and NOAA CVP NA19OAR4310364. 766

Appendix A Solving the optimization problem to find the filter polynomial

We may find a polynomial that approximates the target filter by solving an optimization problem of the form

$$p(s) = \arg \min \|\hat{G}_t(\sqrt{s}) - p(s)\|, \tag{A1}$$

where $s = k^2$ and p is a polynomial that must satisfy p(0) = 1. In order to enable rapid solution of this optimization problem it is convenient to use a weighted L^2 norm on $s \in [0, s_{\text{max}}]$, where (as noted above) we may set $s_{\text{max}} = k_{\text{max}}^2 = (\sqrt{d\pi}/dx_{\min})^2$ where dis the dimension of the spatial domain. Using the Chebyshev norm is known to produce solutions that are close to the solution obtained from the max norm (Trefethen, 2019, theorem 16.1), so we adopt the Chebyshev norm

$$\|\hat{G}_t(\sqrt{s}) - p(s)\|_C^2 = \int_0^{s_{\max}} \frac{(\hat{G}_t(\sqrt{s}) - p(s))^2}{\sqrt{s(s - s_{\max})}} \mathrm{d}s.$$
(A2)

The polynomial must satisfy p(0) = 1 in order to conserve the integral, and for conve-777 nience we also apply the condition $p(s_{\text{max}}) = 0$. This allows us to solve the optimization 778

problem using the Galerkin basis described by (Shen, 1995). To be precise, we let 779

$$p(s) = 1 - \frac{s}{s_{\max}} + \sum_{i=0}^{N-2} \hat{p}_i \phi_i(s),$$
(A3)

780	where $\phi_i(s)$ are the polynomial basis of Shen (1995), satisfying $\phi_i(0) = \phi_i(s_{\max}) = 0$,
781	and $\phi_i(s)$ is a polynomial of degree $i + 2$. Collecting the Galerkin coefficients \hat{p}_i into
782	a vector $\hat{\mathbf{p}}$, the loss function (A2) can be written

$$\hat{\mathbf{p}}^T \mathbf{M} \hat{\mathbf{p}} - 2 \hat{\mathbf{p}}^T \mathbf{b} + \mathbf{b}^T \mathbf{b}$$
(A4)

where 783

$$M_{ij} = \langle \phi_i(s), \phi_j(s) \rangle_C \tag{A5}$$

$$b_i = \langle \phi_i(s), \hat{G}_t(\sqrt{s}) - 1 - \frac{s}{s_{\max}} \rangle_C, \tag{A6}$$

and $\langle \cdot, \cdot \rangle_C$ denotes the Chebyshev inner product. The entries of **M** are known an-784 alytically (Shen, 1995), and the entries of **b** are computed using Gauss-Chebyshev 785 quadrature with N+1 points. Setting the gradient of this quadratic loss function to 786 zero yields the following linear system for the optimal polynomial coefficients 787

$$\mathbf{M}\hat{\mathbf{p}} = \mathbf{b}.\tag{A7}$$

Once a target filter $\hat{G}_t(k)$ has been specified, one must also choose the degree 788 N of the polynomial p. As N increases the filter approaches the target filter - the 789 approximation converges provided that \hat{G}_t is absolutely continuous (Trefethen, 2013, 790 Theorem 7.2). As N increases the computational cost of the filter grows because 791 applying the filter requires applying the discrete Laplacian N times. It is therefore 792 desirable to choose some tradeoff between cost and accuracy. The Python package 793 gcm-filters (gcm-filters, 2021) has a default setting for N that guarantees not more 794 than 1% error in the difference between \hat{G}_t and p; the user can also override this choice 795 with any desired value of N. 796

Appendix B Commuting the filter and derivatives 797

This section explores conditions under which our filters commute with spatial 798 derivatives, which was one of the main goals in the design of convolution-based spatial 799 filters on the sphere in Aluie (2019). Filters with spatially-varying properties (cf. 800 Section 2.6) do not commute with derivatives, since they are analogous to integration 801 against a spatially-varying kernel (i.e. equation (8)). We thus consider in this section only the versions of our filters with a fixed length scale. We first consider domains 803 with boundaries, showing that our filters do not commute in this case, and then turn 804 to the surface of a full sphere, without topographic boundaries. 805

Although our filters are defined entirely in discrete terms, it is natural to think in 806 terms of the continuous limit, and this limit causes confusion. Consider for simplicity 807 the case of the following filter for a scalar function f(x) on $x \in [0, 1]$: 808

$$\bar{f} = \left(1 - \frac{1}{s_1}\Delta\right)f.\tag{B1}$$

This filter obviously commutes with derivatives, but it is in some sense not the correct 809 continuous version of our discrete filter. The reason is that the discrete version always 810

assumes no-flux boundary conditions on the data, because no other boundary condition 811

is guaranteed to conserve the integral. Indeed the filter (B1) is not guaranteed to 812 conserve the integral unless f satisfies no-flux (or periodic) boundary conditions. This 813 is no limitation in the discrete case, since the no-flux Laplacian can be computed for 814 any data. On the other hand, if one applies the discrete Laplacian with a no-flux 815 assumption and then takes the limit of infinite resolution the result does not converge 816 to Δf unless f actually satisfies no-flux boundary conditions. Instead, it converges to 817 Δf plus Dirac delta distributions on the boundary. (This is analogous to the delta 818 sheets of potential vorticity discussed by Bretherton (1966).) 819

820 In the correct continuous limit, equation (B1) is only defined for functions f that satisfy f'(0) = f'(1) = 0. With this more careful definition of the continuous limit of 821 the filter, one can ask again whether it commutes with the spatial derivative. If one 822 attempts to define g(x) = f'(x) and then apply the filter to g, the result is not defined 823 unless g also satisfies no-flux conditions, i.e. f''(0) = f''(1) = 0. So in the continuous 824 limit, the filter will not commute with differentiation for functions with $f'' \neq 0$ on 825 the boundaries. For higher-order filters the conditions for commutation are even more 826 stringent, requiring derivatives up to high order to all be zero on the boundary. 827

An alternative perspective is afforded by the fact that our discrete filter is equivalent to a discrete kernel smoothing, per the arguments of Section 2.8. In the presence of boundaries, the shape of the kernel varies in space, as can be seen in Figure 6. The continuous analog is integration against a spatially-varying kernel (equation (8)), which does not commute with spatial derivatives.

In the case without boundaries, e.g. on a sphere, there is no such difficulty. As 833 long as the continuous differential operators commute (e.g. a Laplacian and a gradi-834 ent), the discrete operators should also commute, at least up to discretization errors. 835 The convolution-based spatial filters of Aluie (2019) only commute with derivatives in 836 the absence of boundaries: this difficulty can be avoided by treating velocity values 837 outside the domain (e.g. on land) as zero (Aluie et al., 2018). A similar method can 838 be used with our filters if desired: values outside the domain can be treated as zero 839 (see right panel of Figure 9). 840

841 References

- Abernathey, R., Augspurger, T., Banihirwe, A., Blackmon-Luca, C., Crone, T., Gentemann, C., ... Signell, R. (2021). Cloud-native repositories for big scientific data. Computing in Science and Engineering(01), 1–1.
- Aluie, H. (2019). Convolutions on the sphere: commutation with differential operators. *GEM-International Journal on Geomathematics*, 10(1), 9.
- Aluie, H., Hecht, M., & Vallis, G. K. (2018). Mapping the energy cascade in the
 North Atlantic Ocean: The coarse-graining approach. J. Phys. Ocean., 48(2),
 225–244.
- Arbic, B. K., Polzin, K. L., Scott, R. B., Richman, J. G., & Shriver, J. F. (2013).
 On eddy viscosity, energy cascades, and the horizontal resolution of gridded
 satellite altimeter products. J. Phys. Ocean., 43(2), 283–300.
- Bachman, S. D., Taylor, J., Adams, K., & Hosegood, P. (2017). Mesoscale
 and submesoscale effects on mixed layer depth in the Southern Ocean. *J. Phys. Ocean.*, 47(9), 2173–2188.
- Báez Vidal, A., Lehmkuhl, O., Trias, F. X., & Pérez-Segarra, C. D. (2016). On the
 properties of discrete spatial filters for CFD. J. Comput. Phys., 326, 474–498.
- Berloff, P. S. (2005). On dynamically consistent eddy fluxes. *Dyn. Atmos. Oceans*, 38(3-4), 123–146.
- Berloff, P. S. (2018). Dynamically consistent parameterization of mesoscale eddies.
 Part III: Deterministic approach. Ocean Model., 127, 1–15.
- Bolton, T., & Zanna, L. (2019). Applications of deep learning to ocean data in-

863	ference and subgrid parameterization. J. Adv. Model. Earth Syst., $11(1)$, 376–
864	399.
865	Bretherton, F. (1966). Critical layer instability in baroclinic flows. Q. J. Roy. Me-
866	teor. Soc., $92(393)$, $325-334$.
867	Chen, S., Foias, C., Holm, D. D., Olson, E., Titi, E. S., & Wynne, S. (1998).
868	Camassa-holm equations as a closure model for turbulent channel and pipe
869	flow. Phys. Rev. Lett., $81(24)$, 5338.
870	Delworth, T., Rosati, A., Anderson, W., Adcroft, A., Balaji, V., Benson, R.,
871	R, Z. (2012). Simulated climate and climate change in the GFDL CM2.5
872	high-resolution coupled climate model. J. Climate, 25(8), 2755-2781.
873	gcm-filters. (2021). https://github.com/ocean-eddy-cpt/gcm-filters. (Ac-
874	cessed: $2021-03-24$)
875	Germano, M. (1986). Differential filters for the large eddy numerical simulation of
876	turbulent flows. <i>Phys. Fluids</i> , 29(6), 1755–1757.
877	Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour,
878	C. O., Zhang, R. (2015). Impacts on ocean heat from transient mesoscale
879	eddies in a hierarchy of climate models. J. Climate, $28(3)$, $952 - 977$. doi:
880	10.1175/JCLI-D-14-00353.1
881	Grooms, I., & Kleiber, W. (2019). Diagnosing, modeling, and testing a multiplica-
882	tive stochastic Gent-McWilliams parameterization. Ocean Model., 133, 1–10.
883	Grooms, I., Nadeau, LP., & Smith, K. S. (2013). Mesoscale eddy energy locality in
884	an idealized ocean model. J. Phys. Ocean., 43, 1911–1923.
885	Guedot, L., Lartigue, G., & Moureau, V. (2015). Design of implicit high-order filters
886	on unstructured grids for the identification of large-scale features in large-eddy
887	simulation and application to a swirl burner. Phys. Fluids, 27(4), 045107.
888	Guillaumin, A., & Zanna, L. (2021). Stochastic deep learning parameterization of
889	ocean momentum forcing. Earth and Space Science Open Archive, 31. doi: 10
890	.1002/essoar.10506419.1
891	Haigh, M., Sun, L., Shevchenko, I., & Berloff, P. (2020). Tracer-based estimates of
892	eddy-induced diffusivities. Deep-sea Res. Pt. I, 103264. doi: 10.1016/j.dsr.2020
893	.103264
894	Hunter, J. K., & Nachtergaele, B. (2001). Applied analysis. World Scientific.
895	Khani, S., Jansen, M. F., & Adcroft, A. (2019). Diagnosing subgrid mesoscale eddy
896	fluxes with and without topography. J. Adv. Model. Earth Syst
897	Loose, N., Grooms, I., Busecke, J., & Yankovsky, E. (2021, March). ocean-eddy-
898	cpt/gcm-filters-paper: Diffusion-based smoothers for spatial filtering of gridded
899	geophysical data. Zenodo. doi: 10.5281/zenodo.4633794
900	Lu, J., Wang, F., Liu, H., & Lin, P. (2016). Stationary mesoscale eddies, upgradient
901	eddy fluxes, and the anisotropy of eddy diffusivity. Geo. Res. Lett., $43(2)$, 743–
902	751.
903	Nadiga, B. (2008). Orientation of eddy fluxes in geostrophic turbulence.
904	Phil. Trans. R. Soc. A, 366(1875), 2489–2508.
905	Porta Mana, P., & Zanna, L. (2014). Toward a stochastic parameterization of ocean
906	mesoscale eddies. Ocean Model., 79, 1–20.
907	Raymond, W. H. (1988). High-order low-pass implicit tangent filters for use in finite
908	area calculations. Mon. Weather Rev., $116(11)$, $2132-2141$.
909	Raymond, W. H., & Garder, A. (1991). A review of recursive and implicit filters.
910	Mon. Weather Rev., 119(2), 477–495.
911	Robinson, G., & Grooms, I. (2020). A fast tunable blurring algorithm for scattered
912	data. SIAM J. Sci. Comput., 42(4), A2281–A2299.
913	Ryzhov, E., Kondrashov, D., Agarwal, N., & Berloff, P. (2019). On data-driven
914	augmentation of low-resolution ocean model dynamics. Ocean Model., 142,
915	101464.
916	Sadek, M., & Aluie, H. (2018). Extracting the spectrum of a flow by spatial filtering.

- ⁹¹⁸ Sagaut, P. (2006). Large eddy simulation for incompressible flows.
- Sagaut, P., & Grohens, R. (1999). Discrete filters for large eddy simulation. Int. J.
 Numer. Meth. Fl., 31(8), 1195–1220.
- Shapiro, R. (1970). Smoothing, filtering, and boundary effects. Rev. Geophy., 8(2),
 359–387.
- Shen, J. (1995). Efficient spectral-Galerkin method II. Direct solvers of second-and
 fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput.,
 16(1), 74–87.
- Stanley, Z., Bachman, S., & Grooms, I. (2020). Vertical structure of ocean
 mesoscale eddies with implications for parameterizations of tracer transport.
 J. Adv. Model. Earth Syst., 12(10), e2020MS002151.
- Stanley, Z., Grooms, I., Kleiber, W., Bachman, S., Castruccio, F., & Adcroft, A.
 (2020). Parameterizing the impact of unresolved temperature variability on the
 large-scale density field: Part 1. Theory. J. Adv. Model. Earth Syst., 12(12),
 e2020MS002185.
- Trefethen, L. (2013). Approximation theory and approximation practice. SIAM
 Philadelphia.
- Trefethen, L. (2019). Approximation theory and approximation practice, extended edition. SIAM, Philadelphia, USA.
- ⁹³⁷ Vreman, B., Geurts, B., & Kuerten, H. (1994). On the formulation of the dynamic ⁹³⁸ mixed subgrid-scale model. *Phys. Fluids*, 6(12), 4057–4059.
- Williams, P., Howe, N., Gregory, J., Smith, R., & Joshi, M. (2016). Improved cli mate simulations through a stochastic parameterization of ocean eddies. J. Cli mate, 29, 8763-8781.
- Zanna, L., & Bolton, T. (2020). Data-driven equation discovery of ocean mesoscale
 closures. *Geo. Res. Lett.*, 47(17), e2020GL088376.