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Abstract

We describe a new way to apply a spatial filter to gridded data from models or observations, focusing on low-pass filters.

The new method is analogous to smoothing via diffusion, and its implementation requires only a discrete Laplacian operator

appropriate to the data. The new method can approximate arbitrary filter shapes, including Gaussian and boxcar filters,

and can be extended to spatially-varying and anisotropic filters. The new diffusion-based smoother’s properties are illustrated

with examples from ocean model data and ocean observational products. An open-source python package implementing this

algorithm, called gcm-filters, is currently under development.
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Abstract17

We describe a new way to apply a spatial filter to gridded data from models or obser-18

vations, focusing on low-pass filters. The new method is analogous to smoothing via19

diffusion, and its implementation requires only a discrete Laplacian operator appropri-20

ate to the data. The new method can approximate arbitrary filter shapes, including21

Gaussian filters, and can be extended to spatially-varying and anisotropic filters. The22

new diffusion-based smoother’s properties are illustrated with examples from ocean23

model data and ocean observational products. An open-source python package imple-24

menting this algorithm, called gcm-filters, is currently under development.25

Plain Language Summary26

“The large scale part” and “the small scale part” of quantities like velocity,27

temperature, and pressure fluctuations are important for a range of questions in Earth28

system science. This paper describes a precise way of defining these quantities, as29

well as an efficient method for diagnosing them from gridded data, especially the data30

produced by Earth system models.31

1 Introduction32

Spatial scale is an organizing concept in Earth system science: atmospheric syn-33

optic scales and convective scales, and oceanic mesoscales and submesoscales, for exam-34

ple, are ubiquitous touchstones in atmospheric and oceanic dynamics. The pervasive35

idea of an energy spectrum is fundamentally based on the idea of partitioning en-36

ergy (or variance) across a range of spatial scales. Despite this central importance,37

diagnosing dynamics at different spatial scales remains challenging. When analysing38

remote-sensing or simulation data, scientists instead often rely on time averaging as39

proxy for separating scales, which is more computationally convenient than spatial40

filtering. Temporal filtering is often of interest in its own right, but in situations where41

spatial filtering is called for this trade of spatial for temporal filtering can be justified42

by the fact that dynamics at different spatial scales are frequently also associated with43

different time scales.44

Spatial filtering, long a staple of large eddy simulation (LES; Sagaut, 2006),45

has recently begun to replace time averages and zonal averages in a priori studies46

of subgrid-scale parameterization for ocean models. A canonical model for spatial47

filtering is given by kernel convolution48

f̄(x) =

∫
Rd

G(x− x′)f(x′)dx′, (1)

where G is the convolution kernel, x′ is a dummy integration variable, and Rd denotes49

the set of all real vectors of dimension d. Berloff (2018), Bolton and Zanna (2019),50

Ryzhov et al. (2019), and Haigh et al. (2020) all used convolution filters to study51

subgrid-scale parameterization in the context of quasigeostrophic dynamics in a rect-52

angular Cartesian domain. Lu et al. (2016), Aluie et al. (2018), Khani et al. (2019),53

Stanley, Bachman, and Grooms (2020), and Guillaumin and Zanna (2021) used ap-54

proximate spatial convolutions on the sphere to filter ocean general circulation model55

output, and Aluie (2019) showed how to correctly define convolution on the sphere in56

such a way that the filter commutes with spatial derivatives. A ‘top hat’ or ‘boxcar’57

kernel (i.e. an indicator function over a circle or a square, respectively) is used in all58

these studies, except for Bolton and Zanna (2019), Stanley, Bachman, and Grooms59

(2020), and Guillaumin and Zanna (2021) who used Gaussian kernels. Spatial convo-60

lution is not the only way to define or implement spatial filters. For example, Nadiga61

(2008) and Grooms et al. (2013) used an elliptic inversion to define spatial filters for62

quasigeostrophic model output, and Grooms and Kleiber (2019) used Fourier-based63
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filtering methods for primitive equation model output, all in rectangular Cartesian64

domains. Fourier methods with windowing can be used for filtering over local patches65

(e.g. Arbic et al., 2013), though this can lead to artifacts, as shown by Aluie et al.66

(2018).67

We make a semantic distinction between spatial filtering and coarse graining. In68

our use of the terms, coarse graining is an operation that produces output at a lower69

resolution (i.e. smaller number of grid points) than the input, whereas spatial filtering70

produces output at the same resolution as the input. (Note that this terminology71

is not uniformly adopted in the literature; cf. Aluie et al. (2018).) Berloff (2005),72

Porta Mana and Zanna (2014), Williams et al. (2016), Stanley, Grooms, et al. (2020),73

and Zanna and Bolton (2020) are all examples where coarse graining was used in74

the context of ocean model subgrid-scale parameterization. The term ‘averaging’ is75

sometimes used instead of filtering. They are essentially synonymous when the filter76

kernel G is non-negative, but a filter whose kernel has negative values cannot be77

described as an average, so we opt to use the more general term. A low-pass filter can78

be described as a smoother, which is the focus here, but the methods described here79

can be straightforwardly adapted to band-pass or high-pass filters.80

This paper introduces a new way of designing and implementing spatial filters81

that relies only on a discrete Laplacian operator for the data. Because it relies on the82

discrete Laplacian to smooth a field through an iterative process reminiscent of diffu-83

sion, we refer to the new method as diffusion-based filters. The paper is structured as84

follows. Section 2 describes the new filters along with their properties. Examples using85

model data and observations are provided in section 3 to illustrate the various filter86

properties described in section 2. Conclusions are offered in section 4. Appendix A87

provides some details of the filter specification, and Appendix B discusses commutation88

of the filter with derivatives.89

2 Spatial filtering of gridded data90

2.1 Review91

Spatial filtering of gridded data is a well developed field, both for general appli-92

cations and in the context of geophysical data. The focus here is on filtering in the93

context of fluid models, especially atmosphere and ocean models. To place our new94

method into context, we review existing filtering techniques, and distinguish between95

implicit and explicit filters.96

Shapiro (1970) introduced a class of filters, widely used to improve the perfor-97

mance of early finite-difference weather models by removing energy near the grid scale98

and thereby preventing accumulation leading to blowup. Shapiro filters are essentially99

discrete spatial convolution filters optimized to remove the smallest scales that can100

be represented on a logically-rectangular grid, while leaving the other scales as close101

to unchanged as possible. Sagaut and Grohens (1999) reviewed some of the more re-102

cent approaches to convolution-based filtering for large-eddy simulation. Sadek and103

Aluie (2018) developed two discrete convolution kernels for the purpose of accurately104

extracting the energy spectrum using convolution filters rather than Fourier methods.105

Germano (1986) introduced an implicit differential filter of the form

(1− L2∆)f̄ = f, (2)

where f̄ is the filtered field, L is the filter length scale, and ∆ is the Laplacian. It is106

‘implicit’ because applying the filter to data involves solving a system of equations; the107

convolution filters of Shapiro (1970) and Sagaut and Grohens (1999) are called ‘explicit’108

in contrast. Germano’s implicit filter appears in the Leray-α and Lagrangian-averaged109

Navier-Stokes-α models (Chen et al., 1998). Implicit differential filters were used by110
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Nadiga (2008) and Grooms et al. (2013) in the context of subgrid-scale parameteriza-111

tion in quasigeostrophic ocean models, and a similar fractional elliptic equation under-112

lies the approach to spatial filtering of scattered data recently developed by Robinson113

and Grooms (2020). Raymond (1988) and Raymond and Garder (1991) developed114

implicit filters for meteorological applications using higher order differential operators.115

Guedot et al. (2015) developed higher order implicit differential filters on unstruc-116

tured meshes for engineering applications. Note that the term ‘high order’ here refers117

to the differential operator, though it has been used elsewhere with different meanings118

(Sagaut & Grohens, 1999; Sadek & Aluie, 2018).119

The new approach developed here results in high order explicit differential filters,120

meaning that they use a discrete Laplacian, but that they do not require solving a121

system of equations.122

2.2 Spatial filtering basics123

Most intuition about spatial filtering and spatial scales is built on the foundation124

of kernel convolution and Fourier analysis, in the context of equation (1). The well-125

known convolution theorem (e.g. Hunter & Nachtergaele, 2001, Theorem 11.35) states126

that the Fourier transform of f̄ is proportional to Ĝf̂ , where ·̂ denotes the Fourier127

transform and the proportionality constant depends on the dimension d and on the128

normalization convention chosen in the definition of the Fourier transform.129

Fourier analysis enables us to understand the effect of spatial convolution filtering130

in terms of length scales. We consider the function f to be a sum of many Fourier131

modes, each of which has a distinct spatial scale. The Fourier transform of the kernel,132

Ĝ, then describes how each Fourier mode is modified by the spatial filtering operation.133

Filter kernels are usually symmetric about the origin, which makes Ĝ real-valued, so134

that spatial filtering only changes the amplitude of the Fourier modes and not their135

phase. If Ĝ(k) = 1 for a particular Fourier mode then the corresponding length scale136

is left unchanged in f̄ , whereas if Ĝ(k) = 0 for a particular Fourier mode then the137

corresponding length scale is removed from f̄ . By modifying the amplitudes of the138

Fourier modes, spatial filtering controls the scale content of f̄ .139

One of the simplest kernels is the so-called boxcar function, defined in one spatial
dimension as

GL(x) =

{
1/L |x| < L/2

0 |x| ≥ L/2
(3)

Convolution against this kernel represents averaging all the points in the neighborhood140

with the same weight, and the parameter L defines the size of the neighborhood. (In141

higher dimensions the boxcar filter is nonzero over a square region, while a ‘top-hat‘142

filter is nonzero over a circular or spherical region.) The Fourier transform of the143

boxcar filter of width L is144

ĜL(k) = sinc

(
kL

2π

)
(4)

where sinc(x) = sin(πx)/(πx) and k is the wavenumber. This function decays only145

as 1/k at large k, so it does not correspond to a sharp separation between length146

scales. Conversely, a ‘spectral truncation’ filter has a kernel whose Fourier transform147

is a boxcar, and the kernel itself is a sinc function. The boxcar and spectral truncation148

filters illustrate the concept that a short-range kernel does not separate scales well,149

and a filter that makes a sharp separation between scales requires a very long-range150

kernel. Figure 1 shows the boxcar and sinc convolution kernels, to illustrate that151

the more scale-selective sinc kernel has a much longer range. In practice there is a152

tradeoff between choosing a kernel that makes as clean a scale separation as possible153

and choosing a kernel whose range is short enough to apply efficiently, analogous to154

the uncertainty principle in quantum physics.155
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Figure 1. The boxcar function of width 1 and sinc(x).

It is usually desirable for the filter to preserve the integral, and to commute with156

derivatives, i.e.157 ∫
Rd

f(x)dx =

∫
Rd

f̄(x)dx, (5)

∂f̄

∂xi
=

∂f

∂xi
. (6)

Any convolution filter commutes with derivatives, and preservation of the integral is158

easily ensured by the condition159 ∫
Rd

G(x)dx = 1. (7)

In the presence of boundaries the convolution formula (1) no longer works, since f(x)160

is not defined on Rd. One option, used by Aluie et al. (2018), is to simply extend161

f(x) = 0 outside the domain boundaries. For velocity the values on land can be set to162

zero, though for tracers it is less clear how to set values on land. The more common163

option is to vary the kernel near the boundaries so that the filter formula changes to164

f̄(x) =

∫
Ω

G(x,x′)f(x′)dx′, (8)

where Ω ⊂ Rd is the spatial domain and x′ is a dummy integration variable. Unlike the165

convolution filter (1) the kernel G is now a function of two arguments, to emphasize166

that the shape of the kernel can change over the spatial domain. This kind of spatial167

filter (8) no longer commutes with spatial derivatives, though it still preserves the168

integral as long as the kernel is appropriately normalized.169

The background intuition for kernel-based spatial filters in this subsection is170

developed entirely for functions on Euclidean spaces. The definition of convolution-171

based spatial filters is considerably more complicated on a sphere; see Aluie (2019) for172

details.173
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2.3 Diffusion-based smoothers174

2.3.1 Discrete integral & Laplacian175

To generalize the foregoing ideas to more complicated domains and grid geome-176

tries we begin with a transition to the discrete representation. The field to be filtered177

is no longer a continuous function, but a vector f ; for example, if we wish to filter178

temperature on a grid of n points, then we think of the values of temperature on the179

grid as a vector in Rn. To lay a foundation for the analysis we need two ingredients;180

the first is a discrete integral181 ∫
Ω

f(x)dx ≈
∑
i

wifi, (9)

where Ω denotes the spatial domain and wi are positive weights. Cartesian geometry is182

assumed for ease of presentation, but the discrete integral could easily approximate an183

integral over the sphere or some other smooth manifold without changing the analysis.184

For a typical finite-volume model the weight wi will simply be the area (or volume, if185

the integral is over three spatial dimensions) of the ith grid cell. If the weights wi are186

all positive then we can define a discrete inner product187

〈f ,g〉 =
∑
i

wifigi. (10)

The area integral can be expressed in terms of the inner product as 〈1, f〉, where 1 is188

a vector whose entries are all 1.189

The second ingredient is a discrete Laplacian, i.e. some operation on f that190

produces an approximation of ∆f on the grid. The development in this section does191

not explicitly require Cartesian or spherical geometry; it only requires a discretization192

of a Laplacian operator that is appropriate to the geometry of the data. We write193

this operation in matrix form as Lf , though it is certainly not necessary to actually194

construct the matrix L. We assume that the discrete Laplacian is negative semi-195

definite, and self-adjoint with respect to the discrete inner product, i.e for any f and196

g197

〈f ,Lf〉 ≤ 0, and 〈f ,Lg〉 = 〈Lf ,g〉. (11)

This is automatically guaranteed for finite-volume discretizations of the Laplacian with198

no-flux boundary conditions.199

2.3.2 Connecting the discrete Laplacian to spatial scales200

Since the discrete Laplacian is self-adjoint and negative semi-definite, the eigen-201

values of L are all real and non-positive, and there is an eigenvector basis q1, . . . ,qn202

of Rn that is orthonormal with respect to the discrete inner product. This is directly203

analogous to the Fourier analysis of the foregoing section: Fourier modes on Rd are204

eigenfunctions of the Laplacian on Rd. In fact, with an equispaced grid and periodic205

boundaries the eigenvectors qi are exactly the discrete Fourier modes. In both the206

Fourier version and the discrete version the eigenvalues can be interpreted as describ-207

ing the spatial scale of the corresponding eigenfunction:208

∆eik·x = −k2eik·x, Lqi = −k2
i qi. (12)

On the left in the above expression k = ‖k‖ represents the familiar Fourier wavenumber209

corresponding to a wavelength of 2π/k, while on the right the eigenvalue −k2
i has210

been written with similar notation to emphasize the similarity. Precisely because L is211

a discretization of the Laplacian, the length 2π/ki should roughly correspond to the212

length scale of the eigenvector qi. We assume that the eigenvalues are ordered such213

that k1 ≤ k2 ≤ . . . ≤ kn.214
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Continuing the analogy with the previous section, it is possible to write the vector215

to be filtered as a sum over eigenfunctions of the discrete Laplacian:216

f =

n∑
i=1

f̂iqi. (13)

We next show that we can filter f by applying a function p(−L) to it. From equation217

(13), we see that this results in218

p(−L)f =

n∑
i=1

f̂ip(k
2
i )qi =

n∑
i=1

f̂iĜ(ki)qi, (14)

where the notation Ĝ(k) = p(k2) has been deliberately used to emphasize the connec-219

tion to the Fourier convolution theorem recalled in the previous section: if the expan-220

sion coefficients of f are f̂i, then the expansion coefficients of p(−L)f are Ĝ(ki)f̂i. (The221

notation p is used for both the matrix and scalar versions of the function; a familiar222

example might be p(−Lt) = e−Lt and p(0) = e0 = 1.) If one defined the function p in223

such a way that224

Ĝ(k) =

{
1 k < k∗
0 k ≥ k∗

, (15)

then multiplying f by p(−L) would correspond to projecting f onto large-scale modes225

defined by ki < k∗. This would be analogous to a spectral truncation filter. Since the226

discrete filter is a function of a discrete Laplacian, it is natural to suspect that the227

filter should commute with derivatives; this question is addressed in Appendix B.228

The assumption that the eigenvalue −k2
i corresponds to a physical length scale229

2π/ki for the eigenvector is crucial. It is not typically possible in realistic applications230

to derive the eigenvalues and eigenvectors in closed form in order to verify this assump-231

tion, nor is it practical to compute them numerically. The assumption is nevertheless232

expected to hold except possibly in non-smooth geometries.233

2.3.3 Polynomial approximation of the target filter234

For the large data sets produced by Earth system models computing the eigen-235

values and eigenvectors of L is prohibitively expensive, and even solving linear systems236

involving L can be expensive. By contrast, simply applying L is usually inexpensive.237

In practice this means that it is inexpensive to compute p(−L)f when p is a poly-238

nomial. (The implicit differential filters of Germano (1986) and Guedot et al. (2015)239

correspond to letting 1/p be a polynomial.)240

We propose to define our new filters as f̄ = p(−L)f , where p is a polynomial241

p(−L) = a0I + a1(−L) + . . .+ aN (−L)N . (16)

The polynomial coefficients al will be chosen as described below to obtain the desired242

filter shape, and I is the identity matrix. To show that such a filter preserves the243

integral, note that p(−L) is self-adjoint with respect to the discrete inner product,244

and245

〈1, f̄〉 = 〈1, p(−L)f〉 = 〈p(−L)1, f〉 = 〈a01, f〉, (17)

where we have used the fact that L1 = 0 for any consistent discretization of the Lapla-246

cian with no-flux boundary conditions. The condition a0 = p(0) = 1 thus guarantees247

that the spatial filter will preserve the integral. It also ensures that the filter will leave248

large scales approximately unchanged; in order to remove small scales p should decay249

towards zero as k increases.250

We can choose a specific shape for p by means of standard polynomial approx-251

imation of a ‘target’ filter Ĝt. For example, note that the Fourier transform of a252
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Figure 2. Left: Target filters Ĝt(k) and their approximations p(k2). Right: The equivalent

kernel weights in one dimension on an equispaced grid of size 1. Top Row: A boxcar filter of

width 8; Middle Row: A Gaussian filter with standard deviation 4/
√

3; Bottom Row: The taper

filter. All length scales in this figure are nondimensional. There is no blue line in the lower right

panel because the taper filter is defined directly in terms of its target Ĝt(k), rather than via its

convolution kernel, as for the boxcar and Gaussian filters.

Gaussian convolution kernel with standard deviation L is253

Ĝ(k) = exp

{
−L

2k2

2

}
. (18)

In order to construct a filter that acts like a convolution-based spatial filter with a254

Gaussian kernel of standard deviation L, one might choose a target filter of the form255

Ĝt(k) = Ĝ(k). It is worth emphasizing that the connection to convolution is only256

heuristic; near boundaries or in non-Euclidean geometry the target filter is not exactly257

the same as a convolution-based spatial filter. The precise interpretation of Ĝt(k) is258

based on (14): the expansion coefficient f̂i is multiplied by Ĝt(ki).259

The goal would then be to find a polynomial p such that p(k2) ≈ Ĝt(k). In260

general this is not possible with an explicit filter because polynomials grow without261

bound as k → ±∞; thankfully it is only necessary for the approximation to hold over262

the range of scales represented on the grid, specifically for 0 ≤ k ≤ kn where −k2
n263

is the most-negative eigenvalue of L. If kn is not known, some reasonable proxy can264

be used to define the range of scales over which p should act like a spatial filter. For265

example, on a quadrilateral grid one might use 0 ≤ k ≤
√
dπ/dxmin where dxmin is266

the length of the smallest grid cell edge and d is the spatial dimension of the grid.267

In Appendix A we present a least-squares approach for finding a polynomial p268

such that p(k2) approximates Ĝt(k). The left column of Figure 2 shows three examples269

of target filters, along with their approximations p(k2) using polynomials of degree270

N = 3, 5, and 21. The top row shows the boxcar target shown in equation (4) with271
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length scale L = 8 (nondimensional), and the middle row shows the Gaussian target272

that corresponds to a Gaussian kernel with standard deviation 4/
√

3 (nondimensional).273

The bottom row shows a target that we here label ‘taper.’274

The taper target is developed as an example of a filter that is more scale-selective275

than the Gaussian; it is a smooth approximation of a spectral cutoff filter. The taper276

target is a piecewise polynomial with a continuous first derivative. It is Ĝt(k) = 0277

for k above some cutoff kc = 2π/L, with L = 8 (nondimensional) in Figure 2. For278

0 ≤ k ≤ kc/X it takes the value Ĝt(k) = 1 where X controls the width of the transition279

region; X = π in Figure 2. For wavenumbers in the transition region kc/X ≤ k ≤ kc280

the taper target is a cubic polynomial. As the width of the transition region goes to281

zero (X → 1) the taper target approaches the spectral truncation filter, which is a step282

function at wavenumber kc. The left column of Figure 2 shows that the number of283

steps N required to achieve an accurate approximation of the target filter depends on284

the shape of the target filter, with more scale-selective targets like the taper requiring285

more steps N .286

2.3.4 Definition of filter scale287

We provide a single convention linking the ‘filter scale’ for the boxcar, Gaussian,288

and taper targets as follows. The filter scale for a boxcar kernel is simply the width of289

the kernel L (not the half-width). Per equation (4), the boxcar filter exactly zeros out290

the wavenumber k = 2π/L. Since the taper filter also zeros out wavenumber 2π/L, it291

is natural to let L define the ‘filter scale’ for both the boxcar and taper filters. The292

filter scale for a Gaussian is chosen so that the standard deviation of the Gaussian and293

boxcar kernels match for a given filter scale (cf. Sagaut & Grohens, 1999). This is294

achieved by defining the ‘filter scale’ L for a Gaussian to be
√

12 times the standard295

deviation of the Gaussian kernel, i.e. to extract the standard deviation σ from the296

filter scale L use σ = L/(2
√

3). This convention is developed based on convolution297

over a Euclidean space, but once developed it simply serves to link the definition of298

the filter scale L across target filters, which can be used in non-Euclidean geometry,299

e.g. on the sphere.300

2.3.5 Filter algorithm301

Once the approximating polynomial has been found, the filtered field p(−L)f can302

be efficiently computed using an iterative algorithm based on the polynomial roots. In303

general, any polynomial with real coefficients has roots that are either real, or come304

in complex-conjugate pairs. We can thus write305

p(s) = aN (s− s1) · · · (s− sM )(s2− 2sR{sM+2}+ |sM+2|2) · · · (s2− 2sR{sN}+ |sN |2), (19)

where M is the number of real roots, the roots are s1, . . . , sN , and R{·} and I{·}306

denote the real and imaginary parts of a complex number, respectively. The quadratic307

terms can also be written |s − sk|2 = (s − R{sM+2})2 + (I{sM+2})2. The condition308

p(0) = 1 implies309

p(s) =

(
1− s

s1

)
· · ·
(

1− s

sM

)(
1 +
−2sR{sM+2}+ s2

|sM+2|2

)
· · ·
(

1 +
−2sR{sN}+ s2

|sN |2

)
.

(20)
Based on this representation, the filtered field f̄ = p(−L)f can be computed in M +310

(N −M)/2 stages as follows. First the real roots are dealt with via311

f̄0 = f (21a)

f̄k = f̄k−1 +
1

sk
Lf̄k−1, k = 1, . . . ,M. (21b)
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These stages are called Laplacian stages. Next the complex roots are dealt with via312

f̄k = f̄k−2 +
2R{sk}
|sk|2

Lf̄k−2 +
1

|sk|2
L2f̄k−2, k = M + 2,M + 4, . . . , N (22a)

f̄ = f̄N . (22b)

These stages are called biharmonic stages because of the need to apply the discrete313

biharmonic operator L2.314

In the absence of roundoff errors the Laplacian and biharmonic stages can be315

applied in any order, and once they are both complete f̄ contains the filtered field316

(though at any point in the middle of the iterations f̄ has no particular meaning).317

However, in practice the order can have an impact on numerical stability. This issue318

is discussed in section 2.4.319

2.3.6 Scalar, Vector, and Tensor Laplacians on Curved Surfaces320

The development thus far is based on a discrete approximation of a scalar Lapla-321

cian, or of the Laplace-Beltrami operator on a curved surface like the sphere. In322

Euclidean space the Laplacian of a vector or a tensor is obtained by applying the323

scalar Laplacian to the elements of the vector or tensor. This is no longer the case324

on a curved surface like the sphere, as can be seen, for example, in the fact that the325

discretizations of viscosity and diffusion are different on the sphere. The algorithm326

described in the foregoing section can be directly extended to filtering vectors or ten-327

sors on curved surfaces by simply taking L to be a discretization of the appropriate328

continuous operator, e.g. the vector Laplacian on a sphere. In this case f should be329

understood to include all components of the vector or tensor being filtered. For exam-330

ple, the grid values of zonal velocity could be arranged as the first half of f while the331

grid values of meridional velocity could be arranged as the second half of f .332

2.3.7 Computational Cost333

Typically the computational cost (in terms of floating point operations) of ap-334

plying the discrete Laplacian L is O(n) where n is the number of grid points. The335

total number of discrete applications of the Laplacian is N , so the cost to apply the336

filter is O(Nn). The number of stages N depends on the shape of the target filter337

and the ratio of the filter scale to the grid scale, called the filter factor F . For both338

the Gaussian and taper filters the number of stages needed to achieve a fixed accuracy339

scales (empirically) linearly with F , so the overall cost of applying the filter is O(Fn).340

This is directly comparable to a convolution-type filter implemented using quadra-341

ture. In a convolution-type filter, one is required to compute a quadrature at each of342

the n grid points. The number of nonzero elements in the kernel, and thus the number343

of floating-point operations required to compute the quadrature, is linearly related344

to the ratio of the grid scale to the width of the kernel, i.e. the filter factor. The345

cost of applying a convolution-type filter is thus also O(Fn): at each of n grid points346

one must compute a quadrature that costs O(F ) floating point operations. Naturally347

the performance in practice depends heavily on the details of the implementation, the348

coding language, the machine architecture, etc.349

2.4 Floating Point Roundoff Errors350

Recall that per equation (13) we can formally expand the field to be filtered as a351

sum of eigenvectors of the discrete Laplacian, and that per equation (14) the effect of352

the filter is simply to modify the coefficients in this expansion. The same idea applies353

to a single stage in the iterative application of the filter. A single Laplacian stage354
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multiplies the expansion coefficients by355

1− k2
i

sk
. (23)

Any modes i such that k2
i > 2sk will have their coefficients f̂i amplified at this stage,356

and smaller scales will experience greater amplification. (The sign of the coefficients357

will also be changed; the real roots sk are generally positive.) In contrast, when358

|1−k2
n/sk| < 1 none of the modes will experience amplification and the smallest scales359

will be damped.360

A single biharmonic stage multiplies the expansion coefficients by361 ∣∣∣∣1− k2
i

sk

∣∣∣∣2 . (24)

As a function of k2
i this is a positive parabola that equals 1 at ki = 0. When the real362

part of sk is negative all modes are amplified with increasing amplification at small363

scales. When the real part of sk is positive, modes with k2
i > 2R{sk} will be amplified,364

with increasing amplification at small scales.365

Consider a filter that attempts to remove a wide range of scales, i.e. one where366

the filter scale is much larger than the grid scale. To achieve this, the polynomial367

approximation algorithm from Appendix A selects a range of roots sk, with some of368

the roots corresponding to scales much larger than the grid scale
√
sk � kn. The stages369

with
√
sk � kn amplify the small scales while damping the large scales. Taken together370

the stages end up producing smoothing over a wide range of scales, but if the iteration371

(21b) is stopped partway, there can be ranges of scales that are amplified rather than372

damped. In particular, if there are several stages in succession that cause amplification373

at the small scales (near the grid scale), it can lead to extreme amplification at small374

scales, including extreme amplification of any roundoff errors present in the small375

scales. This combination of many stages that amplify small scales, together with a376

large number of stages for roundoff errors to accumulate, can lead to inaccurate results377

or even blowup of the filtered field. To avoid this we recommend choosing a specific378

order for the roots sk, such that stages that amplify small scales are always followed379

by stages that damp small scales.380

To illustrate these ideas we set up a simple toy problem with a one-dimensional,381

periodic, equispaced grid of 256 points in a nondimensional domain of size 2π, and a382

spectral discrete Laplacian. The eigenvectors of the discrete Laplacian are the discrete383

Fourier modes with wavenumbers k = −127, . . . , 128, and the eigenvalues are exactly384

−k2. The filter polynomial p is constructed by directly specifying the roots sk, rather385

than by approximating some target filter Ĝt. The roots sk are the integers from 43386

to 170, squared, i.e. there are N = 128 stages with roots on both sides of the cutoff387

scale kn = 128. This filter should thus exactly zero out all discrete wavenumbers388

with |k| ≥ 43, while smoothly damping wavenumbers with |k| < 43. The field to389

be filtered is constructed to have discrete Fourier transform f̂k = eiθk where θk are390

independent and uniformly distributed on [0, 2π). This initial condition is chosen so391

that the discrete Fourier transform of the final filtered field should, in the absence of392

roundoff errors, have absolute value equal to |p(k2)|.393

Figure 3 shows the amplitude of the Fourier modes of the field as it progresses394

through the stages of the filter. The left panel shows the result for a filter where sk are395

ordered from least to greatest, such that the first stages amplify the small scales while396

the last stages damp them. The small scales grow to amplitudes on the order of 1021
397

within the first 50 stages. The subsequent stages manage to damp these small scales398

back out, but the solution is so corrupted by the effect of roundoff errors that the final399

solution is completely inaccurate: the large scales have amplitudes on the order of 104.400
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Figure 3. Amplitude of the Fourier coefficients of f̄ as it proceeds through the filter stages. In

each panel the abscissa is filter stage while the ordinate is the wavenumber. In the left panel sk

are arranged in increasing order. In the center panel the sk are decreasing. In the right panel the

damping and amplifying stages alternate.

The center panel of Figure 3 shows the effect of arranging sk in decreasing order,401

such that the last stages amplify the small scales while the first stages damp them. The402

filter behaves quite well until the final few stages, where the small scales are amplified403

to the order of 104. Evidently the initial damping stages introduce small amplitude404

roundoff errors into the small scales which are then amplified in the final stages.405

The right panel of Figure 3 shows the effect of arranging the sk so that the small406

scales are alternately amplified and then damped. In the early stages of the filter there407

is a range of intermediate scales that begins to amplify, though they maintain modest408

amplitudes less than 100. These intermediate scales are eventually damped back out409

in the later stages, leading to a well-behaved and accurate solution.410

The stages in the right panel of Figure 3 are arranged in the following simple411

way. We first compute the impact of each stage on the smallest scale, given by setting412

ki = kmax in the absolute value of expression (23) and in expression (24). These values413

are then ordered, and the stage order is set by selecting the smallest value (strongest414

damping) first, followed by the largest value (strongest amplification), followed by the415

next-smallest value, etc.416

2.4.1 Connection to Diffusion417

The form of equation (21b) is reminiscent of time integration of the diffusion418

equation via an explicit Euler discretization with variable time steps, and in some419

sense the method can be thought of as smoothing through diffusion. To be explicit,420

if we assume a diffusivity of κ∗ then the time step sizes are dtk = 1/(κ∗sk). (The421

subscript ∗ serves to distinguish this κ∗, which is dimensional, from the κ introduced422

in section 2.6, which is nondimensional). There is no analogy for the biharmonic stages,423

or for negative sk, so the analogy only holds when all the sk are real and positive. The424

usual stability analysis for time integration of the diffusion equation corresponds to425

the case where all the time steps are of equal size, i.e. all the sk must be real, positive,426

and equal. In this case the Courant-Friedrichs-Lewy (CFL) condition corresponds to427

requiring that a single step does not amplify any component of the solution; if this428
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condition is violated, then as the number of steps proceeds to infinity the solution will429

also grow to infinity, even in exact arithmetic. Per the discussion above, requiring430

no growth of any part of the solution in a single step corresponds to the condition431

|1− k2
n/sk| < 1. Written in terms of the time step this CFL condition takes the form432

dtk < 1/(κ∗k
2
n). Inserting the approximation kn ≈

√
dπ/dxmin yields a more familiar433

form for the CFL condition for diffusion: hk <dx2
min/(π

2κ∗d) (recall that d is the434

dimension of the physical domain).435

The instability associated with violating the CFL condition for diffusion is not436

the same as the one described above, nor is it relevant for analyzing the stability of437

our filtering algorithm. That they are not the same can be seen from the fact that the438

instability analyzed above is entirely a result of roundoff errors, whereas the instability439

associated with violating a CFL condition occurs even in exact arithmetic. The CFL440

condition is not relevant for our algorithm because our algorithm is not solving the441

heat equation except in special cases, and even in those cases the size of the time step442

varies and the number of time steps N is finite.443

2.5 Impact of the order of accuracy of the discrete Laplacian444

This section gives a simple example to show that higher-order discretizations of445

the Laplacian should be better able to sharply distinguish between scales near the grid446

scale. Throughout this section ‘small’ length scales refer to scales near the grid scale.447

The fundamental idea of section 2.3 is that the eigenvalues of the discrete Laplacian448

correspond to the spatial length scale of the eigenvector in the same way that this449

correspondence works for the continuous Fourier problem, i.e. if −k2
i is an eigenvalue450

of the discrete Laplacian then the length scale of the corresponding eigenvector qi is451

assumed to be 2π/ki. This connection between eigenvalues and length scales can be452

inaccurate at small length scales.453

For example, consider the following two discrete Laplacians on an infinite or454

periodic one-dimensional equispaced grid with grid spacing 1 (nondimensional)455

(L2f)j = fj−1 − 2fj + fj+1 (25)

(L4f)j = − 1

12
fj−2 +

4

3
fj−1 −

5

2
fj +

4

3
fj+1 −

1

12
fj+2. (26)

For both of these Laplacians the discrete Fourier modes456

(qk)j = eikj (27)

are eigenvectors, where 0 ≤ k ≤ π is the discrete wavenumber, L2 is second order, and457

L4 is fourth order. (Note that notation has been changed from qi in section 2.3 to qk458

here, so that k is the discrete wavenumber rather than i.) For a spectral discretization459

the eigenvalues would be −k2, but the eigenvalues for the second and fourth order460

Laplacians are461

L2qk = −4 sin2

(
k

2

)
qk (28)

L4qk = −2

3
(7− cos(k)) sin2

(
k

2

)
qk. (29)

The fact that these are not equal to −k2 is tantamount to saying that the filter will462

incorrectly identify the length scales of the eigenfunctions. Figure 4 shows the ratio463

of the discrete eigenvalues (28) and (29) to the correct value −k2. In both cases464

the wavenumber implied by the eigenvalue is smaller than the true wavenumber k,465

meaning that these Laplacians treat small scales as if they were larger-scale than they466

really are. Both Laplacians have accurate eigenvalues at large scales, but the fourth467

order Laplacian’s eigenvalues are more accurate at small scales. A filter that uses the468
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Figure 4. The ratio of the eigenvalues −k2i of the discrete Laplacians to the true value −k2.

The second-order Laplacian is shown in blue and the fourth-order Laplacian is shown in green.

k = π corresponds to the Nyquist wavenumber, i.e. the wavenumber associated with the grid

scale.

fourth order Laplacian will thus be more accurate when the filter is attempting to469

separate scales near the limit of resolution. If one is attempting, for example, to get470

an accurate estimate of the energy spectrum at scales near the grid scale using the471

diffusion-based filter of section 2.3 in combination with the method of Sadek and Aluie472

(2018) for estimating the spectrum, then it would be important to use a high-order473

discretization of the Laplacian. On the other hand, if the filter is attempting to remove474

the entire range of small scales where the second-order Laplacian is inaccurate, then475

the second order Laplacian will work as well as higher-order Laplacians.476

A user might attempt to filter two different data sets, each with a different477

resolution, to the same filter scale. The results will be similar provided that the filter478

scale is well-resolved in both data sets. If the filter scale is close to the grid scale of479

one of the data sets and the discrete Laplacian uses a low-order approximation, then480

the results could differ.481

2.6 Spatially varying filter properties482

The filters developed in section 2.3 are based on the isotropic Laplacian, and are483

therefore isotropic in the sense that they provide an equal amount of smoothing in every484

direction. The filter coefficients are the same over the whole domain, so the degree of485

smoothing is also constant over the domain. This can be generalized to anisotropic486

and spatially-varying filters by letting L be a discretization of ∇ ·K(x)∇ where K(x)487

is a symmetric and positive definite tensor that varies in space (cf. Báez Vidal et al.,488

2016). (In this context K is nondimensional, since the dimensions are carried by the489

polynomial roots si.)490
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Figure 5. The effect of changing κ on the filter polynomial p(κk2) for the polynomial p from

equation (30).

Consider first the isotropic case K = κI with constant κ, and assume that the491

filter polynomial p(k2) has been designed as described in section 2.3 under the as-492

sumption κ = 1. If the filter polynomial is used with constant κ 6= 1 then the filter493

polynomial p(k2) is replaced by p(κk2). This is tantamount to rescaling the filter494

length scale by
√
κ. For example, if the original filter with κ = 1 had a characteristic495

length scale of L then the filter using κ 6= 1 has a characteristic length scale of
√
κL.496

Next consider the case of an isotropic Laplacian with spatially-varying κ, and497

assume that κ varies slowly over the domain. The filter polynomial p is designed to498

have length scale L if κ = 1. In regions where κ > 1 the filter will have a longer length499

scale
√
κL, while in regions where κ < 1 the filter will have a smaller length scale. (If500

κ varies on length scales smaller than the filter scale then the behavior of the filter is501

hard to predict, so this situation should be avoided.)502

Finally, consider the case of an anisotropic Laplacian with symmetric and pos-503

itive definite K that varies over the domain. At each point in the domain K has504

two orthogonal eigenvectors corresponding to different directions, and the eigenvalues505

indicate the strength of smoothing in each direction. One natural application of the506

anistropic Laplacian is to apply a filter whose length scale is tied to the local grid scale,507

which is especially relevant for Earth system models whose grid cell sizes vary in space.508

This can be achieved by aligning the eigenvectors of K with the local orthogonal grid509

directions, and letting the respective eigenvalues determine the amount of filtering in510

each direction.511

A major caveat to the above discussion is that values of κ > 1 can lead to512

unexpected behavior. Consider, for example, the filter polynomial513

p(κk2) = (1− 0.7κk2)(1− 0.8κk2) · · · (1− 1.2κk2), (30)
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where the scales that can be represented on the grid are associated with wavenumbers514

0 ≤ k ≤ 1 and the standard case uses κ = 1. The blue line in Figure 5 shows that515

p(k2) only acts as a smoother over the range of scales associated with 0 ≤ k ≤ 1; at516

larger k that are not represented on the grid the filter will significantly amplify these517

scales. Using κ > 1 has the effect of bringing this undesirable filter behavior into the518

range of scales represented on the grid, as can be seen in the green line corresponding519

to κ = 2 in Figure 5. In contrast, using κ ≤ 1 has no such problems (blue and red in520

Figure 5). It is thus desirable to specify κ ≤ 1 whenever possible.521

Consider, for example, a one-dimensional non-uniform grid with maximum grid522

spacing hmax, minimum grid spacing hmin, and local grid spacing h. To apply a filter523

that smooths locally to a scale m times larger than the local grid, one could choose524

the filter scale to be L = mhmin and then set κ = (h/hmin)2. Locally the filter scale525

is rescaled to
√
κL = (h/hmin)(mhmin) = mh as desired, but at the same time κ ≥ 1526

which will lead to undesirable behavior at the small scales. Instead, one can achieve the527

same effect by setting the filter scale to L = mhmax, and then setting κ = (h/hmax)2.528

The local filter scale is again L = mh, but with κ ≤ 1 over the whole domain.529

We next describe a more ad hoc method of tying the local filter scale to the local530

grid scale. This method is not without drawbacks, but it is simpler and faster than the531

method based on an anisotropic and spatially-varying Laplacian. We call this filter532

the simple fixed factor filter.533

Let L0 be the discretization of the Laplacian if all the cells had the same size.534

Since the cell sizes are assumed equal, the matrix L0 should be symmetric. If we535

simply replaced p(−L) by p(−L0) in the definition of the filter it would imply that we536

were filtering as if all the grid cells were the same size, which is equivalent to making537

the scale of the filter relative to the scale of the local grid. Unfortunately this would538

no longer preserve the integral. To rectify this problem we propose a cell-size weighted539

filter, which amounts to the following recipe:540

• Weight the input data by cell sizes541

• Apply the filter assuming the cell sizes are equal542

• Divide the result by the cell sizes.543

We next show that this filter preserves the integral at the discrete level. First544

note that weighting by the cell size is equivalent to multiplication by a diagonal matrix545

W whose diagonal entries are the cell sizes, so the above filter corresponds to546

f̄ = W−1p(−L0)Wf . (31)

The inner product (10) can be written in the form 〈f ,g〉 = fTWg, and recall that the547

discrete integral is 〈1, f〉. To prove that the new filter conserves the integral we follow548

(17), and find that549

〈1, f̄〉 = 1TWW−1p(−L0)Wf = p(0)1TWf = 〈1, f〉. (32)

The above sequence uses the facts that L0 is symmetric, which implies 1TL0 = (L01)T ,550

that any consistent discretization of the Laplacian with no-flux boundary conditions551

will have L01 = 0, and that p(0) = 1.552

Applying the discrete Laplacian under the assumption that all cell sizes are equal553

is much simpler than using an anisotropic Laplacian, and the algorithm can thus be554

much faster. On the other hand, this ad hoc method no longer has the property that555

the constant vector is left unchanged by the filter. Note that the simple fixed factor556

filter is anisotropic whenever the grid spacing is anisotropic, and it is spatially-varying557

whenever the grid spacing is non-uniform.558
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2.7 Variance reduction559

In some situations it is desirable to enforce that the filtered field has less total560

variance than the unfiltered field, i.e. for functions561 ∫
Ω

f(x)2dx ≥
∫

Ω

f̄(x)2dx (33)

and for the discrete case562

〈f , f〉 ≥ 〈f̄ , f̄〉. (34)

To translate this into a condition on the diffusion-based smoothers developed here,563

expand f in the orthonormal basis of eigenvectors of L564

f =

n∑
i=1

f̂iqi. (35)

The condition of variance reduction becomes565

n∑
i=1

f̂2
i ≥

n∑
i=1

f̂2
i

(
p(k2

i )
)2
. (36)

In order for this to be satisfied for any possible vector f this requires |p(ki)2| ≤ 1 for566

every ki up to the largest one represented on the model grid, i.e. kn. The eigenvalues567

−k2
i of the discrete Laplacian are usually not known exactly, so a sufficient condition for568

variance reduction would be that |p(k2)| ≤ 1 for every 0 ≤ k ≤ kmax where kmax ≥ kn.569

It is worth noting that this condition applies to p and not to the target filter. Even if570

the target filter satisfies this condition, the polynomial p might not satisfy it. (In all571

examples in the left column of Figure 2 both the target filter and the approximating572

polynomials do satisfy this condition.) It is also worth noting that failure to satisfy573

this condition does not guarantee that the filtered field has more total variance than574

the unfiltered field, but only that it might happen in some cases.575

2.8 The effective kernel implied by the diffusion-based filter576

If the spatial filter were defined by a discrete approximation of a kernel-based577

spatial filter (8) then the value of f̄ at the ith grid cell would be578

f̄i = 〈gi, f〉 =
∑
j

wjgijfj , (37)

where gi is the effective filter kernel corresponding to the ith cell. Note that f̄i =579

〈ei, f̄〉/wi, where ei is a vector of zeros with 1 at the ith grid cell. Next note that580

f̄i =
1

wi
〈ei, p(−L)f〉 =

1

wi
〈p(−L)ei, f〉, (38)

which implies that gi = p(−L)ei/wi. We can thus compute the effective filter kernel581

that corresponds to p(−L) at the ith grid cell by applying the filter to ei and then582

dividing the result by wi. The same arguments can be used to find the effective filter583

kernel associated with the spatially-varying filters of section 2.6.584

Note that if the filter kernel is non-negative gij ≥ 0, then applying the filter to585

a positive quantity will yield a positive result, since the sum in (37) has both positive586

and zero terms, but no negative terms. In particular, if the weights are non-negative587

it will guarantee that the variance is also non-negative. To see this, note588

0 ≤
∑
j

wjgij(fj − f̄i)2 =

∑
j

wjgijf
2
j

− f̄2
i (39)
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which uses the fact that
∑
j wjgij = 1 and the definition of f̄i (37), and assumes589

gij ≥ 0. Equation (39) directly implies that f2
i − f̄2

i ≥ 0.590

The proof above can be lifted to the continuous case as follows. Supposing that591

the convolution kernel G ≥ 0 in (8), we may define592

0 ≤ D(x,y) =

∫
Rd

G(x,x′)
(
f(x′)− f̄(y)

)2
dx′ = f2(x)− 2f̄(x)f̄(y) +

(
f̄(y)

)2
(40)

The result that f2(x)−
(
f̄(x)

)2 ≥ 0 follows by plugging in y = x.593

Note that if the filter kernel ever takes a negative value, then it is no longer594

guaranteed to preserve positivity in the sense that f̄ may have negative values even595

when all the values in f are positive. Similarly if the filter kernel ever takes a negative596

value then it could produce a negative local variance f2 − f̄2. The spectral truncation597

filter is such an example having negative weights.598

The right column of Figure 2 computes the filter kernels associated with the599

polynomial approximations of the boxcar, Gaussian, and taper filters in the left column600

of Figure 2. The standard equispaced, second-order Laplacian (25) was used, with601

a nondimensional grid size of 1. The upper right panel illustrates that the kernel602

associated with the polynomial approximation of the boxcar filter does not converge603

to the actual boxcar kernel, though it is close. One reason for this discrepancy is the604

fact that the boxcar target (4) was formulated by reference to a continuous Fourier605

transform, which is not a one-to-one match to the discrete version. Another reason606

is that the effective kernel depends on the discretization of the Laplacian; a higher-607

order discretization would result in a slightly different effective kernel. Despite these608

discrepancies, the effective kernel of the polynomial approximation to a Gaussian target609

still converges to a close approximation of the expected Gaussian kernel, as can be seen610

in the middle right panel of Figure 2.611

3 Illustrative Examples612

In this section we present examples using model output and observational data613

to illustrate the various filter properties and capabilities. An open-source python614

package implementing the diffusion-based filters described in section 2, called gcm-615

filters, is currently under development and will be described elsewhere. This Python616

code includes implementations of the discrete scalar and vector Laplacians on a variety617

of spherical grids for different ocean general circulation models. All examples that618

show the filtering of two-dimensional data use a second-order discrete Laplacian (on a619

5-point stencil) with no-flux boundary condition.620

3.1 Effective Kernels621

We begin with an example showing effective filter kernels (see section 2.8) for622

various configurations of the filters, noting especially how the filter kernel adapts near623

boundaries. Figure 6 shows effective kernels centered at four locations in the Antarctic624

Circumpolar Current. The grid is a 2/3 degree nominal resolution tripole grid of the625

Modular Ocean Model version 6 (MOM6). The top row shows filters with a Gaussian626

target, while the bottom row shows filters with the taper target. It is clear that the627

taper target produces kernels with negative weights, while the Gaussian target does628

not. In the top left panel, we chose a filter scale of 100 km for the kernel centered at629

(100◦W, 50◦S), and 1000 km for the remaining three kernels. In the bottom left, we630

reduced the large filter scale from 1000 km to 300 km, because the Taper filter became631

numerically unstable at high latitudes for a filter scale of 1000 km. The right column632

shows the anisotropic versions of the filters in the right column where the filter scale633

has been decreased by a factor of 3 in the meridional direction. It is interesting to note634
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Figure 6. Effective filter kernels for Gaussian (top) and Taper (bottom) filters with various

filter scales on the 2/3 degree MOM6 grid, centered at 4 points in the Antarctic Circumpolar

Current. Top left: Filter scale is 100 km for the effective kernel centered at (100◦W, 50◦S),

and 1000 km for the remaining three kernels. Bottom left: Same filter scales as top left, except

that the large filter scale was reduced from 1000 km to 300 km. Right column: The anisotropic

versions of the filters in the left column, but with a third of the length scale in the meridional

direction. MOM6 land points are shaded in gray.
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that the kernel in the upper left panel near the southern tip of South America does635

not curl around into the Argentine basin, as might be expected for a convolution-type636

filter.637

3.2 Spatially varying filter scale638

Figure 7 illustrates the ability of our filters to vary their length scales over the639

domain by using variable κ as described in Section 2.6. We filter the vertical com-640

ponent of relative vorticity at the surface from the submesoscale-resolving MITgcm641

simulation of the Scotia Sea with a resolution of 1/192◦ described in Bachman et al.642

(2017). In the map of the unfiltered vorticity (top panel) large scales are evident643

in the Antarctic Circumpolar Current to the east of Drake Passage, where the first644

baroclinic deformation radius tends to be O(10) km and is generally smaller than the645

eddies themselves. Small scales are ubiquitous over the continental shelf off the eastern646

coast of Argentina, where the deformation radius is O(1) km and is much closer to the647

eddy scale. We demonstrate the spatially-varying filter by choosing the length scale648

of the Gaussian filter so that the filter scale is proportional to the local first baroclinic649

deformation radius. In making this choice we expect that more features will be filtered650

out in the areas where the dynamics tend to be larger than the deformation scale, as651

shown in the map of the filtered vorticity (middle panel) and the difference, i.e. the652

eddy vorticity field (lower panel).653

3.3 Non-commutation of the filter and spatial derivatives654

Figure 8 illustrates the lack of commutation of the filters with spatial derivatives655

in the presence of boundaries. We compute a large-scale part of the vertical component656

of relative vorticity in two ways, first by filtering the velocity and then computing657

vorticity as ẑ · ∇ × u, and second by computing the vertical vorticity directly from658

the velocity and then applying the filter to the result ẑ · ∇ × u. The filter is isotropic,659

and uses a Gaussian target with a length scale of 300 km. The data is from a state-660

of-the-art climate model, GFDL-CM2.6 (Delworth et al., 2012; Griffies et al., 2015),661

obtained through the Pangeo cloud data library (Abernathey et al., 2021). The ocean662

component of GFDL-CM2.6 utilizes the GFDL-MOM5 numerical ocean code with a663

nominal resolution of 0.1 degrees. The upper left panel shows the raw vorticity in the664

northwest Pacific, while the upper right and lower left panels show the filtered vorticity665

and the vorticity obtained from the filtered velocity, respectively. The lower right panel666

shows the difference between the two smoothed vorticities, and it is clear that the667

differences are extremely small over most of the domain. Significant differences arise668

only near the boundaries, as can be seen especially in the vicinity of the Philippines,669

which serves to illustrate the fact that the filter does not commute with derivatives670

near boundaries.671

The ability to commute the filter with spatial derivatives can be restored by672

treating velocity values on land as zero, following Aluie et al. (2018). To illustrate673

the difference of this approach compared to using stress-free boundary conditions in674

the vector Laplacian, we compare in Figure 9 the filtered surface velocity that results675

from the two approaches. The left column shows the zonal component of velocity and676

the right column shows the meridional component. The top row shows the unfiltered677

velocity; the second row shows the velocity filtered using the stress-free condition on678

the discrete vector Laplacian; the third row shows the filtered velocity that results from679

setting velocity to zero over land; the fourth row is the second row minus the third row.680

Setting the velocity to zero over land allows the filter to commute with derivatives, but681

at the cost of reducing the strength of currents near land. For example, the Florida682

Current is much weaker in the third row than in the second row. It is thus clear that683

both methods have pros and cons near boundaries. The data used in Figure 9 are from684
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Figure 7. Surface relative vorticity from the MITgcm simulation in Bachman et al. (2017)

demonstrating a spatially variable filter scale using a Gaussian target filter. The filter applied

to the raw field (top panel) results in smoothing where the first baroclinic deformation radius

is small compared to the scale of the motion (middle panel), which is reflected in the difference

between the raw and filtered fields (bottom panel). Units are s−1.
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Figure 8. Surface relative vorticity fields taken from GFDL-CM2.6 data. The upper left

panel shows the unfiltered vorticity, the upper right shows the filtered vorticity, the bottom left

panel shows the vorticity computed from filtered velocities, and the bottom right panel shows the

difference between the latter two fields. The filter length scale is 300 km.
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a JRA55-forced 2/3 degree MOM6 simulation; the filter has a length scale of 500 km685

and a Gaussian target.686

3.4 Negative weights and eddy kinetic energy687

The Gaussian filter’s effective kernel has positive weights, while the more scale-688

selective taper filter’s effective kernel typically has negative weights reminiscent of the689

sinc kernel that corresponds to the spectral truncation filter. These negative weights690

can produce negative values for non-negative quantities like eddy kinetic energy. We691

define eddy kinetic energy (EKE) as692

EKE =
1

2
|u|2 − 1

2
|ū|2. (41)

This definition of EKE has the virtue that the total kinetic energy is exactly the693

sum of the mean and eddy kinetic energies. When the weights are non-negative this694

definition of EKE will also be non-negative, as discussed in section 2.8. An alternative695

proof based only on having a convex kernel is given by Sadek and Aluie (2018). A696

proof specific to EKE can be found in (Vreman et al., 1994).697

Figure 10 illustrates the application of our filters to a single five-day average of698

AVISO estimates of absolute geostrophic velocity on a 0.25 degree grid obtained from699

Copernicus European Earth Observation program [https://marine.copernicus.eu]700

via Pangeo (Abernathey et al., 2021). The upper left panel shows the unfiltered surface701

kinetic energy defined as |u|2/2. To compute mean surface kinetic energy we use the702

simple fixed factor Laplacian with a filter scale four times the local grid scale, i.e. a703

filter scale of 1 degree. The center panel in the upper row shows the mean kinetic704

energy defined as |ū|2/2 using a Gaussian target, while the upper right panel shows705

the mean kinetic energy obtained using the taper target. The lower panels show the706

surface eddy kinetic energy defined according to (41). It is clear that the negative707

weights in the taper filter lead to locally negative values of surface EKE.708

The alternative definition |u′|2/2 where u′ = u − u can also produce negative709

values of EKE when the filter has negative weights. As a simple example consider710

the case where u′ is nonzero at only one grid point. Then |u′|2 is proportional to711

the effective kernel centered at that point, and Figure 6 shows that the taper filter’s712

effective kernel has negative weights.713

3.5 Application to one-dimensional observational data714

Our final example in Figure 11 illustrates the application of our filters to one-715

dimensional data, specifically along-track altimeter observations of absolute dynamic716

topography used to estimate cross-track geostrophic velocity. This example is in-717

cluded not only to highlight additional capabilities of this filtering framework, but718

also to encourage its use on in-situ velocity or tracer measurements to permit scale-719

aware observational-model comparisons. We apply three filters (boxcar, Gaussian, and720

taper) to cross-track geostrophic velocity estimates along a single track of the Jason-2721

altimeter located in the Western North Atlantic. Velocities are interpolated to 20 km722

spacing and then filtered to a 100 km filter scale. The upper panel shows a single723

cycle of cross-track geostrophic velocity as a function of along-track distance moving724

north to south (grey lines show all cycles completed at 10 day intervals over a two year725

period). The single cycle (black) is then filtered using each of the three filter types726

with EKE shown in the lower panel. The three filters produce nearly indistinguishable727

large-scale fields, but the EKE defined according to equation (41), shown in the lower728

panel, displays notable differences. Specifically, the taper filter’s negative weights lead729

to occasional negative values for EKE.730

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 9. The upper two panels show surface velocity of a JRA55-forced 2/3 degree MOM6

simulation averaged over one month. The second row shows the velocities filtered with a Gaus-

sian target and a filter scale of 500 km. The filter uses a vector Laplacian with a stress-free

boundary condition. The third row shows filtered velocities as in the second row, but ignoring

land boundaries with velocity values set to zero on land. The fourth row is the second row minus

the third row. The left column shows zonal components of velocity while the right column shows

meridional components.
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Figure 10. The left panel shows surface kinetic energy calculated from absolute geostrophic

velocities estimated using AVISO measurements of sea surface height. Velocities are provided

on a 1/4◦ degree grid and filtered using a Gaussian (middle column) and taper (right column)

simple fixed filter with filter scale 4 times the local grid scale. Definitions of mean kinetic energy

(MKE) and eddy kinetic energy (EKE) are provided in the text.

Figure 11. The upper panel shows cross-track geostrophic velocities along the Jason-2 altime-

ter track number 176 spanning a two-year period (grey). A single cycle is selected (black) and

filtered using the boxcar (blue), taper (red), and Gaussian (green) filters using a 100 km filter

scale. The inset figure locates track 176 in the Western North Atlantic with along-track distance

increasing north to south. The lower panel shows eddy kinetic energy defined using the cross-

track geostrophic velocities above and filtered using boxcar, taper, and Gaussian filters. Shaded

black regions identify locations of negative EKE associated with the taper filter.
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4 Conclusions731

We have presented a new method for spatially filtering gridded data that only732

relies on the availability of a discrete Laplacian operator. The method involves re-733

peated steps of the form (21b), and is therefore analogous to smoothing via diffusion.734

(More details on this point are provided in section 2.4.1.) The new filters provide an735

efficient way of implementing something close to a Gaussian kernel convolution; they736

also allow the scale selectiveness (i.e. the shape) of the filter to be tuned as desired. As737

they require only the ability to apply a discrete Laplacian operator, these filters can be738

used with a wide range of data types, including output from models on unstructured739

grids, and gridded observational data sets.740

The only time the filter commutes with derivatives is when the domain has no741

boundaries and the filter scale is constant over the domain. If desired, ocean boundaries742

can be eliminated by treating velocity values on land as zero, following Aluie et al.743

(2018); however, in order to preserve the integral with this method, the integral has to744

be extended over land. The basic method can be generalized to allow for anisotropic,745

i.e direction-dependent, as well as spatially-varying filter scales. It is our hope that746

the new method and forthcoming software package will enable an increase in scale-747

dependent analysis of Earth system data, particularly for the purposes of subgrid-scale748

parameterization, though by no means limited to such.749
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Appendix A Solving the optimization problem to find the filter poly-767

nomial768

We may find a polynomial that approximates the target filter by solving an769

optimization problem of the form770

p(s) = arg min ‖Ĝt(
√
s)− p(s)‖, (A1)

where s = k2 and p is a polynomial that must satisfy p(0) = 1. In order to enable rapid771

solution of this optimization problem it is convenient to use a weighted L2 norm on772

s ∈ [0, smax], where (as noted above) we may set smax = k2
max = (

√
dπ/dxmin)2 where d773

is the dimension of the spatial domain. Using the Chebyshev norm is known to produce774

solutions that are close to the solution obtained from the max norm (Trefethen, 2019,775

theorem 16.1), so we adopt the Chebyshev norm776

‖Ĝt(
√
s)− p(s)‖2C =

∫ smax

0

(Ĝt(
√
s)− p(s))2√

s(s− smax)
ds. (A2)
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The polynomial must satisfy p(0) = 1 in order to conserve the integral, and for conve-777

nience we also apply the condition p(smax) = 0. This allows us to solve the optimization778

problem using the Galerkin basis described by (Shen, 1995). To be precise, we let779

p(s) = 1− s

smax
+

N−2∑
i=0

p̂iφi(s), (A3)

where φi(s) are the polynomial basis of Shen (1995), satisfying φi(0) = φi(smax) = 0,780

and φi(s) is a polynomial of degree i + 2. Collecting the Galerkin coefficients p̂i into781

a vector p̂, the loss function (A2) can be written782

p̂TMp̂− 2p̂Tb + bTb (A4)

where783

Mij = 〈φi(s), φj(s)〉C (A5)

bi = 〈φi(s), Ĝt(
√
s)− 1− s

smax
〉C , (A6)

and 〈·, ·〉C denotes the Chebyshev inner product. The entries of M are known an-784

alytically (Shen, 1995), and the entries of b are computed using Gauss-Chebyshev785

quadrature with N + 1 points. Setting the gradient of this quadratic loss function to786

zero yields the following linear system for the optimal polynomial coefficients787

Mp̂ = b. (A7)

Once a target filter Ĝt(k) has been specified, one must also choose the degree788

N of the polynomial p. As N increases the filter approaches the target filter - the789

approximation converges provided that Ĝt is absolutely continuous (Trefethen, 2013,790

Theorem 7.2). As N increases the computational cost of the filter grows because791

applying the filter requires applying the discrete Laplacian N times. It is therefore792

desirable to choose some tradeoff between cost and accuracy. The Python package793

gcm-filters (gcm-filters, 2021) has a default setting for N that guarantees not more794

than 1% error in the difference between Ĝt and p; the user can also override this choice795

with any desired value of N .796

Appendix B Commuting the filter and derivatives797

This section explores conditions under which our filters commute with spatial798

derivatives, which was one of the main goals in the design of convolution-based spatial799

filters on the sphere in Aluie (2019). Filters with spatially-varying properties (cf.800

Section 2.6) do not commute with derivatives, since they are analogous to integration801

against a spatially-varying kernel (i.e. equation (8)). We thus consider in this section802

only the versions of our filters with a fixed length scale. We first consider domains803

with boundaries, showing that our filters do not commute in this case, and then turn804

to the surface of a full sphere, without topographic boundaries.805

Although our filters are defined entirely in discrete terms, it is natural to think in806

terms of the continuous limit, and this limit causes confusion. Consider for simplicity807

the case of the following filter for a scalar function f(x) on x ∈ [0, 1]:808

f̄ =

(
1− 1

s1
∆

)
f. (B1)

This filter obviously commutes with derivatives, but it is in some sense not the correct809

continuous version of our discrete filter. The reason is that the discrete version always810

assumes no-flux boundary conditions on the data, because no other boundary condition811
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is guaranteed to conserve the integral. Indeed the filter (B1) is not guaranteed to812

conserve the integral unless f satisfies no-flux (or periodic) boundary conditions. This813

is no limitation in the discrete case, since the no-flux Laplacian can be computed for814

any data. On the other hand, if one applies the discrete Laplacian with a no-flux815

assumption and then takes the limit of infinite resolution the result does not converge816

to ∆f unless f actually satisfies no-flux boundary conditions. Instead, it converges to817

∆f plus Dirac delta distributions on the boundary. (This is analogous to the delta818

sheets of potential vorticity discussed by Bretherton (1966).)819

In the correct continuous limit, equation (B1) is only defined for functions f that820

satisfy f ′(0) = f ′(1) = 0. With this more careful definition of the continuous limit of821

the filter, one can ask again whether it commutes with the spatial derivative. If one822

attempts to define g(x) = f ′(x) and then apply the filter to g, the result is not defined823

unless g also satisfies no-flux conditions, i.e. f ′′(0) = f ′′(1) = 0. So in the continuous824

limit, the filter will not commute with differentiation for functions with f ′′ 6= 0 on825

the boundaries. For higher-order filters the conditions for commutation are even more826

stringent, requiring derivatives up to high order to all be zero on the boundary.827

An alternative perspective is afforded by the fact that our discrete filter is equiv-828

alent to a discrete kernel smoothing, per the arguments of Section 2.8. In the presence829

of boundaries, the shape of the kernel varies in space, as can be seen in Figure 6.830

The continuous analog is integration against a spatially-varying kernel (equation (8)),831

which does not commute with spatial derivatives.832

In the case without boundaries, e.g. on a sphere, there is no such difficulty. As833

long as the continuous differential operators commute (e.g. a Laplacian and a gradi-834

ent), the discrete operators should also commute, at least up to discretization errors.835

The convolution-based spatial filters of Aluie (2019) only commute with derivatives in836

the absence of boundaries; this difficulty can be avoided by treating velocity values837

outside the domain (e.g. on land) as zero (Aluie et al., 2018). A similar method can838

be used with our filters if desired: values outside the domain can be treated as zero839

(see right panel of Figure 9).840
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