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Abstract

Electromagnetic induction (EMI) is used widely for environmental studies. The apparent electrical conductivity (ECa), which

can be mapped efficiently with EMI, correlates with a variety of important soil attributes. EMI instruments exist with several

configurations of coil spacing, position, and height. There are general, rule-of-thumb guides to choose an optimal instrument

configuration for a specific survey. The goal of this study was to use machine learning to improve this design optimization

task. In this investigation, we used machine learning as an efficient tool for interpolating among the results of many forward

model runs. Specifically, we generated an ensemble of 100,000 EMI forward models representing the responses of many EMI

configurations to a range of three-layer subsurface models. We split the results into training and testing subsets and trained

a decision tree (DT) with gradient boosting (GB) to predict the subsurface properties (layer thicknesses and EC values). We

further examined the value of prior knowledge that could limit the ranges of some of the soil model parameters. We made use

of the intrinsic feature importance measures of machine learning algorithms to identify optimal EMI designs for specific targets.

The optimal designs identified using this approach agreed with those that are generally recognized as optimal by informed

experts for standard targets, giving confidence in the ML-based approach. The approach also offered insight that would be

difficult if not impossible to offer based on rule-of-thumb optimization. We contend that such ML-informed design approaches

could be applied broadly to other survey design challenges.
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Key points 11 

 EMI instruments are widely used, but there is a lack of guidance for nonexperts about the 12 

optimal configuration for specific survey goals. 13 

 A combination of forward modelling and machine learning offers an efficient method to 14 

optimize EMI configuration. 15 

 An approach is developed to relate EMI configuration to soil parameter identifiability in a 16 

common natural three-layer soil setting.  17 



Abstract 18 

Electromagnetic induction (EMI) is used widely for environmental studies. The apparent electrical 19 

conductivity (ECa), which can be mapped efficiently with EMI, correlates with a variety of 20 

important soil attributes. EMI instruments exist with several configurations of coil spacing, 21 

position, and height. There are general, rule-of-thumb guides to choose an optimal instrument 22 

configuration for a specific survey. The goal of this study was to use machine learning to improve 23 

this design optimization task. In this investigation, we used machine learning as an efficient tool for 24 

interpolating among the results of many forward model runs. Specifically, we generated an 25 

ensemble of 100,000 EMI forward models representing the responses of many EMI configurations 26 

to a range of three-layer subsurface models. We split the results into training and testing subsets and 27 

trained a decision tree (DT) with gradient boosting (GB) to predict the subsurface properties (layer 28 

thicknesses and EC values). We further examined the value of prior knowledge that could limit the 29 

ranges of some of the soil model parameters. We made use of the intrinsic feature importance 30 

measures of machine learning algorithms to identify optimal EMI designs for specific targets. The 31 

optimal designs identified using this approach agreed with those that are generally recognized as 32 

optimal by informed experts for standard targets, giving confidence in the ML-based approach. The 33 

approach also offered insight that would be difficult if not impossible to offer based on rule-of-34 

thumb optimization. We contend that such ML-informed design approaches could be applied 35 

broadly to other survey design challenges. 36 

1 Introduction 37 

 Electromagnetic induction (EMI) is a non-contact method to measure the apparent 38 

electrical conductivity (ECa) of the shallow subsurface. A transmitter coil (Tx) produces an 39 

electromagnetic field that induces secondary currents in the subsurface soils. The combined current 40 

is measured with a receiver coil (Rx) (Nabighian & Macnae, 1991). The strength of the measured 41 



field is used to estimate the ECa within the sample volume of the measurement (Doolittle & Brevik, 42 

2014). EMI instruments differ in the orientations of their coils: some use Tx and Rx coils that have 43 

their long axis horizontal with respect to the ground surface (HCP), others orient both coils 44 

vertically (VCP), and some use one horizontal and one vertical coil in a perpendicular arrangement 45 

(PRP). In addition, instruments differ in the separation of the coils, with larger separations used to 46 

measure to greater depth. Finally, an operator can choose different instrument heights above 47 

ground, which also impacts the spatial sensitivity of the measurement in the subsurface. We refer to 48 

the collective choices of coil orientation, separation, and height above ground as the instrument 49 

configuration. 50 

 For several decades, EMI sensors have been used to gather measurements of ECa of the 51 

soil. The ECa of soil is positively correlated with salinity, water content, and clay content (Doolittle 52 

& Brevik, 2014). As a result, ECa is a meaningful, but complex, aggregate measure of soil 53 

properties (Palacky, 2011). Because the EMI method is non-contact, it is reasonably fast and 54 

inexpensive compared to direct soil sampling, resulting in a frequent use in agriculture (Adhikari & 55 

Hartemink, 2017; Daccache et al, 2015; McCutcheon et al., 2006), soil mapping (Cockx et al., 56 

2009; Heil & Schmidhalter, 2012; James et al., 2003; Reyes et al., 2018), and archaeological 57 

investigations (Christiansen et al., 2016; De Smedt et al., 2014; Saey et al., 2015; Saey et al., 2013). 58 

In addition to the challenges introduced by ECa being sensitive to multiple soil properties, 59 

quantitative interpretation of EMI measurements is complicated by the complex averaging of the 60 

local soil EC within the instrument’s sample volume. (Note that we use the term EC to refer to the 61 

actual bulk electrical conductivity of a soil, which may vary within the measurement volume of the 62 

instrument, and ECa to refer to the average EC that is inferred from EMI instrument responses.) 63 

More challenging still, the spatial sensitivity (or spatial weighting) of the EC depends on the 64 

instrument configuration (McNeill, 1980). Finally, in some cases, the spatial sensitivity may depend 65 



on the absolute value and spatial distribution of the EC (Callegary et al., 2012). In this investigation, 66 

we make the common assumption that the spatial sensitivity only depends on the instrument 67 

configuration, but this dependence could be considered using more complete forward models of 68 

EMI response. The spatial averaging of EMI is not an issue if the medium is electrically 69 

homogeneous. However, most soils have some structure – at a minimum, agricultural soils display 70 

horizontal layering with a distinct uppermost horizon (the Ap horizon). Therefore, optimal design of 71 

an EMI configuration should select the orientation, separation, and height of the coils to locate the 72 

instrument sensitivity in the subsurface to best determine the subsurface properties. Developers of 73 

EMI instruments have long recommended using different configurations to infer layered ECa 74 

values, leading to simple rules of thumb such as using shorter coil separations for shallow mapping 75 

and larger separations for deeper investigations. However, these basic guides become more difficult 76 

if the objective is to determine subsurface properties in a non-homogeneous medium, even a simple 77 

layered case. For these conditions, a nonexpert user is often advised to use different coil 78 

orientations with the same separation or some combination of orientation, separation, and height. 79 

But little specific guidance is offered. Furthermore, there is no way for a user to consider the 80 

possible impact of ancillary knowledge (e.g. bounds on the expected depth of the topmost layer) in 81 

the survey design. Commercially available EMI instruments for relatively shallow applications offer 82 

a wide range of designs based on differences in the three instrument characteristics. This makes it 83 

difficult for non-expert users to make an informed choice regarding the preferred instrument and 84 

configuration.  85 

 There are several published efforts to optimize the design of geophysical surveys (e.g. 86 

Furman et al., 2007; Khodja et al., 2010; Song et al., 2016). Applying these design optimization 87 

approaches to EMI would require that the responses of many configurations be computed for 88 

multiple soil models. Each survey design includes multiple measurements at each location, each 89 



with a different configuration, that jointly provide the most useful information for inferring specific, 90 

user-identified subsurface properties. That is, a user is faced with the question of which 91 

combination of configurations is optimal given their measurement priorities and, ideally, 92 

incorporating any applicable constraints that they may have regarding the subsurface conditions. 93 

Any method that requires formal inversion of each proposed combination of configurations is 94 

computationally intractable for most users.  95 

 Machine Learning (ML) describes a wide range of regression algorithms used for pattern 96 

recognition. ML has grown in popularity and is now used regularly within and beyond science. The 97 

simplest ML tools are based on Decision Trees (DT), which are supervised ML techniques that 98 

perform classification or regression by sequential categorization based on observations. For our 99 

application, each ECa measurement made with a different EMI configuration represents a feature in 100 

ML parlance. By training DTs on many examples, they can be used to efficiently predict outcomes 101 

based on observations without formal, model-based inversion. DTs are computationally 102 

inexpensive, but they can have limited predictive skill (Hastie et al., 2001). To improve their 103 

performance, DTs are often augmented by ensemble learning methods such as bagging (Breiman, 104 

1996) and boosting (Friedman, 2001). For our application, we found that gradient boosting (GB) 105 

offered improved performance without adding unreasonable additional computational effort. One 106 

key feature of DTs (with and without GB) is that they have built-in functions that quantify the 107 

importance of each feature for making the predictions of interest. We make use of this feature 108 

importance for EMI survey design optimization. 109 

 We used DT with GB as an efficient approach to EMI measurement design optimization. 110 

Specifically, we ran many forward models of EMI response for a range of three-layer subsurface 111 

conditions (varying each layer thickness and EC). We then tested the ability of DT with GB to infer 112 

the correct value of each subsurface property given the ECa that would be measured with all the 113 



EMI configurations. We used the feature importance capabilities of DT with GB to identify which 114 

observed ECa values were most informative for the inference and eliminated all insensitive 115 

configurations. This allows us to find the optimal combination of configurations for each target 116 

without having to do multiple inverse models, one for each possible combination of observations 117 

for each target. To examine the impact of independent knowledge of any of the subsurface 118 

properties, we then repeated this analysis for a subset of the soil models that met a given restriction, 119 

such as only those that had a thin upper layer or a high EC middle layer.   120 

 The engine for our analysis is EMagPy (Mclachlan et al., 2020), a recently published open-121 

source code that offers ready access to forward and inverse modeling for a wide range of users. For 122 

this analysis, we only made use of the forward modeling capability of EMagPy. We then used the 123 

EMagPy output as the input for a python code that implemented the DT with GB analyses and 124 

produced the figures to guide EMI survey design. The ultimate goal was to develop an approach to 125 

measurement optimization that would be accessible to a wide range of users, with the hope that a 126 

similar approach could be developed for other measurement network design problems. The specific 127 

objective of this investigation was to present an approach to select sets of EMI configurations that 128 

are optimal given the specific survey goals and any independent knowledge of the subsurface 129 

electrical properties.  130 

2 Theory 131 

 2.1 Depth sensitivity of EMI instruments 132 

 If the subsurface is electrically homogeneous within the sample volume of the instrument, 133 

then the EMI instrument response (ECa) can be related directly to the EC of the subsurface. It is 134 

more common, especially on agricultural soils that are not subject to net percolation, that the EC 135 

varies with depth due to soil layering, irrigation, or near-surface accumulation of salts. For these 136 

conditions, multiple measurements, made using different coil spacing and separations, can be 137 



interpreted simultaneously to infer the EC profile. This requires a model of the depth sensitivity of 138 

the EMI measurement. 139 

 The simplest, most widely used depth sensitivity model is the Cumulative Sensitivity (CS) 140 

model of McNeill (1980). This analytical solution describes the contribution from the soils below 141 

any given depth to the measured ECa. The model only strictly applies under low induction number 142 

conditions and the response depends only on the depth, coil separation, and coil configuration with 143 

no regard for the subsurface EC distribution. Taking z to be the depth divided by coil separation and 144 

adding the instrument height above the surface to the depth, the CS response factors, R, of the three 145 

coil configurations are: 146 

𝑅𝑉𝐶𝑃(𝑧) = √(4𝑧2 + 1) − 2𝑧#(1𝑎)  

𝑅𝐻𝐶𝑃(𝑧) =
1

√(4𝑧2 + 1)
#(1𝑏)  

𝑅𝑃𝑅𝑃(𝑧) = 1 −
2𝑧

√(4𝑧2 + 1)
#(1𝑐)  

 147 

 The contribution from a single layer is given by the EC of the layer weighted by the CS 148 

response factor. The contributions from all layers are summed to define the total response (ECa). 149 

Imagine a subsurface with two distinct layers with a top layer with a conductivity of EC1 and 150 

thickness of t1 and the lower layer of infinite thickness and EC2. For the specific condition where 151 

the thickness of the top layer is equal to the coil spacing, z, the ECa from an HCP would be: 152 

𝐸𝐶𝑎 = 𝐸𝐶1 ∗ [1 − 𝑅𝐻𝐶𝑃(𝑧)] + 𝐸𝐶2 ∗ 𝑅𝐻𝐶𝑃(𝑧)#(2)  



 More complete solutions have been developed that remove or relax the restrictions of 153 

McNeil’s solution (Auken et al., 2015; Monteiro Santos, 2004; Saey et al., 2016). EMagPy 154 

(McLachlan et al., 2020) offers the user the opportunity to use several models and makes them 155 

readily available to a wide audience, even users with no background in EMI modeling.  156 

3 Materials and Methods 157 

 In this study, we describe a specific EMI instrument configuration based on coil orientation 158 

(HCP, PCP, or PRP), antenna separation (in m), and instrument height (in m). For example, a 159 

configuration that uses coils that are horizontal to the surface with a separation of 1 m and an 160 

instrument height of 0.3 m would be named: hcp_1.0_0.3. The EC of any horizon is an actual 161 

electrical property of that medium and it is referred to as EC followed by the horizon name. For 162 

example, the EC of the A horizon is referred to as ECA. Likewise, the thickness of any horizon is 163 

denoted by Thick followed by the horizon name. Thus, the thickness of the A horizon is denoted as 164 

ThickA. 165 

 3.1 Generating the model ensemble 166 

 We consider a three-layer soil profile, which is common for agricultural soils with 167 

distinctly developed A-, B- and C-horizons characterizing changes in the physical, chemical and 168 

biological characteristics with depth (Figure 1). Electrical properties are assumed to be constant 169 

horizontally within the sample volume of the instrument. The subsurface properties (three EC 170 

values and two thicknesses) were varied independently (Table ), forming a large set of subsurface 171 

conditions. Then, the ECa was calculated for many EMI instrument configurations using EMagPy 172 

(Mclachlan et al., 2020) version 1.1.0. 173 



 174 

Figure 1 Three layered soil (A, B, and C horizon) with variable electrical conductivities (EC). Showing also the schematic of an EMI 175 
instrument situated on the surface. The HCP has the receiver coil (Rx) is in the same horizontal plane as the transmitter coil (Tx). 176 

The PRP have the receiver coil in the plane perpendicular to the transmitter coil. 177 

 Each of the five soil parameters had ten possible values, which created 100,000 different 178 

EC soil profiles. The ranges of EC used in the forward model were chosen to represent a wide 179 

spectrum of soil types, water contents, and salinities. The lowest EC represents a dry sandy soil and 180 

the highest EC represent an agricultural soil with a combination of high clay, salinity, or water 181 

content (Harvey & Morgan, 2009; Robinson et al., 2008; Triantafilis & Lesch, 2005). The ranges of 182 

soil layer thicknesses ranged from thin (0.05 m) to relatively thick (2.0 m) for agricultural sites. 183 

Each of the three coil orientations was modelled for three different coil separations and three 184 

different instrument heights, all of which are typical for field applications of EMI with 185 

commercially available instruments. In total, the EMagPy code was run 2.7 million times to form 186 

the ensemble of results covering the soils and instrument configurations. Note that all analyses were 187 

repeated for the Andrade (2016) EMI model. The findings were not significantly different, so the 188 

results are presented for the simpler, more widely used McNeil model. 189 

 190 



Table 1. Adjustable parameters used in the forward model to generate the ensemble and values used for each of the combinations 191 
that constitute the soil profiles. 192 

 Subsurface parameters 

ECA ThickA ECB ThickB ECC 

[mS/m] [m] [mS/m] [m] [mS/m] 

1 0.05 1 0.1 1 

12 0.21 12 0.3 12 

23 0.37 23 0.5 23 

34 0.53 34 0.7 34 

45 0.69 45 0.9 45 

56 0.86 56 1.1 56 

67 1.02 67 1.4 67 

78 1.18 78 1.6 78 

89 1.34 89 1.8 89 

100 1.5 100 2.0 100 

Instrument parameters 

Height Coil spacing Coil position 

m  

0.1 1.0 Vertical 

0.3 2.5 Horizontal 

0.5 4.0 Perpendicular 

  193 

 3.2 Analyzing the EMI model results and feature importance with a gradient boosted 194 

 decision tree 195 

 An DT with GB (Friedman, 2001, Elith et al., 2008) was used for all analyses. A separate 196 

tree was trained to predict each of the five subsurface parameters. The following hyperparameters 197 

were tuned manually, although the performance of the DT with GB did not vary significantly with 198 

the hyperparameter values: learning rate, maximum tree depth, and minimum samples per leaf. The 199 

optimal values for these parameters were found to be 0.1, 10, and 2, respectively. All other 200 

hyperparameters used the default values in the scikit-learn toolbox (Pedregosa et al., 2011). The 201 

model results were split into training and testing sets with 70% used for training and the remaining 202 

30% used for testing using the random sample function in python. 203 



The GB algorithm uses a random subset of the training data and computes the mean value of the 204 

target as an initial prediction. The difference between the first prediction and the actual values of 205 

the target are calculated, which are called pseudo-residuals. A decision tree is grown to create a 206 

model that uses the forward modeled ECa values of the 27 EMI configurations to predict the 207 

pseudo-residuals. The predicted residuals are scaled by a learning rate and added to the initial 208 

prediction to adjust the pseudo-residuals. The process is then repeated until the goodness of fit of 209 

the predicted and the true values of target are sufficiently low for the training set. Training and 210 

testing were repeated five times with different training/testing splits. Differences among the repeats 211 

were small, so all results were combined for analyses. 212 

 Feature importance is an indicator of how valuable each of the included features is in the 213 

context of the final DT with GB. The relative importance of any feature is proportional to the 214 

number of times it is used to make classifications weighted by the square of its improvement to the 215 

goodness of fit for the population at that point in the tree (Friedman & Meulman, 2003):  216 

𝐼𝑗
2(𝑇) =∑𝑖�̂�

21(𝑣𝑡 = 𝑗)

𝐽−1

𝑡=1

#(3 ) 

where 𝐼𝑗
2 is the relative feature importance in decision tree T, which sums the improvement of the 217 

squared error 𝑖�̂�
2 due to each node of the tree over the leaves of each node, J (Friedman, 2001). The 218 

importance is normalized over all features so that the sum of the feature importance values equals 219 

one. 220 

 3.3 Assessing the value of additional information 221 

 For our initial analyses, we considered the full range of all the subsurface electrical 222 

properties. However, in many cases, prior information is available to define one or more of these 223 

soil EC parameters or, at least, to reduce the range of plausible values for at least one of them. This 224 



prior knowledge could be in form of hard data or soft expert knowledge for a survey area. Here, we 225 

examine how reducing the uncertainty of one soil EC parameter improves the EMI-based inference 226 

of other parameter values and whether this additional information changes the composition of the 227 

optimal EMI configurations to include in a survey. 228 

 To examine the value of additional a-priori parameter information, we perform three 229 

restriction analyses. In each case, we sequentially limit the range of one of the five subsurface EC 230 

parameters and determine the impact on the accuracy of inference of the other parameters. 231 

Recognizing that some parameters, especially EC values, can have a different impact on EM energy 232 

distribution if they are high or low valued, we consider four patterns of restriction: 233 

 Centered: The minimum and maximum value defining the parameter ranges are eliminated, 234 

retaining parameter values centered on the median value in the initial range;  235 

 Skew low: The highest values are eliminated from the parameter range, retaining the lowest 236 

parameter values in the initial range;  237 

 Skew high: The lowest values are eliminated from the parameter range, retaining the highest 238 

parameter values in the initial range. 239 

 Full range: All possible values of the five parameters are used in the analysis. Thus, 240 

retaining the full ensemble of modelled outcomes. 241 

Different extents of reduction were applied. The most stringent restriction with each pattern used 242 

only two of the ten available parameters, thus retaining 11% of the full parameter range. For each 243 

restriction analysis, we present the impact of the restriction compared to the case with no 244 

independent information and we describe any changes in the composition of the optimal EMI 245 

configuration set for each target. 246 

 247 



4 Results and discussion 248 

 In this section, we present the outcome from the forward modelling with EMagPy. We also 249 

assess the results from a preliminary investigation of applying a DT with GB to output of the 250 

forward modelling, both in terms of parameter identifiability and feature importance. We show the 251 

impact of restricting the range of a parameter to represent the value of independent information. 252 

Finally, we examine the cases that lead to inaccurate predictions. This preliminary investigation 253 

focuses on ECA, the EC of the A-horizon (the shallowest layer).  254 

 4.1 Modelled ECa ensemble 255 

 The five soil parameters with ten different values provides us with an ensemble of 100,000 256 

soil profiles. The three coil positions, three coil spacings, and three instrument height sums to 27 257 

instrument designs that are applied to each profile. Frequency distributions of the modelled ECa for 258 

each of the 27 instrument designs over all the profiles are shown in Figure 2. The distributions are 259 

quite similar, but they do differ in detail. The distributions of modelled ECa values depend strongly 260 

on the height or coil position for designs with a 1-meter coil separation (left column, Figure 2). The 261 

variations are less pronounced for larger coil separations. There are also differences in the 262 

smoothness of the distributions: the PRP (bottom row, Figure 2) has more distinct peaks for small 263 

separations whereas the HCP (top row, Figure 2) has more peaks for larger separations.  264 



 265 

 266 

Figure 2. Frequency distributions of the responses from the cumulative sensitivity model for the three coil positions: Horizontal 267 
(HCP), vertical (VCP) and perpendicular (PRP). Each panel shows the modelled ECa output from one coil position and -separation 268 
for three different heights. The coil position and -separation change respectively with the rows and columns of the nine panels. 269 

 4.2 Predicting parameter values with a trained DT with GB using all observations 270 

 The first step in our analysis was to examine the ability of the trained DT with GB to 271 

predict each parameter value. That is, we use 70,000 EC profile realizations for training the DT 272 

with GB. We then provide the 27 observations for each of the remaining 30,000 EC profile 273 

realizations to the trained DT with GB and predicted ECA (the EC of the shallowest layer). To 274 

account for the brittle nature of DT methods, this procedure was repeated five times with different 275 

training/testing splits. The results of the repeated analysis were not significantly different, so they 276 

were pooled, providing 150,000 predictions upon which the goodness of fit was determined.  277 

 The root mean squared error (RMSE) between predicted and true values of the EC of the 278 

A-horizon (ECA) is shown on Figure 3. The true values are the known ECA values used in the 279 

forward models. The results, shown as a cross-plot of points, are somewhat misleading because it is 280 

difficult to see that many points are overlapping close to the 1:1 line. Therefore, shaded areas are 281 



included to show ± one and two standard deviations about the mean predicted ECA for each true 282 

ECA value. There are clear outliers – cases for which the trained DT with GB did not give an 283 

accurate estimate of ECA even considering all 27 EMI observations. However, the overall RMSE 284 

was 7.34 mS/m over the entire set of 150,000 test cases.  285 

 286 
Figure 3. The result from running the DT with GB on the entire 100000 soil types and all 27 instrument configurations five times. 287 
The EC of the A-horizon (ECA) is the parameter that is being predicted. The X-axis is the true value of the ECA, and the Y-axis is the 288 
predicted values for ECA. 289 

 The process shown in Figure 3 was repeated for each of the five EC profile parameters. 290 

The RMSE for each parameter is reported in Table 2. Because the range of values of the parameters 291 

differ, the normalized RMSE (NRMSE) is calculated by dividing the RMSE by the full range of the 292 

true values of the parameter. The results show that EMI is least able to infer the layer thicknesses, 293 

with slightly better ability to infer the thickness of the A compared to the B-horizon. Furthermore, 294 



EMI produces better estimates of the shallow and deep EC values compared to the EC of the B-295 

horizon. These results fit with expectations, given that EMI designs with very short antenna 296 

separations might be sensitive to only ECA and those with very large separations might be mostly 297 

sensitive to the EC of the deepest layer, ECC (Callegary et al., 2012; Heil & Schmidhalter, 2015). 298 

In contrast, the layer thicknesses, ThickA and ThickB, and the EC of the middle layer, ECB, must 299 

always be inferred based on multiple measurements.  300 

Table 2 The root mean square error (RMSE) between the prediction from the gradient boosted (GB) model and the testing data. The 301 
machine learning procedure was repeated with each of the five subsurface parameters as targets, thus creating five models. The 302 
RMSE is normalized by the mean value of the target to get the normalized root mean square error (NRMSE). 303 

Target ECA ThickA ECB ThickB ECC 

Unit mS/m m mS/m m mS/m 

RMSE 7.34 0.29 18.7 0.49 1.51 

NRMSE 0.07 0.20 0.19 0.26 0.02 

 304 

 4.2.1 Examining the conditions that led to poor estimations 305 

 From the 150,000 test cases, displayed on Figure 3, 8,894 cases are more than one standard 306 

deviations away from the true value when predicting ECA. These cases are displayed in Figure 3 by 307 

the blue markers that are located outside the shaded areas. The compositions of these 8,894 cases 308 

are presented as frequency distributions of their parameter values in Figure 4. The values for ECB, 309 

ECC, and ThickB are uniformly distributed, which indicates that no specific values of ECB, ECC or 310 

ThickB lead to poor inference of ECA. In contrast, 94% of the problematic conditions have a 311 

thickness of the A horizon (ThickA) among the three lowest values. This, again, agrees with 312 

expectations that the EC of a thin layer would be more difficult to infer accurately than that of a 313 

thicker layer using an EMI instrument. The finding is opposite for ECA; while not as pronounced, 314 

the results indicate that the poorly inferred cases tended to have higher ECA values, with 54% of 315 

the conditions having the three highest ECA values. Practically, this suggests that the method would 316 

be more likely to be successful if a user can be relatively certain that the range of ThickA does not 317 

include the lowest values examined here; that is, we would expect improved inference of ECA for 318 



centered or high skewed restrictions of ThickA. A more successful survey, based on the ability to 319 

infer ECA, would occur if the ECA values tend to be lower. That is, a center or low skewed 320 

restriction should show better performance. 321 

 322 

Figure 4 Distribution of subsurface parameter values in the conditions that lead to inference of ECA that is two standard deviations 323 

away from the true value of ECA. 324 

 4.3 Feature importance when predicting parameter values with a trained DT with GB 325 

 The preceding analysis used measurements from all 27 instrument configurations for each 326 

EC profile parameter estimation. The major focus of this investigation was to use ML tools to 327 

identify the optimal set of observations to collect, which balances performance with reduced field 328 

effort. To illustrate how the built-in feature importance of tree-based methods can be used to 329 

achieve this, consider the results shown on Figure 5. The feature importance is shown for each of 330 

the 27 configurations; because they sum to 1 it is convenient to represent this as a pie chart. The 331 



colors and patterns that comprise the rings identify the eight most important EMI configurations for 332 

each combination of parameters, target, and restriction approach. The fraction of the ring covered 333 

by each color/pattern shows the relative importance of that observation. The colors indicate the coil 334 

position, while the shade and pattern indicate the coil distance and instrument height. The 19 least 335 

important EMI configurations are combined in “others” (white slices). From these results, it is 336 

apparent that approximately 90% of the information used to predict ECC (rightmost circle) is 337 

provided by configuration hcp_4.0_0.1. The optimal orientation and large antenna separation could 338 

have been predicted from McNeil’s classic work (McNeill, 1980). However, he did not consider the 339 

PRP orientations. The reason for the preference for a small instrument height is as apparent; it may 340 

simply be due to further penetration of the signal to greater depth. To our knowledge, no other 341 

method, short of exhaustive comparisons of many synthetic inverse analyses, would have been able 342 

to show that a single configuration was so clearly dominant for inferring ECC. Similarly, almost 343 

60% of the information used to infer ECA (leftmost circle) was provided by the prp_1.0_0.1 344 

configuration. The small antenna separation and low instrument height fit with general expectations, 345 

but the PRP orientation was not expected before conducting this analysis.  346 

 347 

Figure 5 Feature importance for inferring each of the five parameters from a decision tree analysis of the full parameter range. 348 

 Taken together, the results suggest that each of the EC profile parameters relies on a 349 

relatively small number of observations. To illustrate this, 90% of the importance, including only 350 



the highest importance observations, is provided by 3, 8, 14, 17, and 1 observation for ECA, 351 

ThickA, ECB, ThickB, and ECC, respectively (Figure 5). Of these high importance observations, 352 

53% had the instrument placed at the lowest instrument height considered. Perhaps more 353 

controversially, in the context of EMI instrument design and use, only 26% of the most informative 354 

configurations used the VCP orientation (Figure 5). This may be partially explained by the spatial 355 

sensitivities of the orientations (Callegary et al., 2007; Christiansen et al., 2016) which indicates 356 

relatively high spatial sensitivity redundancy for the HCP and VCP orientations.  357 

 4.4 Parameter restriction analyses 358 

 One piece of information that may be available (e.g. from direct field examination) is the 359 

expected thickness of the shallow topsoil layer (ThickA). Therefore, we begin our restriction 360 

analyses by examining the effect of improved knowledge of ThickA on the inference of the ECA 361 

parameter. Specifically, we repeated the analysis only including models with the two middle values 362 

of ThickA (0.69 m and 0.86 m). This reduces the ThickA parameter range to 11% of its full range 363 

and thereby removes the cases that contains low values for ThickA. The results (Figure 6) show 364 

stark improvement in the ability of the DT with GB to infer ECA. A similar analysis could be 365 

repeated for any restricted range of value for any parameter or for multiple parameters. This could 366 

be done for practical reasons – to design a site-specific survey – or for scientific reasons – to 367 

explore which conditions are identifiable with EMI and to understand these parameter interactions.  368 



 369 

Figure 6. The result from running the machine learning algorithm on a subset of the ensemble where the thickness of the A- horizon 370 
have been restricted. Only 20,000 soil types and all 27 instrument configurations remain in this restricted subset. The EC of the A-371 
horizon (ECA) is the parameter that is being predicted.  372 

The analysis leading to Figure 6 is one example of the ability of the DT with GB method to 373 

consider the benefits of independent soil property information. In this section, we expand the 374 

investigation to include all of the soil electrical parameters and three different restriction patterns. 375 

 Figure 7 summarizes the impacts of providing the maximum additional information 376 

(considering only two of the ten possible values of one parameter) on the inference of all other 377 

parameters. The y-axis on Figure 7 is the RMSE (such as that reported on Figure 6 for inferring 378 

ECA with ThickA restricted) normalized by the full range (max – min) of the inferred parameter. 379 

With reference to Figure 6, this would be reported as the RMSE divided by the range of ECA, 380 



giving a unitless value of 0.028. Each inferred parameter is associated with a short horizontal line, 381 

which indicates the normalized RMSE without restriction of any other parameter’s range. Each dot 382 

on Figure 7 represents the results of an analysis like that shown on Figure 6. There are three dots 383 

associated with each target/restricted parameter pair for each of three restriction patterns. Consider, 384 

for example, inferring ECA. The set of three blue dots represents the impact of restricting the range 385 

of ECA itself, the leftmost represents skewed low restriction (retaining the two lowest ECA values), 386 

the middle is a centered restriction (ECA values 45 and 56 mS/m), and the right represents the 387 

skewed high restriction (retaining the two highest ECA values). As expected, restricting the range 388 

of ECA, regardless of the restriction pattern, leads to a similar reduction in the normalized RMSE of 389 

ECA. Every pair of restricted/inferred parameters is represented using three dots with the same left, 390 

center, right nudged dots for the low, middle, and high skewed restrictions.  391 

 Consider another example to illustrate how Figure 7 can be interpreted and related to 392 

Figure 6. The three green dots above ECA represent the impact of restricting ThickA. The center 393 

dot corresponds exactly to Figure 6, the centered restriction of ThickA. The left green dot shows 394 

that there is an increase in the normalized RMSE for the skewed left restriction compared to the 395 

unrestricted case (horizontal line above ECA), which shows that restricting the thickness of layer A 396 

to the lowest range of values leads to lower quality inference of ECA. In other words, the 397 

shallowest layer may be too thin to be detected properly because the instrument response is 398 

integrated over a large depth compared to the layer thickness for all the instrument configurations 399 

considered. This fits with previous findings (Figure 4), which revealed that a thin ThickA makes it 400 

difficult to infer ECA. Furthermore, it agrees with our expectations that if the uppermost layer is 401 

sufficiently thick, we can choose an antenna separation and orientation that is almost exclusively 402 

sensitive to the uppermost layer, essentially allowing direct measurement of ECA. Consistent with 403 

this explanation, the right green dot above ECA has the lowest normalized RMSE. In this case, this 404 



confirms the expectation that it is easier to infer ECA accurately if the shallowest soil layer is 405 

relatively thick. Similar interpretations about the value of restricting one parameter on the ability to 406 

infer other parameters accurately can be drawn for each pair of restricted/inferred parameters, 407 

allowing users and researchers to gain valuable insight into the interaction of measurements and 408 

other independent information. In all cases, there is a reduction in the normalized RMSE of the 409 

inferred parameter when the parameter itself is restricted. For these cases, there are no significant 410 

differences among the three restriction patterns. In most cases, restricting the range of the inferred 411 

parameter itself showed a greater improvement than restricting any other parameter. The only clear 412 

exception was inferring ECA, which showed a greater improvement by restricting ThickA with a 413 

central or right skew. 414 

 415 

Figure 7 The changes in inference of the five subsurface parameters (x-axis) are based on a comparison between the RMSE from 416 
restricted case divided by the range of the parameter (Y-axis). The lines show how well the parameters are predicted when all 417 
parameters are full range. Each parameter restriction is represented by a dot. The color shows which parameter that is being 418 
represented and the location represents the three restriction patterns (skewed low, centered, skewed high). 419 



 In practice, Figure 7 can be used as a guide for planning an EMI survey by helping to 420 

prioritize which information is most likely to improve the inference of any specific parameter value 421 

of interest. Consider the inferred parameter ThickB on Figure 7. The three green dots represent the 422 

cases where ThickA is restricted. The left dot is the skewed low restriction that results in a reduced 423 

NRMSE compared to the full parameter range (black line). The middle dot, which is centered 424 

restriction, shows the same NRMSE as the full parameter range. The right dot, which is skewed 425 

high restriction, has a higher NRMSE than the full parameter range. The changes in NRMSE 426 

between the three restrictions of ThickA show that knowledge of the ThickA confers little 427 

advantage to estimating ThickB unless it can be shown that the shallowest layer is very thin.   428 

 More generally, there are relatively few cases where the restriction of one parameter 429 

significantly improves the inference of another parameter. Beneficial restrictions include restricting 430 

ECA and ECB to infer ThickA and restricing ThickA and ECA to infer ECB. To a lesser degree 431 

restricting any other parameter when inferring ThickB offers a slight advantage. The value of ECC 432 

is already well constrained for the full parameter range, as shown by the line, and there is little 433 

advantage to restricting another parameter to infer ECC. In rare cases, restricting the range of one 434 

parameter led to worse inference of another. These cases can guide a user to field conditions that 435 

lead to more challenging use of EMI, such as a very thin middle layer making it very difficult to 436 

infer ECB. From the perspective of an experienced user of EMI surveys, most of these general 437 

conclusions will be obvious, which helps to confirm the validity of the proposed approach. We see 438 

the value of this analysis as providing general guidance to less experienced users and to provide 439 

more fine-tuned guidance for site-specific conditions for those with more experience using EMI. 440 

Furthermore, the guidiance provided is quantifiable rather than based on general rules-of-thumb. 441 

 4.5 Feature importance in restricted subsets 442 



 The composition of the optimal EMI measurement configuration is different depending on 443 

the soil layer thicknesses and conductivities. Figure 8 summarizes the feature importance for the 444 

cases presented in Figure 7, for which only two out of ten values remain for the restricted 445 

parameter. The color and symbol patterns are the same as those used for Figure 5. The columns in 446 

Figure 8 represent the five inferred parameters and the rows represent the restricted parameter. 447 

Consequently, each circle is a pairing between one restricted and one inferred parameter. The 448 

circles are subdivided into four rings that represent the different restriction patterns. From inside 449 

out, the rings represent the full parameter range (no parameter restriction), centered-, skew low, and 450 

skew high restriction. The feature importance of the full parameter range (centermost ring) is the 451 

same in every row for each inferred parameter. For reference, the center ring results are identical to 452 

those presented in Figure 5. All 75 combinations of the five inferred/restricted parameters and the 453 

unrestricted case are shown for the three restriction patterns on Figure 8, allowing a user to draw 454 

general insights into the value of different configurations under a wide range of conditions.  455 



 456 

Figure 8 Feture importance for the 8 most important EMI configurations for every combination of the five inferred/restricted 457 
parameters and the three patterns. Each circle is subdivided into four rings that shows, from inside out, the feature importance for 458 
full range, centered, skew low, and skew high. Each column/row represents the each of the five inferred/restricted parameters. The 459 
coil positions are colored so that Horizontal (HCP) is blue, Vertical (VCP) is grey, and Perpendicular (PRP) is red. 460 

 Figure 8 is somewhat information dense, so it may be useful to discuss a few cases in more 461 

detail. One of the simplest subplots to understand is the inference of ECC when restricting ECA 462 

(top right circle). The results show clearly that there is no meaningful change in the composition of 463 

the optimal set of configurations due to adding additional ECA information, regardless of the range 464 

of ECC values considered: all four concentric rings look nearly identical. Furthermore, all four rings 465 

indicate that a single configuration, HCP_4_0.1 provides the vast majority of the information 466 

needed to characterize ECC. Again, this is in general agreement with the rules of thumb provided 467 

by McNeil (1980), but it confirms these findings for all values of EC and thickness of the other 468 

layers, and it extends the findings to consider the PRP configuration. Moving down the ECC 469 



column, note the difference when ThickB is restricted. If ThickB is skewed high (ThickB ranges 470 

between 1.8 m and 2.0 m), there is some advantage to adding the PRP_4_0.1 configuration. Our 471 

approach does not explain this choice. We suggest that it is informative to collect this additional 472 

observation to constrain the values of ECB and ThickB if the middle layer is relatively thick and 473 

that the identified configuration has a usefully different sensitivity distribution than the large HCP 474 

array placed close to the ground surface. This result could not be anticipated based on McNeil’s 475 

solutions. Furthermore, the resulting optimal configuration is almost identical if either ThickA or 476 

ThickB is restricted, when inferring ECC. Moving to the bottom of that column, the analyses show 477 

that if the value of ECC itself is limited then the composition of the optimal set changes 478 

significantly. Interestingly, regardless of the pattern of restriction (the results are the same for the 479 

outer three rings), the optimal set now includes four configurations with approximately equal 480 

importance: HCP_4_0.1; HCP_4_0.3; HCP_2.5_0.1; and PRP_4_0.1. It is further confirmation of 481 

the validity of the approach that no VCP arrays were chosen, as would be expected based on 482 

McNeil (1980). Similarly, as expected, the larger array separations are preferred. It is surprising, 483 

however, that one of the four observations place the instrument higher above ground. We suggest 484 

that this is a good example of a result that has both immediate practical value for survey design and 485 

could point researchers to ask follow-on questions about why this combination of observations is 486 

identified as optimal.  487 

 The results for inferring ECA (leftmost column) are similar but show interesting 488 

differences. The optimal set for ECA is relatively insensitive to the pattern of restriction of ECA. 489 

But, more than one observation is required for all cases. Whereas the optimal cases were similar for 490 

restricting ThickA and ThickB for inferring ECC, this similarity holds for restricting ECB and 491 

ThickB when inferring ECA. The pattern of restriction of ThickA has dramatic impacts on the 492 

optimal set of configurations for inferring ECA. The three other parameters (ThickA, ThickB, and 493 



ECB) show significant changes in the optimal configuration set depending upon the pattern of 494 

restriction (ring-to-ring) and upon the independent information provided (row-to-row). There is no 495 

case for which a single configuration dominates the importance. In fact, there are many cases that 496 

would recommend more than nine configurations. For example, this likely indicates that ThickB is 497 

unlikely to be well resolved by a practical field survey. Further considerations of inferring ThickB 498 

give interesting general insights compared to rule-of-thumb suggestions. Namely, very few VCP 499 

configurations are selected. If PRP arrays are to be used, then profiling should be achieved by 500 

increasing the antenna separation with the antennas placed close to the ground. For HCP 501 

configurations, profiling should be achieved by increasing the antenna separation and by lifting the 502 

instrument above the ground for the largest antenna separation configuration.  503 

 To summarize, taken together Figures 7 and 8 provide a direct guide to an EMI user when 504 

designing a survey with a specific target. Figure 7 indicates whether that target can be characterized 505 

reliably given the full range of configurations considered and which additional information will 506 

improve the characterization. Figure 8 identifies the optimal set (and number) of arrays needed for 507 

optimal characterization. Some of the conclusions would be expected based on McNeil’s (1980) 508 

classic work and would be anticipated by an experienced EMI user. Other results would be difficult, 509 

if not impossible, to predict without a value-of-data analysis like that shown here. These results, in 510 

particular, could point the way to further scientific investigations to better understand the 511 

complementary information content of multiple EMI configurations. The restriction analyses offer 512 

insight into the mutual identifiability of soil EC. Given the availability and flexibility of EMagPy 513 

(Mclachlan et al., 2020) and the efficiency of the DT with GB algorithm, the analyses performed 514 

here could be extended to include identification of optimal configuration sets for multiple targets 515 

(e.g. thickness and EC of the B layer). For example, placing equal weight on all five targets, an 516 

optimal without restriction of any of their values suggests the use of: one HCP array (hcp_4.0_0.1) 517 



and four PCP arrays (1.0_0.1, 4.0_0.1, 1.0_0.3, and 2.5_0.1). If this specific set of configurations 518 

was deemed impractical, a user could limit the available configurations for consideration, find the 519 

optimal survey, and compare the projected RMSE to that estimated for the overall optimal set. This 520 

information could guide a user in whether it is worthwhile to change their instruments, or designs, 521 

or whether gathering additional information about the range of plausible parameter values is likely 522 

to be more important for their survey goals.  Finally, the general approach shown here could be 523 

extended easily to consider multiple measurement types (e.g. combining EMI with other 524 

geophysical methods), and even dynamic optimization of measurement networks for monitoring 525 

applications. 526 

5 Conclusions 527 

 Most environmental and agricultural field investigations are conducted on relatively 528 

limited budgets. As a result, there is usually some advantage optimizing data collection to achieve 529 

the best results with the limited time and money available. These restrictions are one of the main 530 

reasons that EMI has become a popular tool for these studies. While it is often the case that the 531 

measurements are more ambiguous than direct measurements of soil properties, the noncontact 532 

nature of the instruments allows for much greater spatial coverage. The recent availability of 533 

EMagPy (Mclachlan et al., 2020), allowed us to peform the large number of EMI forward models 534 

necessary to support a machine learning examination of EMI surveys, leading to a simple but 535 

comprehensive investigaiton of parameter identifiability and optimal EMI configurations. The result 536 

is an approach that can allow an EMI user with limited expertise to choose a better set of instrument 537 

configurations given their main survey target and knowledge of the site conditions. The same tool 538 

can point more advanced users to areas of investigation that may improve our understanding of the 539 

complementary information content of different EMI configurations. The DT with GB method 540 

based on a large ensemble of instrument response forward models, proposed here, makes novel use 541 



of the efficiency and built-in feature importance capabilities of DT with GB. But, the analyses are 542 

not restricted to this relativley simple ML algorithm. More advanced ML tools could be combined 543 

with independent feature importance analyses if required for specific monitoring applications. 544 

Similarly, while EMI forward modeling is relatively simple and fast, given that it is based on 545 

analytical models, with sufficient computational resources any measurement method and underlying 546 

physical process could be examined in the same way. As just one illustrative example, an optimal 547 

combination of EMI, electrical resistivity, gravity, and monitoring well observations could be 548 

proposed to constrain the interpretation of a pumping test performed in an unconfined, anisotropic 549 

medium by conducting forward models of many configurations (survey locations and times, ERT 550 

array types, and screen depths) for a large ensemble of plausible aquifer conditions and allowing an 551 

ML algorithm to consider all of the data and identify the most informative observations. This opens 552 

the possibilities for exploring truly novel combinations of multimodal observations.   553 
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