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Abstract

Snow algae are found from spring to summer on snowfields and glaciers throughout the world. Their blooming darkens snow

surfaces, reducing snow surface albedo and accelerating melting. Uncertainties remain, however, regarding the blooming season

and global distribution of these algae. To reproduce snow algal bloom temporal and spatial variability, we improved an existing

snow algae model using a land surface model calibrated with a global atmospheric reanalysis dataset. Snowfall and daylight

length data for selected model locations were also incorporated. To evaluate its performance, we used in situ observational

data from 15 polar to alpine area sites. The improvements made in this study allowed the reconstruction of detailed snow algal

blooming reports from various locations worldwide, and the results suggested that the major factors affecting the appearance

of snow algal blooming were the snow melting period duration and algal growth interruption by new snow cover. We then

incorporated the updated snow algae model into a land surface model and performed a global simulation. In this case, our

simulation suggested that red snow could appear on snowfields during the melting season but only in the absence of frequent

new snow falls, and if the snow cover persists long enough to allow prolonged algal growth.
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Abstract 19 

Snow algae are found from spring to summer on snowfields and glaciers throughout the world. 20 

Their blooming darkens snow surfaces, reducing snow surface albedo and accelerating melting. 21 

Uncertainties remain, however, regarding the blooming season and global distribution of these 22 

algae. To reproduce snow algal bloom temporal and spatial variability, we improved an existing 23 

snow algae model using a land surface model calibrated with a global atmospheric reanalysis 24 

dataset. Snowfall and daylight length data for selected model locations were also incorporated. 25 

To evaluate its performance, we used in situ observational data from 15 polar to alpine area sites. 26 

The improvements made in this study allowed the reconstruction of detailed snow algal 27 

blooming reports from various locations worldwide, and the results suggested that the major 28 

factors affecting the appearance of snow algal blooming were the snow melting period duration 29 

and algal growth interruption by new snow cover. We then incorporated the updated snow algae 30 

model into a land surface model and performed a global simulation. In this case, our simulation 31 

suggested that red snow could appear on snowfields during the melting season but only in the 32 

absence of frequent new snow falls, and if the snow cover persists long enough to allow 33 

prolonged algal growth. 34 

 35 

1 Introduction 36 

Snow algae are photosynthetic microbes growing on snow and ice and are common 37 

globally in snowfields and glaciers. Snow algal blooms occur on thawing snow surfaces and 38 

change the color of the snow to red, orange, or green (Hoham and Remias, 2020). In particular, 39 

the red snow phenomenon, which is caused by blooms of Sanguina (S.) nivaloides (renamed 40 

from Chlamydomonas nivalis by Procházková et al., 2019) and Chloromonas sp., have been 41 

reported throughout spring and summer seasons worldwide (Thomas and Duval, 1995; Painter et 42 

al., 2001; Novis, 2002; Takeuchi and Kohshima, 2004; Takeuchi et al., 2006a; Stibal et al., 2007; 43 

Fujii et al., 2010; Spijkerman et al., 2012; Lutz et al., 2014, 2015, 2016; Hisakawa et al., 2015; 44 

Cepák et al., 2016; Remias et al., 2016; Tanaka, 2016; Tanaka et al., 2016; Ganey et al., 2017; 45 

Huovinen et al., 2018; Moestrup et al., 2018; Segawa et al., 2018; Onuma et al., 2018; 46 

Procházková et al., 2019; Zawierucha and Shain, 2019; Vimercati et al., 2019) (Fig. 1). The 47 

conditions required for snow algal growth include the availability of liquid water, solar radiation, 48 

and nutrients (Hoham and Remias, 2020). Previous studies have suggested that snow algal 49 

abundance can change significantly over time, due to their growth, accumulation, and cell losses 50 

during the snow-melting season (Müller et al., 2001; Takeuchi, 2013; Onuma et al., 2016, 2018). 51 

However, it is unclear exactly when and where the red snow phenomenon appears in snowfields 52 

and glaciers worldwide. 53 
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 54 

Figure 1 a red snow algae; b the red snow phenomenon on an Alaskan snowfield; c previously 55 

reported distribution of the red snow phenomena on snowfields and glaciers worldwide. Solid, 56 

open, and open-dotted marks indicate seasonal data validation sites, one-day data validation 57 

sites, and no applicable sites in this study, respectively. Only validation sites where red snow 58 

algal abundance was quantified by the cell count method were used. Site names correspond to 59 

those in Table 1 60 

 61 

To reproduce snow algal growth and evaluate its impact on snow melting, a numerical 62 

equation, the “snow algae model,” was recently proposed. Field observations in a Greenlandic 63 

glacier showed that snow algal abundance exponentially increased with snow melting, provided 64 

there was no intervening snowfall, reaching the carrying capacity of the snowpack in late 65 

summer (Onuma et al., 2018). An increase in snow algal abundance with snow melting has also 66 

been reported for Alaska and Japan (Takeuchi, 2013; Onuma et al., 2016). Based on these field 67 

observations, Onuma et al. (2018) established a numerical model for snow algal growth. The 68 

model was able to simulate the exponential growth of S. nivaloides using biological parameters 69 

(initial cell concentration, growth rate, and carrying capacity) and the duration of snow melting. 70 

The snow algae model was then incorporated into a physically based snow albedo model (Aoki 71 

et al., 2011; Onuma et al., 2020), which calculated the surface albedo of snow containing black 72 

carbon, mineral dust, and snow algae.  73 

Many studies have suggested that algal abundance can be affected by atmospheric 74 

conditions, as well as by the physical and chemical conditions of snow, such as snow melting, 75 

snowfall, solar radiation, and nutrient availability (Stibal et al., 2007; Takeuchi, 2013; Lutz et al., 76 

2014; Onuma et al., 2016, 2018; Hoham and Remias, 2020). The snow algae model did not 77 

include such effects on algal growth, however, and it was evident that variables such as daylight 78 

length and snowfall events in particular, which affect algal photosynthesis and vary across global 79 

locations, should be considered if the model was to be applied to other snowfield or glacier sites. 80 

Although there have been a number of studies on snow algae worldwide, most lack the in situ 81 

data for meteorological conditions and snow physics—including air temperature, solar radiation, 82 

precipitation, snow depth in water equivalent, and snow temperature—which are required to 83 

evaluate the snow algae model. This suggested that a dataset of snow physics and meteorological 84 

conditions obtained from a land surface model and global reanalysis data may be useful for 85 
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evaluating the snow algae model using snow algal data in published papers as well as for 86 

simulating snow algal growth globally.  87 

A number of land surface models, which can be driven using reanalysis data, have been 88 

proposed to simulate temporal and spatial changes in snow properties on a global scale. For 89 

example, CLM (Lawrence et al., 2019), ORCHIDEE (Krinner et al., 2005), ISBA (Decharme et 90 

al., 2016), and MATSIRO (Takata et al., 2003; Nitta et al., 2014; 2017) have been established as 91 

land surface models incorporated into climate models to represent physical land processes. These 92 

models can calculate temporal and spatial changes in the snow water equivalent, snow 93 

temperature, water runoff, evaporation, and sublimation globally. In addition, a simulation with a 94 

land surface model can be conducted independently, using atmospheric conditions near the land 95 

surface as the input data. Such a simulation is termed an offline land simulation. Global 96 

atmospheric reanalysis data are generally used as atmospheric conditions for offline land 97 

simulations, which allows temporal and spatial changes in land physical properties to be 98 

reproduced without model bias that may derive from atmospheric conditions. 99 

In this study, we first improved the snow algae model using in situ snow algal abundance 100 

data, as reported from 15 locations worldwide, and the physical and meteorological snow 101 

conditions for these locations, as obtained from a land surface model. We incorporated the effect 102 

of snowfall and daylight length into the snow algal model established by Onuma et al. (2018) 103 

and then conducted offline land simulations at the study sites using various atmospheric 104 

conditions and biological parameters. Finally, we performed a global simulation of the land 105 

surface model, including the snow algae model, using atmospheric reanalysis data sets to 106 

investigate seasonal and geographical variations in snow algal blooms worldwide. 107 

 108 

2 Model description and experimental design 109 

2.1 Snow algae model  110 

We used a snow algae model to calculate temporal changes in the abundance of snow 111 

algae across various snowfields. Temporal changes in the abundance of S. nivaloides on surface 112 

snow can be expressed using a differential logistic growth equation. The population density and 113 

growth period of the microbes were calculated as shown in Eqs (1) and (2) (Onuma et al., 2018): 114 

𝑑𝑋

𝑑𝐺𝑃 𝑡
𝑀 = 𝜇𝑋0 (1 −

𝑋0

𝐾
), and (1) 

{
𝐺𝑃 𝑡

𝑀 = 𝐺𝑃 𝑡−1
𝑀 + 1 (𝑇𝑠𝑛1 ≥ 273.15[𝐾])

𝐺𝑃 𝑡
𝑀 = 𝐺𝑃 𝑡−1

𝑀  (𝑇𝑠𝑛1 < 273.15[𝐾])
, (2) 

where X and X0 represent population densities of microbes at growth periods GP
M

t and GP
M

t0, 115 

respectively, and µ indicates the hourly microbe growth rate. K denotes the snow surface algae 116 

carrying capacity, and GP
M

t0 represents the day that algae first appear on the snow surface. GP
M

t 117 

represents the cumulative hours when the snow surface temperature, Tsn1, is above 0 ℃ (as algal 118 

growth only occurs on the melting snow surface). Although algal cells observed in the red snow 119 

surface are often in the cyst stage (e.g. Onuma et al., 2018)—when their populations do not 120 
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actively increase—the model assumes algal growth on the snow surface, including the 121 

condensation of algal cells grown at the subsurface, with snow melt. 122 

In this study, we improved this model, which may include growth and / or condensation 123 

of the algal cells, to broadly reconstruct in situ observations of algal cell abundance reported for 124 

snow surfaces worldwide. To calculate temporal changes in the abundance of red snow algae on 125 

surface snow at various locations, we added the effects of snowfall and daylight length into the 126 

original snow algae model proposed by Onuma et al. (2018). 127 

Onuma et al. (2016) reported that the abundance of a snow alga Chloromonas (C.) nivalis 128 

on a snowpack in Japan decreased when there were occasional snowfalls in spring; however, the 129 

snow algae model was not able to simulate such a decrease because it assumed a monotonic algal 130 

abundance increase. Because the snow algae model could calculate temporal changes in algal 131 

cell concentration in a surface snow layer to a depth of 2 cm, the accumulation of new snow 132 

above the algal layer should result in a decline in algal cell concentration. In this study, we 133 

updated the snow algae model to quantify the effect of snowfall on algal abundance in the top 2 134 

cm layer of surface snow.  135 

Daylight length is another metric with the potential of affecting algal growth because 136 

snow algae grow photosynthetically. A previous study reported that snow algal blooms first 137 

appeared under light conditions with a penetration of 0.1 % of the surface radiation (Curl et al., 138 

1972), suggesting that snow algae on snow surfaces can grow during daylight but not during the 139 

night. Therefore, we assumed that snow algae grow in sunlight and incorporated a day–night 140 

cycle effect on snow algal growth into the snow algae model, as shown in Eq. (3): 141 

{
𝐺𝑃 𝑡

𝑀𝑅 = 𝐺𝑃 𝑡−1
𝑀𝑅 + 1 (𝑇𝑠𝑛1 ≥ 273.15 [𝐾] 𝑎𝑛𝑑 𝑆𝑤 > 0 [𝑊𝑚−2])

𝐺𝑃 𝑡
𝑀𝑅 = 𝐺𝑃 𝑡−1

𝑀𝑅  (𝑇𝑠𝑛1 < 273.15 [𝐾] 𝑜𝑟 𝑆𝑤 = 0 [𝑊𝑚−2])
, (3) 

where GP
MR

t is defined as the cumulative hours of snow melting under daylight conditions, 142 

which can increase when the snow surface temperature, Tsn1, and downward shortwave radiation, 143 

Sw, are above 273.15 K and 0 W m
-2

, respectively, at t.  144 

We added two further equations to the calculation of snow algal growth, to quantify the 145 

effect of snowfall on snow algal abundance, as shown in Eqs (4)–(6): 146 

𝑋′ 𝑡−1
𝑀𝑅𝐹 = 𝑋 𝑡−1

𝑀𝑅𝐹 (1 −
𝑃𝑠𝑛∗3600∗1000

20∗𝐷𝑠𝑛
), (4) 

𝐺𝑃′ 𝑡−1
𝑀𝑅𝐹 =

𝑙𝑜𝑔𝑒(
𝑏

𝑎
)

−𝜇
, 𝑎 =

(𝐾−𝑋0)

𝑋0
, 𝑏 =

𝐾

𝑋′ 𝑡−1
𝑀𝑅𝐹 − 1, and (5) 

{
𝐺𝑃 𝑡

𝑀𝑅𝐹 = 𝐺𝑃′ 𝑡−1
𝑀𝑅𝐹 + 1 (𝑇𝑠𝑛1 ≥ 273.15 [𝐾] 𝑎𝑛𝑑 𝑆𝑤 > 0 [𝑊𝑚−2])

𝐺𝑃 𝑡
𝑀𝑅𝐹 = 𝐺𝑃′ 𝑡−1

𝑀𝑅𝐹 (𝑇𝑠𝑛1 < 273.15 [𝐾] 𝑜𝑟 𝑆𝑤 = 0 [𝑊𝑚−2])
, (6) 

where X
MRF

t indicates algal cell concentration during the growth period (GP
MRF

t), including the 147 

effects of snow melting, daylight length, and snowfall. X
MRF

t decreases based on the snowfall 148 

rate Psn (mm s
-1

), when snowfall occurs. If the new snow cover, which is calculated using Psn and 149 

snow density Dsn (kg m
-3

), exceeds 20 mm in 1 h, X
’MRF

t is reset to X0. In this study, Dsn was 150 

assumed to be 300 kg m
-3

, which is generally used for this parameter in land surface models. 151 
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GP
’MRF

t in Eq. (5) has been changed from Eq. (1) and represents the growth period at X
’MRF

t. In 152 

this study, GP
MRF

t was used as the GP
M

t in Eq. (1), to calculate hourly algal cell concentrations. 153 

An overview of the updated snow algae model can be seen in Fig. 2. In the model, initial 154 

cell concentration, X0, becomes established at the first snow appearance, and then the cell 155 

concentration increases with the duration of snow melting under daylight conditions before 156 

decreasing when new snowfall covers the surface. As the model could not consider the migration 157 

of motile algal cells in a snowpack, algal cell concentrations reduced by snowfall were not 158 

conserved in the model snow layers and did not increase again until there was further snow 159 

melting under daylight conditions. The modeled algal cell concentrations reverted to zero once 160 

the snowpack disappeared. 161 

 162 

 163 

Figure 2. Concept supporting the updated snow algae model in this study. Dashed line indicates 164 

the snow surface (top 2 cm) where snow algal cell can increase in snow algae model 165 

 166 

2.2. Using in situ data for snow algal abundance to validate the snow algae model 167 

In this study, we used temporal changes in algal cell abundance observed in situ at 15 168 

locations as model validation data. An overview of the validation sites located in polar and alpine 169 

regions—six sites representing sites used in previous studies, and nine representing those 170 

observed specifically for this work—can be seen in Fig. 1c and Table 1. 171 

  172 
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Table 1. Maximum algal cell concentrations reported for red algal blooms from various snow 173 

fields 174 

Site names 

Study sites 

(Region) 

Location 

Elevation 

[m] 

Red snow algal 

species 

Maximum algal 

cell concentration 

[cells m
-2

] 

References 

SV-S 
Spitsbergen Island 

(North West Svalbard) 

79.01N 

12.48E 

350 Chloromonas sp. 2.0 × 10
8
 Lutz et al., 2015 

GL-Q 
Qaanaaq Area 

(North West Greenland) 

77.5N 

69.17W 

944 S. nivaloides 3.5 × 10
7
 Onuma et al., 2018 

SV-W 
Wedel Jarlsberg Land 

(South West Svalbard) 

77.04N 

15.14E 

100 S. nivaloides 5.9 × 10
9
 Stibal et al., 2007 

GL-A 
Ammassalik Island 

(South East Greenland) 

65.6N 

37.8W 

150 S. nivaloides 1.8 × 10
8
 Lutz et al., 2014 

AK-E 

Eastern Alaska 

Mountains 

(Alaska, USA) 

64N 

146W 

1680 S. nivaloides 5.1 × 10
7
 Takeuchi, 2013 

SB-S 

Suntar-Khayata 

Mountains 

(Siberia, Russia) 

62.5N 

141E 

2509 Chloromonas sp. 1.8 × 10
8
 Tanaka et al., 2016 

AK-K 
Kenai Mountains 

(Alaska, USA) 

60N 

150W 

1100 S. nivaloides 6.7 × 10
9
 Takeuchi et al., 2006b 

AT-A 
Altai Mountains 

(Altai, Russia) 

49.51N 

86.33E 

3130 Chloromonas sp. 2.2 × 10
6
 Takeuchi et al., 2006a 

EU-T 
Tyrol Mountains 

(Austria, Europe) 

46.55N 

10.55E 

2975 S. nivaloides 5.0 × 10
8
 Remias et al., 2016 

TN-U 
Urumqi Glacier 

(Tienshan, China) 

43.06N 

86.49E 

4090 Chloromonas sp. 1.3 × 10
6
 Tanaka, 2016 

NA-S 

Sierra Nevada Mountains 

(California, North 

America) 

37.55N 

119.55W 

3425 S. nivaloides 1.3 × 10
7
 Painter et al., 2001 

JP-T 
Tateyama Mountains 

(Japan) 

36.34N 

137.36E 

2300 S. nivaloides 1.1 × 10
8
 This study 

NZ-A 
Arthur's Pass Mountains 

(New Zealand) 

42.89S 

171.53E 

1967 Chlainomonas kolii 1.2 × 10
7
 Novis et al., 2002 

PG-T 

Tyndall Glacier 

(Southern Patagonia Ice 

fields, Chile) 

51.15S 

73.15W 

1100 Chloromonas sp. 6.0 × 10
5
 

Takeuchi and 

Kohshima, 2004 

AP-L 
Livingston Island 

(Antarctic Peninsula) 

62.39S 

60.23W 

13 S. nivaloides 4.9 × 10
8
 This study 

 175 

We used in situ algal cell concentration per area (cells m
-2

) for model validation in this 176 

study. The algal data reported in previous studies had all been quantified using microscopic cell 177 

counts in the surface snow layer (top 2 cm). These data covered locations in NW Greenland (GL-178 

Q; Onuma et al., 2018), Alaska (AK-K and AK-E, Takeuchi et al., 2006b; Takeuchi, 2013), Altai 179 
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(Russia; AT-A, Takeuchi et al., 2006a), Siberia (SB-S, Tanaka et al., 2016), Tienshan (China; 180 

TN-U, Tanaka, 2016), and Patagonia (PG-T, Takeuchi and Kohshima, 2004). Surface snow algal 181 

abundance data reported from Svalbard (Arctic Ocean; SV-W and SV-S, Stibal et al., 2007; Lutz 182 

et al., 2014), SE Greenland (GL-A, Lutz et al., 2014), Europe (EU-T, Remias et al., 2016), North 183 

America (NA-S, Painter et al., 2001), and New Zealand (NZ-A, Novis et al., 2002) were also 184 

used. Because most algal cell abundance data had been reported as algal cell concentration per 185 

unit of melt water volume (cells L
-1

), we converted these data to algal cell concentrations per unit 186 

of area, assuming that the snow density was 500 kg m
-3

 and that the collected samples had been 2 187 

cm deep. 188 

We also used unpublished algal data obtained from snowfields in Japan (Mt. Tateyema) 189 

and the Antarctic Peninsula (Livingston Island), in 2012 and 2015 respectively. Mt. Tateyama (N 190 

36.3°, E 137.4°) is an alpine snowfield above the tree line (1850–3000 m ASL), located in W 191 

Japan, and red snow algal blooming can be observed there annually as the snow pack thaws 192 

(May–July) (Segawa et al., 2005). We selected a snowy plateau called Raichozawa, located at 193 

2300 m, as the study site (JP-T) because the snowpack here remained until early August. 194 

Livingston Island is located in the South Shetland Islands near the Antarctic Peninsula. The 195 

Spanish research station, Juan Carlos I (S 62.4°, W 60.2°), and the Hurd Peninsula ice cap (S 196 

62.8°, W 60.8°) are located on the Hurd Peninsula, Livingston Island. Glaciological field 197 

observations have been conducted here to study the physical properties of ice on glacier 198 

dynamics, including surface mass balance and ice velocity on the ice cap (Navarro et al., 2013; 199 

Sugiyama et al., 2019). Red snow algal blooms can be found on the coastal snowpack on 200 

Livingston Island from January–February (Hodson et al., 2017). Our study site (AP-L) was 201 

located on the Livingstone Island coastal snowfield. 202 

Temporal changes in the abundance of red snow algae were quantified using surface 203 

snow samples collected through d 117–217, in 2012, at JP-T, and during 6 sampling days during 204 

the period extending through d 19–30, in 2015, at AP-L. Samples were collected on each 205 

observation date from 3 to 10 randomly selected surface locations (0–2 cm depths), using a 206 

stainless-steel scoop. The sampling areas occupied ~ 100 cm
2
 and were recorded for each 207 

collection. Samples were melted on-site and preserved in 3 % formalin in 30 mL clean 208 

polyethylene bottles before being transported to Chiba University, Japan, for analysis. Algal 209 

abundances were obtained from the water samples by counting cells and was represented as the 210 

cell number per unit surface area of snowpack (cells m
-2

). This methodology has been described 211 

in more detail in previous studies, which included those in which field observations were carried 212 

out at sites GL-Q, AK-E, SB-S, AK-K, AT-A, TN-U, and PG-T, as shown in Table 1. 213 

2.3. MATSIRO land surface model  214 

We used the Minimal Advanced Treatments of Surface Interaction and Runoff land 215 

surface model (MATSIRO; Takata et al., 2003; Nitta et al., 2014, 2017) to evaluate temporal 216 

changes in snow algal abundance on snowfields worldwide. This model was developed to 217 

simulate land-based physical processes in a general circulation model, and six versions—the 218 

MATSIRO6, involving up to three snow layers, six soil layers (14 m in total), and a single 219 

canopy layer—were used for the Model for Interdisciplinary Research on Climate (MIROC6; 220 

Tatebe et al., 2019).  221 

MATSIRO6 can simulate temporal and spatial changes in the snow water equivalent, 222 

snow cover fraction, and snow temperature. The snow water equivalent was simulated based on 223 
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the water balance, and in MATSIRO6 it was derived from the snowfall rate, snow sublimation, 224 

snowmelt, and refreezing of rainfall and snowmelt. The snow cover fraction was simulated using 225 

a lognormal distribution function for the subgrid snow water equivalent distribution, whereas the 226 

temperature of each snow layer was simulated using a thermal conductivity equation. The 227 

detailed methodology for calculating these physical properties of snow may be found in Nitta et 228 

al. (2014). Temporal changes in these snow physical properties have been validated using 229 

observations from various snowfields and derived from data for other land surface and snow 230 

physical models reported by the model intercomparison project (ESM-SnowMIP; Krinner et al., 231 

2018). In this study, we used snow surface temperatures calculated using MATSIRO6 as input 232 

data for snow algal simulations at the study sites. 233 

2.4. Atmospheric forcing for land surface modeling 234 

The atmospheric conditions used in MATSIRO6 simulations were derived from 235 

atmospheric reanalysis data (Table 2). Various datasets for atmospheric reanalysis—which were 236 

derived from global atmospheric reanalysis data near the land surface, and bias-corrected using 237 

global meteorological observations—have been established for land surface modeling. In this 238 

study, we used the atmospheric conditions derived from the reanalysis dataset for each study site, 239 

because time-series meteorological observations were not always available.  240 

The WFDEI forcing data set (Weedon et al., 2014) was used as the atmospheric 241 

conditions for land surface modeling in this study. This atmospheric reanalysis dataset includes 242 

three-hourly information on surface air temperature, surface air pressure, downward radiation 243 

(shortwave and longwave), humidity, wind speed, and precipitation rate. While this reanalysis 244 

data set is appropriate for land surface modeling at global or regional scales, high levels of 245 

uncertainty are present when it is used for meteorological conditions at specific elevations due to 246 

its rough horizontal resolution (0.5° × 0.5° globally).  247 

For this reason, we applied elevation corrections to simulate temporal changes in snow 248 

algal abundance at specific sites. The surface air temperature at each site was corrected using 249 

elevation information and the original air temperature and by applying a temperature lapse 250 

rate,which was assumed to be - 6.5 × 10
-3

 Km
-1

. The surface air pressure of each snowfield was 251 

corrected using elevation information and surface air temperature (before and after the 252 

correction), as recommended by the World Meteorological Organization (WMO-No. 8, in CIMO 253 

Guide, Part I, Chapter 3). The specific humidity at each site was corrected from the original data 254 

using the ratio of surface air pressure before and after correction, whereas the snowfall rate was 255 

corrected from total precipitation data, using the ratio of rain to snow, which itself was estimated 256 

using the surface air temperature, air pressure, and specific humidity given in MATSIRO6. The 257 

input and output data for the offline land simulation used to calibrate MATSIRO6 in this study 258 

can be seen in Table 2. 259 

  260 
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Table 2. Variables and parameters required for land surface modeling in this study 261 

Variable or 

parameter Description Estimated 

Value Unit 

Land surface model MATSIRO6 

Ta Atmospheric temperature Input K 

Qa Atmospheric humidity Input kg kg
-1 

Pa Atmospheric pressure Input hPa 

Ws Wind speed Input m s
-1 

Sw Downward shortwave radiation Input W m
-2 

Lw Downward longwave radiation Input W m
-2 

Pr Total precipitation rate Input kg m
-2

 s
-1 

Psn Snowfall rate Calculated kg m
-2

 s
-1 

Sn Snow water equivalent Calculated kg m
-2 

Tsn Snow temperature Calculated K 

Dsn Snow density Parameter Kg m
-3 

Snow algae model 

X0 Initial cell concentration Parameter cells m
-2 

µ Growth rate Parameter hour
-1 

K Carrying capacity Parameter cells m
-2 

GP Growth period Calculated hour 

X Algal cell concentration Calculated cells m
-2 

2.5. Experimental design of snow algal growth simulation 262 

To evaluate the algal model version as improved in this study, algal growth simulations 263 

(Ag-exp) were conducted under three different conditions at 15 sites, as shown in Fig. 1c and 264 

Table 1. The three conditions covered snow algal growth with: (1) the effect of snow melting 265 

only (X
M

); (2) effects of snow melting and daylight length only (X
MR

); and (3) effects of snow 266 

melting, day-light length, and snowfall (X
MRF

) (Table 3). The atmospheric conditions for the land 267 

offline simulations were supplied by the WFDEI forcing dataset, which had been corrected for 268 
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study site elevations in advance.  269 

 270 

Table 3. Overview of sensitivity tests applied in this study 271 

Experiment 
ID 

Initial cell 
Concentration 
X

0 
(cells m

-2
) 

Growth rate 
µ (hour

-1
) 

Carrying capacity 
K (cells m

-2
) 

Atmospheric 

reanalysis data 

set 

Algal growth 

simulation 
(Ag-exp) 

6.33 0.018 Observation 
each site WFDEI 

Initial cell 

ensemble 
(X

0
-exp) 

1.0 – 1.0 × 10
3 0.018 Observation 

each site WFDEI 

Growth rate 

ensemble 
(µ-exp) 

6.33 0.01 – 0.025 Observation 
each site WFDEI 

Atmospheric 

reanalysis data 

set ensemble 
(Fd-exp) 

6.33 0.018 Observation 
each site 

WFDEI or 
GSWP3-FD or 

CRUJRA 

 272 

The initial snow depth (in water equivalent) in MATSIRO6 was assumed at each study 273 

site to remain stable until the maximum algal cell concentration date. For example, the initial 274 

value was assumed to be 1000 kg m
-2

 for Arctic sites and 3000 kg m
-2

 for Japanese sites, which 275 

was consistent with snow depth observations (equal to 9 m in winter at JP-T, Osada et al., 2004). 276 

The snow surface temperature calculated using MATSIRO6 and the derived snowfall rate and 277 

solar radiation from atmospheric reanalysis data were used as input data for the snow algae 278 

model in this study.  279 

Biological parameter data—such as initial cell concentration (X0), growth rate (µ), and 280 

carrying capacity (K)—were not generally available for red snow algae in snowfields worldwide. 281 

To overcome this, we applied field observation values from the snowfield of a Greenlandic 282 

glacier, as reported by Onuma et al. (2018), for Ag-exp—and so X0 and µ were assumed to be 283 

6.33 cells m
-2

 and 0.018 h
-1

, respectively. Maximum algal cell concentrations observed from the 284 

sites (Table 1) were used for K because the carrying capacity of red snow algae might vary for 285 

each snowfield, as suggested by Onuma et al. (2018).  286 

Simulations were conducted from January 1 to December 31 each year at the study sites, 287 

except for the southern hemisphere sites NZ-A and PG-T, where 1998 and 1999 data for July 1 288 

to December 31 were used. 289 
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We conducted more sensitivity testing on the updated snow algae model using two 290 

biological parameters—initial cell concentration (X0-exp), and growth rate (µ-exp)—at each 291 

observation site (Table 3). Onuma et al. (2018) reported that the S. nivaloides initial cell 292 

concentration and growth rate were 6.33 and 694 cells m
-2

 and 0.39 and 0.42 d
-1

 (0.016 and 0.018 293 

h
-1

), respectively, at 2 sites on a Greenlandic glacier. Field observations suggested that S. 294 

nivaloides algal spores (cysts) were wind induced onto the snow surface during the early melting 295 

season, and they assumed that the initial cell concentration consisted of these wind-supplied algal 296 

spores before on-site algal growth initiation. Based on a previous study, the range for the initial 297 

cell concentrations (X0-exp) was assumed for sensitivity testing to be between 1–1000 cell m
-2

. 298 

Because snow algae growth rates vary between snowfields worldwide, it had been suggested 299 

previously that the sensitivity of the snow algae model to growth rates should be investigated. 300 

Previous studies have reported that C. nivalis growth rates, as obtained from field observations 301 

and cultivation, were 0.22 (Onuma et al., 2016) and 0.60 d
-1

 (Leya et al., 2009). Based on these 302 

data, we assumed that the µ-exp growth rate ranged between 0.01–0.025 h
-1

. The maximum algal 303 

cell concentration observed from the study sites was assumed to be K, for both X0-exp and µ-304 

exp, the same as for Ag-exp. 305 

In addition to applying sensitivity testing to biological variables, we reviewed model 306 

sensitivity to four atmospheric conditions. Although temporal changes in snow algal abundance 307 

may be affected by snow physical or atmospheric conditions, the quantitative effect of such 308 

conditions on algal cell abundance remained uncertain. Therefore, Fd-exp, which is an ensemble 309 

simulation using the WFDEI, GSWP3-FD, and CRUJRA forcing datasets, was conducted in this 310 

study, to review the sensitivity of algal growth to atmospheric conditions (Table 3). GSWP3-FD 311 

(Hurk et al., 2016; Kim, 2017) and CRUJRA (Harris, 2019) forcing datasets provided the 312 

different atmospheric conditions, and an overview of the three datasets, including WFDEI, can 313 

be seen in Table S1. The surface air temperature, surface air pressure, and specific humidity data 314 

from GSWP3-FD and CRUJRA were corrected using each site’s elevation, as was WFDEI. The 315 

initial cell concentration, growth rate, and carrying capacity were taken as 6.3 cells m
-2

, 0.018 h
-1

 316 

and the observed maximum cell concentration (cells m
-2

) for Fd-exp, respectively. The 317 

experimental architecture for the sensitivity tests used in this study has been summarized in 318 

Table 3. 319 

To evaluate snow algae model sensitivity to biological variables and atmospheric 320 

conditions, we used the two variables visible cell concentration of algal bloom (VCAB), and the 321 

reaching time to the algal bloom (RTAB). In this study, VCAB was defined as 5.0 × 10
5
 cells m

-2
 322 

because this was the minimum algal cell concentration for a red snow phenomenon observed on 323 

a Greenland glacier by Onuma et al. (2018) and was comparable to algal bloom concentrations 324 

observed in other areas (e.g., 2.2 × 10
6
 cells m

-2
 at AT-A, 1.3 × 10

6
 cells m

-2
 at TN-U, and 6.0 × 325 

10
5
 cells m

-2
 at PT-G). The time taken to reach the VCAB was defined as the RTAB, and if a 326 

calculated algal cell concentration did not reach the VCAB in a simulation, the date of the 327 

calculated maximum abundance was still defined as the RTAB. 328 
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3 Results 329 

3.1. Simulation and evaluation of algal cell concentrations achieved using the original 330 

snow algae model 331 

The algal growth simulations, Ag-exp, produced RTABs ranging from d 155–220; the 332 

date depended on their Northern Hemisphere locations, with mid-latitude site RTABs being 333 

generally earlier than those for polar sites. Specifically, the RTAB ranged from d 155– to 220 334 

(early June to early August), at the Northern Hemisphere mid-latitude sites (N 30–60°; AT-A, 335 

EU-T, TN-U, NA-S, and JP-T), and from d 175–220 for the polar sites (N 60–90°; SV-S, SV-W, 336 

GL-Q, GL-A, AK-E, AK-K, and SB-S). The algal cell concentration, X
M

, at JP-T, which was 337 

calculated using snow melting duration only, showed no significant increase from d 1–70, and 338 

then increased, reaching VCAB on d 155 (RTAB = d 155) (Fig. 3). X
M

 values for mid-latitude 339 

sites were found to reach the VCAB earlier than the polar sites. Similarly, X
M

 at Southern 340 

Hemisphere mid-latitude sites (S 30–60°; NZ-A and PG-T) reached the VCAB earlier than it did 341 

at the single Southern Hemisphere polar site (S 60–90°; AP-L). The RTAB estimated from X
MR

, 342 

which was calculated from the duration of snow melting under daylight conditions, did not 343 

significantly differ from that estimated at the study sites using X
M

 (Fig. 3). 344 

  345 
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 346 

 347 

Figure 3. Temporal changes in red snow algal cell concentrations at each site. Dotted, dashed 348 

and solid lines indicate X
M

, X
MR

 and X
MRF

, respectively 349 

 350 

The simulation achieved using the original snow algae model showed algal cell 351 

concentration changes over time which agreed with in situ values for snowfields at GL-Q, AK-E, 352 

TN-U, and JP-T. For example, Ag-exp showed that the RTAB estimated for GL-Q from X
M

 was 353 

d 215, which was the same date that the maximum cell concentration was observed at the site 354 

(Fig. 3). The RTABs for sites AK-E, EU-T, TN-U, JP-T, and NZ-A also agreed well with the 355 

observations, whereas the changes in X
MR

 over time did not significantly differ from those for 356 

X
M

, at any of the sites. The determination coefficients for temporal change in X
M

 (and X
MR

), 357 

compared with those for the observed algal cell concentrations, were 0.97 (P < 0.05), 1.00 (P < 358 

0.05), 0.38 (P > 0.05), and 0.71 (P < 0.05), at GL-Q, AK-E, TN-U, and JP-T, respectively. 359 
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3.2. Simulation and evaluation of algal cell concentrations achieved using the improved 360 

snow algae model 361 

RTABs simulated using the updated snow algae model ranged from d 180–240 in the 362 

Northern Hemisphere, showing that the snow algal bloom timing estimates were significantly 363 

later than those simulated using the original snow algae model, at all sites. For example, the algal 364 

cell concentration, X
MRF

, at JP-T, which was simulated using snow melting, daylight length, and 365 

interruption by new snow cover effects, kept X0 from d 1–100, and then reached the VCAB on d 366 

180 (RTAB = d 180) (Fig. 3). The RTAB ranged from d 180‒255 (late June to early September) 367 

at the Northern Hemisphere mid-latitude sites, and from d 185‒220 in the polar sites. In Southern 368 

Hemisphere, RTABs were 365, 355, and 40, at sites NZ-A, PG-T, and AP-L, respectively. These 369 

results showed that RTABs for X
MRF

 were later than had been the case for X
M

 and X
MR

. We also 370 

saw that there were no significant differences in the RTABs estimated using X
MRF

 among the 371 

sites at different latitudes, unlike the case for those estimated using either X
M 

or X
MR

. 372 

Snow algal abundances simulated using the updated model produced seasonal change 373 

results which agreed better with observational data than those simulated using the original snow 374 

algae model. Ag-exp showed that X
MRF

 at GL-Q started to increase on d 175 and then reached the 375 

VCAB on d 220. The temporal changes estimated using X
MRF

 agreed with the site observation 376 

data better than those achieved using either X
M

 or X
MR

 (Fig. 3). The determination coefficients 377 

for the temporal change in X
MRF

 against the observation data were 0.97 (P < 0.05), 1.00 (P < 378 

0.05), 0.52 (P > 0.05), and 0.79 (P < 0.05), for sites GL-A, AK-E, TN-U and JP-T, respectively. 379 

These coefficients were slightly higher than those for the X
M

 and X
MR

, whereas the RTABs 380 

calculated using X
MRF

 agreed with the timing of the red snow phenomenon observed at the other 381 

sites, including SV-S, SV-W, EU-T, NA-S, NZ-A, PG-T, and AP-L. 382 

3.3. Model sensitivity testing in relation to biological parameters and atmospheric 383 

conditions 384 

Testing X0-exp sensitivity to the initial algal cell concentration showed that the RTAB 385 

was approximate 15–30 d earlier where the initial cell concentration was 100-fold greater than 386 

the original concentration (1.0 cells m
-2

, Fig. 4a). For example, the RTABs in the simulation of 387 

the minimum initial cell concentration (1.0 cells m
-2

) were on d 215 and 195, at AK-E and JP-T, 388 

respectively. Simulation results showed that the AK-E RTABs were on d 200, 180, and 175, for 389 

the cases in which the minimum initial cell concentrations increased by a factor of 10, 100, and 390 

1000, respectively. Under similar circumstances, the RTABs for JP-T were on d 180, 160, and 391 

145. X
MRF

 did not reach the VCAB before the disappearance of snow in either GL-A or AP-L, in 392 

any of the simulations. 393 

The test of µ-exp sensitivity to algal growth rate showed that, in the case of a 10 % 394 

greater growth rate, the RTAB was approximately 10 d earlier than the original rate (Fig. 4b). 395 

RTABs simulated using a growth rate of 0.018 h
-1

 (original case) were 210 and 180 d at AK-E 396 

and JP-T, respectively. The RTABs at AK-E were simulated to be d 200, 195, and 190, for 397 

growth rates 10, 20, and 30 % greater than that of the original rate, respectively. Under similar 398 

circumstances, the JP-T RTABs were simulated to be d 170, 160, and 155. X
MRF

 did not reach 399 

the level of algal blooming at GL-A, SB-S, EU-T, NZ-A, or AP-L, in any of the simulations. 400 



manuscript submitted to the Journal of Geophysical Research: Biogeosciences 

 

 401 

 402 

Figure 4. Sensitivity of snow algal growth rate to biological parameters at each site: a initial cell 403 

concentration sensitivity; b algal growth rate sensitivity 404 

 405 

Testing Fd-exp sensitivity to atmospheric conditions showed that the RTAB estimate 406 

results significantly varied among the atmospheric reanalysis datasets, even at the same site. The 407 

minimum, median, and maximum RTABs, derived from simulations using the WFDEI, GSWP3-408 

FD, and CRUJRA datasets, can be seen for each site in Fig. 5—which also shows the 409 

atmospheric reanalysis data set uncertainties for the RTABs. The RTABs varied significantly 410 

among the data sets at sites SV-S, GL-A, SB-S, AT-A, EU-T, TN-U, and NA-S. The differences 411 

in the RTABs estimated between the data sets were equal to 100 d at EU-T and just 5 d at site 412 

JP-T. 413 
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 414 

Figure 5. Modeled algal growth uncertainties under different meteorological conditions 415 

 416 

4 Discussion 417 

4.1. Effect of daylight length on algal bloom simulation results  418 

The simulations showed that RTABs did not differ significantly in cases where daylight 419 

length was or was not taken into account, indicating that daylight length did not affect snow algal 420 

bloom timing to a significant extent. Ag-exp showed that GP
M

, which represents cumulative 421 

snow melting time, was longer than GP
MR

, excluding night time (Fig. S1). In the simulations, 422 

surface snow could melt at night when the daily surface air temperature was > 10 ℃ at mid-423 

latitude sites (Fig. S2). However, even if the surface snow had melted, snow algae would be 424 

unlikely to grow during the night because they cannot not photosynthesize without solar 425 

radiation. In experimental studies, the snow algae Cr. tughillensis and Cr. chenangoensis showed 426 

the greatest increases in response to the longest daylight scenario (light:dark 24:0 h) (Hoham et 427 

al., 2000, 2009), suggesting that snow algal growth depended on daylight length. Hence, GP
MR

, 428 

excluding nighttime, was expected to simulate algal growth better than GP
M

—however, there 429 

were no significant differences in the RTABs calculated using X
M

 and X
MR

, at any site (Fig. 3). 430 

This indicated that snow did not melt during the night before algal blooming commenced. The 431 

atmospheric reanalysis data set showed that surface air temperatures often fell below freezing 432 

during the night in the early melting season, indicating that snow melting during the night would 433 

have been rare. 434 
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4.2. Effect of snowfalls on algal bloom simulations  435 

Updated model simulations which included the effects of snowfall and daylight length 436 

were more accurate than those produced using the original model, at most sites, suggesting that 437 

snowfall significantly affected algal growth, including algal bloom timing. The RTAB in the 438 

case of X
MRF

 was later than it was the case of X
MR

, at all sites (Fig. 3), whereas comparing 439 

temporal changes in the X
MRF

 with those in the X
MR

 showed that the rate of increase in X
MRF

 440 

declined due to frequent snowfall during the early melting season at the study sites. For example, 441 

daily surface air temperature at site JP-T first exceeded 0 ℃ on d 90, but snowfalls continued to 442 

occur quite frequently, up to d 110. The algae gradually increased from d 90 to 110 at this site, in 443 

the case of X
MR

, whereas X
MRF

 showed no increase during the same period. These results 444 

indicated that frequent snowfall events delayed the RTAB. Model simulations showed that 445 

increasing trends in X
MRF

 agreed well with observed algal cell concentrations at sites GL-Q, AK-446 

E, TN-U, and JP-T (Fig. 3). Figure 6 indicates that the updated snow algae model was generally 447 

more accurate than the former model at many study sites, suggesting that incorporating snow 448 

cover on the algal growth surface had improved model accuracy. Although the effect of snowfall 449 

on an algal surface had been previously reported (Tanaka, 2016; Onuma et al., 2016), it had not 450 

been quantified in field observations. Further periodical observations during the early snow 451 

melting season are now needed to further improve spring to summer snow algal bloom prediction 452 

accuracy. 453 

  454 
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 456 

 457 

Figure 6. Comparison between simulated and observed algal bloom timing. Solid marks and 458 

crosses represent results from the updated and original snow algae bloom models, respectively 459 

4.3. Sensitivity of algal growth simulation to initial cell concentration and growth rate 460 

Testing biological parameter sensitivity suggested that the initial snow algae cell 461 

concentrations and growth rate estimates in each test were significantly affected by the RTAB. In 462 

this study, we conducted simulations using the updated snow algae model with an initial cell 463 
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concentration of 6.33 cells m
-2

, and a growth rate of 0.018 h
-1

. However, these parameters may 464 

have introduced some uncertainty, as they were derived using in situ Greenland glacier data 465 

(Onuma et al., 2018). S. nivaloides blooming was previously reported as appearing on d 180 and 466 

215 at two different sites, with the initial cell concentration and the growth rate at the former site 467 

(694 cells m
-2

 and 0.018 h
-1

) higher than those at the latter site (6.33 cells m
-2

 and 0.016 h
-1

). 468 

Differences in biological parameters would cause uncertainty in the timing of snow algal 469 

blooming, and thus, we quantified the range of RTAB uncertainty which could be attributed to 470 

the biological parameters observed in the previous study.  471 

RTABs simulated using the highest (694 cells m
-2

 and 0.018 h
-1

) and lowest (6.33 cells 472 

m
-2

 and 0.016 h
-1

) reported biological parameters can be seen in Figs 6a and 6b, respectively, 473 

where it can be seen that the RTABs in Fig. 6b were 10–30 d earlier than those in Fig. 6a. Snow 474 

algal blooming was generally observed on the day between the RTABs in Figs 6a and b, 475 

suggesting that the RTAB simulated with the updated snow algae model changed by 476 

approximately 10 d, compared with the observed blooming date of the snow algae. Although 477 

snow algae initial cell concentrations and growth rates may depend on the amount of mineral 478 

dust supplied from the atmosphere and on nutrient conditions (nitrogen and phosphorus), as 479 

suggested by Onuma et al. (2016; 2018), the major factors affecting the biological parameters 480 

remain uncertain. Field data on snow algae biological parameters from various snowfields and 481 

glaciers worldwide are needed. However, our simulations suggested that the updated snow algae 482 

model could forecast snow algal bloom timing with an accuracy of approximately 10 d. 483 

Sensitivity testing suggested that the RTAB range was likely to be related to site latitude. 484 

For example, the RTAB at JP-T (36° N) ranged from d 145–195, whereas at SV-W (77° N), it 485 

ranged from d 180–200 in X0-exp (Fig. 4a). Similarly, the RTAB at JP-T ranged from d 160–486 

250, whereas it ranged from d 180–200 in µ-exp (Fig 4b). These differences in the RTAB among 487 

the sites could be explained by their different GP
MRF

 results. GP
MRF

 accumulated during the 488 

daytime only at JP-T, whereas at site SV-W, it also accumulated during the night (Fig S1). The 489 

sensitivity tests showed similar trends at the other sites. At polar sites, snow algae are likely to 490 

grow for a shorter period because of the longer daylight length during summer, leading to a 491 

shorter range for the RTAB in each sensitivity test. For example, the RTAB simulated with the 492 

initial cell concentration of 694 cells m
-2

 was 15 d earlier than that simulated using 6.3 cells m
-2

 493 

at SV-W and 30 d earlier in the case of JP-T. In µ-exp, the RTAB with a growth rate of 0.018 h
-1

 494 

was 10 d earlier than that simulated with an initial cell concentration of 0.016 h
-1

, at SV-W, 495 

whereas it was 25 d earlier in the case of JP-T. Although differences in biological parameters 496 

could lead to uncertainty in algal bloom timing, the uncertainty may be smaller in polar regions 497 

than in mid-latitude regions. The results here suggested that the timing estimates for the red snow 498 

phenomenon achieved using the updated snow algae model were more reliable at polar sites. 499 

4.4. Algal bloom simulation uncertainties caused by different atmospheric reanalysis data 500 

sets 501 

Fd-exp showed that sensitivity to meteorological conditions was higher in the Asian high 502 

mountain areas than in polar snowfields, suggesting that RTAB estimation uncertainty was larger 503 

in areas where precipitation mainly occurred in summer. RTABs simulated with the updated 504 

snow algae model using the WFDEI, GSWP3-FD, and CRUJRA atmospheric reanalysis datasets 505 

varied greatly at some sites (Fig. 5). Notably, the difference in the RTAB between the 25
th

 and 506 

75
th

 percentiles was 50 d at sites EU-T and TN-U. The differences were smaller, approximately 507 
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20 d, at some alpine sites (SB-S, AT-A, and NA-S) and polar maritime snowfield sites (SV-S, 508 

SV-W, and GL-A). This RTAB difference was probably due to the frequency of snowfall during 509 

summer in each dataset. As reported previously, most Asian high mountain glaciers are 510 

characterized by summer accumulation due to the influence of the Asian monsoon (Fujita and 511 

Ageta, 2000; Fujita, 2008; Sakai and Fujita, 2017). According to meteorological conditions 512 

derived from the atmospheric reanalysis data sets, study sites SB-S, AT-A, EU-T, and TN-U 513 

could probably be classified as summer accumulation-type glaciers (Figs S2 and S4). The higher 514 

sensitivity of the RTAB to atmospheric conditions was probably caused by frequent summer 515 

snowfalls at these sites, which would greatly affect the algal growth in the X
MRF

. Furthermore, a 516 

previous study showed that precipitation amounts derived from atmospheric reanalysis datasets 517 

still have levels of uncertainty in high elevation and polar maritime areas (Weedon et al., 2014). 518 

Large RTAB variations may also be influenced by dataset accuracy at specific sites—although 519 

there were no significant differences in the RTABs estimated using the different datasets at sites 520 

GL-Q, AK-E, and JP-T. The determinant coefficient in the algal cell concentrations achieved by 521 

simulation and observation at these sites was > 0.8 (Fig. 4), suggesting that the updated snow 522 

algae model was capable of reproducing red snow bloom timing in these regions, even if the 523 

dataset contained uncertainties regarding atmospheric conditions. Notably, the updated snow 524 

algae model performed very reasonably in reproducing snow algal bloom timing at sites where 525 

the atmospheric reanalysis data were highly accurate.  526 

The model needs to be improved if it is to reproduce red snow blooming accurately on a 527 

global basis—especially in summer accumulation-type glaciers. At such sites, model validation 528 

using in situ observational meteorological conditions would be necessary. It has also become 529 

apparent that the level of snow algal bloom sensitivity to meteorological conditions in summer 530 

may vary depending on seasonal precipitation patterns. Further, the snow algae model could be a 531 

useful tool for revealing snow algal growth sensitivity to meteorological conditions. 532 

4.5. Other possible factors affecting red snow algal blooming 533 

The current status of snow algal growth numerical modeling in snowfields has been 534 

summarized in this section, with aspects of the updated snow algae model which still require 535 

improvement being identified. The updated model can estimate algal bloom timing better than 536 

what had been achievable in simulations using the previous model (Onuma et al., 2018) at 537 

comparable sites (Fig. 6). As noted in 4.2, this was probably due to incorporating the effect of 538 

snowfall on algal abundance in surface snow into the model. The result also showed, however, 539 

that algal cell concentrations simulated using the updated model underestimated observed 540 

concentrations at the study sites, resulting in algal blooming not appearing during the thaw 541 

season at the polar sites GL-A, SB-S, and AP-L. This may be attributed to uncertainties in both 542 

the biological parameters and the atmospheric reanalysis data (especially those for snowfall 543 

amount and frequency) at the sites. Other biological process issues may also be contributing to 544 

these underestimations. Previous studies have suggested that snow algae motile cells could swim 545 

up to the snow surface from the soil, or from ice below the surface snow (Müller et al., 2001; 546 

Remias, 2012). The snow depth at site AP-L ranged from 5–20 cm during the observation period, 547 

and thus, as Müller et al. (2001) suggested that such motile cell vertical movement occurred at 548 

snow depths < 40 cm, snow algal cells originating from the ground may have contributed to 549 

underestimating the simulated algal cell concentration at AP-L. We need to consider 550 

incorporating such biological processes into snow algae models in the future. Although the snow 551 

algae model could simulate temporal changes in cyst cell concentrations, some of these cells 552 
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might transform into vegetative cells during the thaw (Remias, 2012). Further field observation 553 

and cultivation are needed to quantify such algal stage changes so that they can be incorporated 554 

into the snow algae model. 555 

Overall, we have concluded that challenges remain in the effective and accurate 556 

reproduction of snow algal abundance temporal changes using the updated snow algae model 557 

presented here. Despite this, we have, however, been able to demonstrate that the snow algae 558 

model reasonably reproduced algal bloom start times at the study sites, from which we can 559 

conclude that the snow algae model has the potential to predict the appearance of red surface 560 

snow worldwide. 561 

4.6. Global simulation of red snow algae blooms 562 

Based on evaluating algal cell abundance and bloom timing using the updated snow algae 563 

model in the previous sections, we incorporated the snow algae model described in Section 2.1 564 

into a scheme of snow physical processes in MATSIRO6. We named this version for snow algal 565 

simulation Bio-MATSIRO, using the same naming convention applied to the water isotope 566 

simulation, Iso-MATSIRO, by Yoshimura et al. (2006). Bio-MATSIRO can be used to calculate 567 

temporal changes in algal cell concentration (cells m
-2

) at regional and global scales, using 568 

atmospheric conditions near the land surface as input data. The model input data for simulations 569 

using Bio-MATSIRO in this work have been summarized in Table 2. 570 

To evaluate snow algal seasonal growth changes and global distribution qualitatively, we 571 

conducted a two-dimensional offline land simulation, using Bio-MATSIRO. For this, we 572 

conducted three global simulations, using Bio-MATSIRO with the WFDEI, GSWP3-FD, and 573 

CRUJRA data sets. The horizontal resolution and calculation period for these simulations were 574 

0.5° and from January 1, 1980 to December 31, 2014, respectively, to ensure that we had 575 

common horizontal resolutions and data periods for the three data sets. Land physical properties, 576 

such as snow water equivalent, were derived in advance from spin-up simulations (35 y total), 577 

using the same reanalysis data set, and were used as initial conditions for the three simulations. 578 

The initial cell concentration and algal growth rate were the same as Ag-exp in this study (6.33 579 

cells m
-2

, and 0.018 h
-1

, respectively) because these preliminary biometrics seemed to facilitate 580 

better model simulation performance. As there is little information available on carrying 581 

capacity, which is likely to vary between sites (snowfields or glaciers) and years, it was assumed 582 

to be 3.5 × 10
7
 cells m

-2
, which was the carrying capacity suggested by Onuma et al. (2018), for 583 

Greenlandic Glacier sites. 584 

The global simulation established using Bio-MATSIRO showed that snow algae grew 585 

from spring to summer in both hemispheres, and that their blooming sites were generally 586 

consistent with red snow sites reported previously, suggesting that Bio-MATSIRO had the 587 

potential to reconstruct snow algal blooms at the global scale. The global distribution of snow 588 

algal blooming was derived from the monthly means of the X
MRF

 (1980–2014 climatological 589 

mean), which were the algal cell concentrations simulated with Bio-MATSIRO using each 590 

atmospheric reanalysis data set. Red snow blooming (X
MRF

, atmospheric reanalysis data set: 591 

WFDEI) distribution for each month’s snow cover can be seen in Fig. 7. In the Northern 592 

Hemisphere, snow algae gradually increased from March to August, and their blooming area 593 

gradually extended from mid- to high-latitude areas. The area covered by the red blooms then 594 

extended southward because snowfall events frequently occurred in high latitudes. Red snow 595 

algal blooming simulated with Bio-MATSIRO appeared between June and August, and the 596 
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blooming area agreed well with the red circles (red snow phenomenon reported by previous 597 

studies) shown in Fig. 1. Red snow in European and North American snowfields had been 598 

reported previously over periods extending from summer to early autumn (Thomas and Duval, 599 

1995; Remias et al., 2016), and the reported areas were consistent with simulated red snow algal 600 

bloom areas. In the Southern Hemisphere, the model simulation presented red snow algae 601 

gradually increasing from September to March, especially in Patagonia and on the Antarctic 602 

Peninsula. The red snow phenomenon has been reported as occurring between November and 603 

March in these regions (Takeuchi and Kohshima, 2004; Gray et al., 2020). Interestingly, the red 604 

snow algal bloom simulation hardly showed any occurrences in either N Russia or NW 605 

Canada—and there have actually been few reports of this phenomenon there. Frequent snowfall 606 

events during the snow melting season would interrupt snow algal bloom appearance in these 607 

regions because X
MRF

 drastically decreased to X0 in August. Simulations using GSWP3-FD and 608 

CRUJRA showed spatial and seasonal changes in X
MRF

 similar to those simulated using WFDEI 609 

(Figs S5 and S6), with these results suggesting that Bio-MATSIRO had the potential to 610 

reproduce seasonal and geographical changes in red snow algal abundance globally. 611 

 612 

 613 

Figure 7. Distribution of red snow algal abundance on the surface snow, as simulated using the 614 

land surface model with the atmospheric reanalysis data set WFDEI (1980–2014) 615 

 616 
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Because we used constants for the biological parameters (initial cell concentration, 617 

growth rate, and carrying capacity) and atmospheric reanalysis data at the scale of 0.5° globally, 618 

the algal cell concentrations derived from our simulations contained some uncertainty levels in 619 

this study. Further observational and modeling studies are necessary to improve the snow algae 620 

model. Satellite observations of red and green snow algae blooms have been conducted recently 621 

(Hisakawa et al., 2015; Ganey et al., 2017; Huovinen et al., 2018; Gray et al., 2020; Khan et al., 622 

2021), and validating model simulations with satellite observations would also be useful, at the 623 

glacial or regional scales. In addition, global simulation of red snow algal blooming, using a land 624 

surface model, could provide an important contribution to understanding climate change effects 625 

on snow and ice distribution in time and space. 626 

 627 

5 Conclusions 628 

We updated the existing snow algae model based on observational data from 15 snowfields and 629 

incorporated it into a land surface model to quantify time and space changes in snow algal 630 

abundance worldwide. The existing snow algae model (Onuma et al., 2018) could simulate 631 

temporal changes in the abundance of red snow algae in surface snow, using snow temperature, 632 

but up until now had only been applied to simulate the abundance of Greenlandic glacier 633 

snowpack. In this study, the effects of daylight length and snowfall rate on algal cell abundance 634 

were incorporated into the model, and the revised model simulations achieved good agreement 635 

with observations at snowfields worldwide, from polar to mid-latitude areas—particularly in 636 

regions with fewer summer snowfalls. 637 

Based on these encouraging results, we incorporated the updated snow algae model into a 638 

land surface model and conducted a global snow algal simulation, using Bio-MATSIRO. This 639 

simulation produced results showing prominent algal blooms taking place in areas generally 640 

consistent with regions where the red snow phenomenon had been reported in either in situ or 641 

satellite observations. Our simulations suggested that Bio-MATSIRO has the potential to 642 

simulate temporal and spatial changes in red snow algal abundance and to predict the timing and 643 

coverage of the red snow phenomenon. 644 

Snow algal distribution may be a key to revealing the geographic specifications of 645 

microbes worldwide (Lutz et al., 2016; Segawa et al., 2018; Procházková et al., 2019; 646 

Zawierucha and Shain, 2019). The snow algae model may be useful not only for providing such 647 

biological information but also for quantifying snow algal contributions to thaw events 648 

worldwide (by reducing snow surface albedo), revealing trends over time. This contribution has 649 

been reported in many studies as a bioalbedo effect and has been quantified using in situ 650 

observations, satellite observations, and numerical simulations (Thomas and Duval, 1995; 651 

Painter et al., 2001; Takeuchi et al., 2006b; Aoki et al., 2013; Lutz et al., 2016; Cook et al., 2017; 652 

Ganey et al., 2017; Mauro et al., 2017; Gray et al., 2020; Onuma et al., 2020). Because these 653 

studies focused on specific mountains or glaciers, comprehensive bioalbedo effects should be 654 

investigated at the global scale in the future using numerical simulation. To simulate bioalbedo 655 

effects at such a scale, a numerical bioalbedo model that has the capacity to calculate snow 656 

albedo (with the effect of snow algae included) needs to be incorporated into land surface models 657 

and climate models. Although further observations and simulations would further improve snow 658 

algae models, our study has provided an important first step towards revealing the global 659 

geographic characteristics of snow algae and their contribution to snow melting. 660 
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