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Abstract

A multivariate functional principal component analysis (PCA) approach to the full-track simulation of tropical cyclones (TCs) for

risk assessment is developed. Elemental variables of TC along the track necessary for risk assessment, such as center coordinates,

maximum wind speed, minimum central pressure and ordinal dates, can be simulated simultaneously at one go, using solely

the best-track data with no data supplemented from any other sources. The simulation model is optimally determined by

means of the ladle estimator. A TC occurrence model using the Conway–Maxwell–Poisson distribution is proposed as well, by

which different dispersion features of annual occurrence can be represented in a unified manner. With the occurrence model,

TCs can be simulated on an annual basis. The modeling and simulation process is programmed and fully automated such

that little manual intervention is required, which greatly improves the modeling efficiency and reduces the turnaround time,

especially when newly available TC data are incorporated periodically into the model. Comprehensive evaluation shows that

this approach is capable of generating high-performance synthetic TCs in terms of distributional and extreme value features,

which can be used in conjunction with wind field and engineering vulnerability models to estimate economic and insurance

losses for governments and insurance/reinsurance industry.
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Abstract 17 

A multivariate functional principal component analysis (PCA) approach to the full-track 18 

simulation of tropical cyclones (TCs) is developed for risk assessment. Elemental variables of 19 

TC along the track necessary for risk assessment, such as center coordinates, maximum wind 20 

speed, minimum central pressure and ordinal dates, can be simulated simultaneously at one go, 21 

using solely the best-track data with no data supplemented from any other sources. The 22 

simulation model is optimally determined by means of the ladle estimator. A TC occurrence 23 

model using the Conway–Maxwell–Poisson distribution is proposed as well, by which different 24 

dispersion features of annual occurrence can be represented in a unified manner. With the 25 

occurrence model, TCs can be simulated on an annual basis. The modeling and simulation 26 

process is programmed and fully automated such that little manual intervention is required, 27 

which greatly improves the modeling efficiency and reduces the turnaround time, especially 28 

when newly available TC data are incorporated periodically into the model. Comprehensive 29 

evaluation shows that this approach is capable of generating high-performance synthetic TCs in 30 

terms of distributional and extreme value features, which can be used in conjunction with wind 31 

field and engineering vulnerability models to estimate economic and insurance losses for 32 

governments and insurance/reinsurance industry. 33 

Plain Language Summary 34 

Tropical cyclones (TCs) are one of the biggest threats to life and property around the world. 35 

However, the infrequent nature of catastrophic TCs invalidates the standard actuarial loss 36 

estimation approaches. TC risk assessment requires estimation of catastrophic TCs having a very 37 

low occurrence probability, or equivalently a very long return period spanning up to thousands of 38 

years. Since reliable TC data are available only for recently decades, stochastic modeling and 39 

simulation turned out to be an effective approach to achieve more stable TC risk estimates for 40 

regions where little or no historical TC records exist. Here we present a novel model for the full-41 

track simulation of TCs for risk assessment, via a machine learning approach called multivariate 42 

functional principal component analysis (MFPCA). Using this model, high-performance 43 

synthetic TCs can be generated in a fully automated manner such that little manual intervention 44 

is required, which greatly improves the modeling efficiency and reduces the turnaround time, 45 

especially when newly available TC data are incorporated periodically into the model. These 46 

synthetic TCs can be used in conjunction with wind field and engineering vulnerability models to 47 

estimate economic and insurance losses for governments and insurance/reinsurance industry. 48 

1 Introduction 49 

Tropical cyclones (TCs) are one of the biggest threats to life and property around the 50 

world. Over the past 50 years, there have been nearly 2,000 disasters linked to tropical cyclones, 51 

causing nearly 780,000 deaths and US$ 1,500 billion in economic losses (World Meteorological 52 

Organization, 2020). However, the infrequent nature of catastrophic TCs invalidates the standard 53 

actuarial loss estimation approaches. Computer models that are able to simulate tens, even 54 

hundreds, of thousands of synthetic TC tracks were developed in the past to compensate the 55 

scarcity of historical TC loss data, and to achieve more stable TC loss estimates for regions 56 

where little to no historical data exist. For insurance and reinsurance companies, it is necessary 57 

to evaluate the TC risks as precisely as possible to quantify, manage and mitigate financial 58 

losses. TC risk assessment requires estimation of catastrophic TCs having a very low occurrence 59 

probability, or equivalently a very long return period (e.g., 1000 years). Since reliable TC data 60 
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are available only for recently decades, and landfalling TCs are relatively few in nature, 61 

stochastic modeling and simulation turned out to be an effective approach to achieve more stable 62 

TC risk estimates for regions where little or no historical TC records exist. The common practice 63 

consists of two stages (Vickery et al. 2009). The first stage is to fit a basin-wide TC full-track 64 

model to TC track data, to generate hundreds of thousands of synthetic TCs that can make up for 65 

the sparseness of TC observations while still complying with the statistical characteristics of the 66 

observed TCs. The second stage is to couple these synthetic TCs with TC wind field models, 67 

either to simulate landfall TC wind fields for wind hazard estimation, or to further drive storm 68 

surge models for coastal flood hazard estimation. Therefore, the performance of the synthetic 69 

TCs is crucial to the respective risk estimation. The full-track TC data consist of at least the TC 70 

center coordinates, maximum wind speed (MWS) as a measure of intensity and/or minimum 71 

central pressure (MCP) observed along TC tracks. A full-track model should be able to represent 72 

these elements and can be used for simulation. 73 

Vickery et al. (2000) published the first full-track model for the North Atlantic (NA) 74 

basin within the regression framework. The track heading, speed and intensity were determined 75 

for each 5°×5° grid over the entire basin individually. This approach was then adapted for the 76 

Coral Sea (James and Mason 2005) and for the western North Pacific (WNP) basin (Yin et al. 77 

2009; Li and Hong 2016; Chen and Duan 2018), respectively. Casson and Coles (2000) 78 

generated TC tracks for the NA basin simply by sampling the historical tracks and then 79 

translating by a normally distributed random displacement with the standard deviation less than 80 

100 nm (1 nm = 1.852 km) and used a simple empirical model to simulate the central pressure 81 

depth with land effects. Emanuel et al. (2006) presented two different track models for the NA 82 

basin: a stochastic Markov chain model and a deterministic beta and advection model. The 83 

former propagates tracks by sampling a transition matrix that relates prior track speed and 84 

direction to the new speed and direction; the latter determines the TC motion by the weighted 85 

average of TC-ambient flow at 850 and 250 hPa plus a beta-drift correction. The TC intensity 86 

along tracks was obtained by coupling each synthetic track to a numeric model developed by 87 

Emanuel et al. (2004). Following this work, several Markovian-type TC track models were 88 

developed, e.g., Hall and Jewson (2007), Rumpf et al. (2007, 2009), Yonekura and Hall (2011), 89 

Kriesche et al. (2014) and Nakamura et al. (2015), for the NA or WNP basin or both. Emanuel et 90 

al. (2008) further developed a statistical‐deterministic model for downscaling TC climatology 91 

from global analyses, using a random seeding method to initiate the storm, and a beta and 92 

advection model to propagate the storm. Following this approach, Lee et al. (2018) and Jing and 93 

Lin (2020) developed similar TC hazard models, either of which is comprised of three 94 

component models for TC genesis, track and intensity, respectively, dependent upon local 95 

environmental conditions. 96 

In recent two decades, functional data analysis (FDA, Ramsay and Silverman, 2005) 97 

achieved rapid development. The object of FDA is a sample of random functions generated from 98 

an underlying process, rather than a sequence of individual points as analyzed by traditional 99 

approaches. Statistical models for random variables, either by supervised learning (e.g., 100 

regression models) or by unsupervised learning (e.g., principal component analysis (PCA)), can 101 

also be generalized to apply to random functions. All the elements of a TC can be viewed as 102 

functions of time during the TC life cycle. Therefore, TCs from a basin are naturally a sample for 103 

FDA. Rekabdarkolaee et al. (2019) proposed a functional analogue of the CLImatology and 104 

PERsistence (CLIPER) model (Aberson, 1998), which has long been used to forecast TC tracks 105 

in the NA basin. TC center location and intensity along the track were jointly modelled using 106 
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multivariate functional linear regression with spatially varying coefficients, highlighting the 107 

representation of complex spatial-temporal dependency of TC tracks. 108 

Although the full-track modeling of TCs has made much progress in the past decades, 109 

there are still some deficiencies in the current models. Most of all, they have been becoming 110 

more and more complicated. A full-track model usually consists of several components including 111 

TC genesis, track, MWS and/or MCP, and lysis, respectively. Some models may even have 112 

additional ones for the temporal/spatial clustering of TC tracks and TC behavior at and after 113 

landfall. Since model parameters are estimated at grid level as in most methods, model 114 

maintenance and update through periodical incorporation of newly available TC data could be 115 

quite cumbersome and thus time-consuming as a result. Moreover, these components adopt 116 

different methods suitable for their own tasks and are almost irrelevant with each other. 117 

Correlations existing between elemental variables of TC are hardly captured and as a result the 118 

synthetic TCs may exhibit characteristics inconsistent with those observed in the TC best tracks. 119 

In addition, many models use the TC-environmental factors such as sea surface temperature 120 

(SST) and ambient flow at 850 and 250 hPa from reanalysis data as predictors. While these data 121 

may bring in additional information in modeling and simulation, the additional data, , inevitably 122 

bring about extra uncertainties and potential biases into the already complicated and burdensome 123 

models. On the other hand, the information contained in the TC track data themselves has yet 124 

been far from fully exploited. For TC risk assessment, what is required from the full-track model 125 

is the statistical characteristics of historical TCs, which can be fully mined from the data 126 

themselves. Based on these considerations, we present in this work a flexible and extensible one-127 

for-all model via the multivariate functional principal component analysis (MFPCA) approach 128 

which utilizes solely the TC best-track data to accommodate as many variables as needed by risk 129 

assessment. We try to establish a working procedure from modeling to simulation as objective as 130 

possible, with minimal subjective intervention. The entire modeling and simulation process is 131 

easy to implement in the R environment for  statistical computing (R Core Team, 2021), and is 132 

operable on a moderate desktop computer with tolerable simulation time.  133 

 This paper is organized as follows. Section 2 describes the data used for modeling. 134 

Section 3 introduces the MFPCA method, the simulation model we developed and the model 135 

selection criteria. In section 4 we apply the model to simulate elemental variables of TC for the 136 

NA and WNP basin, respectively, and evaluate the performance of the synthetic TCs. We 137 

summarize our work with discussions in section 5. 138 

2 Data 139 

The only raw material we use to construct the simulation model is the historical best-140 

track (reanalyzed) data of TCs. The data sets for the NA and WNP basin were derived from the 141 

Atlantic hurricane database (HURDAT) and Joint Typhoon Warning Center (JTWC), 142 

respectively, and were redistributed through the International Best Track Archive for Climate 143 

Stewardship (IBTrACS, Knapp et al., 2010). The period since 1980 is generally considered as 144 

the modern era when geostationary satellite coverage has been nearly global and polar orbiting 145 

satellite data has been more widely available than the prior years. Therefore, we take data from 146 

1980 till the recent year available, which is 2019 for the NA basin and 2018 for the WNP basin, 147 

respectively. The TC information in the best-track data includes storm type, date and time, center 148 

coordinates longitude/latitude (LON/LAT), MWS, MCP, and average translation speed and 149 

direction inferred from center coordinates, recorded every 6 hours. For the two USA agencies, 150 
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MWS is defined as the maximum 1-minute sustained wind speed at 10 m above the surface. For 151 

the WNP basin, MCP is available only since 2001. Only those TCs with their lifetime maximum 152 

intensity (LMI) reaching the tropical storm (TS) level (34 kt or 17.5 m s
−1

) or above are chosen 153 

as sample observations for modeling. As a result, sample data for the NA and WNP basin are 154 

comprised of 513 and 1035 TCs, respectively. 155 

 In the following discussion, the zonal and meridional components of a translation 156 

velocity (denoted as VX and VY, respectively), derived from the translation speed and direction, 157 

are used to describe the TC movement. The seasonality of TC activity can be represented by the 158 

annual phase angles of the recorded dates during TC life cycles, in the form of pairs of sine and 159 

cosine functions of the phase angles (denoted as SIN and COS, respectively). The ordinal dates 160 

of TCs in a year can be retrieved from such pairs of trigonometric functions inversely with 161 

simple calculation. The relative lasting time (RLT) of a TC, i.e. the time lapse from the TC 162 

genesis divided by the TC lifetime, is used to indicate at which stage of life cycle the TC is. With 163 

all the above recorded and derived variables, the spatial-temporal evolution of TCs can be fully 164 

described. 165 

3 Methods 166 

3.1 Multivariate FDA 167 

For a comprehensive introduction to FDA, please refer to Ramsay and Silverman (2005). 168 

Here we just briefly review some of the concepts used in this study. A random variable 𝑋 =169 

{𝑋(𝑡), 𝑡 ∈ 𝒯} is called functional variable if it takes values in an infinite dimensional space (a 170 

functional space), where 𝒯 ⊂ ℝ is a compact interval. An observation x of X is called a 171 

functional datum. A functional data sample consists of N realizations of X: 𝑥1, ⋯ , 𝑥𝑁. Usually, X 172 

can be viewed as a second order stochastic process in the separable Hilbert space ℋ of square 173 

integrable functions, 𝐿2(𝒯). In practice, functional data are observed discretely, and therefore 174 

always come in pairs of the form (𝑡𝑖𝑗 , 𝑥𝑖𝑗) with 𝑥𝑖𝑗 = 𝑥𝑖(𝑡𝑖𝑗), 𝑖 = 1, ⋯ , 𝑁, 𝑗 = 1, ⋯ , 𝑆𝑖. In 175 

general, the number and location of 𝑡𝑖𝑗 ∈ 𝒯 can vary with i. Discretized observations have to be 176 

transformed into functional data first for subsequent analysis. In most circumstances, 177 

interpolation or smoothing methods, e.g. B-splines or smoothing splines, are employed. 178 

Multivariate functional data (MFD) take multiple functions at the same time into account. 179 

Each observation unit consists of a fixed number of functions p, and is assumed to be a 180 

realization of a random process 𝑋 = (𝑋(1), ⋯ , 𝑋(𝑝)), where 𝑋(𝑘) = {𝑋(𝑘)(𝑡), 𝑡 ∈ 𝒯}, 𝑘 =181 

1, ⋯ , 𝑝. As only observed discretely, MFD are of the form (𝑡𝑖𝑗
(𝑘)

, 𝑥𝑖𝑗
(𝑘)

), 𝑖 = 1, ⋯ , 𝑁, 𝑗 =182 

1, ⋯ , 𝑆𝑖 , 𝑘 = 1, ⋯ , 𝑝. Each element function can be represented separately by its observation 183 

points and the observed values. The full MFD sample is a collection of all the p element 184 

functions. 185 

We assume that a TC in a basin is a realization of the underlying air-sea interactive 186 

process responsible for the formation and evolution of the TCs in that basin. Elemental variables 187 

of TC along the track, such as the center coordinates LON/LAT, MWS, MCP, etc., recorded at 188 

discrete time points during the TC lifetime, constitute the TC MFD. The best-track data are 189 

naturally in the form of MFD. Via the multivariate FDA approach, the aspects of a TC 190 

throughout its lifetime can be studied as a whole with correlations between them taken into 191 

account. 192 
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3.2 MFPCA 193 

The TC MFD contain information about not only the TC movement but also the response 194 

of TCs to the underlying process. Unlike most existing full-track models that were typically 195 

fitted through supervised learning, our innovative model introduces MFPCA method, an 196 

unsupervised learning approach that makes full use of the best-track data and requires little to 197 

none human intervention. MFPCA is effectively an extension of functional principal component 198 

analysis (FPCA) to the multivariate FDA (Ramsay and Silverman, 2005). Here we follow the 199 

framework of MFPCA proposed by Happ and Greven (2018). This framework allows for 200 

element functions to be defined in different domains possibly with different dimensions. For 201 

simplicity we still assume that all the element functions in the model are defined in the same 202 

one-dimensional time domain. Like in FPCA, MFPCA aims at a multivariate functional 203 

Karhunen-Loève representation of data such that  204 

𝑋(𝑡) = ∑ 𝜌𝑚𝜓𝑚(𝑡)

∞

𝑚=1

, 𝑡 ∈ 𝒯                                                           (1) 

where 𝑋(𝑡) is multivariate with 𝜇(𝑡) = E[𝑋(𝑡)] = (E[𝑋(1)(𝑡)], ⋯ , E[𝑋(𝑝)(𝑡)]) = 0, 𝜓𝑚(𝑡) ∈ ℋ 205 

are complete orthogonal basis of eigenfunctions of covariance operator Γ such that 206 

Γ𝜓𝑚 = 𝜈𝑚𝜓𝑚                                                                      (2) 

where 𝜈𝑚 are eigenvalues and 𝜈𝑚 → 0 for 𝑚 → ∞, and 𝜌𝑚 are zero mean random variables with 207 

cov(𝜌𝑚, 𝜌𝑛) = 𝜈𝑚𝛿𝑚𝑛. Moreover, 208 

E [‖𝑋(𝑡) − ∑ 𝜌𝑚𝜓𝑚(𝑡)

𝑀

𝑚=1

‖

2

] → 0  for 𝑀 → ∞                                    (3) 

uniformly for 𝑡 ∈ 𝒯. 209 

The algorithm used in this study starts with a sample of X: 𝑥1, ⋯ , 𝑥𝑁 with its estimated 210 

multivariate mean �̂� subtracted, and consists of four steps: 211 

(1) For each element function 𝑗 = 1, ⋯ , 𝑝 of 𝑥𝑖, create a B-splines representation with 𝑀𝑗 212 

basis functions �̂�1
(𝑗)

, ⋯ , �̂�𝑀𝑗

(𝑗)
 and corresponding coefficients 𝜉𝑖,1

(𝑗)
, ⋯ , 𝜉𝑖,𝑀𝑗

(𝑗)
. Other 213 

choices for function representation can be principal component functions of FPCA or 214 

arbitrary basis functions in  𝐿2(𝒯) (Happ and Greven, 2018). 215 

(2) Combine all coefficients into one big matrix Ξ ∈ ℝ𝑁×𝑀+ with 𝑀+ = 𝑀1 + ⋯ +𝑀𝑝, 216 

the ith row of which 217 

Ξ𝑖,∙ = (𝜉𝑖,1
(1)

, ⋯ , 𝜉𝑖,𝑀1

(1)
, ⋯ , 𝜉𝑖,1

(𝑝)
, ⋯ , 𝜉𝑖,𝑀𝑝

(𝑝)
)                                          (4) 

and then estimate the joint covariance matrix �̂� =
1

𝑁
Ξ𝑇Ξ. 218 

(3) Find eigenvectors �̂�𝑚 and eigenvalues �̂�𝑚 of �̂� for 𝑚 = 1, ⋯ , 𝑀+. 219 

(4) The multivariate principal component functions and scores are estimated accordingly 220 

by 221 
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�̂�𝑚
(𝑗)

= ∑[�̂�𝑚]𝑛
(𝑗)

𝜙𝑛
(𝑗)

𝑀𝑗

𝑛=1

, �̂�𝑖,𝑚 = ∑ ∑[�̂�𝑚]𝑛
(𝑗)

𝜉𝑖,𝑛
(𝑗)

𝑀𝑗

𝑛=1

𝑝

𝑗=1

= Ξ𝑖,∙ ∙ �̂�𝑚,                     

𝑚 = 1, ⋯ , 𝑀+             (5) 

respectively. 222 

The multivariate Karhunen-Loève representation of 𝑥𝑖 is finally given as 223 

𝑥𝑖 = �̂� + ∑ �̂�𝑖,𝑚�̂�𝑚

𝑀+

𝑚=1

                                                         (6) 

where  �̂�𝑚 = (�̂�𝑚
(1)

, ⋯ , �̂�𝑚
(𝑝)

) having the same multivariate structure of X. The R package 224 

“MFPCA” (Happ-Kurz, 2020) provides an easy way to implement the above algorithm. 225 

When applied to the best-track data, Step (1) requires that all the TCs have the same 226 

lifetime such that they share the same set of B-spline basis functions for each element function of 227 

TC MFD. To achieve this, the longest lifetime among all the TCs is set to be the interval 𝒯 for 228 

the TC MFD. For TCs with lifetime shorter than 𝒯, their element functions will be prolonged 229 

with constant values after the lysis. Specifically, LON/LAT remains the coordinates of the last 230 

observation, MWS is set to be 0 m s
−1

, and MCP is set to be the mean sea-level pressure 231 

(MSLP), after the lysis. As a result, all the TCs have exactly the S number of 6-hour observation 232 

points in the interval 𝒯. In addition, for the B-spline representation with an order of 4 (cubic 233 

splines, the default choice for most applications), the maximum number of basis functions is 234 

𝑆 + 2. For the p element functions of TC MFD, the numbers of basis functions 𝑀𝑖 , 𝑖 = 1, ⋯ , 𝑝 235 

needed are usually less than 𝑆 + 2 and may differ from each other according to their own 236 

intrinsic behaviours. However, for the sake of minimal subjective choices, we simply set 237 

𝑀1 = ⋯ = 𝑀𝑝 = 𝑆 + 2 so that 𝑀+ = 𝑝 × (𝑆 + 2). For each individual element function, the 238 

degree of freedom is obviously redundant with this choice of basis functions and could be 239 

optimized. At this stage we keep all the excessiveness for computational simplicity and leave the 240 

optimization task to the final order determination stage. 241 

3.3 Order determination 242 

Underlying Eq. (6) is a general noisy model for PCA (Jolliffe, 2002, p. 151) 243 

𝑋 = 𝑍 + 𝜖                                                                              (7) 

where Z and ϵ are independent p-dimensional random vectors for signal and noise, respectively, 244 

Σ = var(𝑍) is a singular matrix with rank 𝑑 < 𝑝, and var(𝜖) = 𝜎2𝐼𝑝 where 𝐼𝑝 is the identity 245 

matrix. The principal components are the projections of X onto the first d leading eigenvectors of 246 

Σ. Here, the order determination problem is to estimate d, the rank of Σ. In the context of our 247 

MFPCA model, the problem is to estimate an optimal truncation lag 𝑀 ≤ 𝑀+ such that Eq. (6) 248 

can be approximated by the signal part of X: 249 

𝑥𝑖 ≈ �̂� + ∑ �̂�𝑖,𝑚�̂�𝑚

𝑀

𝑚=1

                                                                 (8) 
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Here we use the ladle estimator (Luo and Li, 2016) to determine d. This estimator 250 

combines both the eigenvalues and the bootstrap eigenvector variability of Σ̂. The idea behind it 251 

is based on the fact that when the eigenvalues of a random matrix are far apart, the bootstrap 252 

variability of the corresponding eigenvectors tends to be small. On the other hand, this bootstrap 253 

variability tends to be large when the eigenvalues are close together. The ladle estimator of the 254 

rank d is achieved by minimizing the objective function 255 

𝑔𝑛(𝑘) = 𝑓𝑛(𝑘) + 𝜙𝑛(𝑘)                                                             (9) 

where 𝑓𝑛(𝑘) and 𝜙𝑛(𝑘) represent the bootstrap eigenvector variability and sample eigenvalues, 256 

respectively, n is the number of bootstrap samples (half the number of data by default), 𝑘 =257 

0, ⋯ , 𝑝 − 1. Refer to Eqs. (4) and (5) in Luo and Li (2016) for the mathematical forms of the two 258 

terms. The eigenvalue term 𝜙𝑛(𝑘) is large when 𝑘 < 𝑑; the eigenvector term 𝑓𝑛(𝑘) is large when 259 

𝑘 > 𝑑; but both are small when 𝑘 = 𝑑. Therefore, 𝑔𝑛(𝑘) is expected to reach its minimum 260 

approximately at d. The function curve of 𝑔𝑛(𝑘) resembles a ladle, hence the name. The R code 261 

provided in the Supplementary material of Luo and Li (2016) can be adapted to estimate the 262 

optimal truncation lag M in the MFPCA context. 263 

3.4 Full-track simulation 264 

3.4.1 Simulation model 265 

Once the order M is determined by the ladle estimator, the multivariate functional 266 

representation of TC data can be written as 267 

𝑥𝑖 = �̂� + ∑ �̂�𝑖,𝑚�̂�𝑚

𝑀

𝑚=1

+ ∑ �̂�𝑖,𝑚�̂�𝑚

𝑀+

𝑚=𝑀+1

                                              (10) 

which is a mixed model by analogy: the first two terms on the right-hand side are of fixed effect, 268 

the last term is of random effect that can be utilized for simulation. The simulation procedure 269 

starts with randomly choosing a historical observation 𝑥𝑖, draws a sample of multivariate normal 270 

(𝜌𝑖,𝑀+1, ⋯ , 𝜌𝑖,𝑀+
) with zero means and cov(𝜌𝑖,𝑚, 𝜌𝑖,𝑛) = 𝜈𝑚𝛿𝑚𝑛 where 𝑚, 𝑛 = 𝑀 + 1, ⋯ , 𝑀+, 271 

and substitutes the sample for the estimated �̂�𝑖,𝑚, 𝑚 = 𝑀 + 1, ⋯ , 𝑀+ in the last term to finally 272 

synthesize a full-track TC. Unlike regression-based simulations in most previous works, this 273 

approach still relies on historical TCs to serve as “seeds” to grow more analogues, somewhat 274 

similar to the random perturbation method in Casson and Coles (2000), but is much more 275 

comprehensive and exhaustive in data utilization and information extraction. 276 

For TC risk assessment, it is often desirable that the synthetic TCs are generated on an 277 

annual basis so that the return periods of extreme events can be estimated. To achieve this, we 278 

first sample the number of TCs in a year using a fitted TC occurrence model (see below) in 279 

advance, and then randomly draw that number of TCs from the whole historical data as the 280 

candidates for applying the above procedure to simulate TCs for that year. This step is repeated 281 

to simulate a series of annual TCs until the desired length of simulation period is reached. 282 

3.4.2 Occurrence model 283 

For count data like the annual number of TCs, Poisson distribution is usually the 284 

preferred model in which the expected value stands for the annual rate of occurrence. Poisson 285 
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distribution has the equidispersion property, i.e., its mean is equal to its variance. In real data, 286 

however, such equidispersion is rarely satisfied. In most situations, the variance is greater than 287 

the mean, a phenomenon known as overdispersion and otherwise known as underdispersion. 288 

Interestingly, the annual TC occurrence in the NA basin is overdispersed, whereas that in the 289 

WNP basin is underdispersed (section 4.2). There are various alternative models for 290 

overdispersed count data, such as the negative binomial distribution, but much fewer models for 291 

underdispersed count data. Vickery et al. (2000) used the negative binomial distribution to 292 

sample the annual number of TCs in the NA basin. For the WNP basin, however, Poisson and 293 

negative binomial distributions are actually not applicable; they may well overestimate the 294 

annual variation of TC occurrence. 295 

Fortunately, there are flexible generalizations of the Poisson distribution called Conway–296 

Maxwell–Poisson (CMP) distributions for modeling overdispersed or underdispersed count data 297 

(Shmueli et al., 2005), of which Poisson process is a special case. The probability mass function 298 

of the CMP distribution with rate λ and dispersion ν takes the form 299 

𝑃(𝑌 = 𝑦|𝜆, 𝜈) =
𝜆𝑦

(𝑦!)𝜈

1

𝑍(𝜆, 𝜈)
, 𝑦 = 0, 1, 2, ⋯                                     (11) 

where 𝜆 > 0, 𝜈 ≥ 0, 𝑍(𝜆, 𝜈) = ∑
𝜆𝑦

(𝑦!)𝜈
∞
𝑦=0  is a normalizing constant. 𝜈 < 1, 𝜈 = 1 and 𝜈 > 1 lead 300 

to overdispersion, equidispersion (Poisson distribution) and underdispersion, respectively. Huang 301 

(2017) suggested a reparameterization of CMP distributions with mean μ and dispersion ν, which 302 

is more suitable for fitting Generalized Linear Models. As a result, the variance of the CMP 303 

distribution is a function of μ and ν, or 𝑉(𝜇, 𝜈). In this work, we fit the CMP distribution in the 304 

μ-ν form to the annual TC number sequence as the occurrence model with the help of the R 305 

package “mpcmp” (Fung et.al, 2020), the R implementation of Huang (2017). 306 

4 Results 307 

4.1 Pre-processing of best-track data and post-processing of simulations 308 

Prior to the MFPCA, the best-track data with lifetime shorter than 𝒯 are patched with 309 

proper values in a manner described in section 3.2. For the NA basin, MCP values after the lysis 310 

are set to be 1021.36 hPa, the MSLP estimated using the Dvorak wind-pressure relationship 311 

(WPR): MSLP = 1021.36 − 0.36 × MWS − (MWS/20.16)2 (Knaff and Zehr, 2007). For the 312 

WNP basin, MCP is not included in the MFD for modeling. If the MCP simulations are also 313 

desired, they can be derived from the MWS simulations using an appropriate WPR. In doing so, 314 

however, the complexity of WPRs from various agencies should be aware of (Kueh, 2012; 315 

Knapp et al., 2013). 316 

For TC risk assessment, variables to be simulated are center coordinates LON/LAT, MCP 317 

or MWS, SIN and COS. The last two are used to retrieve the ordinal dates of TCs. If the 318 

translation speed and heading direction are needed, they can be derived from the LON/LAT 319 

simulations. Due to the randomness in simulations, ordinal dates retrieved from the SIN/COS 320 

simulations may not be strictly regular step functions as recorded dates of observations (see 321 

example below). However, in TC risk assessment, the impact of the seasonality on TC activity is 322 

typically measured on monthly or even quarterly basis, for which the simulated dates are 323 

accurate enough to use. As such, all simulated ordinal dates remain as-is without further 324 

adjustment, and all simulation years are treated as non-leap years in the simulation model. 325 
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The MWS values in the best-track data were estimated in multiples of 5 kt (1 kt ≈ 0.514 326 

m s
−1

), with the minimal MWS estimate of 10 kt. The freshly simulated MWS is, however, 327 

continuous and includes MWS values below 10 kt. To ensure that the synthetic TCs are formally 328 

consistent with the best-track data, we round the simulated raw MWS into multiples of 5 kt and 329 

then remove the track point at which the rounded MWS is equal to or less than 10 kt. As a result, 330 

a freshly simulated track that is intermitted with very low MWS can be split into a few shorter 331 

track segments. Another restriction that the LMI must reach the TS level or above is  applied 332 

subsequently to remove storms with LMI strength of tropical depression (TD) or weaker, as TDs 333 

rarely cause statistically meaningful economic and/or insurance losses. 334 

Figure 1 illustrates the above pre- and post-processing procedures, using the hurricane 335 

Irma (2017242N16333) as an example. The time span for observation is 00Z 30 August to 12Z 336 

13 September 2017, a period of 348 hours. In order to prepare the TC MFD for modeling, all the 337 

variable records are extended with constant values to 570 hours, the interval 𝒯 on which the 338 

MFD are defined for the NA basin. The simulation is randomly generated by using Irma as the 339 

“seed”. Simulated track points with MWS equal to or less than 10 kt are removed, resulting in 340 

two track segments. The one with LMI less than 34 kt is also discarded. The remaining one 341 

finally becomes a synthetic TC. Note that the simulated dates are not a strictly regular step 342 

function as recorded dates for observation (Fig. 1e). 343 

 344 

Figure 1. Example of pre- and post-processing 345 

procedures. The observation is hurricane Irma 346 

(2017242N16333) recorded from 00Z 30 August to 347 

12Z 13 September 2017, a period of 348 hours (red 348 

solid curves). The vertical red dashed line indicates 349 

the time point of lysis. By extending all the variable 350 

records with constant values to 570 hours (red dashed 351 

curves), the observation is transformed into a 352 

multivariate functional datum for modeling. Blue 353 

curves are a simulation by using Irma as the “seed”. 354 

The vertical blue dashed line indicates the last time 355 

point at which the simulated MWS is greater than the 356 

threshold of 10 kt (indicated by the horizontal blue 357 

dashed line in 1c). Blue dashed curves are removed 358 

in post-processing. The remaining blue solid curves 359 

constitute a synthetic TC. 360 

4.2 Model summary 361 

Table 1 summarizes the primary information 362 

about the model fitting and simulation. In this study, 363 

the TC MFD for the NA basin consists of nine 364 

element functions while that for the WNP basin 365 

consists of eight, due to the shortage of the MCP 366 

records in the WNP basin. With MFPCA, the TC 367 

MFD can be represented as Eq. (6) which serves as 368 
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the fitted model in this study. If we divide the summation in the right-hand side of Eq. (6) into 369 

two parts, the first M leading eigenvectors as the signal part and all the others as the noise part, it 370 

turns out to be the simulation model expressed as Eq. (10). Only about 54 % and 60 % of the 371 

total M+ (= 𝑝 × (𝑆 + 2)) eigenvalues are nonzero for the NA and WNP basin, respectively. As 372 

we pointed out in section 3.2, (𝑆 + 2) number of degrees of freedom for each element function 373 

are obviously redundant due to the fact that most of the actual TC lifetimes are less than 𝒯, 374 

hence the rank of the joint covariance matrix �̂�, or correspondingly the number of nonzero 375 

eigenvalues, is much smaller than M+. However, by means of the ladle estimator, only the first 376 

22 leading eigenvectors that explains about 93% of total variance are recognized to constitute the 377 

signal part of the simulation model, coincidently for both the two basins (Fig. 2). The rest of 378 

eigenvectors with nonzero eigenvalues then constitute the noise part.  379 

Table 1 Summary of data, model fitting and simulation 380 

 NA WNP 

Observation Simulation Observation Simulation 

Period (years) 40 (1980–2019) 1000 39 (1980–2018) 1000 

Total number of TCs 513 12931 1035 26578 

Occurrence mean μ 12.8 12.9 26.5 26.6 

Occurrence variance 𝑉(𝜇, 𝜈) 22.3 24.3 21.6 22.9 

Occurrence dispersion ν 0.56 0.51 1.23 1.16 

No. of element functions p 9 (LON, LAT, MWS, MCP, SIN, COS, 

VX, VY and RLT) 

8 (LON, LAT, MWS, SIN, COS, VX, 

VY and RLT) 

No. of track points S during the 

lifetime 𝒯 

96 104 

No. of total eigenvectors M+ 882 848 

No. of nonzero eigenvalues 472 512 

Optimal truncation lag M 

(Percentage of total variance) 

22 (92.9%) 22 (92.8%) 

The fitted CMP distributions for the two basins reveal that the annual occurrence of TC 381 

in the NA basin is overdispersed (𝜈 < 1), whereas that in the WNP basin is underdispersed 382 

(𝜈 > 1). Note that the dispersion is roughly but not exactly the simple ratio of mean to variance. 383 

Such difference in the dispersion property of TC occurrence between the two basins may imply 384 

that the TC-environmental conditions modulating the TC occurrence is more stable in the WNP 385 

basin than in the NA basin. 386 

 387 

Figure 2. Ladle estimates of the optimal truncation M in 388 

the simulation model for the two basins, respectively. 389 

Both the results are 22, coincidently. 390 

4.3 Model validation 391 

4.3.1 Spatial pattern and annual occurrence 392 

In order to validate the model, we simulate 393 

1000-year worth of TCs for each of the two basins and 394 

then compare with their respective best-track data. best-395 

track records with MWS equal to or less than 10 kt are 396 

also removed to make a fair comparison with synthetic 397 
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TCs. To present a general picture of the performance of the described approach, Figure 3 shows 398 

the spatial patterns of the fitted and simulated vs. the best-track (observed) TC tracks, for both 399 

the NA (3a and 3b) and WNP (3c and 3d) basins, respectively. By using the total M+ 400 

eigenvectors, the fitted model can faithfully reconstruct the best-track data. It can be seen that the 401 

observed and fitted TC tracks are overlapped so well that they can hardly be distinguished one 402 

from the other. Simulated TC tracks are much denser than the observed TC tracks, but still 403 

resemble them in spatial pattern, curvature and re-curvature, genesis and lysis features. 404 

 405 

Figure 3. Comparisons of fitted values and simulations to observations (best-tracks) for the NA 406 

(left panes) and WNP (right panes) basin, respectively. Note that observations and fitted values 407 

are actually overlapped. 408 

The synthetic TCs also well capture the historical features of the annual TC occurrence. 409 

Comparison of the CMP distributions fitted to observations and simulations (Table 1) shows that 410 

for each basin, the occurrence mean of simulations is quite close to that of observations; the 411 

occurrence variance of simulations is a little higher than that of observations, which is probably 412 

due to the removal of track points in post-processing that may result in track splitting or track 413 

removal. 414 

4.3.2 Marginal distributions 415 

Next  we examine the performance of synthetic TCs in more detail, by comparing the 416 

empirical distributions of LON, LAT, MWS, MCP, ordinal dates and lifetime from simulations 417 

to those in the observations. Figures 4 and 5 show the comparisons in terms of empirical 418 

probability density function (EPDF) and empirical cumulative distribution function (ECDF) for 419 

the NA and WNP (for which MCP is not available) basin, respectively. Histograms represent 420 
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EPDFs, and curves represents ECDFs corresponding to EPDFs. It can be seen that for each 421 

basin, EPDFs for observations and simulations are almost overlapped while the two ECDFs are 422 

quite close to each other. The agreement between the observations and simulations show the 423 

capability of the simulation model in capturing the marginal distribution features of the TC 424 

variables. Discrepancies such as in the lower/upper tail of MWS/MCP distributions are mostly 425 

related to the noises just exceeding the 10-kt threshold and thus can be ignored. As for the 426 

seasonality and lifetimes of the simulated TCs, comparisons to the observations show satisfying 427 

results as well. Particularly for the seasonality of TC activity, simulations almost reconstructed 428 

the distribution of ordinal dates from the observations (Fig. 4d and Fig. 5d), which is helpful for 429 

assessing the TC risk on a monthly or even a shorter-term basis. 430 

 431 

Figure 4. Comparisons between observations and simulations in terms of EPDF (histogram) and 432 

ECDF (curve) of TC variables for the NA basin. EPDF and ECDF values are indicated by the 433 

left and right ordinate, respectively. 434 
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 435 

Figure 5. Same as Fig. 4 but for the WNP basin. Note that MCP is not available for the WNP 436 

basin. 437 

4.3.3 Spatial distributions 438 

We then check further the joint distributions of the TC variables with a focus on the 439 

spatial distribution features of TC density and intensity. Joint distributions of TC variables are 440 

estimated using the R package “ks” (Duong, 2021) by means of multivariate kernel smoothing 441 

(Chacon and Duong, 2018). First, we compare the annual mean spatial densities of track points 442 

from observations and simulations, derived from the joint distribution of LON and LAT (Figs. 443 

6a–6d). It can be seen that for each basin, the spatial density of simulations matches well as a 444 

whole with that of the observations, even though the time span of simulations is much longer 445 

than that of the observations. For the assessment of economic and insurance losses, the TC 446 

landfall locations are of particular interest. Figures 6e and 6f compare the empirical distributions 447 
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of the observed and simulated landfall locations as functions of longitude along the thick 448 

coastline for the two basins, respectively. These two coastlines are more liable to be attacked by 449 

TCs among others in their respective basins. Histograms represent EPDFs of landfall locations, 450 

and curves represents ECDFs corresponding to EPDFs. Once again, a high consistency exists 451 

between observations and simulations in terms of TC landfall locations. Particularly for the WNP 452 

basin (Fig. 6f) where the TC landfalls are more frequent than in the NA basin, there are more 453 

data available for modeling, resulting in reduced model uncertainty and smaller simulation bias. 454 

 455 

Figure 6. Annual mean spatial densities of track points (unit: degree
−2

 yr
−1

) from observations 456 

and simulations, and comparison between observations and simulations in terms of EPDF 457 

(histogram) and ECDF (curve) of landfall locations along the thick coastline with respect to 458 

longitude, for the NA (left panes) and WNP (right panes) basin, respectively. 459 



manuscript submitted to The Journal of Earth and Space Science 

 

Next, we examine the spatial distribution of the simulated MWS in terms of return 460 

periods of Saffir-Simpson hurricane intensity categories for the two basins.  The wind speed 461 

ranges for categories 1–5 (Cat. 1–5) are 64 –82, 83–95, 96–112, 113–136 and > 137 kt, 462 

respectively. Figure 7 compares the return periods of simulated MWS using the lower limits of 463 

Cat. 1, 3 and 5 as thresholds to those from the observations, respectively, for the NA basin. 464 

Figure 8 is the same as Fig. 7 but for the WNP basin. With these statistics, the spatial distribution 465 

of MWS as a function of LON and LAT can be outlined. These results show that, although the 466 

time span of simulations is much longer than that of observations, simulations do not 467 

substantially deviate from observations in terms of statistical properties, which is essential for 468 

synthetic TCs to be used for risk assessment. 469 

 470 

Figure 7. Return periods of observed and simulated MWS using the lower limits of Cat. 1, 3 and 471 

5 as thresholds, respectively, for the NA basin. Black contours indicate 10-, 100- and 1000-year 472 

return periods. 473 
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 474 

Figure 8. Same as Fig. 7 but for the WNP basin. 475 

4.3.4 Intensity extremes 476 

Ideally, synthetic TCs for risk assessment should be able to present cases stronger than all 477 

observations, while they are still consistent with observations in terms of distributional features. 478 

Previous comparisons have shown that the latter requirement is well satisfied. We finally focus 479 

on the TC intensity extremes to complete the validation. Figures 9a–9d compares maxima of 480 

MWS over each individual 1°×1° grid squares from simulations to those from observations, for 481 

the NA and WNP basin, respectively. Obviously, simulated maxima are generally greater than 482 

observed ones as we desired. However, the maximum potential intensity (MPI) of TC is 483 

restricted by the TC-environmental conditions. Knaff et al. (2005) set 185 kt as the upper bound 484 

for MPI in the WNP basin according to an empirical relationship between MPI and SST. Similar 485 

relationship was also found in the NA basin (DeMaria and Kaplan, 1994). Coincidently, for both 486 
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the two basins the simulated maximum MWS is 185 kt. This seeming coincidence actually 487 

indicates that the simulation model does grasp the empirical MPI by mining the best-track data. 488 

If picking LMI as independent extreme values for each basin, then return periods of LMI 489 

from observations and simulations using unique LMI values as thresholds can be compared as 490 

shown in Figs. 9e and 9f, for the NA and WNP basin, respectively. It can be seen that, for each 491 

basin within the time span of observations, return periods from simulations are quite consistent 492 

with those from observations, although for return periods shorter than 10 years, LMIs are a little 493 

underestimated by simulations. However, for each basin, simulated LMIs that are greater than 494 

the observed maximum LMI all have return periods beyond the time span of observations, 495 

manifesting the capability of this approach to suggest potential risks for assessment. 496 

 497 

Figure 9. Maxima of MWS over each individual 1°×1° grid squares from observations and 498 

simulations, and comparison between observations and simulations in terms of return periods of 499 

LMI, for the NA (left panes) and WNP (right panes) basin, respectively. Horizontal dashed lines 500 

indicate lower limits of Cat. 1–5, respectively. 501 
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5 Summary and Discussion 502 

In this study, we present a MFPCA approach to the full-track simulation of TC for risk 503 

assessment. The novelty of this approach is that elemental variables of TC along the track 504 

necessary for risk assessment, such as center coordinates LON/LAT, MWS and/or MCP and 505 

ordinal dates, can be simulated simultaneously at one go, yet using solely the best-track data with 506 

no data supplemented from any other sources. The simulation model is flexible and extensible, 507 

depending on the data availability for the basin of interest. With the help of ladle estimator, the 508 

optimal model is determined objectively so that the whole procedure can be programmed with 509 

little manual intervention needed. 510 

We also introduce a novel TC occurrence model using CMP distributions, of which 511 

underdispersion, equidispersion and overdispersion are special cases. The annual occurrence of 512 

TC in the NA basin is overdispersed, whereas that in the WNP basin is underdispersed. This 513 

phenomenon might be an indicator of the variability of the TC-environmental conditions 514 

modulating the TC occurrence, deserving of further study. Within the framework of CMP 515 

distributions, annual TC occurrence in different basins with different dispersion features can be 516 

modelled uniformly and be compared with each other. Combining with the occurrence model, 517 

the full-track simulation of TC can be proceeded on an annual basis. 518 

The performance of synthetic TCs is validated by comparison to the best-track data, in 519 

terms of annual occurrence, marginal distributions of TC variables, spatial distributions of TC 520 

density and intensity, and intensity extremes. High consistency between observations and 521 

simulations presents in distributional features for comparison, even though the two data sets have 522 

quite unbalanced time spans. As for intensity extremes, synthetic TCs with LMI greater than all 523 

observations also have return periods beyond the time span of observations, meanwhile they are 524 

still restrained from being unrealistic. These results show that the simulation model is able to 525 

generate synthetic TCs consistent with observations in terms of distributional features, but of 526 

large-enough size to include potentially extremer cases, which is essential for risk assessment. 527 

There are some local biases in different aspects revealed through comparisons. The main 528 

source of such biases is apparently the truncation of total hundreds of eigenvectors to only a few 529 

leading ones of them to constitute the simulation model. Figure 3 actually demonstrates the 530 

effect of such a truncation. Nonetheless, just because when viewed as MFD, basin-wide best-531 

track data can be encoded by only a few leading eigenvectors, the convenience of this approach 532 

is manifest. 533 

Moreover, all the algorithms are implemented using the freely available R statistical 534 

software packages, with a little programming in the R language. The modeling and simulation 535 

process is fully objective and automated, which greatly improves the modeling efficiency and 536 

reduces turnaround time, especially when newly available TC data are incorporated periodically 537 

into the model. In a word, our proposed approach to the full-track simulation of TC not only 538 

generates high-performance synthetic TCs for risk assessment, but also makes this work simpler. 539 

These synthetic TCs can be used in conjunction with wind field and engineering vulnerability 540 

models to estimate economic and insurance losses for governments and insurance/reinsurance 541 

industry. 542 

Since the simulation model is purely empirical without external dynamic factors 543 

incorporated, it is not intended to be an all-purpose alternative to environmentally forced models 544 

such as those described in Emanuel et al. (2008), Lee et al. (2018) or Jing and Lin (2020), 545 
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particularly when these models are used for assessing TC risks projected by climate change 546 

scenarios. To some extent, this approach is still capable of assessing TC risks modulated by 547 

some climate variability, by sampling historical TCs subject to different phases such as El Nino 548 

and La Nina separately during the simulation. A possible extension is the joint simulation of TCs 549 

in different basins, such as the NA and East Pacific (EP) basins, by means of joint modeling of 550 

annual TC occurrences in different basins. In doing so, TCs in different basins are simulated 551 

synchronously with the inter-basin correlation of TC activity considered. This is helpful for 552 

insurance/reinsurance companies to setup uniform standards for assessing risks for different 553 

regions. These ideas will be implemented in our future work. 554 
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