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Abstract

Carbon monoxide (CO) is an ozone precursor, oxidant sink, and widely-used pollution tracer. The importance of anthropogenic

versus other CO sources in the US is uncertain. Here we interpret extensive airborne measurements with an atmospheric model

to constrain US fossil and non-fossil CO sources. Measurements reveal a low bias in the simulated CO background and a 30%

overestimate of US fossil CO emissions in the 2016 National Emissions Inventory. After optimization we apply the model for

source partitioning. During summer, regional fossil sources account for just 9-16% of the sampled boundary layer CO, and 32-

38% of the North American enhancement-complicating use of CO as a fossil fuel tracer. The remainder predominantly reflects

biogenic hydrocarbon oxidation plus fires. Fossil sources account for less domain-wide spatial variability at this time than

non-fossil and background contributions. The regional fossil contribution rises in other seasons, and drives ambient variability

downwind of urban areas.
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Key Points: 22 

 23 

 We interpret an ensemble of airborne measurements with the GEOS-Chem model to 24 

constrain US fossil fuel and non-fossil CO sources 25 

 Measurements reveal an approximate 30% overestimate of US fossil fuel CO emissions 26 

in the National Emissions Inventory 27 

 During summer regional fossil fuel sources account for just 9-16% of total boundary 28 

layer CO over eastern North America 29 

  30 
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Abstract 31 

Carbon monoxide (CO) is an ozone precursor, oxidant sink, and widely-used pollution tracer. 32 

The importance of anthropogenic versus other CO sources in the US is uncertain. Here we 33 

interpret extensive airborne measurements with an atmospheric model to constrain US fossil and 34 

non-fossil CO sources. Measurements reveal a low bias in the simulated CO background and a 35 

30% overestimate of US fossil CO emissions in the 2016 National Emissions Inventory. After 36 

optimization we apply the model for source partitioning. During summer, regional fossil sources 37 

account for just 9-16% of the sampled boundary layer CO, and 32-38% of the North American 38 

enhancement—complicating use of CO as a fossil fuel tracer. The remainder predominantly 39 

reflects biogenic hydrocarbon oxidation plus fires. Fossil sources account for less domain-wide 40 

spatial variability at this time than non-fossil and background contributions. The regional fossil 41 

contribution rises in other seasons, and drives ambient variability downwind of urban areas.  42 

 43 

 44 

Plain Language Summary 45 

Carbon monoxide (CO) is an air pollutant that is emitted from fossil fuel combustion and from 46 

forest and agricultural fires. CO is also produced in the atmosphere through the oxidation of 47 

hydrocarbons from both natural and human-caused sources. US fossil fuel CO emissions have 48 

been declining in recent years, and their current importance relative to other regional sources is 49 

uncertain. Here, we interpreted a large group of aircraft-based CO measurements with a high-50 

resolution atmospheric model to better quantify US fossil and non-fossil fuel CO sources over 51 

the eastern half of the US. We find that US fossil fuel CO emissions in the 2016 National 52 

Emissions Inventory are overestimated by approximately 30%. Furthermore, during summer 53 

regional fossil fuel sources account for only a small fraction of the CO over North America 54 

compared to the background concentrations already present in air entering North America, and 55 

compared to the regional source from natural hydrocarbon oxidation. This complicates the use of 56 

CO as a tracer for estimating fossil fuel sources of other pollutants such as carbon dioxide. 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

  66 
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1 Introduction 67 

Carbon monoxide (CO) is the largest sink of atmospheric hydroxyl (OH) radicals  68 

(Müller et al., 2018) and a major tropospheric ozone precursor (Hu et al., 2017). It is emitted 69 

from fossil fuel and biomass combustion and is also indirectly produced from the oxidation of 70 

methane and non-methane volatile organic compounds (VOCs). CO removal occurs mainly via 71 

reaction with OH, forming atmospheric carbon dioxide (CO2) at an annual rate equivalent to 72 

~10% of the global fossil fuel source (Duncan et al., 2007; Friedlingstein et al., 2019). As a 73 

result of its oxidative effects and their feedbacks, CO has a global warming potential 74 

approximately 5 that of CO2 on a 100-year timescale (Shindell et al., 2009).  75 

According to the National Emissions Inventory Collaborative (NEIC) Emissions 76 

Modeling Platform, based on the US Environmental Protection Agency (EPA) National 77 

Emissions Inventory (NEI), US CO emissions totaled ~55 Tg in 2016, with fossil fuel and 78 

biomass burning emissions accounting for 41 Tg and 14 Tg, respectively (NEIC, 2019). Fossil 79 

fuel sources in the inventory are predominantly mobile (on-road: 18 Tg; non-road: 10 Tg) and in 80 

the case of on-road emissions, mainly (90%) due to non-diesel light-duty vehicles. Gasoline 81 

combustion similarly accounts for the majority (80%) of the estimated non-road mobile source 82 

(NEI, 2014). Annual fossil fuel CO emissions in the NEI decreased by approximately 50 Tg/year 83 

from 2000-2016, driven by a nearly 70% drop in the estimated mobile source (EPA, 2019). 84 

CO has traditionally been used as a fossil fuel tracer to diagnose anthropogenic sources of 85 

CO2 and other species (e.g., Cheng et al., 2018; Halliday et al., 2019; Nathan et al., 2018; Super 86 

et al., 2017). In the US, however, the dramatic decline in transportation-related emissions 87 

(Gaubert et al., 2017; NEI, 2018; Parrish, 2006) means that non-fossil fuel CO sources are 88 

increasingly important. For example, Hudman et al. (2008) estimated that VOC oxidation 89 

(predominantly from biogenic precursors) was a two-fold larger CO source than direct 90 

combustion emissions over the US during summer 2004. Furthermore, previous NEI versions 91 

have been shown to overestimate US anthropogenic CO emissions by as much as 60% (Fujita et 92 

al., 2012; Kim et al., 2013; Salmon et al., 2018; Brioude et al., 2011; Brioude et al., 2013; Plant 93 

et al., 2019), so the non-fossil fuel CO fraction may be even greater than suggested by current 94 

inventories. 95 

Together, the large recent emission trends and demonstrated inventory biases imply 96 

significant uncertainty in the current CO budget over North America. Two airborne measurement 97 

campaigns conducted from 2016-2019 with widespread, multi-seasonal coverage over the 98 

eastern half of the US provide new constraints for addressing this issue: the Atmospheric Carbon 99 

and Transport (ACT)-America mission, with 5 dual-aircraft deployments across three US regions 100 

(Davis et al., 2021), and the Greenhouse Emissions in the Midwest (GEM) mission with 3 101 

deployments across the US Upper Midwest (Yu et al., 2020; 2021). Here, we employ the GEOS-102 

Chem chemical transport model (CTM) to interpret these datasets in terms of their implications 103 

for fossil fuel versus non-fossil and primary versus secondary CO sources over the US.  104 



 Geophysical Research Letters 

 

 105 

2 Methods 106 

2.1 Aircraft Measurements 107 

Figure 1 shows flight-tracks for the ACT-America and GEM airborne deployments used 108 

here. ACT-America took place during summer 2016 (ACT1; see Table S1), winter 2017 (ACT2), 109 

fall 2017 (ACT3), spring 2018 (ACT4), and summer 2019 (ACT5) (Davis et al., 2018; Davis et 110 

al., 2021). Each deployment featured measurements aboard two aircraft (C-130 Hercules: 487 111 

flight hours; Beechcraft B200 King Air: 513 flight hours) across the US Midwest, Northeast, and 112 

South. Sampling altitudes ranged from 0.1-8.7 km above ground level (AGL); only data below 8 113 

km AGL are employed here. Airborne CO measurements were also performed for the first two 114 

GEM campaigns over the US Upper Midwest during summer 2017 (GEM1) and winter 2018 115 

(GEM2). Measurements took place on a Mooney aircraft (76 flight hours) from 0.1 to 2.2 km 116 

AGL (Yu et al., 2020; Yu et al. 2021). We employ data from ACT1-ACT4 for CO source 117 

estimation and reserve ACT5, GEM1 and GEM2 for independent evaluation of the results. 118 

ACT-America CO dry-air mole fraction measurements used here were performed in-situ 119 

by wavelength-scanned cavity ring-down spectroscopy (CRDS; Picarro G2401-m) with 5 ppb 120 

estimated uncertainty (DiGangi et al., 2021; Wei et al., 2021). Additional CO measurements 121 

were obtained during ACT-America via air samples collected on-board both aircraft with 122 

Programmable Flask Packages (PFP) (Baier et al., 2020; Wei 2021; Davis et al., 2018). An 123 

intercomparison of the C-130-H and B-200 Picarro datasets using the PFP observations as 124 

transfer standard shows no significant difference (Figure S1) and we treat them here as a single 125 

statistical ensemble. GEM CO measurements were performed by continuous‐wave tunable 126 

infrared laser absorption spectrometry (Aerodyne CW‐TILDAS) with ±1 ppb estimated 127 

uncertainty (Gvakharia et al., 2018; Millet et al., 2019). In-situ measurements for ACT and GEM 128 

were made at 0.4 Hz and we use 1-minute averaged data in analyses that follow. 129 

We also employ airborne CO measurement over the remote Pacific from the Atmospheric 130 

Tomography Mission (ATom) (Wofsy et al., 2018) to evaluate and adjust the chemical boundary 131 

conditions used in the nested GEOS-Chem simulations (Section 2.2). ATom featured pole-to-132 

pole sampling from 0.2-12 km altitude during four separate deployments; CO measurements 133 

used here were collected using the NOAA Picarro instrument with estimated 3.6 ppb 134 

uncertainty (Chen et al., 2013 ). ATom1 (Northern Hemisphere summer 2016), ATom2 (winter 135 

2017), ATom3 (fall 2017) and ATom4 (spring 2018) overlap temporally with ACT1-ACT4, 136 

respectively, and are applied for correction accordingly. ATom1 data is further used for ACT5 137 

and GEM1 background correction, and ATom2 data for GEM2 background correction, given 138 

their matching seasonal coverage. Correction procedures are explained below. All datasets are 139 

calibrated on the WMO X2014A scale. 140 
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 141 
Figure 1: ACT-America and GEM flight-tracks colored by observed CO mixing ratios. 142 

2.2 GEOS-Chem Simulations  143 

We interpret the above airborne datasets using a GEOS-Chem (v12.6.3; 144 

doi:10.5281/zenodo.3552959) simulation nested at 0.25°  0.3125° (latitude  longitude) 145 

resolution over North America (60°-130°W, 9.75°-60°N) with 47 vertical layers (Figure S2). 146 

Model runs are driven by GEOS-FP meteorological data from NASA GMAO (Lucchesi, 2013), 147 

and employ timesteps of 10-min (transport, convection) and 20-min (emissions, chemistry). A 1-148 

month nested spinup is used for initialization. 149 

Chemical boundary conditions (3-hourly) for the nested model domain are obtained from 150 

global simulations at 2°  2.5° and bias-corrected using a latitude-dependent fit of model-151 

measurement 0.1 quantile differences (6° latitude bins from 66°S-54°N) along the ATom flight-152 

tracks over the remote Pacific (Figure S3). As described later, we also perform a sensitivity 153 

analysis without this boundary condition correction as one test of our results. 154 

We use tagged tracers (Fisher et al., 2017) to track contributions to ambient CO from 155 

direct and indirect CO sources within the North American domain shown in Figure S2 and from 156 

the chemical boundary conditions (CO𝑏𝑐). Tagged direct sources include US on-road mobile 157 

emissions (CO𝑢𝑠𝑟𝑑), US non-road mobile emissions (CO𝑢𝑠𝑛𝑟), other US anthropogenic sources 158 

(CO𝑢𝑠𝑜𝑡), non-US anthropogenic emissions (CO𝑐𝑎𝑚𝑥; from Canada and Mexico) and wildfires 159 

plus agricultural burning (CO𝑏𝑏). We separately track secondary CO (CO𝑝𝑟𝑜𝑑) from the oxidation 160 

of biogenic VOCs (CO𝑝𝑟𝑜𝑑_𝑏𝑖𝑜), anthropogenic VOCs (CO𝑝𝑟𝑜𝑑_𝑎𝑛𝑡ℎ), and other precursors 161 

(CO𝑝𝑟𝑜𝑑_𝑜𝑡ℎ; methane plus pyrogenic VOCs) occurring within the North American domain. CO 162 

production and removal rates are computed using archived fields from full-chemistry simulations 163 

at 2°  2.5°; secondary contributions from biogenic and anthropogenic VOCs are derived from 164 

runs with the corresponding emissions perturbed by 10%. 165 

Global anthropogenic emissions in the model are from the Community Emissions Data 166 

System (Hoesly et al., 2018) overwritten for the US by the 2016 EPA NEI (NEIC2016v1; NEIC, 167 

2019) and for Canada by the Air Pollutant Emission Inventory (APEI, 2020). Biogenic emissions 168 

are from the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) 169 
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implemented as described by Hu et al. (2015), and biomass burning emissions use the Quick-Fire 170 

Emissions Dataset (Koster et al., 2015).  171 

 172 

3 Results 173 

3.1 Measured Versus Predicted CO over the Eastern and Central US  174 

 Figure 2a-g shows the mean vertical CO profiles measured during ACT1-ACT5 and 175 

GEM1-GEM2. Average concentrations during the ACT-America flights peak in the planetary 176 

boundary layer (PBL; defined here as z < 2 km) at ~120-125 ppb during summer and fall, and at 177 

~140 ppb during spring and winter. Concentrations during GEM (which sampled farther north 178 

and predominantly within the PBL) are slightly higher. Aloft, we see free tropospheric (z > 4 km) 179 

concentrations ranging seasonally between ~80-90 ppb (summer) and ~100-110 ppb (winter). 180 

Also shown in Figure 2a-g are the CO mixing ratios simulated by GEOS-Chem along the 181 

flight-tracks at the time of measurement, with the corresponding tagged-tracer source 182 

contributions. The base-case simulation successfully captures the relative vertical distribution of 183 

CO, but underestimates its abundance in all seasons except fall (ACT3). The magnitude of this 184 

low bias during spring, summer, and winter ranges from 9 ppb (averaged below 2 km) during 185 

spring for ACT4 to 48 ppb during summer for GEM1.   186 

Transport from outside North America makes the largest contribution to ambient CO over 187 

the eastern half of the US in the GEOS-Chem base-case simulation (Figure 2a-g). This 188 

background varies little with altitude and changes seasonally in concert with the CO lifetime, 189 

from ~50 ppb in summer (for ACT1 and ACT5) to ~100 ppb in winter (for ACT2 and GEM2). 190 

We see from Figure 2 that the background contribution dominates total CO in the free 191 

troposphere (71-96% above 4 km, lowest in summer). At lower altitudes, regional CO sources 192 

play a larger role; nevertheless, the CO background still represents 55% (summer) to 78% 193 

(winter) of the total averaged model abundance below 2 km.  194 

Figure 2h-n shows the base-case model partitioning of North American CO 195 

enhancements (i.e., excluding CO𝑏𝑐, which is already present in air entering North America) 196 

during ACT-America and GEM. The regional secondary source is further partitioned into 197 

biogenic, anthropogenic, and other (methane + pyrogenic VOC) contributions. We see that 198 

secondary production accounts for a significant fraction of the predicted North American CO 199 

source, particularly during summer when, in the case of ACT1 and ACT5, it mainly arises from 200 

biogenic VOC oxidation. Primary emissions mainly reflect US anthropogenic sources (in turn 201 

dominated by on-road and off-road mobile emissions). GEM1, over the Upper Midwest, featured 202 

a larger contribution from biomass burning.  203 

 204 

 205 

 206 

 207 

 208 

 209 
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 211 

Figure 2: Mean CO profiles during ACT-America and GEM. Panels a-g compare observed CO 212 

mixing ratios (black dashed lines) with those predicted by the prior GEOS-Chem simulation 213 

(stacked color plots). Pink lines show simulated CO concentrations after source optimization. 214 

Panels h-n show the above-background source contributions based on the prior GEOS-Chem 215 

simulation. CO𝑢𝑠𝑟𝑑, CO𝑢𝑠𝑛𝑟, CO𝑢𝑠𝑜𝑡: anthropogenic CO from US on-road, non-road, and other 216 

sources. CO𝑐𝑎𝑚𝑥: anthropogenic CO emitted in Canada + Mexico. CO𝑏𝑏: CO from North 217 

American biomass burning. CO𝑝𝑟𝑜𝑑: CO photochemically produced over North America from 218 

the oxidation of biogenic VOCs (CO𝑝𝑟𝑜𝑑_𝑏𝑖𝑜), anthropogenic VOCs (CO𝑝𝑟𝑜𝑑_𝑎𝑛𝑡ℎ), and methane 219 

+ biomass burning VOCs (CO𝑝𝑟𝑜𝑑_𝑜𝑡ℎ). CO𝑏𝑐: CO transported from outside North America.  220 
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 221 

3.2 CO Source Optimization 222 

We next apply the base-case tagged tracer simulations discussed above to develop 223 

improved US CO source estimates based on the ACT-America observations. The optimization is 224 

performed separately for ACT1-ACT4 and consists of two steps. First, since background CO 225 

dominates the total free tropospheric abundance (Figure 2), we attribute the prior model bias 226 

aloft accordingly and correct the simulated CO𝑏𝑐 based on the mean >4 km model-measurement 227 

differences for each campaign. Given the vertical uniformity of CO𝑏𝑐 this correction is applied 228 

throughout the column and ranges from a factor of 1.0 during fall to 1.5 during summer.  229 

Second, after subtracting this corrected background we derive top-down adjustments on 230 

regional CO sources by regressing the model tagged tracers against the observed above-231 

background enhancements below 2 km AGL. Selected tracers are grouped for optimization to 232 

avoid multicollinearity and based on their relative abundance. During summer we thus optimize 233 

1) direct CO emissions from US onroad, non-road mobile, and other anthropogenic sources 234 

(CO𝑢𝑠𝑛𝑒𝑖 = CO𝑢𝑠𝑟𝑑 + CO𝑢𝑠𝑛𝑟 + CO𝑢𝑠𝑜𝑡) and 2) regional secondary CO production from biogenic 235 

and anthropogenic VOCs (CO𝑝𝑟𝑜𝑑_𝑣𝑜𝑐 = CO𝑝𝑟𝑜𝑑_𝑏𝑖𝑜 + CO𝑝𝑟𝑜𝑑_𝑎𝑛𝑡ℎ) as single variables based on 236 

the high cross-correlation (R = 0.92-0.98) among the grouped tracers. Other secondary 237 

production (CO𝑝𝑟𝑜𝑑_𝑜𝑡ℎ) is not optimized as it is primarily from methane and implicitly corrected 238 

by the preceding background adjustment. CO sources from Canada and Mexico and from 239 

biomass burning each make up <18% of the above-background model abundance during ACT1-4 240 

and are likewise not optimized. During other seasons the same procedure is used but without 241 

optimizing CO𝑝𝑟𝑜𝑑_𝑣𝑜𝑐 as it then accounts for <16% of the mean above-background 242 

enhancements. A sensitivity test described later explores how how the choice of tracer groups for 243 

optimization affects our results. 244 

In this way we obtain seasonal top-down correction factors for the NEIC2016v1 US 245 

anthropogenic CO emissions, along with a top-down correction to the regional secondary source 246 

from biogenic + anthropogenic VOCs during summer. Results shown in Table 1 are consistent 247 

across the seasonal ACT-America campaigns in revealing a moderate NEI overestimate of US 248 

anthropogenic CO emissions, with coefficients ranging from 0.66  0.05 to 0.79  0.03 (here and 249 

below, stated uncertainties reflect bootstrapped 95% confident intervals). We find that secondary 250 

CO production from regional VOC oxidation is well-represented in the model, with a derived 251 

scale factor of 0.91  0.03.  252 

Figure 2 and Table 1 show that the optimization successfully minimizes the prior model 253 

bias, and either improves or maintains the prior model:measurement correlation. An exception is 254 

ACT3, where the prior simulation was already essentially unbiased (< 3 ppb) with high 255 

correlation. However, the posterior fit quality here is still comparable to that obtained in other 256 

seasons. In the following section, we apply a series of statistical and sensitivity analyses and 257 

independent data comparisons to further test the representativeness and robustness of these 258 

results. 259 

 260 

 261 

 262 

 263 

 264 

 265 
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Table 1. Seasonal CO source optimization
1
   266 

 CO𝑢𝑠𝑛𝑒𝑖 CO𝑝𝑟𝑜𝑑_𝑣𝑜𝑐 

Intercept VIF2 

Mean bias (ppb) RMSE3 (ppb) R 

 Scale 

factor 

Mean 

(ppb) 

Scale 

factor 

Mean 

(ppb) 

Prior Post Prior Post Prior Post 

ACT1 

(summer) 
0.66  

0.05 

13.2 0.91  

0.03 

25.4 -0.2  

0.3  

3.1 17.6 -0.2 26.4 16.5 0.75 0.81 

ACT2 

(winter) 
0.79  

0.03 

12.77   1.8   

0.3 

 14.8 1.7 21.4 15.5 0.69 0.69 

ACT3 

(fall) 
0.69  

0.03 

16.77   5.5   

0.5 

 2.5 5.5 13.4 14.2 0.79 0.75 

ACT4 

(spring) 
0.74  

0.02 

16.94   -2.7  

0.4 

 8.8 -2.6 18.1 17.0 0.65 0.62 

1 Stated uncertainties reflect 95% confidence intervals computed through bootstrap resampling. 267 
2 Variance inflation factor. 268 
3 Root mean square error. 269 
 270 

 271 

 272 

3.3 Uncertainty Analysis  273 

The bootstrapped uncertainty estimates in Table 1 provide a first evaluation of the 274 

optimization results, showing that the individual scaling coefficients derived from ACT1-ACT4 275 

are each statistically robust. The similar findings across ACT1-ACT4 provide a second piece of 276 

supporting evidence, as the deployments represent four separate datasets and independent source 277 

derivations that all lead to consistent results.  Third, we see from Figure 2 and Table S2 that the 278 

CO source optimization (derived from ACT1-ACT4 data) strongly improves model performance 279 

versus independent airborne data from ACT5, GEM1, and GEM2, which were not employed in 280 

the optimization. 281 

As a fourth test, we perform the CO source optimization separately for the two ACT-282 

America aircraft. Table S3 shows that we arrive at the same conclusions when analyzing the B-283 

200 and C-130 observations independently as opposed to treating them as a combined dataset. 284 

Specifically, we infer an NEI overestimate of US anthropogenic CO emissions in both cases, 285 

with derived scale factors spanning 0.54-0.87 (sensitivity tests) versus 0.66-0.79 (base analysis). 286 

The modest adjustment to the modeled secondary CO source from regional biogenic and 287 

anthropogenic VOCs is likewise independently supported by both airborne datasets (scale factors 288 

of 0.74-0.96 versus 0.91 in the base-case). 289 

A fifth evaluation repeats the base-case optimization with alternate boundary conditions 290 

(CO𝑏𝑐) for the nested model domain—i.e., employing the native model output for this purpose 291 

and omitting the ATom-based background adjustment (Section 2.2; Figure S3). Results in Table 292 

S4 show that scale factors derived in this way are statistically consistent with the base-case 293 

analysis. For a sixth and final test, we modify the tracer groupings used for optimization and 294 

instead derive ACT1-ACT4 scale factors for 1) CO𝑢𝑠𝑛𝑒𝑖 and 2) the sum of all other regional 295 

source tracers. Results shown in Table S5 are again consistent with the base-case findings, with a 296 

slightly wider range for the CO𝑢𝑠𝑛𝑒𝑖 scale factor (0.58-0.85) and a modestly degraded 297 

observational fit.  298 

 Overall, the above uncertainty tests all support our core findings, and we proceed to 299 

interpret the optimized results in terms of their implications for fossil fuel versus non-fossil, and 300 

primary versus secondary, CO sources over the US. 301 

 302 
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3.3.3 Optimized CO Source Contributions  303 

  304 

Figure 3a-g shows the optimized primary and secondary North American contributions to 305 

ambient CO as sampled during ACT-America and GEM. We find that secondary production 306 

(mainly from biogenic VOCs) is the dominant summertime North American CO source for air 307 

masses sampled by ACT-America, accounting for ~70% of the total PBL enhancement. 308 

Secondary production is also significant at other times (e.g., 26-45% of the PBL enhancement 309 

during the fall, winter, and spring ACT-America campaigns) but then mainly reflects regional 310 

methane oxidation along with pyrogenic VOC oxidation. To the north, the importance of 311 

secondary CO over the Upper Midwest during GEM is significantly less (~7-40%)—reflecting 312 

lower biogenic VOC emissions and slower regional photochemistry. In total, photochemical CO 313 

sources contribute between 2 ppb (winter; GEM2) and 31 ppb (summer; ACT5) to the average 314 

sampled PBL enhancements, versus 13-25 ppb from primary emissions. 315 

In Figure 3h-n we further partition the optimized CO abundance into fossil fuel versus 316 

non-fossil contributions. Here, fossil fuel sources include primary emissions plus secondary 317 

production from anthropogenic VOC, while non-fossil fuel sources include biogenic VOC 318 

oxidation plus biomass burning CO emissions. The remainder is from the oxidation of methane 319 

and of fire-derived VOCs. Results show that fossil fuel sources account for just 32-38% of the 320 

North American PBL CO enhancements sampled by ACT-America and GEM during summer, 321 

increasing to 48-49% during spring/fall and 57-84% during winter. 322 

The findings above reveal the complications of using CO as an anthropogenic tracer, 323 

particularly during summer—as fossil fuel sources account for just 9-16% of the total PBL 324 

abundance, and 32-38% of the North American enhancement, during this season. However, for 325 

many applications (e.g., applying species:species correlations for source partitioning), source 326 

impacts on tracer variability can be more important than their absolute magnitude. For example, 327 

one might expect the secondary CO source to be relatively diffuse and that direct anthropogenic 328 

emissions would be a more important driver of ambient CO variability over the US.  329 

To explore this expectation, Figures S4-S5 show the CO standard deviation by source 330 

category (based on the optimized GEOS-Chem simulation), for each airborne campaign in its 331 

entirety. In the summertime PBL sampled by ACT-America and GEM, the CO variability due to 332 

North American (primary + secondary) fossil fuel sources is substantially smaller (7-10 ppb) 333 

than that associated with background (15-21 ppb) and regional non-fossil fuel (11-15 ppb) 334 

contributions. In other seasons, regional fossil fuel emissions drive as much or more of the CO 335 

variability than non-fossil sources, but (except in the case of GEM) this variability is still smaller 336 

than that associated with the CO background. 337 

The characterization above, treating each ACT-America and GEM campaign as a single 338 

statistical datasert, mainly describes spatial patterns of CO variability across the eastern half of 339 

the US as a whole. If we instead apply the optimized model to map the drivers of temporal CO 340 

variability (Figures S6-S10), we observe in all seasons a dominant role for fossil fuel emissions 341 

in and downwind of most urbanized areas. A similar finding applies for fires in specific affected 342 

regions. Temporal variability associated with secondary CO, manifesting most strongly in 343 

summer, is relatively low over much of the US Southeast where precursor VOC emissions are 344 

highest but is elevated around the periphery of this region (e.g., Figures S6, S11, S16). We 345 

attribute this to transport-driven effects at the edges of a large and diffuse source region (Figures 346 

S11-S15).  In other seasons, temporal variability associated with secondary CO is small, with 347 
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fossil fuel emissions, biomass burning, and background CO playing more important roles (Figure 348 

S7-S9). 349 

 350 

 351 
 352 

Figure 3: Observationally-constrained CO source attribution over the eastern US. Plotted are the 353 

mean above-background CO profiles from the optimized GEOS-Chem simulation along the 354 

aircraft flight-tracks. Panels a-g partition the regional CO enhancements into direct and 355 

secondary components. Direct sources include: anthropogenic CO from US on-road (CO𝑢𝑠𝑟𝑑), 356 

non-road (CO𝑢𝑠𝑛𝑟), and other sources (CO𝑢𝑠𝑜𝑡), anthropogenic CO emitted in Canada + Mexico 357 

(CO𝑐𝑎𝑚𝑥), and biomass burning CO (CO𝑏𝑏). Secondary sources (CO𝑝𝑟𝑜𝑑) include oxidation of 358 
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biogenic + anthropogenic VOC (CO𝑝𝑟𝑜𝑑_𝑏𝑖𝑜 + CO𝑝𝑟𝑜𝑑_𝑎𝑛𝑡ℎ) and of methane + biomass burning 359 

VOCs (CO𝑝𝑟𝑜𝑑_𝑜𝑡ℎ). Panels h-n partition the regional CO enhancements into fossil fuel (direct + 360 

secondary), biogenic (exclusively secondary), biomass burning (direct), and other (mainly 361 

methane oxidation, plus secondary biomass burning) contributions.    362 

 363 

4 Conclusions 364 

We applied measurements from 13 airborne campaigns to develop new constraints on CO 365 

sources over the central and eastern US. Data were collected over 1,000 flight hours across all 366 

seasons, representing the densest airborne dataset yet for CO source quantification over North 367 

America. Campaign-average PBL (< 2 km) mixing ratios ranged from 121 (summer) to 158 ppb 368 

(winter). Interpreting this dataset with a high-resolution version of the GEOS-Chem CTM driven 369 

by the US EPA’s NEIC2016v1 inventory, we find that the model accurately captures the 370 

observed CO vertical profile shape but underestimates its abundance (by 9-48 ppb) in all seasons 371 

except fall. This disparity partly reflects a bias in the model CO background, and after correction 372 

we infer an NEI overestimate of fossil fuel CO emissions, with a derived top-down adjustment 373 

factor of 0.72 (0.54-0.87; best estimate and uncertainty range across all sensivity tests and 374 

seasons). For comparison, the US EPA estimates that national fossil fuel CO emissions 375 

decreased by 8% from 2016-2019 (EPA, 2019). Our top-down estimate for the secondary CO 376 

source from North American VOC emissions agrees well with the prior model value, with a 377 

derived scale factor of 0.91 (0.74-0.96). If the above comparisons are nationally representative, 378 

the implied US fossil fuel CO source for 2016-2019 was 29 (22-36) Tg/y, compared to the prior 379 

NEIC2016v1 estimate of 41 Tg/y (for 2016).  380 

After optimizing the model based on the airborne constraints, we find that the CO 381 

background represents on average 55-78% of the PBL CO sampled during the aircraft 382 

campaigns. During summer, North American fossil fuel sources account for only 9-16% of the 383 

sampled PBL CO, and 32-38% of the enhancements associated with regional sources. Non-fossil 384 

sources from biogenic VOC oxidation and fires account for 40-45% of the above-background 385 

enhancements at this time, with the remainder mainly from regional methane oxidation. In other 386 

seasons, however, fossil fuel emissions are the largest regional source of CO. 387 

Application of CO as a fossil fuel tracer is challenged by the fact that, during the growing 388 

season, such sources account for only a modest fraction of the CO burden and its spatial 389 

variability across the US. However, in and near most urbanized regions the temporal variability 390 

in CO is still dominated by fossil fuel sources. The number of locations where this remains the 391 

case will likely diminish, as US fossil fuel CO emissions are expected to continue declining with 392 

future vehicle emission regulations, advanced emission after-treatment technologies, and fleet 393 

electrification (Winkler et al., 2018; Nopmongcol et al., 2017).   394 
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Figure S1. Intercomparison of ACT-America airborne CO measurements. In situ 

measurements by Picarro CRDS are plotted against PFP flask measurements on-board 

the Beechcraft B200 King Air (left column) and C-130H Hercules (right column) aircraft 

for each ACT-America deployment.  

 

 

 

 

 

 



 
 

Figure S2. North American nested domain employed for GEOS-Chem simulations.   

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S3. Correction of the GEOS-Chem CO background based on aircraft 

measurements from the four ATom deployments. Plotted are observed tropospheric CO 

mixing ratios over the remote Pacific Ocean averaged by six-degree latitude bins (black) 

along with the corresponding model values (grey). Data shown are restricted to 0-8 km 

above sea level, 80S-56N, and 160E-145W (Northern Hemisphere) or 100W-145W 

(Southern Hemisphere). Purple lines show the model-measurement mismatch as a 

smooth spline fit to the 0.1 quantile difference. 

 

 

 

 



 

Figure S4. Sources of CO variability over the eastern US. Plotted is the standard 

deviation for individual tagged CO tracers based on output from the optimized GEOS-

Chem simulation along the ACT-America and GEM flight tracks. CO𝑏𝑐: CO transported 

from outside North America. CO𝑢𝑠𝑟𝑑, CO𝑢𝑠𝑛𝑟, CO𝑢𝑠𝑜𝑡: anthropogenic CO emitted from US 

on-road, non-road, and other sources. CO𝑐𝑎𝑚𝑥: anthropogenic CO emitted in Canada + 

Mexico. CO𝑏𝑏: CO emitted from North American biomass burning. CO𝑝𝑟𝑜𝑑: CO 

photochemically produced over North America. Standard deviation is not additive so the 

individual values do not sum to the total CO variability. 

 

 

 

 

 

 

 

 



 

Figure S5. Sources of CO variability over the eastern US. Plotted is the standard 

deviation for grouped tagged CO tracers from the optimized GEOS-Chem simulation 

along the ACT-America and GEM flight tracks. Values are shown for non-fossil CO (from 

biogenic VOC oxidation plus biomass burning emissions), fossil CO (from direct 

emissions plus anthropogenic VOC oxidation), and CO transported from outside North 

America (𝐂𝐎𝒃𝒄). Standard deviation is not additive so the individual values do not sum to 

the total CO variability. 

 

 

 

 

 

 

 

 

 



 

 
 

Figure S6. Temporal CO variability in the US PBL during summer. Plotted are the hourly 

standard deviations (SD) for background CO, biomass burning CO, secondary CO, and 

directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are 

plotted for the ACT1 timeframe (11 July to 29 August 2016). 

 

 

 

 



 
 

Figure S7. Temporal CO variability in the US PBL during winter. Plotted are the hourly 

standard deviations (SD) for background CO, biomass burning CO, secondary CO, and 

directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are 

plotted for the ACT2 timeframe (21 January to 10 March 2017). 

 

 

 

 

 

 

 



 

Figure S8. Temporal CO variability in the US PBL during fall. Plotted are the hourly 

standard deviations (SD) for background CO, biomass burning CO, secondary CO, and 

directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are 

plotted for the ACT3 timeframe (22 September to 13 November 2017). 

 

 

 

 

 

 

 



 
 

Figure S9. Temporal CO variability in the US PBL during spring. Plotted are the hourly 

standard deviations (SD) for background CO, biomass burning CO, secondary CO, and 

directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are 

plotted for the ACT4 timeframe (28 March to 20 May 2018). 

 

 

 

 

 

 



 

Figure S10. Temporal CO variability in the US PBL during summer. Plotted are the hourly 

standard deviations (SD) for background CO, biomass burning CO, secondary CO, and 

directly-emitted fossil fuel CO based on the optimized GEOS-Chem simulation. Data are 

plotted for the ACT5 timeframe (7 June to 27 July 2019). 

 

 

 

 

 

 

 



 
 

Figure S11. Contributions to the PBL CO burden over the US during summer. Plotted are 

the mean contributions from background CO, direct biomass burning emissions, 

secondary production, and direct fossil fuel emissions based on the optimized GEOS-

Chem simulation. Data are plotted for the ACT1 timeframe (11 July to 29 August 2016). 

 

 

 



 

Figure S12. Contributions to the PBL CO burden over the US during winter. Plotted are 

the mean contributions from background CO, direct biomass burning emissions, 

secondary production, and direct fossil fuel emissions based on the optimized GEOS-

Chem simulation. Data are plotted for the ACT2 timeframe (21 January to 10 March 

2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

Figure S13. Contributions to the PBL CO burden over the US during fall. Plotted are the 

mean contributions from background CO, direct biomass burning emissions, secondary 

production, and direct fossil fuel emissions based on the optimized GEOS-Chem 

simulation. Data are plotted for the ACT3 timeframe (22 September to 13 November 

2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure S14. Contributions to the PBL CO burden over the US during spring. Plotted are 

the mean contributions from background CO, direct biomass burning emissions, 

secondary production, and direct fossil fuel emissions based on the optimized GEOS-

Chem simulation. Data are plotted for the ACT4 timeframe (28 March to 20 May 2018). 

 

 

 

 

 

 

 

 



 

Figure S15. Contributions to the PBL CO burden over the US during summer. Plotted are 

the mean contributions from background CO, direct biomass burning emissions, 

secondary production, and direct fossil fuel emissions based on the optimized GEOS-

Chem simulation. Data are plotted for the ACT5 timeframe (7 June to 27 July 2019). 

 

 

 



 
 

 

Figure S16. North American CO sources based on the prior inventories employed in this 

work. Left column: CO directly emitted from anthropogenic sources. Middle column: CO 

emitted from open burning. Right column: biogenic emissions of isoprene, a key CO 

precursor.  

 

 

 

 

 

 

 

 

 



Table S1. Timeframe and flight hours for the ACT-America and GEM airborne 

campaigns.  

 

Campaign Year Season Start Date End Date Flight Hours 

ACT1 2016 Summer 11 July 29 August 218 

ACT2 2017 Winter 21 January 10 March 210 

ACT3 2017 Fall 22 September 13 November 192 

ACT4 2018 Spring 28 March 20 May 197 

ACT5 2019 Summer 7 June 27 July 183 

GEM1 2017 Summer 12 August 24 August 40 

GEM2 2018 Winter 17 January 28 January 36 

 

 

 

Table S2. Statistical comparison of CO mixing ratios from the prior and optimized GEOS-

Chem simulations against independent airborne observations from the ACT5, GEM1, and 

GEM2 campaigns. 

 

 RMSE1 (ppb) R Bias Mean (ppb) 

 Prior Post Prior Post Prior  Post 

ACT5 

(summer) 
28.2       23.2 0.51     0.57 14.0 7.8 

GEM1 

(summer) 
57.8      35.8 0.23     0.06 

 

48.4 

 

12.5 

GEM2 

(winter) 
60.9     59.1 0.36     0.32 

 

21.9 

 

11.8 

 
1 Root mean square error. 

 

 

 

 

 

 

 

 



Table S3. Seasonal CO source optimization performed separately for the C-130H and 

B200 ACT-America datasets. 

 

  CO𝑢𝑠𝑛𝑒𝑖  CO𝑝𝑟𝑜𝑑_𝑣𝑜𝑐 

Intercept VIF2 

RMSE (ppb)3 R Bias Mean 

 Aircraft Scale 

factor 

Mean 

(ppb) 

Scale 

factor 

Mean 

(ppb) 

Prior Post Prior Post Prior  Post 

ACT1 

(summer) 

B200 0.54  

0.051 

13.1 0.96  

0.02 

25.4 0.09   

0.3  

3.37 26.2 16.2 0.76 0.81 17.7 0.4 

C-130H 

 

0.87  

   0.09 

13.4 0.74  

0.02 

25.3 8.28   

0.3 

2.74 26.6 17.3 0.74 0.80 17.4 2.1 

ACT2 

(winter) 

B200 0.86  

0.04 

13.4   0.43   

0.4 4 

 21.7 16.7 0.66 0.65 14.3 0.4 

C-130H 

 

0.67  

0.04 

11.8   5.5   

0.48 

 21.0 13.7 0.75 0.77 16.0 3.8 

ACT3 

(fall) 

B200 0.65  

0.04 

17.5  

 

 6.4  

0.6 

 13.6 14.4 0.79 0.75 2.1 6.1 

C-130H 

 

0.79  

0.03 

15.7   4.2  

0.41 

 13.0 13.6 0.79 0.76 3.2 4.2 

ACT4 

(spring) 

B200 0.76  

0.02 

15.6   -4.5  

0.44 

 17.8 17.5 0.63 0.59 7.8 -4.4 

C-130H 

 

0.65  

0.03 

20.29   2.61  

0.61 

 18.8 16.0 0.71 0.68 11.3 2.8 

 

1 Stated uncertainties reflect 95% confidence intervals computed through bootstrap 

resampling. 

2 Variance inflation factor. 

3 Root mean square error. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4. Seasonal CO source optimization performed with and without ATom-based 

boundary condition correction. 

 
  CO𝑢𝑠𝑛𝑒𝑖 CO𝑝𝑟𝑜𝑑_𝑣𝑜𝑐 

Intercept VIF2 

RMSE (ppb)3 R Bias Mean 

 CO𝑏𝑐 Scale 

factor 

Mean 

(ppb) 

Scale 

factor 

Mean 

(ppb) 

Prior Post Prior Post Prior  Post 

ACT1 

(summer) 

Corrected 0.66  

0.051 

13.2 0.91  

0.03 

25.4 -0.2  0.3  3.1 26.4 16.8 0.75 0.81 17.6 -2.5 

Uncorrected 0.69  

  0.05 

13.22 0.85  

0.02 

25.4 2.7   

0.3 

2.1 26.4 17.0 0.75 0.80 11.7 -1.2 

ACT2 

(winter) 

Corrected 0.79  

0.03 

12.77   1.8  

 0.4  

 21.4 15.5 0.69 0.69 14.8 1.7 

Uncorrected 0.85  

0.03 

12.77   -4.3   

0.3 

 21.4 15.5 0.69 0.74 14.8 -4.2 

ACT3 (fall) Corrected 0.69  

0.03 

16.77  

 

 5.5  

0.5 

 13.4 14.2 0.79 0.75 2.5 5.5 

Uncorrected 0.66  

0.03 

16.77   6.7  

0.5 

 13.4 14.7 0.79 0.75 2.6 6.7 

ACT4 

(spring) 

Corrected 0.74  

0.02 

16.94   -2.7  

0.4 

 18.1 17.0 0.65 0.61 8.8 -2.6 

Uncorrected 0.75  

0.02 

16.94   -3.2  

0.4 

 18.1 17.2 0.65 0.60 8.8 -3.0 

 

 
1 Stated uncertainties reflect 95% confidence intervals computed through bootstrap 

resampling 
2 Variance inflation factor. 
3 Root mean square error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S5. Seasonal CO source optimization for ACT1-ACT4 with alternative tracer 

groupings: 1) CO𝑢𝑠𝑛𝑒𝑖 and 2) the sum of all other regional source tracers (CO𝑝𝑟𝑜𝑑_𝑣𝑜𝑐 +

CO𝑝𝑟𝑜𝑑_𝑜𝑡ℎ + CO𝑐𝑎𝑚𝑥 + CO𝑏𝑏). 

 
 CO𝑢𝑠𝑛𝑒𝑖 CO𝑝𝑟𝑜𝑑𝑣𝑜𝑐 +𝑏𝑏+𝑐𝑎𝑛𝑎𝑚𝑒𝑥 

Intercept VIF2 

RMSE3 (ppb) R Bias Mean 

 Scale 

factor 

Mean 

(ppb) 

Scale 

factor 

Mean 

(ppb) 

Prior Post Prior Post Prior Post 

ACT1 

(summer) 

0.58  

0.051 

13.2 0.96  

0.02 

26.7 -0.4  0.3  2.9 26.4 16.6 0.75 0.81 17.6 -0.3 

ACT2 

(winter) 

0.85  

0.03 

12.77 0.7  

0.07 

7.1 3.1   

0.5 

1.1 21.4 15.6 0.69 0.70 14.8 3.1 

ACT3 

(fall) 

0.82  

0.03 

16.77 0.55  

0.01 

14.6 5.5   

0.5 

1.2 13.4 15.9 0.79 0.76 2.5 10.1 

ACT4 

(spring) 

0.70  

0.02 

16.94 1.1  

0.05 

12.6 -3.6  0.5 1.4 18.1 17.2 0.65 0.61 8.8 -3.6 

 
1 Stated uncertainties reflect 95% confidence intervals computed through bootstrap 

resampling 
2 Variance inflation factor. 
3 Root mean square error. 

 

 


