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Abstract

As the largest river basin on Earth, the Amazon is of major importance to the world’s climate and water resources. Over the

past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and

the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite

RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon

water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses.

At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations,
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such as the characterization of “rainfall hotspots” in the Andes-Amazon transition, evapotranspiration rates, and variations of

surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to

our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented

satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this

review aims to guide future research agenda towards an integrated monitoring and understanding of the Amazon water from

space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great

challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure.
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 38 

Abstract 39 

As the largest river basin on Earth, the Amazon is of major importance to the world's climate and 40 

water resources. Over the past decades, advances in satellite-based remote sensing (RS) have 41 

brought our understanding of its terrestrial water cycle and the associated hydrological processes 42 

to a new era. Here, we review major studies and the various techniques using satellite RS in the 43 

Amazon. We show how RS played a major role in supporting new research and key findings 44 

regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking 45 

investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of 46 

several hydrological processes was only possible with the advent of RS observations, such as the 47 

characterization of "rainfall hotspots" in the Andes-Amazon transition, evapotranspiration rates, 48 

and variations of surface waters and groundwater storage. These results strongly contribute to the 49 

recent advances of hydrological models and to our new understanding of the Amazon water 50 

budget and aquatic environments. In the context of upcoming hydrology-oriented satellite 51 

missions, which will offer the opportunity for new synergies and new observations with finer 52 

space-time resolution, this review aims to guide future research agenda towards an integrated 53 

monitoring and understanding of the Amazon water from space. Integrated multidisciplinary 54 

studies, fostered by international collaborations, set up future directions to tackle the great 55 

challenges the Amazon is currently facing, from climate change to increased anthropogenic 56 

pressure. 57 

 58 

Plain Language Summary 59 

The Amazon basin is the largest river basin in the world, characterized by complex hydrological 60 

processes that connect high rates of precipitation, extensive floodplains, dense tropical forests, 61 

complex topography, and large variations in freshwater storage and discharge. It plays a key role 62 

in the water, energy and carbon cycles and interacts with the global climate system. Earth 63 

observations have played a major role in supporting research in Amazon hydrology, and the 64 

characterization of several hydrological processes was only possible with the help of remote 65 

sensing data. The basin is now facing great risk under current climate change and increased 66 

anthropogenic pressure and the resulting environmental alterations require a better understanding 67 

of the overall basin’s water cycle across scales. We review the strengths and limitations of 68 

observations from satellites in the context of the current and upcoming hydrology-oriented 69 

satellite missions, and we make recommendations for improving satellite observations of the 70 

Amazon basin water cycle, along with an interdisciplinary and stepwise approach to guide 71 

research for the next decades. 72 
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1. Introduction 102 

The Amazon River basin (AB) is the major hydrological system of the world (~6 million 103 

km2) with a diverse rivers, floodplains and wetlands (Latrubesse et al., 2017; Figure 1). It spans 104 

over seven countries and it hosts four of the ten largest rivers in the world, namely the Solimões-105 

Amazonas, Madeira, Negro, and Japurá rivers (Figure 2). It receives high annual rainfall rates 106 

(~2200 mm yr-1 , Builes‐Jaramillo & Poveda, 2018; Espinoza et al., 2009) and around half of the 107 

precipitation in the AB is recycled by local evapotranspiration (Salati et al., 1979; Satyamurty, 108 

da Costa, & Manzi, 2013) providing moisture to southern parts of South America. The Amazon 109 

River then flows into the Atlantic Ocean with an average annual discharge of 206 x 103 m3s-1 110 

(Callède et al., 2010), amounting to almost 20% of the total global freshwater reaching the ocean 111 

annually and exports the largest sedimentary supply to the ocean (1.1 x 109 tons per year; 112 

Armijos et al., 2020). 113 
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The high rates of precipitation, evapotranspiration, and large variations in freshwater 114 

storage and river discharge make the AB a key player in the global climate system, with large 115 

contributions to the water, energy, and carbon cycles (Gash et al., 2013; Nagy et al., 2016). 116 

Amazon surface waters, for instance, are a major source and sink of carbon dioxide (Abril et al., 117 

2014; Amaral et al., 2020; Guilhen et al., 2020; Raymond et al., 2013; Richey et al., 2002) and 118 

the largest natural geographic source of methane in the tropics (Kirschke et al., 2013; Melack et 119 

al., 2004; Pangala et al., 2017; Pison et al., 2013). Seasonal variations in water contribute to the 120 

formation of tropical forests (Leite et al., 2012), maintain high aquatic productivity (Melack & 121 

Forsberg, 2001) and biodiversity (Junk, 1997; Junk et al., 2010), and influence fish distributions 122 

and fisheries yield (Junk et al., 2010; Lobón-Cerviá et al., 2015). The AB hosts ~40% of the 123 

world tropical forest and ~15% of global land biodiversity (Marengo et al., 2018). AB is the 124 

home of local people that rely on rivers as transportation corridors, and utilize these 125 

environments for their subsistence (A. B. Anderson et al., 1991; Campos-Silva et al., 2020; Endo 126 

et al., 2016). AB also serves the broader South American population in terms of energy, food and 127 

other forest products  128 

 129 
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Figure 1. (a) MODIS image of the central AB, characterized by large floodplains (Source: 131 

NASA catalog; https://visibleearth.nasa.gov/images/62101/the-amazon-brazil/62104l); (b) 132 

Sentinel-1 image of rivers and lakes of the upper Solimões River (Source: ESA catalog; 133 

https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River); (c) MODIS image 134 

showing the reduced cloud cover over water bodies (Source: NASA catalog; 135 

https://earthobservatory.nasa.gov/images/145649/mapping-the-amazon); (d) Aerial view of Rio 136 

Branco (Photo by Thiago Laranjeira); (e) Floodplain during the high water (Photo by João Paulo 137 

Borges Pedro); (f) Channel (Photo by Jefferson Ferreira-Ferreira); (g) Community at the river 138 

bank (Photo by Thiago Laranjeira); (h) Manatee (Photo by Amanda Lelis); (i) Arapaima 139 

(Pirarucu) fish, the largest scaled freshwater in the world (Photo by Bernardo Oliveira). 140 

 141 

The region is now facing risks under current climate and anthropogenic changes, and 142 

changes in Amazon hydrology could have substantial impacts globally (Jimenez et al., 2019). In 143 

the past decades, the AB experienced several intense climatic events, such as extreme droughts 144 

and floods, with no equivalent in the last 100 years (Barichivich et al., 2018; Marengo & 145 

Espinoza, 2016). Severe droughts can lead to environmental disturbances, from increased fire 146 

occurrence (Zeng et al., 2008) to abrupt shifts in fish assemblages (Röpke et al., 2017). 147 

Moreover, the accumulated negative impacts of increased human interventions across the region, 148 

such as damming (Forsberg et al., 2017; Latrubesse et al., 2017), deforestation (M. E. Arias et 149 

al., 2020; Coe et al., 2009; Leite-Filho et al., 2020; Leite et al., 2012), fires (Aragão et al., 2008; 150 

Xu et al., 2020; Zeng et al., 2008), and mining (Abe et al., 2019; Lobo et al., 2015), will possibly 151 

trigger major modifications that could affect the AB water cycle, although they provide a 152 

fundamental basis for calibrating and validating RS data. 153 

Characterizing and understanding the dynamics of the Amazon water cycle is of primary 154 

importance for climate and ecology research and for the management of global water resources. 155 

Consequently, there is a need for a comprehensive monitoring of the spatial-temporal dynamic of 156 

the Amazon water cycle components and how they interact with climate variability and 157 

anthropogenic pressure. In large and remote tropical watersheds such as the AB, in situ 158 

observational networks are difficult to operate and maintain, and they are not capable of 159 

monitoring all components of the water cycle. 160 

While the AB was in the spotlight of international scientific discussion during the last 161 

decades, the understanding of AB hydrology coevolved with another groundbreaking field: the 162 

remote sensing (RS) of terrestrial water cycle. In this context, the AB has been an ideal 163 

laboratory for the seminal development of RS techniques with the advent of Earth Observation 164 

(EO) and these advances have fostered the scientific understanding of AB hydrology, ecosystems 165 

and environmental changes. For example, the first applications of altimeter and gravimetric 166 

satellites to characterize, respectively, surface water elevation (Guzkowska et al., 1990) and total 167 

water storage variations (Tapley et al., 2004) were performed in the AB due to its wide river and 168 

large spatial and temporal changes of freshwater. Pioneering RS applications also include 169 

microwave, Synthetic-Aperture Radar (SAR) and interferometric mapping of large scale flood 170 

inundation and characterization of sediment dynamics (Alsdorf et al., 2000; Hess et al., 2003; 171 

Mertes et al., 1993; Sippel et al., 1994). Since then, several applications using RS data have been 172 

carried out in other basins worldwide (e.g., Alsdorf et al., 2021). All these important 173 

developments have been carried out by a diverse community of scientists with different interests 174 

https://visibleearth.nasa.gov/images/62101/the-amazon-brazil/62104l
https://www.esa.int/ESA_Multimedia/Images/2020/09/Amazon_River
https://earthobservatory.nasa.gov/images/145649/mapping-the-amazon
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and views on the AB water cycle, and surprisingly, there is a lack of review articles analyzing 175 

the continuous growth of publications that make use of RS observations to study the hydrology 176 

of the region. 177 

Here we review the various achievements of more than three decades of scientific 178 

advances on the hydrology of the AB from RS (Figure 2), and present perspectives, currently 179 

fostered by an unprecedented availability of satellite observations and the upcoming launch of 180 

dedicated hydrology satellites, such as the Surface Water and Ocean Topography (SWOT) or the 181 

NASA-ISRO SAR mission (NISAR). This work reunited experts on RS of different hydrological 182 

processes of the AB to review specific topics and discuss paths towards scientific advances as 183 

well as the opportunities shaping this field for the next decades. Reviews account for 184 

hydrological variables as precipitation, evapotranspiration, surface water elevation, surface water 185 

extent, floodplain and river channels topography, water quality (e.g., estimation of sediments, 186 

chlorophyll, and dissolved organic matter), total water storage and groundwater storage that are 187 

presented in separate sections (Figure 2). Each section describes how the variable is retrieved 188 

from RS observations, presents the scientific advances that have been achieved from this 189 

information, as well as various applications in the AB and discusses future challenges. Then, 190 

four sections are dedicated to the integration of RS data in the fields of water budget closure, 191 

hydrological and hydraulic modelling, aquatic environments and environmental changes over the 192 

Amazon. Section 7 summarizes the scientific advances, the knowledge gaps and the research 193 

opportunities regarding AB hydrology and ecosystems, including the forthcoming satellite 194 

missions. It also presents how the lessons learnt from AB experiences are benefiting other large 195 

river basins worldwide. The two final parts discuss how to move forward from the scientific 196 

advances toward a basin-scale water resources planning and new environment monitoring tools, 197 

and highlight our recommendations that set forward the research agenda of Amazon hydrology 198 

from space for the coming decade. 199 

 200 
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 201 

Figure 2. Location of the AB in South America, and representation of the hydrological variables 202 

observed by RS techniques, with the respective section numbers as addressed in this review. 203 

 204 

2. Precipitation  205 

Precipitation is a crucial component of the water cycle (Bookhagen & Strecker, 2008; J. 206 

C. Espinoza Villar, Ronchail, et al., 2009; Salati & Vose, 1984; Trenberth, 2011), characterized 207 

by high spatial and temporal variability. In the AB, precipitation is related to complex 208 

interactions of various large-scale physical and dynamic processes as well as local features, 209 

which are responsible for the temporal and spatial distribution of precipitation (Figueroa & 210 

Nobre, 1990). For instance, in addition to the orographic rains that occur in the transition 211 

between the Andes mountains and the Amazon, the substantial transpiration from the forest 212 

contributes to abundant water fluxes to the atmosphere, which eventually returns to the land as 213 
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recycled precipitation and contributes up to around 30% of the basin's rainfall (Bosilovich & 214 

Chern, 2006; Eltahir & Bras, 1994; Van Der Ent et al., 2010; Fisher et al., 2009; Salati & Nobre, 215 

1991; Staal et al., 2018; Yang & Dominguez, 2019; Zemp et al., 2014). This contribution is 216 

normally presented as a convection process, which helps maintaining a climatological upper-217 

level, large-scale circulation known as the Bolivian high (Lenters & Cook, 1997; Virji, 1981), 218 

and together with other related precipitation patterns are affected by both global-scale 219 

phenomena (e.g., El Niño–Southern Oscillation -ENSO, Tropical Atlantic sea surface 220 

temperature -SSTemp) and local forcing, such as land cover structures (Aceituno, 1988; Koren et 221 

al., 2008; Leite-Filho et al., 2020; Lin et al., 2006). 222 

Mainly because of its large extent, precipitation regimes in the AB differ from one region 223 

to another in terms of seasonal pattern (Figure 3c to f) and on a more local scale, rainfall 224 

regimes are highly variable in space (P. A. Arias et al., 2021; Espinoza et al., 2009). Therefore, 225 

accurate and reliable rainfall measurements are crucial for the study of climate trends and 226 

variability, and also for the management of water resources and weather, climate and 227 

hydrological forecasting in this region (S. Jiang et al., 2012; X. Liu et al., 2017; Yilmaz et al., 228 

2005). 229 

Gauge observations are traditionally used to measure precipitation directly at the land 230 

surface (Kidd, 2001), and various large-scale datasets at different scales have been developed 231 

from these in situ observations (A. Becker et al., 2013; Kidd et al., 2017). However, in situ 232 

measurements have several drawbacks, such as incomplete cover over sparsely populated areas, 233 

a common feature of Amazonian countries. In addition, the variability of rainfall means that the 234 

measurements from in situ stations are typically not representative of the surrounding areas, or 235 

may be inaccurate (Kidd et al., 2017; Prabhakara et al., 1986). In the AB, for instance, rainfall 236 

stations are typically located in the cities, placed near to the main tributaries, and low density of 237 

stations are observed in tropical forest and in regions not accessible. Therefore, the low density 238 

of the rain gauge network and the lack of homogeneity in the time series prevent reliable 239 

monitoring using ground data (Debortoli et al., 2015; Delahaye et al., 2015; J. C. Espinoza 240 

Villar, Ronchail, et al., 2009; Ronchail et al., 2002). Collecting complementary observations to 241 

in situ measurements is then fundamental to obtain estimation of rainfall over the continent’s 242 

surfaces (Van Dijk & Renzullo, 2011; Kidd & Levizzani, 2011; Wanders et al., 2014). 243 

 244 
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 245 

Figure 3. (a) Schematic representation of remote sensors for precipitation estimation on board 246 

satellites. (b) Illustration of the VIS/IR and MW coverage range for different cloud types. 247 

Precipitation climatology for (c) annual, (d) austral summer - DJF, and (e) austral winter - JJA 248 

from CHIRP v2 dataset (1981-2020) at 5 km spatial resolution and HOP dataset (1981-2009) 249 

(Espinoza et al., 2016; Guimberteau et al., 2012) in small boxes at left-bottom at ~100 km spatial 250 

resolution. (f) The annual regime for eleven large basins of the Amazon, based on HOP datasets 251 

(1981-2009) (bars) and the CHIRP based (1981-2020) in magenta lines. (g) Annual average 252 

negative (red scale) and positive (blue scale) bias of six precipitation RS-based and non-gauged-253 
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corrected products in the AB for the period 2000-2016, adapted from (Beck, Vergopolan, et al., 254 

2017). 255 

 256 

Satellite observations of precipitation have become available on a global scale in recent 257 

decades. These satellites mainly use infrared (IR) and microwave (MW) sensors to provide 258 

precipitation estimates using different techniques (Kidd & Huffman, 2011). The sensors used to 259 

estimate precipitation can be classified in three categories (Prigent, 2010): (i) visible/IR (VIS/IR) 260 

sensors on geostationary (GEO) and low Earth orbit (LEO) satellites, (ii) passive MW (PMW) 261 

sensors on LEO satellites, and (iii) active MW (AMW) sensors on LEO satellites. Imaging 262 

systems on GEO provide the rapid temporal update cycle needed to capture the growth and 263 

decay of precipitating cloud systems on a scale of several kilometers. Current systems provide 264 

rapid hourly updates in the VIS and IR spectrum, and for optically thick clouds the precipitation 265 

can be inferred from the energy reflected by the clouds and the temperature of the cloud top, 266 

respectively. MW based imagers on board LEO satellites are better suited than IR sensors for 267 

quantitative measurements of precipitation due to the well-established physical connection 268 

between the upwelling radiation and the underlying cloud precipitation structure (Turk et al., 269 

2000; Figure 3a and b). 270 

From these sensors a diverse range of retrieval algorithms has been developed to estimate 271 

precipitation, which require careful validation and provide information about their quality, 272 

limitations and associated uncertainties. These algorithms are mainly divided into the so-called 273 

“microwave-calibrated” and “morphing” methods (Huffman et al., 2007; Joyce et al., 2004; Kidd 274 

et al., 2003; Marzano et al., 2004; Paola et al., 2012). However, there are differences among 275 

these datasets due to shortcomings in the sources and in the generation of the products. 276 

Therefore, LEO MW, GEO VIS/IR, gauge-based and reanalysis data have been blended together 277 

to take advantage of the inherent relative benefits of each type of sensor and product (Figure 3a). 278 

This can increase accuracy, coverage, spatial-temporal resolution, spatial homogeneity and 279 

temporal continuity (Adler et al., 1994; Huffman et al., 1995; Joyce et al., 2004; Levizzani et al., 280 

2007; Sorooshian et al., 2002; Tapiador et al., 2004; Vicente et al., 1998; Xie et al., 2003). 281 

In terms of operationally available datasets, these include the Tropical Rainfall 282 

Measuring Mission (TRMM; Huffman et al., 2007), the Climate Hazards group InfraRed 283 

Precipitation (CHIRP; Funk et al., 2015), the Precipitation Estimation from Remotely Sensed 284 

Information using Artificial Neural Networks (PERSIANN; Ashouri et al., 2015), Integrated 285 

Multi-satellite Retrievals for GPM (IMERG; Huffman, Bolvin, & Nelkin, 2015; Huffman, 286 

Bolvin, Braithwaite, et al., 2015), Multi-Source Weighted-Ensemble Precipitation near-real-time 287 

(MSWEP-NRT; Beck et al., 2018) and the Climate Prediction Center (CPC) morphing technique 288 

(CMORPH; Joyce et al., 2004) products, among others. Although an increasing number of 289 

precipitation data sets with higher spatial and temporal resolution have been constructed and 290 

compared directly or through the application of hydrological models, uncertainty and 291 

inconsistency are found among the different data sets (Beck et al., 2018; Beck, Vergopolan, et 292 

al., 2017; Collischonn et al., 2008; Correa et al., 2017; Sun et al., 2018; Tapiador et al., 2017). A 293 

summary of satellite-derived rainfall data sets currently available for the AB region is provided 294 

in Table 1. 295 

 296 
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Table 1. Missions and products that provide rainfall estimates derived from RS data, including 297 

temporal-spatial resolution, data record, satellites used, algorithm retrieval and repository links 298 

(NRT - Near Real Time) 299 

Name Extended name 

Satellite 

adjusted 

with 

Coverage 
Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 
Reference / Link 

CMORPH v1.0 
CPC MORPHing technique 

(CMORPH) V1.0 
- 60° N/S 0.07° 30 min 1998–NRT (Joyce et al., 2004; Joyce & Xie, 

2011; Xie et al., 2017) 

www.cpc.ncep.noaa.gov 

https://rda.ucar.edu/datasets/ds502.

2 

ftp://ftp.cpc.ncep.noaa.gov/precip/

CMORPH_V1.0/CRT/ 

CMORPH-CRT 

v1.0 

CPC MORPHing technique 

(CMORPH) bias corrected 

(CRT) V1.0 

Gauge 60° N/S 0.07° 30 min 1998–2019 

GSMaP-Std v6 

Global Satellite Mapping of 

Precipitation (GSMaP) 

Moving Vector with Kalman 

MVK) Standard V6 

- 60° N/S 0.1° Hourly 2000–NRT 

(Ushio et al., 2009) 

http://sharaku.eorc.jaxa.jp/GSMaP

/ 
GSMaP-Std 

Gauge v7 

Global Satellite Mapping of 

Precipitation (GSMaP) 

Moving Vector with Kalman 

(MVK) Standard gauge-

corrected V7 

Gauge 60° N/S 0.1° Hourly 2000–NRT 

IMERGHHE v06 

Integrated Multi-satellitE 

Retrievals for GPM (IMERG) 

early run V06 

- Global 0.1° 30 min 2010-NRT 

(Huffman, Bolvin, & Nelkin, 

2015; Huffman, Bolvin, 

Braithwaite, et al., 2015; Tan et 

al., 2019) 

https://gpm1.gesdisc.eosdis.nasa.g

ov/data/GPM_L3/GPM_3IMERG

HHE.06/ 

https://gpm1.gesdisc.eosdis.nasa.g

ov/data/GPM_L3/GPM_3IMERG

DF.06/ 

IMERGDF v06 

Integrated Multi-satellitE 

Retrievals for GPM (IMERG) 

final run V06 

Gauge Global 0.1° Daily 
06/2000 - 

present 

PERSIANN 

Precipitation Estimation from 

Remotely Sensed Information 

using Artificial Neural 

Networks (PERSIANN) 

- 60° N/S 0.25° Hourly 03/2000–NRT 

(Ashouri et al., 2015; Nguyen et 

al., 2019; Sorooshian et al., 

2000)https://chrsdata.eng.uci.edu/ 

PERSIANN-

CCS 

Precipitation Estimation from 

Remotely Sensed Information 

using Artificial Neural 

Networks (PERSIANN) Cloud 

Classification System (CCS) 

- 60° N/S 0.04° Hourly 01/2003–NRT 

PERSIANN 

CDR v1R1 

Precipitation Estimation from 

Remotely Sensed Information 

using Artificial Neural 

Networks (PERSIANN) 

Climate Data Record (CDR) 

V1R1 

Gauge 60° N/S 0.25° Daily 1983–present 

SM2RAIN-CCI 

v2 

Rainfall inferred from 

European Space Agency’s 

Climate Change Initiative 

(CCI) satellite near-surface 

soil moisture V2 

Soil 

Moisture 

Quasi 

Global / 

Land 

0.25° Daily 
01/1998–

12/2015 

(Brocca et al., 2014; Ciabatta et 

al., 2018) 

https://zenodo.org/record/846260 

https://doi.org/10.5281/zenodo.846

259 

SM2RAIN-

ASCAT v1.2 

Rainfall inferred from 

Advanced SCATterometer soil 

moisture 

Soil 

Moisture 
Global 12.5 km Daily 2007-2019 

(Brocca et al., 2019) 

https://doi.org/10.5281/zenodo.363

5932 

GPM+SM2RAI

N v0.1 

Rainfall inferred from ASCAT 

H113 H-SAF, SMOS L3 and 

SMAP L3 soil moisture 

Soil 

Moisture 
Global 0.25° Daily 2007-2018 

(Massari, 2020) 

https://doi.org/10.5281/zenodo.385

4817 
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TMPA-3B42RT 

v7 

TRMM Multi-satellite 

Precipitation Analysis 

(TMPA) 3B42RT V7 

- 60° N/S 0.25° 3-hourly 03/2000–NRT 
(Huffman et al., 2007) 

https://disc.gsfc.nasa.gov/datasets/

TRMM_3B42RT_7/summary 

https://disc.gsfc.nasa.gov/datasets/

TRMM_3B42_7/summary 
TMPA-3B42 v7 

TRMM Multi-satellite 

Precipitation Analysis 

(TMPA) 3B42 V7 

Gauge 50° N/S 0.25° 3-hourly 
12/1997–

01/2020 

TMPA-3B43 v7 

TRMM Multi-satellite 

Precipitation Analysis 

(TMPA) 3B43 V7 

Gauge 50N-50S 0.25° Monthly 1998-2020 

(Huffman et al., 2010) 

https://disc2.gesdisc.eosdis.nasa.go

v/data/TRMM_L3/TRMM_3B43.

7/ 

GridSat v1.0 

P derived from the Gridded 

Satellite (GridSat) B1 thermal 

infrared archive v02r01 

- < 50° 0.1° 3-hourly 1983–2016 

(Knapp et al., 2011) 

https://www.ncdc.noaa.gov/gridsat

/ 

ERA5 -HRES 

European Centre for Medium-

range Weather 

Forecasts ReAnalysis 5 

(ERA5) High RESolution 

(HRES) 

 

Reanalysis Global 
0.28° (~31 

Km) 
Hourly 2008–NRT 

(Hersbach et al., 2018, 2020) 

ERA5 – EDA 

European Centre for Medium-

range Weather 

Forecasts ReAnalysis 5 

(ERA5) Ensemble Data 

Assimilation (EDA) ensemble 

mean 

Reanalysis Global ~0.56° Hourly 2008–NRT 

ERA5-Land 

European Centre for Medium-

range Weather 

Forecasts ReAnalysis 5 

(ERA5) 

Reanalysis Global 0.1° Hourly 
01/1981-

present 

https://cds.climate.copernicus.eu/c

dsapp#!/dataset/reanalysis-era5-

land 

CHIRP v2.0 

Climate Hazards group 

InfraRed Precipitation 

(CHIRP) V2.0 

Reanalysis 50° N/S 0.05° Daily 1981–NRT 
(Funk et al., 2015) 

https://data.chc.ucsb.edu/products/

CHIRP/daily/netcdf/ 

https://data.chc.ucsb.edu/products/

CHIRPS-2.0/global_daily/netcdf/ 
CHIRPS v2.0 

Climate Hazards group 

InfraRed Precipitation with 

Stations (CHIRPS) V2.0 

Gauge + 

Reanalysis 
50° N/S 0.05° Daily 

01/1981- 

present 

GPCP-1DD v1.2 

Global Precipitation 

Climatology Project (GPCP) 

1-Degree Daily (1DD) 

Combination V1.2 

Gauge Global 1° Daily 
10/1996-

11/2015 

(Huffman et al., 2001, 2016) 

https://rda.ucar.edu/datasets/ds728.

3 

GPCP-PEN v2.2 

Global Precipitation 

Climatology Project (GPCP) 

pentad precipitation analysis 

(PEN) 

Gauge Global 2.5° 5-daily 
01/1979-

06/2017 

Xie, Pingping, R.F. Adler, G.J. 

Huffman, D. Bolvin (2011): 

Global Precipitation Climatology 

Project - Pentad, Version 2.2. 

NOAA National Climatic Data 

Center. [07-2020]. 

https://cmr.earthdata.nasa.gov/sear

ch/concepts/C1214566485-

NOAA_NCEI 

http://apdrc.soest.hawaii.edu/dchar

t/index.html?dsetid=e53e32f2c760

e6375a4de86bd4718cba 

MERRA-2 

Modern-Era Retrospective 

Analysis for Research and 

Applications 2 

Gauge + 

Reanalysis 
Global ~0.5° Hourly 1980-NRT 

(Gelaro et al., 2017; Reichle et al., 

2017) 

MSWEP v2.2 

Multi-Source Weighted-

Ensemble Precipitation 

(MSWEP) V2.2 

Gauge + 

Reanalysis 
Global 0.1° 3-hourly 01/1979–NRT 

(Beck et al., 2019; Beck, Van Dijk, 

et al., 2017) 

www.gloh2o.org 

CMAP 
CPC Merged Analysis of 

Precipitation (CMAP) 
Gauge Global 2.5° Monthly 1979–present 

(Huffman et al., 1997) 

ftp://ftp.cpc.ncep.noaa.gov/precip/

cmap/ 
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CPC-Global 

CPC Unified Gauge-Based 

Analysis of Global Daily 

Precipitation 

Gauge Global 0.5° Daily 2006-present 

(M. Chen et al., 2008) 

https://ftp.cpc.ncep.noaa.gov/preci

p/CPC_UNI_PRCP/ 

PISCOp v2.1 

Peruvian Interpolated data of 

the SENAMHI’s 

Climatological and 

hydrological Observations 

Gauge + 

CHIRP 

v2.0 

Peruvian 

Amazon 
0.1° Daily 

01/1981 – 

12/2016 

(Aybar et al., 2019) 

https://piscoprec.github.io/ 

 300 

Precipitation information based on RS has contributed substantially in the last decades to 301 

the understanding of key processes causing spatial and temporal variability of precipitation, as 302 

well as local and regional atmospheric processes related to precipitations. These global or quasi 303 

global data sets generally provide records of precipitation suitable for climate and hydrological 304 

studies, such as hydrological reanalysis initiatives evaluated in the Amazon on regional (e.g., 305 

Correa et al., 2017; Wongchuig et al., 2019) and global scales (e.g. Balsamo et al., 2015; Rodell 306 

et al., 2004; Van Huijgevoort et al., 2013). For instance, many studies have used satellite rainfall 307 

databases to force hydrological models. One of the first studies was done in the Tapajós River 308 

basin, one of the major tributaries of the AB, using TRMM precipitation estimates as input to a 309 

precipitation-runoff model (Collischonn et al., 2008). In order to represent the interannual, 310 

intraseasonal (30 to 70 days, Kiladis and Mo, 1998) and multidecadal series in the AB, different 311 

research has been evaluated (Correa et al., 2017).  Satellite-based data sets were also used in 312 

water balance approaches to evaluate long term trends (Heerspink et al., 2020) and monthly 313 

variations of runoff (Builes‐Jaramillo & Poveda, 2018). In addition, hydrological extreme events 314 

have been reported in the AB during last decades, which has been possible by using satellite-315 

based rainfall estimates (Barichivich et al., 2018; Espinoza et al., 2012; Gloor et al., 2013; 316 

Marengo & Espinoza, 2016; Satyamurty, da Costa, Manzi, et al., 2013; Sena et al., 2012).  317 

Applications of precipitation databases to understanding of the hydrologic cycle through 318 

modeling is described in Section 6.2. 319 

However, due to inconsistencies between different databases, several evaluations of 320 

rainfall datasets were performed that consider the AB, from global evaluations (e.g. Beck et al., 321 

2018, 2017; Sun et al., 2018), only Amazon (e.g., Cavalcante et al., 2020; Correa et al., 2017; 322 

Espinoza, Ronchail, et al., 2019; Haghtalab et al., 2020; Paca et al., 2019; Zubieta et al., 2019)  323 

and in particular regions of Amazon (e.g., Avila-Diaz et al., 2020; Bookhagen & Strecker, 2008; 324 

Chavez & Takahashi, 2017; Espinoza et al., 2015; Killeen et al., 2007; Manz et al., 2017; Paccini 325 

et al., 2018; Zed Zulkafli et al., 2014; Getirana et al., 2011). These datasets perform differently 326 

according to the region and the time scale analyzed, which will be described in the following 327 

subsections together with the main scientific advances that have been elucidated. 328 

 Figure 3c-e show the cumulative rainfall for the annual, wet (DJF) and dry (JJA) period, 329 

respectively, for the AB. In these figures the Hydro-geodynamics of the AB Observatory 330 

(HYBAM) observed precipitation dataset (HOP), comprised of 752 daily rain gauge stations 331 

throughout the AB at 1° spatial resolution (Espinoza et al., 2016; Guimberteau et al., 2012), and 332 

the 5 km resolution CHIRP dataset, a non-gauged-corrected product, have been used. 333 

 Climatological studies in the AB that consider spatial patterns began in the 1980s. For 334 

instance, the evaluation of the outgoing longwave radiation (OLR) from polar orbiting satellites 335 

(mainly from NOAA), started in 1974, have been particularly useful for routine monitoring of 336 

cloudiness and deep convection areas over the tropics with pioneering work by Gruber & 337 

Krueger (1984) and Liebmann & Smith (1996). More regional rainfall patterns were revealed in 338 
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the transition between the Andes and the Amazon in the so-called "rainfall hotspots" region, 339 

where rainfall can reach values higher than 6000 mm yr-1, the highest rainfall in the AB (Chavez 340 

& Takahashi, 2017; Espinoza et al., 2015). This region is among the rainiest areas in the world 341 

according to the IMERG Grand Average Climatology dataset that covers June 2000 to May 2019 342 

and has the world's largest squall lines (quasi-linear convective systems; Garstang et al., 1994). 343 

Extreme vertical and horizontal structures occur due to the interactions between large-scale 344 

atmospheric circulation and massive topography that affect atmospheric convection, producing 345 

the rainfall hotspots during almost the whole year (Bookhagen & Strecker, 2008; J. C. Espinoza 346 

Villar, Guyot, et al., 2009; Killeen et al., 2007). In addition, changes in forest cover in the 347 

southern Amazon have been considered as a factor that may affect processes such as the 348 

presence of convective cells, resulting in marked spatial and temporal variability (Durieux et al., 349 

2003; Funatsu et al., 2012; Laurance & Bruce Williamson, 2001; Staal et al., 2020). 350 

Figure 3f shows the spatial distribution of the annual cycle of precipitation based on the 351 

CHIRP and HOP datasets. Annual cycles of precipitation over the AB vary significantly, mainly 352 

related to latitude, orography, and the influence of the large-scale atmospheric features (e.g., 353 

Intertropical Convergence Zone (ITCZ), South American Monsoon System (SAMS), South 354 

Atlantic convergence zone (SACZ; J. C. Espinoza Villar, Ronchail, et al., 2009). The bias 355 

performance of the datasets is shown in Figure 3g, which considers six non-gauged-corrected 356 

datasets (PERSIANN-CCS, MSWEP-ng v2, CHIRP v2.0, CMORPH v1.0, SM2RAIN-ASCAT 357 

and TMPA 3B42RT v7, adapted from Beck, Vergopolan, et al., 2017). The bias of total annual 358 

rainfall for the period 2000-2016 is plotted for negative and positive values, where at least one of 359 

these databases has detected an equal or greater value of bias. These satellite datasets were 360 

validated for the AB against global and local in situ stations (e.g., GHCN, the Global Summary 361 

of the Day (GSOD) database, the Latin American Climate Assessment & Dataset). The 362 

evaluation of these datasets showed large biases in the occidental and southern AB, covered by 363 

the Andean headwaters. 364 

Over the Andes-Amazon transition region RS rainfall data have contributed to 365 

understanding the main orographic processes related to anabatic and katabatic winds, which are 366 

essential to explain the diurnal cycle of precipitation in this region (Junquas et al., 2018). In this 367 

specific region the bias patterns of the datasets are in agreement with other research (Chavez & 368 

Takahashi, 2017; Espinoza et al., 2015) only in the Peruvian rainfall hotspots, which 369 

underestimated total annual precipitation by about 35% to 40% from the TRMM-PR data set for 370 

the period 1998-2012. The general bias in some Andes regions can be explained, in part, by the 371 

predominance of cirrus clouds (confused by satellites sensors with convective clouds such as 372 

cumulonimbus that have similar cloud top temperature (Paredes Trejo et al., 2016; Thiemig et 373 

al., 2013, Figure 3b), what occurs, for instance, over the east of the southern Andes mountains 374 

(Altiplano Plateau, which extends between 15°S and 22°S). This mainly happens during the wet 375 

austral summer (Barahona et al., 2017; Dinku et al., 2011; Viale et al., 2019), and where these 376 

cloud formations are orographically dependent (Chavez & Takahashi, 2017; Giovannettone & 377 

Barros, 2009; Junquas et al., 2018; Saavedra et al., 2020; Satgé et al., 2016, 2017). 378 

Mesoscale circulation between land surface and large water bodies in the AB produce 379 

river and coastal breeze. These systems affect the moisture transport and the spatial rainfall 380 

pattern at local scale (Fitzjarrald et al., 2008; M. J. Santos et al., 2019; Silva Dias et al., 2004). 381 
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RS data helped to reveal that river breezes reduced rainfall over the Amazon water bodies (rivers 382 

and large reservoirs) through the use of TRMM (Paiva et al., 2011).  383 

Changes in land cover can produce complex mesoscale circulation patterns, including the 384 

so-called “deforestation breeze” that can happen over small deforested patches but loses strength 385 

at deforestation scales of around 100 km (Lawrence & Vandecar, 2015; Saad et al., 2010). These 386 

deforestation-induced circulation patterns can significantly alter rainfall patterns at local to 387 

continental scales, with such changes being observed over the AB in recent decades (Butt et al., 388 

2011; Khanna et al., 2017; Leite-Filho et al., 2019). The effects of deforestation on rainfall will 389 

be further discussed in Section 6.4. 390 

Remotely sensed data have been used to evaluate the temporal variability on different 391 

time scales. For instance, spatial synoptic changes in rainfall patterns were evaluated using RS 392 

information due to the heterogeneous spatial distribution of weather stations and inconsistent 393 

temporal measurements of gauge data (Arvor et al., 2017; Silva Junior et al., 2018). Other studies 394 

on a daily scale focused on evaluating the performance of the TMPA V7, TMPA RT, CMORPH 395 

and PERSIANN datasets to represent the precipitation concentration index during the period 396 

2001–2009 (Zubieta et al., 2019). This index is an indicator for temporal precipitation 397 

distribution. The authors concluded that the best products (CMORPH and TMPA V7) can be an 398 

alternative source of data to detect changes in daily precipitation concentration during dry or wet 399 

seasons in regions of the AB that experience extreme events. 400 

Considering that one of the main characteristics of convection processes in tropical 401 

regions is their strong relationship with the diurnal cycle (Duvel & Kandel, 1985; Minnis & 402 

Harrison, 1984), pioneer studies were performed since the 1990s for the understanding of 403 

convective patterns in the AB. Based on nine years (1983–1991) of data from GEO IR satellites 404 

(i.e., the B3 ISCCP product) with 3-h temporal resolution, Garreaud & Wallace (1997) 405 

documented several features of the diurnal march of the frequency of convective cloudiness. 406 

Data from SSM/I onboard the Defense Meteorological Satellite Program via application of the 407 

Goddard Profiling algorithm were also used to characterize the climatology (10-yr) and the 408 

diurnal variability (6-yr) of the rainfall in the AB (Negri et al., 2000). R. Oliveira et al. (2016) 409 

evaluated two GPM products in order to reproduce the diurnal cycle of precipitation in the 410 

central AB and obtained similar results to Angelis et al. (2004), who showed that rain tends to 411 

occur mainly during the afternoon in the central AB. 412 

Rainfall information from RS has helped to identify the time of wet season beginning and 413 

ending (Wright et al., 2017), which is especially important because the prolongation of the dry 414 

season increases the vulnerability of local ecosystems and agriculture to drought and fire events 415 

(P. A. Arias et al., 2015; Fu et al., 2013; Marengo et al., 2011). One of the first RS-based 416 

assessments found that the onset of the AB wet season typically occurs within a single month 417 

(Horel et al., 1989). Negri et al. (1994) produced a regional precipitation climatology over the 418 

AB during the wet season (January–May) using three years of the twice daily Special Sensor 419 

Microwave/Imager (SSM/I) data. Changes in the seasonal cycle amplitude were also observed 420 

with  the TRMM data (Liang et al., 2020). 421 

RS information supported important developments in the understanding of the processes 422 

governing the seasonality of rainfall in the AB. The availability of satellite-derived precipitation, 423 

OLR and reanalysis allowed the description of the thermally-driven seasonal patterns that form 424 

the SAMS, which was previously not understood as a monsoon partly because it lacks the 425 
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classical seasonal inversion of absolute zonal winds (J. Zhou & Lau, 1998). An uncommon 426 

characteristic of the monsoon over the AB elucidated by these RS products is that the onset of 427 

rains occurs before the southward migration of the ITCZ, and that the Bolivian high pressure 428 

zone characteristic of the SAMS is partly generated by the latent heat release from precipitation 429 

over the AB before the traditional monsoon onset (Fu et al., 1999). 430 

At seasonal to intraseasonal scales, OLR data from NOAA polar-orbiting satellites was 431 

used to identify the intensity and spatial features of the SACZ in the Brazilian AB region (L. M. 432 

V. Carvalho et al., 2004). The SACZ is a northwest-southwest convection band that extends from 433 

the AB to the southeastern Atlantic Ocean, and its intensity and geographical distribution are 434 

associated with extreme rainfall events in the southern AB.  At the intraseasonal scale, the large-435 

scale Madden–Julian oscillation (MJO; Madden & Julian, 1994) has been established as the 436 

dominant mode of variability across the tropics, modulating the SACZ and other climatological 437 

features over the AB. Mayta et al. (2019) and Vera et al. (2018) used OLR data as a proxy of 438 

convection to analyze the intraseasonal variability of precipitation in South America, and, in 439 

particular, E. B. De Souza & Ambrizzi (2006) showed that the MJO is the main atmospheric 440 

mechanism of rainfall variability on intraseasonal timescales over the eastern Amazon during the 441 

wet season, which was confirmed through the use of rain gauge network by Mayta et al. (2019). 442 

Moreover, RS information has contributed to understanding the mechanisms of atmospheric 443 

circulation and rainfall datasets performance of seasonal and intraseasonal precipitation data sets. 444 

For instance, in the Andes-Amazon transition region, particular atmospheric circulation patterns 445 

(CP) were described by Paccini et al. (2018), where large underestimations of rainfall from 446 

TRMM 3B42, TRMM 2A25 RP and CHIRPS occur when the CP is dominated by northerly 447 

wind anomalies over tropical South America. In addition, large overestimations occur in the 448 

southern Amazonia, during a CP with intermediate state between the northern and southern wind 449 

anomalies and where the convergence of winds are predominant in the central and western 450 

Amazon. 451 

Changes in spatial and temporal distribution of rainfall in the AB may provide an 452 

indicator of climate variability and in turn are an indicator of hydrological variability, including 453 

extreme events, such as floods and droughts (e.g., Lewis et al., 2011; Marengo & Espinoza, 454 

2016). Direct evaluation of these datasets have been done to assess the temporal evolution of 455 

rainfall through analysis of occurrence indexes such as the dry‑day frequency and the wet‑day 456 

frequency through the CHIRPS dataset (Espinoza, Ronchail, et al., 2019); or the assessment of 457 

the trend in the length of the wet season in southern AB with the PERSIANN-CDR dataset 458 

(Arvor et al., 2017). The interannual evolution of the hydrological processes was evaluated 459 

through a water balance analysis by using CHIRPS dataset (Espinoza, Sörensson, et al., 2019). A 460 

similar approach, the long-term surface water balance over the Andes-Amazonia system, was 461 

performed by Builes‐Jaramillo & Poveda (2018) through the use of in situ (precipitation from 462 

GPCC and runoff from HYBAM) and RS-based information (evapotranspiration from 463 

ORCHIDEE, GLEAM, MPI and MOD16), which pointed out that failures and scarcity of 464 

information in the high Andes induce uncertainties and errors in the water budget. In addition, 465 

CHIRPS v2.0 was used to analyze precipitation anomalies for the identification of spatial 466 

patterns of drought over the AB related to the tropical Atlantic and Pacific SSTemp anomalies 467 

and different ENSO events (Jimenez et al., 2019). 468 
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Rainfall estimations by RS since the 1980s in the AB have depicted more amounts of rain 469 

in the north (Espinoza, Ronchail, et al., 2019; Paca et al., 2020; G. Wang et al., 2018) and lower 470 

amounts in the south (Espinoza, Ronchail, et al., 2019; Leite-Filho et al., 2019). This north-south 471 

contrasting pattern is translated to the hydrological behavior of the main basins that show an 472 

intensification of the hydrological regime in the main course of the AB (Barichivich et al., 2018; 473 

Heerspink et al., 2020). 474 

AB characteristics pose unique challenges to satellite rainfall retrieval algorithms, both 475 

from IR and MW sensors, considering the contrast in terms of orography, climate and changes in 476 

vegetative cover. For IR, challenges occur mainly for warm orographic rains (shown north of 477 

10°S), where fixed brightness temperature thresholds (cooler than warm orographic clouds) tend 478 

to underestimate rainfall amounts. This would be happening in the hot-spots regions in the 479 

Peruvian and Bolivian Andes-Amazon transition (Espinoza et al., 2015). For the MW algorithms, 480 

rain overestimation comes from cold surfaces and ice over mountain tops which can be 481 

interpreted as precipitation (Dinku et al., 2011; Toté et al., 2015). 482 

Since satellite-based rainfall estimates are adjusted based on observations from rain 483 

gauges, the accuracy of estimated rainfall values can be increased. However, this requires a 484 

network of rain gauges with adequate spatial coverage in key areas of the Amazonia and high-485 

quality records for proper calibration and validation. In the case of in situ stations, some aspects 486 

should be considered, for instance, that rainfall estimates are likely to be biased by river breeze at 487 

some times of the year, as meteorological stations are usually located near large rivers and close 488 

to most cities (Paiva, Buarque, et al., 2011; M. J. Santos et al., 2019; Silva Dias et al., 2004). 489 

Current satellite-borne radar missions, such as TRMM Precipitation Radar, CloudSat’s 490 

Cloud Profiling Radar, or GPM Dual frequency Precipitation Radar, have low temporal 491 

resolution, therefore are unable to observe the short-time evolution of weather processes. To 492 

overcome this limitation, using only radars on LEO, it is necessary to have a constellation of 493 

them. In recent years nanosatellites (e.g., SmallSat or CubeSat platforms) have the capability to 494 

miniaturize, reduce cost and simultaneously preserve the fundamental requirements of their 495 

larger and more expensive peers. In this sense, RainCube is a potential technology demonstration 496 

mission to enable precipitation radar technologies on a low-cost platform (Peral et al., 2019).  497 

Ground-based radars can measure the vertical structure of rain since its structure depends 498 

on the type of rain, but with better temporal resolution than MW on board satellites (Kumar et 499 

al., 2020). A recent example is the operational algorithm RAdar INfrared Blending algorithm for 500 

Operational Weather monitoring, which merges ground radar network with VIS and IR images 501 

from satellites to provide rainfall pattern and intensity over Italy (Adderio et al., 2020).New 502 

methods have emerged that take advantage of the global cell phone network and its density to 503 

estimate rainfall intensities, mainly in urban areas, but which can also be used in regions with 504 

high topographical variability (Gosset et al., 2016; Overeem et al., 2013, 2016; van het Schip et 505 

al., 2017), however they have not yet been explored in the AB. In general, monthly and annual 506 

datasets are useful because they have an adequate agreement to the observations, but not with 507 

daily and much less sub-daily data.  508 

 509 

3. Evapotranspiration 510 
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Evapotranspiration (𝐸𝑇) has a considerable importance for the terrestrial climate system, 511 

providing moisture to the atmosphere, linking the water, energy, and carbon cycles (Fisher et al., 512 

2017; M. Jung et al., 2010), and driving precipitation and temperature at local and regional scales 513 

(Marengo et al., 2018). Studies have shown that around half of the precipitation in the AB is 514 

recycled by local 𝐸𝑇 (Salati et al., 1979; Satyamurty, da Costa, & Manzi, 2013; Zemp et al., 515 

2017). In addition, Amazon 𝐸𝑇 constitutes an important source of moisture for southeastern 516 

South America through atmospheric low-level (often referred to as “flying rivers''), providing 517 

around 70% of the precipitation in this region (Van Der Ent et al., 2010; Pearce, 2020). 518 

Especially during the dry season, Amazon 𝐸𝑇 seems to be more efficiently converted to 519 

precipitation in the La Plata River Basin than local 𝐸𝑇 (J. A. Martinez & Dominguez, 2014). 520 

With the advent of satellite observations, 𝐸𝑇 has been estimated at multiple spatial and 521 

temporal scales. RS models to estimate 𝐸𝑇 can be divided into two main approaches: one based 522 

on surface energy balance (SEB) and another using physical equations. One well known energy 523 

balance models is the Surface Energy Balance Algorithm for Land (SEBAL), proposed by 524 

Bastiaanssen (1995) to overcome most of the problems of the early surface energy balance 525 

models, which were suitable only for local scale due to their dependence of local measurements 526 

for calibration. Based on principles and methods adopted in SEBAL, R. G. Allen et al. (2007) 527 

proposed the Mapping evapotranspiration at high Resolution with Internalized Calibration 528 

(METRIC) algorithm, including an internal calibration using Inverse Modeling at Extreme 529 

Conditions (CIMEC) and micrometeorological measurements to reduce computational biases 530 

inherent to energy models that use RS data (R. G. Allen et al., 2007, 2011). Other surface energy 531 

balance models were also proposed to use RS data, such as Surface Energy Balance Index 532 

(SEBI; Menenti & Choudhury, 1993), Simplified Surface Energy Balance Index (S-SEBI; 533 

Roerink et al., 2000), and Surface Energy Balance System (SEBS; Su et al., 2001). 534 

SEB algorithms are generally defined as “One Source Surface Energy Balance” models, 535 

since they do not distinguish between soil evaporation and canopy transpiration, whereas the 536 

land surface is treated as a big leaf and as a single uniform layer (Tang et al., 2013; Ke Zhang et 537 

al., 2016). In contrast, in the Two-Source Energy Balance (TSEB) models (Kustas & Norman, 538 

1999; Norman et al., 1995), the soil-vegetation system is approximated as a two-layer model, 539 

where the energy fluxes are partitioned into soil and vegetation components (Norman et al., 540 

1995). Based on the TSEB approach, the Atmosphere-Land Exchange Inverse model (Alexi) was 541 

developed by Anderson et al. (1997), designed to represent land-atmosphere exchange over a 542 

wide range of land cover conditions. Both approaches rely on thermal RS data, using 543 

meteorological inputs as ancillary data (Ke Zhang et al., 2016). 544 

RS models based on physical equations are generally divided into Penman-Monteith and 545 

Priestley and Taylor equation-based approaches. Penman (1948) was the first to formulate an 546 

equation to calculate evaporation based on a physical approach using two terms, an energy term 547 

related to radiation and an aerodynamic term related to the vapor pressure deficit and wind speed 548 

(Shuttleworth, 2012). While this equation represented open water evaporation, Monteith (1965) 549 

presented an extension by adding surface and aerodynamic resistances, and thus the equation 550 

became more consistent with estimation of 𝐸𝑇 from vegetated surfaces, resulting in the well-551 

known Penman-Monteith equation (Monteith & Unsworth, 2013). Based on this approach, the 552 

MOD16 algorithm was formulated by Mu et al. (2007, 2011), previously proposed by Cleugh et 553 

al. (2007), to calculate 𝐸𝑇 through the integrated use of global meteorological reanalysis and RS 554 



manuscript submitted to Reviews of Geophysics 

 

20 

 

 

data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, including leaf 555 

area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), albedo and 556 

land cover classification. Leuning et al. (2008) also proposed a similar 𝐸𝑇 algorithm based on 557 

this equation, the Penman-Monteith-Leuning (PML) using a simple biophysical model to 558 

calculate surface conductance from MODIS LAI. Another approach is the Priestley and Taylor 559 

equation (Priestley & Taylor, 1972). This model uses an empirical parameter to simplify the 560 

Penman-Monteith approach, minimizing the uncertainties related to estimating aerodynamic and 561 

surface resistances. Based on this equation, Fisher et al. (2008) developed the JPL-PT model, and 562 

Miralles et al. (2011) proposed the Global Land-Surface Evaporation Amsterdam Model 563 

(GLEAM), designed to estimate daily terrestrial evaporative fluxes and the root-zone soil 564 

moisture using maximum observations derived from RS (Martens et al., 2017). A summary of 565 

the main RS-based models to estimate 𝐸𝑇 in the South American tropics, with applications in the 566 

AB, is presented in Table 2. 567 

 568 

Table 2. Summary of the main RS-based models to estimate ET, with applications in the 569 

Amazon (*Global applications including Amazon analysis) 570 

Model 
Physical 

principles 

Spatial 

resolution 

Usual RS 

sources 
RS main drivers Ancillary data Model advantages Model limitations 

Applications in 

the AB 

ALEXI 

(Anderson 

et al., 

1997) 

Surface 

Energy 

Balance 

375 meters 

to 0.05º 

GOES, 

MODIS, 

VIIRS 

1) Thermal (land 

surface temperature)  

2) Multispectral data 

(surface reflectance) 

1) Meteorological 

(global reanalysis) 

2) Surface data (land 

cover) 

1) Energy fluxes are 

partitioned into soil 

and vegetation 

components 

2) Representation of 

surface processes in 

areas with high 

water availability 

1) High complexity for 

implementation 

2) Require clear sky 

conditions 

3) Require many 

meteorological 

variables 

Paca et al. (2019) 

BESS 

(Ryu et al., 

2011) 

Biophysica

l model 
1 to 5 km 

MODIS 

 

 

1) Atmospheric data 

(aerosol, water 

vapor, cloud, 

atmospheric profile) 

2) Surface properties 

(land surface 

temperature, land 

cover, LAI, albedo) 

1) Meteorological 

(global reanalysis) 

2) Surface data 

(global climates and 

vegetation) 

1) Global spatial 

coverage and public 

data availability 

2) Entirely 

independent from 

flux tower data, 

3) Moderate spatial 

resolution to cover 

large areas 

4) Multiple 

atmospheric and 

land surface data 

used as inputs 

5) Linkage between 

carbon and water 

fluxes 

1) Require many data 

(surface RS and 

meteorological 

variables) 

2) Soil moisture effect 

and water evaporation 

from rainfall 

intercepted by the 

canopy are not 

explicitly include in 

the model 

3) Complex terrain and 

heterogeneity of land 

surface are not 

considered, 

4) Uncertainties in 

inputs datasets and 

gap-filling methods 

can influence in the 

results of the model. 

Swann and 

Koven (2017) 

MOD16 

(Mu et al., 

2007; 

2011) 

Physical 

approach - 

Penman-

Monteith 

equation 

 

500 meters 

to 0.05º 

1) Vegetation 

phenology (LAI, 

fPAR)  

2) surface properties 

(land cover, albedo) 

Meteorological 

(global reanalysis) 

 

1) Global spatial 

coverage and public 

data availability 

2) Low complexity 

for implementation 

1) Parametrizations of 

surface conductance 

2) Require measured 

data for model 

calibration/parameteriz

ation 

Baker and 

Spracklen 

(2019); da Silva 

et al. (2019); 

Maeda et al. 

(2017); Miralles 

et al. (2016)*; 

Oliveira et al. 
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3) Limitations in areas 

with high soil and 

water evaporation 

4) Moderate to high 

meteorological inputs 

(2017); Swann 

and Koven 

(2017); 

Vergopolan and 

Fisher (2016); Xu 

et al. (2019), 

Paca et al. (2019) 

PML 

(Leuning et 

al., 2008) 

500 meters 
Zhang et al. 

(2016)* 

GLEAM 

(Miralles et 

al., 2011) 

Physical 

approach - 

Priestley 

and Taylor 

equation 

 

0.25º 

AIRS, 

CERES, 

MODIS, 

multi-

source soil 

moisture 

(ES-CCI), 

vegetation 

optical 

depht 

(VODCA) 

1) Atmospheric data 

(radiation, 

precipitation, air 

temperature, 

lightning frequency)  

2) surface properties 

(snow-water 

equivalent, soil 

moisture, vegetation 

cover fraction, 

vegetation optical 

depth) 

Meteorological 

(global reanalysis) 

1) Can be driven 

only with RS inputs 

2) Moderate 

meteorological 

inputs requirements 

3) Global spatial 

coverage and public 

data availability 

1) Simplification of 

some physical 

processes 

2) Over-dependence on 

water availability 

3) Limitations in areas 

with high soil and 

water evaporation 

4) Low spatial 

resolution 

Baker and 

Spracklen 

(2019); Miralles 

et al. (2016)*, 

Paca et al. 

(2019), Wu et al. 

(2020) 

PT-JPL 

(Fisher et 

al, 2008) 

1º 
AVHRR, 

MODIS 

Vegetation 

phenology (NDVI, 

SAVI) 

Meteorological 

(global reanalysis) 

and Satellite land 

surface climatology 

1) Global spatial 

coverage and public 

data availability 

2) Can be driven 

only with RS data 

3) Moderate 

meteorological 

inputs requirements 

1) Simplification of 

some physical 

processes 

2) Many 

ecophysiological 

parameterization 

3) Limitations in areas 

with high soil and 

water evaporation 

4) Low spatial 

resolution 

Fisher et al., 

2009; Miralles et 

al. (2016)* 

METRIC 

(Allen et 

al., 2007) 

Surface 

Energy 

Balance 

 

 

30 meters 

to 1 km 

 

 

 

MODIS, 

Landsat 

1) Thermal (land 

surface temperature)  

2) multispectral data 

(surface reflectance) 

Meteorological 

(from ground 

measurements to 

global meteorology) 

 

 

 

1) Applications for 

regional scale in 

moderate to high 

spatial resolution 

2) Less surface 

parameterization 

3) Useful to evaluate 

land cover changes 

impacts 

4) Low 

meteorological 

inputs requirements 

(SEBAL) 

5) Higher accuracy 

in areas with ground 

measurements 

available (METRIC) 

1) Require clear sky 

conditions 

2) There is no 

distinguish between 

soil evaporation and 

canopy transpiration 

3) Require the 

presence of hot and 

cold extreme 

conditions on the 

domain area 

4) Domain-area 

dependence, with 

limitations for large-

scale applications 

5) Moderate to high 

meteorological inputs 

requirements 

(METRIC) 

6) Higher uncertainty 

in data scarce areas 

(METRIC) 

Khand et al. 

(2017), Numata 

et al. (2017), 

Nobrega et al. 

(2017) 

SEBAL 

(Bastiaanss

en, 1995) 

AVHRR, 

MODIS, 

Landsat, 

ASTER 

Laipelt et al 

(2020); Oliveira 

et al. (2019), 

Nobrega et al. 

(2017) 

SEBS 

(Su et al., 

2001) 

MODIS, 

Landsat 

 

1) Accuracy related 

to land surface 

temperature 

2) Low requirement 

for meteorological 

inputs 

1) High requiremtent 

for surface 

parameterization 

2) Moderate to high 

complexity for 

implementation 

Paca et al. (2019) 
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SSEBop 

(Senay et 

al., 2013) 

Simplified 

surface 

energy 

balance 

1) Low complexity 

for implementation 

2) Global spatial 

coverage and public 

data availability 

1) Simplified energy 

balance 

2) Moderate to high 

meteorological inputs 

requirements 

(METRIC) 

3) Higher uncertainty 

in data scarce areas 

Paca et al. 

(2019), Senay et 

al. (2020)* 

 571 

RS-based 𝐸𝑇 models have improved our understanding of 𝐸𝑇 processes worldwide, 572 

allowing us to understand hydrological processes from local to large spatial and multiple 573 

temporal scales. Energy balance models have the advantage to map 𝐸𝑇 at fine spatial resolution. 574 

These models can estimate human impacts on the energy and water cycles and on the land-575 

surface interactions. However, since they are dependent on thermal RS data, they are generally 576 

restricted to clear-sky or cloud-free conditions, which is a major drawback, especially in tropical 577 

humid areas, such as the Amazon (Rocha et al., 2009). In addition, SEB models usually require 578 

the presence of hot and cold conditions in the satellite domain area. This requirement is a 579 

disadvantage since the selection of the hot and cold endmembers for internal calibration using 580 

the CIMEC process on RS images can generate subjective results, especially under wet regions 581 

such as the AB, where the selection of hot endmembers during both wet and dry seasons is a 582 

challenge (Khand et al., 2017). Physically-based equations have the advantage to map 𝐸𝑇 at high 583 

temporal resolution, enabling long-term and large-scale assessments of land-surface interactions. 584 

However, some limitations include the uncertainty in parameterizing physical processes, as 585 

surface resistance and conductance, and, therefore, are dependent on the use of look-up tables 586 

biome-properties (Ruhoff et al., 2013). Error propagation derived from meteorological forcing 587 

data is also an issue (Gomis-Cebolla et al., 2019; Miralles et al., 2016; Panday et al., 2015; 588 

Talsma et al., 2018), since it can introduce large uncertainties in 𝐸𝑇 estimates, especially in the 589 

tropics.  590 

In the AB, the spatial and temporal drivers of 𝐸𝑇 are not fully understood, and these 591 

uncertainties are reflected on how RS models estimate 𝐸𝑇 (Maeda et al., 2017; Sörensson & 592 

Ruscica, 2018). 𝐸𝑇 measurements have provided valuable information about seasonality and 593 

dynamics at local scales (Rocha et al., 2009). Some national initiatives, as the Brazilian National 594 

Water Resource Information System (SINGREH) and the Meteorological Database for Research 595 

from the Brazilian National Water and Sanitation Agency (ANA) and the National Institute of 596 

Meteorology (INMET), respectively, and international research projects, as the Large-Scale 597 

Biosphere-Atmosphere Experiment in Amazonia (LBA; E. A. Davidson & Artaxo, 2004), 598 

provided standardized hydrometeorological and surface flux measurements to understand energy, 599 

water and carbon exchanges across different tropical ecosystems (Gonçalves et al., 2013; Saleska 600 

et al., 2013). However, due the high cost of eddy covariance measurements and maintenance 601 

difficulties, there are only a few towers located across the basin, and these do not cover the 602 

whole Amazon climate-vegetation complexity. Hence, through the calibration and validation of 603 

RS-based 𝐸𝑇 models it has been possible to extend the spatial coverage of the 𝐸𝑇, improving our 604 

knowledge about seasonality and patterns in data scarce areas, covering long-term assessments. 605 

RS models have shown that 𝐸𝑇 spatial pattern (Figure 4a), seasonality (Figure 4b), and 606 

main 𝐸𝑇 drivers vary across the AB, with monthly averages rates ranging from 80 mm in the 607 

southern part (including Madeira and Tapajos basin) up to 160 mm in the northern part of the 608 
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basin (Negro basin). Most models, as MOD16, usually show an increase in 𝐸𝑇 and forest 609 

greenness as the dry season progresses in the northeastern and central Amazon, where equatorial 610 

wet areas prevail, and spatial and temporal 𝐸𝑇 seasonality is mainly driven by incident radiation 611 

and LAI (Maeda et al., 2017), corroborating with eddy covariance measurements (Christoffersen 612 

et al., 2014), despite not all models agree with this pattern (Figure 4c). For instance, while 613 

MOD16 𝐸𝑇 seasonality is consistent with eddy covariance measurements (at K34 and K83), 614 

with higher rates during the dry season, seasonality of the GLEAM model (at K34), peaking 615 

during the wet season, implying that for wet regions in Amazon, this model has a dependence on 616 

water availability, since GLEAM tends to follow the rainfall seasonality (Miralles et al., 2016). 617 

Furthermore, in the south and southeastern parts of the AS (at Madeira and Tapajos basin), most 618 

of the RS-based models consistently indicate a decrease in 𝐸𝑇 during the dry season, following 619 

water availability (Maeda et al., 2017; H. J. F. da Silva et al., 2019). However, when RS-based 620 

models estimates are compared to eddy covariance measurements (at local scale) or water 621 

balance estimates (at large scale), the representation of the 𝐸𝑇 seasonality is still uncertain, since 622 

most of the models are unable to consistently reproduce the seasonal cycles in tropical areas, 623 

considering that multiple drivers operate simultaneously across the AB. Overall, in the tropics, 624 

𝐸𝑇 seasonality is mainly regulated by water and energy availability and how vegetation 625 

assimilates both (Christoffersen et al., 2014; Restrepo-Coupe et al., 2013). Alternatively, in large 626 

data scarce areas, estimating 𝐸𝑇 using multi-model ensembles and a dense observational network 627 

across the Amazon, RS-based models can be improved through calibration and validation, 628 

helping assess model uncertainties and to understand the land surface interactions in the tropics 629 

(Gonçalves et al., 2013; Paca et al., 2019). 630 

 631 
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 632 

Figure 4. Spatial and temporal patterns of 𝐸𝑇 are differently represented by RS models. (a) 633 

Spatial variability of 𝐸𝑇 annual average (2003-2017) for GLEAM, SSEBop, MOD16 and PML 634 

models; the numbers on the lower left corner of each subplot represent the annual average 𝐸𝑇. 635 

(b) 𝐸𝑇 seasonality for major Amazon sub-basins. (c) Monthly average comparison between 636 

estimates and eddy covariance measurements from the LBA project, using data from Saleska et 637 

al. (2013). The dry season is highlighted in gray as monthly precipitation rates < 100 mm month-638 
1 639 

While flux tower measurements have shown, at local scales, that land cover changes can 640 

impact water and energy fluxes (C. von Randow et al., 2004), large scale assessment with 641 

satellites based on both energy balance and physical-based equations driven by vegetation 642 

phenology and meteorological reanalysis have reinforced these findings (Baker & Spracklen, 643 

2019; Khand et al., 2017; Laipelt et al., 2020; G. de Oliveira et al., 2019). All these studies 644 

demonstrated significantly lower 𝐸𝑇 rates under pasture, agricultural, and deforested areas than 645 

in primary and secondary forests (R. de C. S. von Randow et al., 2020). These results indicate 646 

that less water returns to the atmosphere, thus affecting the precipitation recycling and 647 

contributing to changes in the dry-to-wet season, possibly making the dry season longer (M. H. 648 

Costa & Pires, 2010), while more of the precipitated water goes to runoff (Panday et al., 2015). 649 

In addition, RS-based assessments demonstrated that drought events tend to affect anthropogenic 650 
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systems as pasture and agriculture areas more than primary and secondary forests, leading to an 651 

increase in air temperature, and a decrease in LAI and 𝐸𝑇 (Baker & Spracklen, 2019; G. de 652 

Oliveira et al., 2019). Results from MOD16 𝐸𝑇 may assist in monitoring deforested areas in the 653 

Brazilian Amazon (H. J. F. da Silva et al., 2019). However, global remotely sensed ET, such as 654 

GLEAM, better reflect changes in vegetation greening and in air temperature increase than to 655 

deforestation, may due the lack of deforestation account in these models (Wu et al., 2020). 656 

Influence of land use changes on the water cycle will be discussed further in Section 6.4.  657 

Our understanding about energy partitioning in the Amazon biome has improved through 658 

RS models (Laipelt et al., 2020; G. de Oliveira et al., 2019). For example, high resolution 𝐸𝑇 659 

estimates using SEBAL in the south‐western Amazon demonstrated significant differences 660 

among energy and water fluxes in forests and non-forest areas, such as pasture and cropland. In 661 

these anthropogenic areas, soil and sensible heat fluxes were from two to four times higher than 662 

in forested areas (G. de Oliveira et al., 2019). In a transitional region between Amazon and 663 

Cerrado biomes, converted areas can substantially change the energy and water fluxes, where 664 

latent heat flux is the major component in forested areas, while in deforested areas an increase in 665 

sensible heat flux is observed (Laipelt et al., 2020). These studies showed that change in land use 666 

and land cover, can significantly affect 𝐸𝑇 rates, and observed 𝐸𝑇 rates was almost two times 667 

lower in pasture than in tropical forest (Laipelt et al., 2020), and up to three times lower in non-668 

forested areas (G. de Oliveira et al., 2019). 669 

Fisher et al. (2017) summarized in ten scientific questions the main outstanding 670 

knowledge gaps for the ET-based science. To address these questions, 𝐸𝑇 estimations need to be 671 

improved, aiming for high accuracy, high spatial and temporal scales, covering large spatial and 672 

long-term monitoring. Recent research demonstrated that RS models can estimate 𝐸𝑇 with 673 

reasonable accuracy and consistent agreement (Gomis-Cebolla et al., 2019; Martens et al., 2017; 674 

Michel et al., 2016; Kun Zhang et al., 2019). However, for the individual 𝐸𝑇 components (soil 675 

evaporation, transpiration, and interception), they diverge considerably (Miralles et al., 2016; 676 

Talsma et al., 2018). For example, Miralles et al. (2016) showed that in tropical forests, soil 677 

evaporation is almost non-existent in GLEAM and JPL models, whereas with MOD16 this 678 

component may exceed transpiration. In the Amazon, canopy interception from JPL and MOD16 679 

is nearly two times higher than in GLEAM model. Beyond the uncertainties related to canopy 680 

transpiration and soil evaporation, open water evaporation and 𝐸𝑇estimation over Amazon 681 

wetlands is also a major knowledge gap. Wetland 𝐸𝑇 can be a complex process as it involves 682 

fluxes at different vegetation conditions for transpiration, evaporation from water intercepted in 683 

the canopy and from open and vegetated surface water. Changes in latent heat patterns over 684 

water bodies (rivers, wetlands, lakes and artificial reservoirs) affect the local climate circulation 685 

patterns through a breeze effect (Silva Dias et al., 2004), and have the potential to affect regional 686 

climate through precipitation suppression over the wetlands and convection initiation over 687 

wetland borders (Taylor et al., 2018).Wetland-upland differences in 𝐸𝑇 are still poorly 688 

understood over the AB, and only a few in situ monitoring gauges are available on floodable 689 

environments (Borma et al., 2009) that could be used for model validation. Improvements of 690 

accuracy of 𝐸𝑇 components estimates lead us to better understand 𝐸𝑇 processes, and how these 691 

components are impacted by changes in temperature, green-house gases concentration, and in the 692 

hydrologic cycle (Fisher et al., 2017; Talsma et al., 2018). 693 
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Another challenge to satellite-based models overcome is to minimize the use of 694 

parameterization and to improve input data accuracy. While the performance of Penman-695 

Monteith models can be strongly influenced by resistance parameterizations, Priestley and 696 

Taylor models estimates have dependence on Priestley and Taylor parameter (α) parametrization, 697 

as well as errors can also be related in both approaches by forcing data and algorithms structure 698 

(Ershadi et al., 2015; Gomis-Cebolla et al., 2019). Moreover, measurements are still a significant 699 

limitation. In the Amazon biome, there are only eight public flux towers with data available, 700 

from the LBA project (Saleska et al., 2013), and they do not cover all vegetation and climate 701 

complexity in the AB. In addition, when we are working on energy balance models, the main 702 

challenge, especially in the Amazon, is the requirement of clear sky conditions. However recent 703 

efforts to integrate microwave data to energy balance models are promising (Holmes et al., 704 

2018), since microwaves are less affected by cloud cover than the thermal infrared wavelength. 705 

RS is now supported by a range of sensors and satellites which provide thermal infrared 706 

images, and meteorological and surface observations, essential to estimate 𝐸𝑇. In 2018 the 707 

Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 708 

mission was launched by National Aeronautics and Space Administration (NASA) and will 709 

provide information about how vegetation responds to stress and how it uses water, focusing on 710 

vegetation temperature measurement, allowing understanding of 𝐸𝑇 dynamics and processes at a 711 

good temporal and spatial resolution (Fisher et al., 2017; Sheffield et al., 2018). Other missions 712 

will improve 𝐸𝑇 estimates and will provide valuable information to validade current models. For 713 

example, the Joint Polar Satellite System (JPSS), a mission from National Oceanic and 714 

Atmospheric Administration (NOAA) and NASA, includes a range of sensors, such as the 715 

Visible Infrared Imaging Radiometer Suite (VIIRS), that collect visible and infrared imagery, 716 

providing useful global information to monitor vegetation, and as input to retrieval hydrological 717 

variables (McCabe et al., 2017; Sheffield et al., 2018; L. Zhou et al., 2016). The Water Cycle 718 

Observation Mission (WCOM) from China aims to acquire consistent measurements of the water 719 

cycle components (Levizzani & Cattani, 2019; Shi et al., 2016). The FLourescence EXplorer 720 

(FLEX) mission by European Space Agency, that will map vegetation fluorescence, providing 721 

information about photosynthetic activity and vegetation stress and health, also helping to 722 

improve constraints on transpiration (Drusch et al., 2017; McCabe et al., 2017). Beyond 723 

continuity of Landsat (McCorkel et al., 2018) mission, will map long- term 𝐸𝑇 at high spatial 724 

scale, and the Gravity Recovery and Climate Experiment (GRACE) Follow-on that will bring 725 

significant opportunity to estimate 𝐸𝑇 with the water balance approach (Landerer et al., 2020). 726 

RS has been crucial to improve our understanding of surface-atmosphere interactions 727 

through 𝐸𝑇, despite the challenges that still exist, and these future missions are an excellent 728 

opportunity to address important scientific questions from 𝐸𝑇-based science, allowing us to 729 

improve techniques, approaches and our knowledge about 𝐸𝑇 processes and how the impact of 730 

activities can affect the water cycle throughout the Earth, including the Amazon. 731 

 732 

4. Surface water 733 

4.1. Surface water elevation 734 

Surface water is a key resource for all the communities living along the Amazon River. 735 

Yet monitoring Surface Water Elevation (SWE) and discharge in the AB is a challenge. While 736 
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the AB is facing pressure on its water cycle due to human activities, the number of gauges 737 

decreased globally in the last decades (Vörösmarty et al., 2000). This threatens our capacity to 738 

understand natural and human-driven impacts of climate change on Amazonian rivers. Although, 739 

to this date, no satellite mission have been designed specifically for retrieving inland water 740 

elevations, remotely-sensed observations of SWE from radar altimetry are complementary to the 741 

historical gauge network (Fekete et al., 2012) and improve monitoring of Amazonian rivers 742 

(Calmant & Seyler, 2006; J. S. Da Silva et al., 2014).  743 

The AB has become an ideal laboratory for pioneering studies that have demonstrated the 744 

capacity of retrieving accurate SWE at particular locations from radar echoes and adapted 745 

retracking procedures. The first studies over the AB used observations from Seasat (Sea Satellite 746 

from NASA), launched in 1978, to derive the low water gradient of the Amazon main stem 747 

(Guzkowska et al., 1990).  748 

The configuration of the satellite altimeter orbit defines the intersections between the 749 

satellite ground tracks and the river reaches, the so-called virtual stations (VSs), where SWE can 750 

be estimated. At a given VS, the SWE is retrieved through the inversion of the signal round-trip 751 

propagation time that provides the range. Several uncertainty corrections (due to delay in the 752 

propagation caused by the atmosphere, dynamics of Earth’s surface, etc.) must be applied to this 753 

range to retrieve the SWE. Stammer & Cazenave (2017) provide an extensive discussion on 754 

SWE estimation from satellite altimetry and the associated errors. Since the first satellites, the 755 

accuracy of the orbit, which depends on the density of the atmosphere and on the resolution of 756 

the gravitational field, has improved, and is now around one centimeter (against sixty 757 

centimeters for Seasat). Yet calculating the correct range remains challenging, as it is necessary 758 

to track (on board) or retrack (on the ground) the altimetric waveform (Frappart et al., 2006), 759 

using algorithms to best fit the highly variable distribution of the echo energy bounced back by 760 

the different types of surfaces in the satellite field of view (Calmant et al., 2016).    761 

Since the first studies using Seasat data, we now have more than 30 years of monitoring 762 

of inland waters by satellite altimetry. After Seasat came GEodetic and Oceanographic SATellite 763 

(GEOSAT), that was used by Koblinsky et al. (1993) to retrieve SWE time series over the AB, 764 

with uncertainties ranging from 0.19 to 1.09 m compared to in situ data. The European Remote 765 

Sensing satellite (ERS-1; launched in 1991) initiated a long family of satellites that followed the 766 

same 35-day repeat orbit (ERS-1, ERS-2, ENVISAT -Environmental Satellite, and SARAL -767 

Satellite with ARgos and ALtika), which covered the 1991-2016 period. A major advance was 768 

made by the Observations des Surfaces Continentales par Altimetrie Radar (OSCAR) project, 769 

that evaluated the ICE-2 specific retracking of radar echoes for ice caps (Legresy et al., 2005) for 770 

ERS-1, ERS-2 and ENVISAT, and promoted its delivery in the Geophysical Data Records.  771 

The retracking of radar echoes was analyzed by Frappart et al. (2006, 2016) and J. S. Da 772 

Silva et al. (2010) over 70 ERS-2 and ENVISAT VSs and a large range of river widths (from 773 

tens of meters to kilometers). They reported that the proper selection of the data considered as 774 

representative of the water body is as important as the choice of the retracking algorithm. The 775 

data from the 10-day repeat orbit of Topex/Poseidon (T/P) and Jason-2/3 have also been assessed 776 

in the AB. Seyler et al. (2013) highlighted the gain of Jason-2 (ranging from 2008 to 2016 on its 777 

nominal orbit) in comparison to T/P (from late 1992 to 2005), with an uncertainty around 0.35 778 

m, possibly due to the sensor's better capacity to discriminate the surrounding floodplain from 779 

the river. 780 
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All these missions operated in low resolution mode, i.e., the footprint on ground is large 781 

(some kilometers, depending on radar operating band) and the echoes returning to the antenna 782 

are influenced by the surroundings. The SAR mode, active on Sentinel-3 satellites, allows a 783 

reduction of the surrounding contributions by slicing the disc illuminated by the echo at a given 784 

time (Raney, 1998). This reduction provides a much better along track resolution, however it 785 

does not resolve some issues such as cross-track sloping measurements (Bercher et al., 2013). 786 

The addition of a second antenna, as on Cryosat-2, allows the SAR Interferometric mode to 787 

correct these cross-track measurements, hence allowing an improvement in the accuracy of SWE 788 

time series. However, Croysat-2 is not popular for SWE monitoring over rivers since its orbit 789 

shifts around 7 km every month and comes back to the same place every 369 days. Indeed, most 790 

of the studies on the use of satellite altimetry in the AB have focused on repetitive orbits, even 791 

though some studies have explored the use of missions in drifting or long-term repetitive ones 792 

and found good accuracy for SWE monitoring (e.g., Bogning et al., 2018). Such missions, 793 

instead of providing a SWE observation on a 10-day or almost monthly basis with a large 794 

intertrack distance at the equator (between 60 km and 100 km), provide a much denser spatial 795 

span but with observations separated from another in time. The use of ICESat (Ice, Cloud, and 796 

land Elevation Satellite) laser altimetry data was investigated by Hall et al. (2012). They 797 

concluded that this mission can be a valuable source of data for monitoring rivers from the AB, 798 

with accuracies of some tens of centimeters when compared to gauges. The ICESat mission was 799 

continued by ICESat-2, launched in 2018. Studies by Bercher et al. (2013) and L. Jiang et al. 800 

(2017) concluded that the SAR mission CryoSat-2 offers new opportunities to monitor narrow 801 

rivers in the AB, and should help linking the present and future altimetry missions.  802 

The differential interferometry technique with SAR data allows obtaining information 803 

about changes in surface displacements, such as topographic changes. Centimeter-scale 804 

measurements of water level changes throughout inundated floodplain vegetation using 805 

interferometric SAR were obtained over the Amazon floodplains for the first time (Alsdorf et al., 806 

2000; Alsdorf, Birkett, et al., 2001; Alsdorf, Smith, et al., 2001). This estimation is possible due 807 

to the radar pulse interactions with the water surface and the trunks of flooded vegetation causing 808 

a double-bounce path (Alsdorf et al., 2000; Hess et al., 1995). H. Lee et al., 2020 and 809 

Mohammadimanesh et al. (2018) reviewed the methods and limitations of the technique for 810 

applications in wetlands. 811 

To date, SWE information is available as raw data and as processed data. Some groups or 812 

institutions provide processed SWE time series (see Table 3). Each dataset provides SWE on 813 

selected water bodies, all over the world or in specific regions, and have different objectives in 814 

terms of operability.  Processing and filtering procedures vary between each group, and time 815 

series of the same VSs can vary from one group to another. 816 

 817 

Table 3. Datasets of surface water elevation time series over the water bodies 818 

Name Producer Weblink Reference Target 
Delivery 

time 

G-REALM USDA NASA 

https://ipad.fas.usda.gov/cropexplorer/ 

global_reservoir/ 

Default.aspx#SatelliteRadarAltimetry 

(Birkett et al., 

2017) 

Lakes and 

reservoirs 
NTC 
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River & Lake 
De Montfort 

University 

http://altimetry.esa.int/riverlake 

/shared/main.html 

(Berry et al., 

2005) 

Rivers, Lakes 

and reservoirs 

SCT 

(discontinued) 

DAHITI 

database 

German Geodetic 

Research Institute 
https://dahiti.dgfi.tum.de/en/ 

(Schwatke et 

al., 2015) 

Rivers, lakes 

reservoirs and 

wetlands 

NTC & 

reanalysis 

GRRATS 

product 

 

Ohio State University 

https://podaac.jpl.nasa.gov/dataset/ 

PRESWOT_HYDRO_ 

GRRATS_L2_VIRTUAL_ 

STATION_HEIGHTS_V2 

(Coss et al., 

2020) 
Rivers Reanalysis only 

Hidrosat 
ORE-HYBAM and 

ANA  
http://hidrosat.ana.gov.br/ 

(J. C. Carvalho 

et al., 2015) 
Rivers NTC 

Hydroweb 

IRD/LEGOS, CNES 

(French Space 

Agency), and 

Universidade do 

Estado de Amazonas 

http://hydroweb.theia-land.fr/ 

(Crétaux et al., 

2011; J. S. Da 

Silva et al., 

2010) 

Rivers, lakes 

and reservoirs 

STC & 

reanalysis 

STC: Slow-Time Critical - delivered at maximum after three days; NTC: Non-Time Critical -819 

delivered typically within one month. 820 

 821 

Figure 5 provides the location of all virtual stations in the AB from the Hydroweb 822 

website. Figure 5a is a representation of the median amplitude of SWE at each VS. Amplitude of 823 

SWE measured by the satellites is lower in the headwaters (0-3 m) and medium size rivers (3-6 824 

m) compared to Solimões-Amazonas main stem and its tributaries (9 - 12 m). Largest values are 825 

found for the Purus River (> 15 m), a right bank tributary. Figure 5b and c provide the mean 826 

month for high and low flows, respectively, indicating the influence of rainfall partition in the 827 

northern and southern parts of the basin and the gradual shift due to the flood travel time along 828 

the rivers and floodplains (~ 1- 3 months). Figure 5d and e provide multi-mission SWE time 829 

series ranging from 2002 to now with ENVISAT and Sentinel3-B and from 2008 to 2020 with 830 

Jason-2 and Jason-3, respectively. It shows the strong seasonal signal of the gradual flood of the 831 

Amazon rivers, and interannual variability of maximum and minimum stages. 832 

 833 
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 834 

Figure 5. a) Location of the virtual stations freely available on Theia-hydroweb 835 

(http://hydroweb.theia-land.fr/) and median amplitude of the time series. Dots are operational 836 

VSs (from currently flying missions and updated in near real time) and squares are research VSs 837 

(identified as reanalysis in table W). VSs rounded in black are drawn in d and e; b) month of 838 

maximum SWE for the mean monthly time series at each VS; c) month of the minimum SWE 839 

for the mean monthly time series; d) composite time series of the VSs close one to each other on 840 

the lower Negro River, VSs NEGRO_KM1444, NEGRO_KM1420 and NEGRO_KM1404, e) 841 
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time series on the Amazon middle reach and Amazon lower reach composed of Jason-2 and 842 

Jason-3 observation at VS AMAZONAS_KM1534 and AMAZONAS_KM0397 respectively. 843 

 844 

Owing to its relatively dense spatial cover (see Figure 5), satellite altimetry has been 845 

used for deriving the altimetric profiles of rivers throughout the basin. These profiles, computed 846 

for low and high waters for the Negro River from T/P VSs (Frappart et al., 2005) and ENVISAT 847 

VSs (Leon et al., 2006), indicated a lower slope for the Negro River over more than 500 km 848 

(from its mouth to upstream reaches) than for the Solimões River (confirmed by Callède et al., 849 

2013). Such a difference explains the strong backwater effect that occurs in the lower section of 850 

the Negro River and alters the time of peak and low flows. Other backwater effects, mainly from 851 

the Amazon main stem on its tributaries, were evident in the river profiles from satellite 852 

altimetry. However sparse in time, satellite altimetry observations now provide a dense enough 853 

network to monitor extreme events such as those that occurred in 2005 and 2010 in the AB 854 

(Frappart et al., 2012; J. S. Da Silva et al., 2012). 855 

A straightforward application of these profiles is to derive the spatiotemporal variations 856 

of the water surface slope. While former studies focused on the spatial variations of the surface 857 

water gradient, a first try to estimate the temporal variations of the Amazon main stem slope was 858 

performed in Birkett et al. (2002) using VSs from the T/P mission. They revealed changes in the 859 

sign of the rate of slope variation that were explained by the river not reaching equilibrium. 860 

Although the slopes from Birkett et al. (2002) compared well with slopes from the Shuttle Radar 861 

Topography Mission (SRTM) Digital Elevation Model (DEM) - a snapshot of profiles and slopes 862 

in February 2000 (LeFavour & Alsdorf, 2005) - and with gauge data (Calmant et al., 2013), these 863 

breaks in slope variation rate were not found in profiles extracted from more recent and complete 864 

altimetric databases (Calmant et al., 2016). Paris et al. (2016) estimated two different time series 865 

of slopes from satellite altimetry in the lower Negro River: the first was calculated using a daily 866 

interpolation of upstream and downstream SWE time series, providing a daily slope time series, 867 

and the second was calculated using the mean climatology of upstream and downstream VSs. 868 

Although the stage to discharge relationship was improved when considering the variation of 869 

slope with time estimated through both methods, it is the monthly means that provided the best 870 

improvement. This illustrates the difficulty in inferring slopes from non-daily uncertain 871 

observations.  872 

By coupling satellite altimetry and a hydrologic and hydraulic model through stage to 873 

discharge rating curves, Paris et al. (2016) provided a map of estimated bottom of river in the 874 

entire AB using data from ENVISAT and Jason-2 missions. This map was then used by 875 

Garambois et al. (2017) on a reach of the Xingu River to parameterize a hydraulic model. Such 876 

cases where the satellite ground-track crosscuts several times the same river reach allow a more 877 

refined analysis of water surface slope. This occurs in sinuous rivers flowing from north to south 878 

(or the contrary) like the Xingu River, a right margin tributary of the Amazon River (Figure 2). 879 

Given these conditions, the authors verified that the presence of an obstacle in the river bed 880 

produces temporal changes in water surface slope observed by satellite altimetry. Brêda et al. 881 

(2019) proposed a benchmark of methods of altimetric data assimilation, ranging from direct 882 

insertion to a hydraulically based Kalman filter, to improve bathymetry estimates of the Madeira 883 

River. They concluded that satellite altimetry can be used for better constraining SWE and flood 884 

inundation simulations. An analysis of SWE from the ENVISAT mission revealed water passing 885 
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from the Negro River to the Solimões River through their interconnected floodplains at high 886 

stages (J. S. Da Silva et al., 2012).  887 

The capacity to observe channel-floodplain connectivity through altimetry was 888 

investigated by Park (2020). By observing seasonal changes in SWE in rivers and surrounding 889 

floodplains, they separated the role of channelized flows and of overbanks flows, which 890 

contributes to surface water storage and smooths the channelized-induced topography. The 891 

floodplain located between the Madre-de-Dios, the Beni, the Guapore and the Mamore rivers in 892 

the upper Maderia basin was characterized using ENVISAT and SARAL data (Ovando et al., 893 

2018). Water level differences between the frequently flooded regions, with no direct connection 894 

to the Andes, and the regions subject to sporadic though large flood events were distinguished.  895 

Alsdorf et al. (2000, 2005, 2007) applied for the first time interferometric SAR (InSAR) 896 

in the central Amazon floodplains and showed that the water flows in the floodplains are 897 

dynamic in space and time, changing the direction with the flood wave of the river. Before the 898 

flood, the flows are controlled by the local topography and the surface water elevation in the 899 

floodplain is not equivalent to the river level (Alsdorf et al., 2007). By assuming that the water 900 

surface in the floodplain is equivalent to those in the main channel, estimates of water storage 901 

derived from flood routing can be overestimated, as shown by Alsdorf  (2003). H. C. Jung et al. 902 

(2010) compared temporal changes in floodplain water in the Amazon and Congo river basins. 903 

While the Amazon River is connected by many channels to the floodplains and has complex 904 

flow patterns, the Congo Rivers (and especially the Cuvette Centrale) have sparse connections 905 

with interfluvial areas and flow patterns that are not well defined and have diffuse boundaries. 906 

The patterns of water surface variations in the floodplains located on the Tapajós and Solimões 907 

rivers were examined by C. Wang et al. (2011) and Cao et al. (2018), respectively. The most 908 

recent SAR missions allowed monitoring of smaller water bodies. Recently, Fleischmann et al. 909 

(2020) produced SWE time series in the complex Negro River interfluvial wetlands from 910 

Sentinel3-A data. For the first time, they reported < 1 m water level variations in these complex 911 

areas. Their results show that satellite altimetry can help understanding the hydraulic behavior of 912 

complex ungaged areas and help validate hydrologic and hydraulics models. 913 

Through direct assessment or combination with other RS products, satellite altimetry can  914 

be used to derive non-measured hydrological variables. Pfeffer et al. (2014) were able to infer 915 

the varying exchanges between surface water and the groundwater base-level from 491 916 

ENVISAT VSs located all over the basin. Estimates of deviations from groundwater base-level 917 

reached up to 5 m. Frappart et al. (2012) made a joint use of satellite altimetry and inundation 918 

extent to derive variations of surface continental water storage (see Section 5). These two 919 

variables were used in Frappart et al. (2019) to estimate the spatiotemporal variability of 920 

groundwater storage in the AB. de Oliveira Campos et al. (2001) and M. V. Silva et al. (2019) 921 

found signatures of global climatic events such as ENSO and sea surface temperature variations 922 

in the T/P and Jason-2 SWE time series, respectively. Since the SWE estimates are now 923 

delivered in near real time, rating curves that relate SWE with discharge and depth, have been 924 

the focus of several studies (see details in Section 6.2). These rating curves were either computed 925 

using local gauges (Zakharova et al., 2006) or model outputs (Getirana et al., 2012; Leon et al., 926 

2006). By constraining the rating curve parameters into Manning-realistic bounds, Paris et al. 927 

(2016) showed that discharges predicted from satellite altimetry are comparable to those 928 

measured in situ. The original SWE time series or their conversion into discharge offer an 929 
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independent tool to validate hydrological models (Paris et al., 2016) and their rainfall inputs, and 930 

in situ data (J. S. Da Silva et al., 2014). 931 

With its disruptive technology based on swath altimetry, almost-global coverage and joint 932 

observation of SWE, River width and slope, the SWOT mission , due to be launched in 2022, 933 

will permit an unprecedented observation of SWE all over the AB, As highlighted by 934 

Biancamaria et al. (2016), SWOT observation of SWE will permit a better monitoring of 935 

transboundary waters and wetlands in the AB. Dedicated to sample all rivers wider than 100 m 936 

and lakes larger than 250 x 250 m, the mission will permit a consequent reduction of global and 937 

regional models, noteworthy through data assimilation (Emery et al., 2020; Wongchuig et al., 938 

2020). The estimate of discharge from altimetry will benefit from SWOT data, both thanks to the 939 

global coverage and the observation of slopes, allowing a better constraining of uncertain 940 

hydraulics (Wilson et al., 2015). 941 

Thanks to more than twenty years of studies, EO datasets, especially satellite altimetry, 942 

have been revealed as an unprecedented tool to monitor continental watersheds and their 943 

droughts and floods (Lopez et al., 2020). The current satellite altimetry missions opened the era 944 

of operational monitoring from space at large scale, and this will be of critical importance in the 945 

coming decades in the large tropical transboundary watershed that is the AB. With almost two 946 

thousand VSs distributed all over the basin and available for free on websites, and potentially 947 

hundreds more, satellite altimetry can favorably complement the traditional in situ network, 948 

whose location usually depends on the proximity to a city or town. However, to operationally 949 

monitor non-open waters such as permanently or seasonally flooded vegetated floodplains 950 

remains challenging. In fact, few lakes and reservoirs are monitored by altimetry routinely in the 951 

AB though more could be (Crétaux et al., 2011; Crétaux & Birkett, 2006). The forthcoming 952 

missions will benefit from past research to improve the accuracy of SWE time series and 953 

promote its use for monitoring more local phenomena, such as floodplain-channel exchanges. 954 

Although limited due to availability of appropriate data, InSAR datasets help characterize 955 

floodplains/rivers connectivity and dynamics. The global coverage of the forthcoming SWOT 956 

mission will increase greatly our understanding on the global water cycle and should allow a 957 

better quantification of past and current inter-mission biases, helping turning satellite altimetry 958 

archives into a unique climatic dataset and understanding the impacts of climate change and 959 

human activities on the basin. Such a task will benefit of the ongoing VASHYB project 960 

(Validation of Altimetric Satellites for HYdrology in Brazil, 961 

https://swot.jpl.nasa.gov/documents/1054/), which aims to validate SAR and InSAR 962 

observations. The SWOT mission will dramatically increase our capacity to model the AB and 963 

the variations of its water cycle, thanks to the new capacity to monitor hydrological variables 964 

(height, width, slope, and associated discharge) of hundreds of rivers 100 m wide (Biancamaria 965 

et al., 2016). The centimetric accuracy in SWE and slope (Desai, 2018) should provide new 966 

insights on water fluxes in the AB. Since the main limitation for a broader use of satellite 967 

altimetry remains its relatively low temporal sampling, future missions such as the SMASH 968 

mission (SMall Altimetry Satellites for Hydrology, Blumstein et al., 2019), broadcasted together 969 

with the current constellation, should help tackle this issue.  970 

 971 

4.2. Surface water extent  972 

https://swot.jpl.nasa.gov/documents/1054/
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Characterizing the extent and variation of surface water bodies and aquatic ecosystems, 973 

which include rivers, streams, lakes, wetlands, as well as seasonally inundated floodplains, 974 

forests and savannas, is of primary importance to the study of the water, energy and 975 

biogeochemical cycles of the Amazon River basin (Junk, 1997; Melack et al., 2009). Indeed, 976 

covering about 20% of basin's surface area, with large temporal variability, the surface waters of 977 

the Amazon play a key role in the climate and in the maintenance of biodiversity. Amazon 978 

surface waters are a major source and sink of carbon dioxide (Abril et al., 2014; Amaral et al., 979 

2020; Raymond et al., 2013) and the largest natural geographic source of methane in the tropics 980 

(Kirschke et al., 2013; Melack et al., 2004; Pangala et al., 2017; Pison et al., 2013). In this 981 

context, understanding the dynamics of surface water extent is of primary importance to Amazon 982 

hydrology, biogeochemistry processes and their link with climate, for effective management of 983 

water and fisheries resources (see Section 6.3) and for a disaster management for cities which are 984 

under flood risk (e.g., Iquitos, Porto Velho, Rio Branco, Cruzeiro do Sul). This is particularly 985 

true in the context of current global changes that impact the AB (see Section 6.4), with intense 986 

drought and flood events that recently affected large areas of this region (E. A. Davidson et al., 987 

2012; Jiménez-Muñoz et al., 2013; Marengo et al., 2008, 2011). In addition, monitoring the 988 

variations of surface water hydrological conditions is key to support the development of models 989 

of the Amazon water cycle and its surface hydrology (see Section 6.2). 990 

Characterizing the distribution and quantifying seasonal and interannual variations in the 991 

extent of surface waters at the scale of the AB is a challenge given their large variety and 992 

variability, and the presence of cloud cover and forest vegetation. Early estimates of the 993 

distribution of surface water for large areas were based on static databases from aeronautical 994 

charts and aerial photographs, which often reflected the maximum open water extent (Cogley, 995 

2013; E. Matthews & Fung, 1987) and did not provide  information on their temporal and spatial 996 

variations. The Global Lakes and Wetlands Database (Lehner & Döll, 2004) estimates the extent 997 

of floodplains and wetlands in the AB of ~300-350 x103 km², but with large uncertainties (N. C. 998 

Davidson et al., 2018). The advent of satellite observations now allow monitoring the large-scale 999 

dynamic of surface waters, including those in the AB (Alsdorf et al., 2007; Prigent et al., 2007) 1000 

enabling progress on understanding of the associated physical, biogeochemical, environmental 1001 

and ecological processes.  1002 

Different RS-based techniques, using observations made in a wide range of the 1003 

electromagnetic spectrum (visible, infrared, and microwave; Melack et al., 2004; Prigent et al., 1004 

2016), have been developed, with varying degrees of success, to derive quantitative estimates of 1005 

the extent and dynamics of surface waters and aquatic systems in the Amazon (Table 4). They 1006 

encompass a wide range of spatial and temporal resolutions, often based on a trade-off between 1007 

temporal and spatial coverages. Observations with low spatial resolution (e.g., ~10-50 km from 1008 

passive microwave sensors) are generally limited to the detection of relatively large inundated 1009 

areas, or regions where the cumulative area of small areas represents a fairly large portion of the 1010 

satellite footprint. They have the advantage of frequent temporal coverage, sometimes daily. 1011 

High-resolution observations (e.g., <100 m from SAR for instance) provide information at a fine 1012 

spatial scale but have low temporal frequency, often limiting observations over large areas to a 1013 

few times per season. Optical and infrared observations offer good spatial and temporal 1014 

resolution but have limited capabilities in the tropical Amazon region as they are unable to 1015 

penetrate clouds and dense vegetation. 1016 
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 1017 

Table 4. Summary of RS-based approaches developed to monitor the extent of surface water in 1018 

the Amazon (non-exhaustive list). References, sensor/satellite name, product name (when 1019 

available), original area of study, spatial/temporal resolution and time span of data availability 1020 

are shown. 1021 

RS Approaches References 
Sensors/Satellites 

(product name) 

Original Area of 

Study 

Spatial/temporal 

resolution 
Time span 

Passive 

Microwaves 

Giddings and 

Choudhury (1989) 
SMMR on Nimbus 7 

4 major river basins 

of SA 
~25km / Monthly 1979-1985 

Sippel et al., (1994) SMMR on Nimbus 7 
Central Amazon and 

floodplains 
~25km/ Monthly 1979-1985 

Sippel et al., (1998) SMMR on Nimbus 7 
Amazon River and 

tributaries 
~25km/ Monthly 

1979-1985 (and 

1902-1995 

reconstruction) 

Hamilton et al., 

(2002) 
SMMR on Nimbus 7 

6 major floodplains 

over SA. 
~25km/ Monthly 1979-1987 

Brakenridge et al., 

(2007) 
AMSR/E on Aqua Global ~25km/ daily 2002-2011 

Parrens et al., (2017) SMOS (SWAF) AB ~25-50km/ 3-day 2009-present 

Active 

Microwaves 

Hess et al., (2003) SAR on JERS-1 Central Amazon 
100m/Sep-Oct 95 and 

May-Jun 96 

Sept-Oct 95 and 

May-Jun 96 

Bourrel et al., (2009) 
SAR on ERS-2 / 

RADARSAT 
Bolivian Amazon 

2 RADARSAT (50m)/ 3 

ERS (15m) images 

1996–1998 

 

Arnesen et al., (2013) 
ScanSAR mode on 

ALOS/PALSAR 

Lower Amazon River 

floodplain 

100m/ Twelve ScanSAR 

images 
2007-2010 

Ferreira-Ferreira et 

al., (2015) 

SAR on 

ALOS/PALSAR 

Central Amazon 

floodplain 

12.5m / 13 ScanSAR fine 

bream images 

2007-2010 

 

Hess et al., (2015) SAR on JERS-1 AB 
100m/ Sept-Oct 1995 and 

May-Jun 1996 

Sept-Oct 1995 and 

May-Jun 1996 

Chapman et al., 

(2015) 

ScanSAR mode on 

ALOS/PALSAR 
AB 

100m / 323 ScanSAR 

images 
2007-2010 

Ovando et al., (2016, 

2018) 

ScanSAR mode on 

ALOS/PALSAR and 

MODIS reflectance 

Bolivian Amazon 

wetlands 

100m/Forty-five 

ScanSAR and 500m/  

8-day MODIS images 

2007-2009 and 2001-

2014 

Park et Latrubesse 

(2017) 

SAR on 

ALOS/PALSAR 

Amazon floodplain 

(Miratuba) 
12-350m / 19 images 2006-2008 

Pinel (2019) 
SAR on  

ALOS/PALSAR 

Amazon/Solimoes 

River (Janauaca) 
30m/ 23 images 2007-2011 

Resende et al. (2019) 
SAR on  

ALOS/PALSAR 
Central Amazon 25m / 56 images 2006-2011 

Rosenqvist et al. 

(2020) 

ScanSAR on ALOS-

2 PALSAR-2 
AB 

50m / Yearly minimum 

and maximum 
2014-2017 

Optical and 

infrared 

Yamazaki et al. 

(2015) 
Landsat (G3WBM) Global 

90m / 4 scenes of surface 

body freq. at 5-year 

interval 

1990-2010 

Pekel et al. (2016) Landsat (GSW) Global 
30m/ Surface water 

occurence 
1984-2015 
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Allen et al., (2018) Landsat (GRWL) Global 
30m / static widths and 

areas 
-- 

Souza et al (2019)     

Multi-satellite 

techniques 

Prigent et al., (2007, 

2020) 

SSMI/AVHRR/ERS 

(GIEMS) 
Global ~25km/ monthly 1992-2016 

Schroeder et al., 

(2015) 
Landsat 

AB 
30m/Surface 

water  changes 
1985-2017 

Aires et al., (2013) GIEMS/JERS-1 SAR Central Amazon 500m/ monthly 1993-2007 

Fluet-Chouinard et 

al., (2015) 

GIEMS downscalled 

(named GIEMS-D15) 
Global 500m/ max./min./average 1993-2007 

Aires et al., (2017) 
GIEMS downscalled 

(named GIEMS-D15) 
Global 90m/ monthly 1993-2007 

Parrens et al. (2019) 
SMOS downscalled 

(named SWAF-HR) 
AB 1km/ 3-day 2010-2016 

 1022 

Passive microwave observations have demonstrated their usefulness for observing 1023 

surface water and flood extent and provided some of the first estimates of Amazon surface water 1024 

extent from satellite (Giddings & Choudhury, 1989) as reviewed in Kandus et al. (2018). 1025 

Emissivities (and brightness temperatures) are sensitive to the presence of surface water 1026 

(Choudhury, 1991; Sippel et al., 1994) with a decrease in emissivity in both linear polarizations 1027 

(horizontal and vertical) and an increase for the difference in polarization, especially at low 1028 

frequencies, due to the different dielectric properties between water, soil and vegetation. Surface 1029 

water and inundation patterns in the large floodplains of the central AB (Sippe et al., 1998) and 1030 

South America (Hamilton et al., 2002) were derived by analysis of the 37-GHz polarization 1031 

difference observed by the Scanning Multichannel Microwave Radiometer (SMMR; Nimbus-7 1032 

satellite, 1979-1987). By developing a relationship between the total flooded area along the 1033 

Amazon river main stem and the monthly means of river stage at Manaus, they provided the first 1034 

94-year reconstruction of flooded area from the river stage in situ record, estimating the long-1035 

term mean of the flooded area along the Amazon River main stem to be ~ 47000 km2. Those 1036 

studies have been followed by passive microwave-derived products of surface water extent over 1037 

the AB, using Special Sensor Microwave/Imager (SSM/I), Advanced Microwave Scanning 1038 

Radiometer (AMSR-E; Brakenridge et al., 2007) and most recently Soil Moisture Ocean Salinity 1039 

(SMOS) observations (Parrens et al., 2017). Parrens et al. (2017) used the microwave L-band 1040 

(1.4 GHz) observations from 2010 to 2017 to map the temporal evolution of the Amazon water 1041 

bodies at coarse spatial resolution (~50 km) and weekly temporal resolution (product named 1042 

SWAF) with the ability, thanks to the L-Band frequency, to better retrieve water under dense 1043 

canopy. Passive microwave observations have inherent limitations because of their ground 1044 

footprints in the typical order of 25-50 km, and their relatively low spatial resolution is often 1045 

insufficient to observe small water bodies. 1046 

Multi-satellite methodologies that combine the complementary strengths of different 1047 

types of satellite observations to retrieve surface water extent and their dynamics expand the 1048 

information provided by passive microwave radiometers (Table 4). Though designed originally 1049 

for global scale applications, these approaches have been evaluated in the AB. The Global 1050 

Inundation Extent from Multi-Satellite (GIEMS, Papa et al., 2010; Prigent et al., 2007, 2016, 1051 
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2020) or the Surface WAter Microwave Product Series (SWAMPS) Inundated Area Fraction 1052 

(Schroeder et al., 2015) detect and quantify multi-decadal variability of surface water extent over 1053 

tropical environments (Frappart et al., 2008; Papa et al., 2008, 2013). The current version of 1054 

GIEMS is available at ~25 km spatial resolution on a monthly basis for 1992 to 2015 (GIEMS-2, 1055 

Prigent et al., 2020, Figure 6a), while SWAMPS offers current and near-real time information 1056 

(Jensen et al., 2018). The use of these passive microwave-derived datasets helped reveal the 1057 

sources and characteristics of the flood pulse and annual flood wave along the Amazon River 1058 

and major tributaries. They contributed to show at basin scale the water extent seasonality, with a 1059 

high flood season in May-June and low flood season in November in the central Amazon 1060 

floodplain. At basin-scale, Amazon surface water extent (Figure 6b) varies from ~100,000 km² 1061 

(low season) to almost ~400,000 km² (high season), but with a large interannual variability, 1062 

mainly driven by droughts (1998, 2005, 2010) or floods (1997, 2014) extreme events (Papa et al., 1063 

2010; Prigent et al., 2020). However, the maximum surface water extent from GIEMS and 1064 

SWAMPS are lower than those from SAR estimates (Figure 6b). 1065 

Prigent et al. (2007) showed that seasonal flooding differed between the north and south 1066 

part of the basin due to seasonal differences in precipitation. Papa et al. (2008) reported a phase 1067 

lag in precipitation, flood extent and peak flows at the basin scale, suggesting as in Richey et al. 1068 

(1989), that floodplains in large basins such as the Amazon can store large volume of water and 1069 

alter the water transport. Richey et al. (1989) applied a simple water routing scheme and 1070 

estimated that up to 30% of the discharge of the Amazon River is routed through the floodplains. 1071 

However, studies such as Getirana et al. (2012), based on large-scale hydrological model that 1072 

used GIEMS to evaluate their floodplains simulations, suggested instead that the actual value 1073 

might be more below 5%. Furthermore, Sorribas et al. (2020) reported that the ratio between 1074 

river-floodplain discharge and basin discharge ranged between 5 and 40%, which is comparable 1075 

to the range estimated from observations by Richey et al. (1989) and Alsdorf et al. (2010) who 1076 

used gravimetric and imaging satellite methods to estimate the amounts of water seasonally 1077 

filling and draining from the mainstem Amazon floodplain. Hence, there is a need to better 1078 

understand the processes that control Amazon inundations in order to quantify the various fluxes 1079 

across floodplain environments, as is evident in applications of regional-scale flooding models 1080 

(Rudorff et al., 2014b). 1081 
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 1082 

Figure 6. Surface water extent of the AB. (a) Map of maximum wetland and surface water extent 1083 

(high water season) from JERS-1 SAR (Hess et al., 2015) and map of annual maximum surface 1084 

water extent (fraction in km2 for each 773 km2 pixel) averaged over 1992– 2015 from GIEMS2 1085 

(Prigent et al., 2020). (b) Basin-scale monthly mean surface water extent variability for 1992– 1086 

2015 from GIEMS2 (solid black line) along with estimates of JERS-1 SAR-derived wetland and 1087 

flooded area for high-water (dashed blue line) and low-water (solid blue line) seasons. Also 1088 

shown are the Global Surface Water (GSW, Pekel et al., 2016) permanent surface water extent 1089 

(green line, GSW permanent) and the total (permanent plus transitory) surface water extent at 1090 

maximum (red line, GSW Total). (c) Map of maximum surface water extent at regional scale 1091 

(boxes in (a) indicate the locations) from GIEMS-D15 (Fluet-Chouinard et al., 2015) and 1092 

SWAF-HR (Parrens et al., 2019). 1093 
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 1094 

Synthetic aperture radars are active radar instruments that measure the backscatter of the 1095 

observed surface at an angle of incidence (off-nadir), regardless of cloud cover, and allow 1096 

delineation of open surface waters and inundated area with vegetation with a typical spatial 1097 

resolution of 10-100 m (Behnamian et al., 2017; Hess et al., 1990; Kasischke et al., 1997) The 1098 

Spaceborne Imaging Radar-C (SIR-C) experiment provided high quality, multi-band and multi-1099 

polarization data for the Amazon that led to the development of new approaches using SAR. 1100 

Alsdorf et al. (2000) demonstrated the ability of interferometric analyses to detect centimeter-1101 

scale variations in slope across the Amazon rivers and floodplains (see Section 4.1). Hess et al. 1102 

(1995) developed algorithms to detect inundation and vegetation within Amazon wetlands that 1103 

benefitted from modeling of interactions between vegetation and radar, including the double-1104 

bounce effect, also done as part of SIR-C (Y. Wang et al., 1995). Understanding derived from 1105 

this led to use of data provided by the Japan Earth Resources Satellite-1 (JERS-1) to produce the 1106 

first high-resolution wetland map for the central Amazon region under low-water and high-water 1107 

conditions at 100-m resolution (Hess et al., 2003). These results were validated with airborne, 1108 

high-resolution, videography transects throughout the imaged area (Hess et al., 2003). Hess et 1109 

al., (2003) found that 17% of the 1.77 million km2 study area is occupied by wetlands, of which 1110 

96% are inundated at high water and 26% at low water. Flooded forests accounted for nearly 1111 

70% of the overall wetland area, but proportions of the wetland habitats showed large regional 1112 

variations related to floodplain geomorphology. Those new estimates of large inundated area 1113 

were of major importance to understand the outgassing of methane and carbon dioxide from 1114 

Amazon flooded areas (see Section 6.3).  1115 

The JERS-1 SAR estimates were extended to the entire wetlands of the lowland AB 1116 

(region < 500 m asl) (Figure 6a; Hess et al., 2015), currently one of the standards for comparison 1117 

with other satellite-derived products. It estimates flooded extent (Figure 6b) to be of ~2.85 x105 1118 

km2 for low water season (Oct-Nov 1995) and of ~6.34 x105 km2 for high water season (May-July 1119 

1996). An interesting comparison is one made for the central corridor of the AB (Prigent et al., 1120 

2007) between GIEMS and the 100 m resolution L-band JERS-1 SAR mosaic of Hess et al. 1121 

(2003) for low water (September-October 1995) and high water (May-June 1996). For both 1122 

seasons, the spatial structures are similar but estimates of the surface water extent observed by 1123 

SAR (118,000 km2 for the low water season, 243,000 km2 for the high water season) are larger 1124 

than the area estimated by GIEMS (105,000 km2 for the low water season, 171,000 km2 for the 1125 

high water season). Thanks to its better spatial resolution, the SAR estimates are capable to 1126 

discriminate smaller water bodies than GIEMS (typically water bodies smaller than 80 km2 i.e, 1127 

10% of a GIEMS pixel), especially for the low water season. For the entire AB, the basin-wide 1128 

estimates from GIEMS do not match the basin-wide SAR (Figure 6a and b) as reported in Hess 1129 

et al. (2015) which suggested that global datasets derived from lower-resolution sensors or 1130 

optical sensors capture less than 25% of the wetland area mapped by the SAR.   1131 

The use of multi-temporal SAR coverage, such as the ScanSAR mode of 1132 

ALOS/PALSAR, provide variations of flood extent at the scale of floodplain units, e.g., Curuai 1133 

floodplain along lower Amazon River (Arnesen et al., 2013), Mamiraua floodplain (Ferreira-1134 

Ferreira et al., 2015) or inundation patterns in central Amazon (Pinel et al., 2019; Resende et al., 1135 

2019). Rosenqvist et al. (2020) generated annual maximum and minimum inundation extent 1136 

maps over the AB using ALOS-2/PALSAR-2 ScanSAR, in line with previous inundation maps 1137 
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by L-band JERS-1 and ALOS/PALSAR radar classifications of the inundation (Chapman et al., 1138 

2015). At the regional scale, Bourrel et al. (2009) mapped the floods in the Bolivian Amazon 1139 

from SAR C-Band microwave data of RADARSAT and ERS-2. Over the same region, the 1140 

surface water dynamics of the Bolivian Amazon wetlands (Ovando et al., 2018), as well as the 1141 

characterization of extreme flood events (Ovando et al., 2016) were investigated by combining 1142 

ALOS/PALSAR SAR observations with MODIS multi-temporal flood maps and altimetry-1143 

derived water level variations (ENVISAT & SARAL). Other SAR satellite missions, such as the 1144 

Copernicus Sentinel-1 SAR (launched in 2014), which offer a global revisit of 6-12 days, have 1145 

not been yet fully exploited in the AB but offers new opportunities for mapping the spatial and 1146 

temporal variations of surface waters at a fine scale in tropical environments. The near-future 1147 

launch of SAR satellites, such as NISAR and SWOT (Prigent et al., 2016), will offer new 1148 

opportunities to monitor Amazon surface water with dedicated sensors. 1149 

Optical and infrared imagery observations (e.g., Landsat, SPOT, QuickBird, Ikonos, 1150 

AVHRR, MODIS, Sentinel 2A/B) offer high spatial and temporal resolutions (~1-500 m, sub-1151 

daily to weekly) but in tropical environments they are generally limited by the inability to 1152 

penetrate clouds and dense vegetation. Therefore, assembling cloud-free coverage during the 1153 

rising flood season of the central AB remains challenging (Asner, 2001; Hess et al., 2015; Klein 1154 

et al., 2015). Nevertheless, classification of optical imagery using water indexes and related 1155 

methods, as reviewed by Huang et al. (2018), enables to estimate flood frequency based on 1156 

temporal maps of surface water cover, and despite the limitations from vegetation canopy and 1157 

cloud cover, this type of data can be of value to monitor open surface water. Several studies 1158 

(Table 4) based on Landsat observations created global databases of the area of rivers (Global 1159 

River Widths from Landsat -GRWL; Allen & Pavelsky, 2018) and surface water (Pekel et al., 1160 

2016; Yamazaki et al., 2015) which can be used at the AB scale. Based on the decadal‐scale 1161 

monitoring of Landsat missions, the Global Surface Water dataset (GSW, Pekel et al., 2016) uses 1162 

three million images over 32 years (from 1984 to 2015) at a 30 m spatial resolution to derive a 1163 

monthly record of water presence in classifying each Landsat pixel as open water, land, or non-1164 

valid observation using an expert system. In the AB, GSW estimates of surface water extent 1165 

(permanent and total as the sum of permanent and transitory water bodies) are lower than the 1166 

estimates from other RS-based technique such as SAR or GIEMS (Figure 6b) and comparison of 1167 

GSW with GIEMS-D3 (see further below) found seasonal water bodies in savannas and forest 1168 

floodplains were not detected properly (Filipe Aires et al., 2018). C. M. Souza et al. (2019) 1169 

developed another Landsat classification to estimate long-term changes in Amazon surface 1170 

waters revealing the recent increase in areas associated to hydropower lakes. Recent satellite 1171 

missions such as Sentinel 2A/B (since 2015, with 10 m spatial resolution at 5–10-day intervals, 1172 

Pham-Duc et al., 2020) or programs such as the RapidEye (since 2008, 5 m spatial resolution and 1173 

a temporal resolution of 1–5.5 days, Garousi-Nejad et al., 2019) or the PlanetScope (CubeSats, 1174 

since 2014, with 3–5 m spatial resolution and daily revisit time; Cooley et al., 2019) 1175 

constellations might bring new opportunities to study fine scale surface water extent of the 1176 

Amazon. 1177 

In order to take advantage of the complementary strengths of various observations, for 1178 

instance the low resolution but long term estimates of passive microwave versus the high 1179 

resolution but limited in time observations from SAR, a downscaling methodology combining 1180 

both estimates has been developed to retrieve monthly central Amazon at ~500 m spatial for the 1181 

1993-2007 period (Filipe Aires et al., 2013). Several other studies based on downscaling 1182 
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approaches using a floodability index provide high resolution maps of surface water extent over 1183 

the Amazon, such as GIEMS-D15 (Fluet-Chouinard et al., 2015; ~500 m spatial resolution and 1184 

its 1-km adaptation as in Reis et al., 2019) and GIEMS-D3 (Aires et al., 2017, 90m). Similarly, 1185 

Parrens et al. (2019) proposed a downscaling methodology based on multi-source RS data 1186 

(SMOS SWAF; combined with a global DEM and GSW dataset) to map Amazon inland water 1187 

under vegetation at ~1 km spatial resolution every 3 days for the 2010–2016 (named SWAF-1188 

HR). Figure 6c shows maps of maximum surface water extent from GIEMS-D15 and SWAF-1189 

HR for three regions, including interfluvial wetlands. Such observations are valuable to wetland 1190 

conservation decisions, as the timing and duration of inundation often determine ecological 1191 

characteristics and the provision of ecosystem services. For instance, Reis et al. (2019) classified 1192 

Amazon wetlands according to the timing and duration (months per year) of inundation detected 1193 

with GIEMS-D15, and their link to precipitation regimes. It revealed that permanently inundated 1194 

wetlands account for the largest area and are mainly floodplains located in the lowlands of the 1195 

catchment. Seasonally inundated wetlands varied in the duration of inundation reflecting 1196 

different rainfall and hydrological regimes. These regional differences in inundation 1197 

characteristics are important to conservation planning and wetland management especially in the 1198 

context of anthropogenic interventions such as dams and waterway construction.  1199 

Finally, new RS techniques and methodologies are continuing to be developed and can 1200 

help monitor the surface water extent of the AB. The potential for Global Navigation Satellite 1201 

System-Reflectometry (GNSS-R) has been explored (Chew & Small, 2020; Jensen et al., 2018; 1202 

Rodriguez-Alvarez et al., 2019) using Cyclone GNSS (CYGNSS) constellation of GNSS-R 1203 

satellites and a simple forward model that demonstrate how surface reflectivity measured by 1204 

CYGNSS can capture flooding dynamic over the region. 1205 

In Section 5.1 “Methods for Measuring Area” of Alsdorf et al. (2007), the authors 1206 

suggested that "Perhaps the best opportunity in the next few years for routine measurements of 1207 

inundated area will result from the Japan Aerospace Exploration Agency’s ALOS mission". 1208 

More than a decade later, it is worth noting that the extent and variability of surface water of the 1209 

Amazon are still one of the most studied variables of the hydrological cycle, but that studies 1210 

using ALOS observations remain recent and limited. Further studies and new observations are 1211 

required to fully characterize Amazon surface water extent and the processes that drive the 1212 

patterns and dynamic. In particular, polarimetric and interferometric L-band SAR data from the 1213 

forthcoming NASA/ISRO L-band SAR mission and the Ka-band Radar Interferometer (KaRIn) 1214 

swath observations from the forthcoming SWOT mission will be capable of enhanced 1215 

monitoring and comprehensive survey of large-scale surface water extent and dynamics of the 1216 

AB. 1217 

 1218 

4.3. Floodplain and river channels topography  1219 

Along the Amazon River, the floodplain has many lakes and channels that vary in extent, 1220 

depth, and connectivity (Hess et al., 2015; Rudorff et al., 2014b; Trigg et al., 2012). This 1221 

complex topography affects the water flow through river-floodplain water exchanges, which in 1222 

turn, are important for carbon, nutrients, and sediment fluxes (Melack et al., 2009). Accurate 1223 

topographic information is essential for the characterization of the surface water in the 1224 

floodplain, particularly for hydraulic numerical modeling (Baugh et al., 2013; Paiva, Buarque, et 1225 
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al., 2013; Rudorff et al., 2014a). Furthermore, topographic mapping is required for understanding 1226 

the morphology and morphodynamics of the river channels and lakes. The SRTM DEM is a 1227 

global topographic dataset generated from C-band interferometry (Farr et al., 2007) and has been 1228 

widely used in hydraulic simulations and geomorphic characterization of the Amazon 1229 

floodplains (Figure 7a). However, the data are affected by vegetation cover, and has errors such 1230 

as absolute bias, speckle noise (granular aspect in the image due to the random presence of pixels 1231 

with extreme values), and stripe noise (Rodríguez et al., 2006). It is also not capable of 1232 

describing bathymetry of inland water bodies as it observed surface water elevation only once.   1233 

The application of topographic data, such as SRTM DEM, together with radar (e.g., 1234 

RADAM, JERS-1) and optical (e.g., Landsat) images allowed the geomorphological 1235 

characterization of floodplains and river channels of the AB. Sippel et al. (1992) described lakes 1236 

of different shapes based on RADAM maps along different sections of the main stem 1237 

Solimoes/Amazonas rivers and their major tributaries. Latrubesse & Franzinelli (2002) and 1238 

Mertes et al. (1996), described geomorphologically distinct regions along the upper and middle 1239 

reach of the Amazon River. Scroll-bar topography, which forms long and narrow lakes, and 1240 

oxbow lakes, located in abandoned river meanders, are dominant in the upstream reaches 1241 

(Mertes et al., 1996; Figure 7). Downstream reaches are characterized by large, shallow lakes 1242 

formed by the overbank deposition of fine sediments in a very flat floodplain topography 1243 

(Latrubesse & Franzinelli, 2002; Mertes et al., 1996; Figure 7). Active deposition of sediments 1244 

across the floodplains was also identified and described by Lewin et al. (2017) using RS data. 1245 

Constantine et al. (2014), Peixoto et al. (2009) and Rozo et al. (2012) characterized the channel's 1246 

migration of rivers and floodplains. Sediment supplies play an important role in the evolution of 1247 

Amazonian rivers, as the rivers with high sediment loads experience faster meander migration 1248 

and higher cutoff rates than rivers with lower sediment loads (Constantine et al., 2014). Large 1249 

and rapid geomorphological changes can also arise due to anthropogenic pressures such as 1250 

livestock and channel irrigation. These may be the causes of the progressive erosion of a channel 1251 

along the lower Amazon River that captured almost all discharge from the lower Araguari River, 1252 

which previously had flowed directly to the Atlantic Ocean (E. S. dos Santos et al., 2018; 1253 

described in more details in Section 6.4). 1254 

 1255 
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 1256 

Figure 7. (a) SRTM DEM in central Amazon. (b) Oxbow lakes in Juruá River (Sentinel-2, 1257 

October of 2020). (c) Channel width in the floodplain (Adapted from Trigg et al., 2012). (d) 1258 

Topography elevation of the floodplain channels and lakes (Adapted from Fassoni-Andrade, 1259 

Paiva, Rudorff, et al., 2020).  1260 

 1261 

In order to improve the applicability of SRTM data to hydraulic modeling of the AB, 1262 

various techniques were developed such as the removal of the vegetation height (Baugh et al., 1263 

2013; O’Loughlin et al., 2016; Paiva, Buarque, et al., 2013; Paiva, Collischonn, et al., 2011; 1264 

Pinel et al., 2015; Rudorff et al., 2014a; Yamazaki et al., 2017), the interferometric bias (Pinel et 1265 

al., 2015; Rudorff et al., 2014a), as well as smoothing as pit removal (Yamazaki, Baugh, et al., 1266 

2012). Despite the better topographic representation achieved by these methods, topographic 1267 

information below the water surface cannot be recovered from SRTM. Also, SRTM dataset 1268 

relies on one only overpass in February 2000. Therefore, some processes, such as infilling and 1269 



manuscript submitted to Reviews of Geophysics 

 

44 

 

 

drainage of the floodplain, may not be well represented in the numerical models. River 1270 

bathymetry is also key information that is not systematically resolved. Recently Brêda et al. 1271 

(2019) demonstrated the potential of assimilating satellite altimetry data into hydraulic models 1272 

for its estimation. To estimate the topography in seasonally flooded areas, Bonnet et al. (2008) 1273 

combined SWE with flood extents derived from JERS-1 images to estimate a bathymetric DEM 1274 

of  the Curuai floodplain. Park et al. (2020) related water depth and a flood frequency map, 1275 

derived from surface water mapping, to infer the Curuai bathymetry. Fassoni-Andrade, Paiva, 1276 

Rudorff, et al. (2020) developed and applied a systematic method to estimate floodplain 1277 

topography using a combination of flood frequency maps derived from optical RS and ancillary 1278 

in situ water level data archives (Figure 7d). This was the first systematic and extensive mapping 1279 

of a seasonally flooded area in a wetland, showing floodplain depths less than 5 m (15 m) in low 1280 

(high) water, and that active storage volume in the open-water floodplain varies 104.3 km3 on 1281 

average each year. This dataset was complemented over permanently flooded regions by a 1282 

compilation of digitized nautical charts from the Brazilian Navy. Recently, Fassoni-Andrade et 1283 

al. (2021) applied this methodology to the Amazon estuary showing the morphology of the 1284 

intertidal floodplain.  1285 

The bathymetric information in permanently flooded areas relies on in situ field surveys. 1286 

Among the studies cited here, only a few obtained in situ bathymetric information (Bonnet et al., 1287 

2008; Fricke et al., 2019; Pinel et al., 2015). Additional studies with detailed bathymetry include 1288 

Lesack & Melack (1995), Barbosa et al. (2006), Panosso et al. (1995), and Trigg et al. (2012). As 1289 

part of the first hydrological budget of an Amazon floodplain lake, Lesack & Melack (1995) 1290 

surveyed the lake’s bathymetry, which was subsequently used in the hydrological model of Ji et 1291 

al. (2019). Panosso et al. (1995) conducted a bathymetric survey of Lake Batata, located near the 1292 

confluence of the Trombetas River and the Amazon River. This lake received tailings from 1293 

bauxite processing and the estimate was used for conservation and recovery studies. Barbosa et 1294 

al. (2006) conducted an extensive bathymetric survey of the Lake Grande do Curuai floodplain, 1295 

in the eastern AB. The bathymetry was used to estimate volume, in hydraulic simulation 1296 

(Rudorff et al., 2014a) and topographic assessment (Fassoni-Andrade, Paiva, & Fleischmann, 1297 

2020). Trigg et al. (2012) illustrated the first systematic characterization of floodplain channels 1298 

in central Amazon based on Landsat imagery and field survey (Figure 7c). Floodplain channel 1299 

widths vary considerably (10–1000 m), and channel depths are related to the local amplitude of 1300 

the Amazon river flood wave (~10 m), and deeper when subject to local runoff. 1301 

Many advances have been made to characterize the topography of rivers and floodplains 1302 

using RS techniques, among the promising prospects for new DEMs (eg.. The L-band reduces 1303 

the systematic positive bias of vegetation due to its ability of penetrating the canopy. Images 1304 

from the NISAR mission, a bi-band SAR satellite to be launched in 2022 with global coverage 1305 

and revisiting periods of 12 days will improve the availability of L-band radar data. The SWOT 1306 

mission will simultaneously measure the SWE and water extent, opening up new opportunities to 1307 

create and improve new techniques. New unexplored data from ICESat-2 satellite (launched in 1308 

2018) could be useful for topography estimation and validation. 1309 

 1310 

4.4. Water quality: Sediments, chlorophyll and colored dissolved organic matter 1311 



manuscript submitted to Reviews of Geophysics 

 

45 

 

 

According to their physical and chemical water characteristics, rivers of the AB are 1312 

classified into three types: white, black, and clear-waters rivers (Junk et al., 2011; Sioli, 1956). 1313 

Nutrient-rich whitewater rivers, such as Madeira and Solimões rivers, which account for 98% of 1314 

Amazon River’s sediment discharge to the Atlantic Ocean are dominated by inorganic sediments 1315 

mainly originated from the Andes (Almeida et al., 2015; Meade, 1994). Blackwater rivers (e.g. 1316 

Negro River; Figure 8a) are rich in dissolved organic matter derived from podzolic soils (Bouchez 1317 

et al., 2011).  Clear-water rivers (e.g. Tapajós River; Figure 8b) are characterized by nutrient-1318 

poor, low sediment, and dissolved organic matter concentration (Junk et al., 2015). The water-type 1319 

diversity and the pathways throughout the Amazon floodplain have significant implications for 1320 

floodplain lakes and contribute to their high biodiversity (Junk et al., 2011; Thom et al., 2020). 1321 

A feasible way to monitor the aquatic system's biogeochemical properties and water paths 1322 

between the rivers and floodplain lakes is through satellite RS. The interaction between 1323 

electromagnetic radiation and water bodies,  described by radiative transfer theory (Kirk, 2010; 1324 

Mobley, 1994), allows the development and calibration of algorithms for estimating optically 1325 

active constituents (OACs: Total Suspended Sediments -TSS; Phytoplankton pigments such as 1326 

Chlorophyll-a - Chl-a - and Phycocyanin; and Colored Dissolved Organic Matter – CDOM) in the 1327 

water bodies. These OACs influence the underwater light field and, therefore, the inherent (e.g., 1328 

absorption and backscattering coefficient) and apparent optical properties (e.g., Remote Sensing 1329 

Reflectance – Rrs) of the water bodies. 1330 

 1331 
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 1332 

Figure 8. a) Examples of white and black, and b) clear waters. c) Examples of spectra of three 1333 

water types (Source: Labisa; http://www.dpi.inpe.br/labisa/): white water - Amazon River (TSS 1334 

of 288.5 mg L-1; Chl-a of 2.0 g L-1; aCDOM in 440 nm of 1.3 m-1); clear water - Tapajós River 1335 

(TSS 5.7 mg L-1; Chl-a of 10.8 g L-1; aCDOM in 440 nm of 1.2 m-1); black water - Bua-Bua 1336 

Lake (TSS 7.4 mg L-1; Chl-a of 3.6 g L-1; aCDOM in 440 nm of 2.9 m-1). d) Spatial variability 1337 

of suspended sediments in the central Amazon (Adapted from Fassoni-Andrade & Paiva, 2019). 1338 

e) Suspended sediment time-series in situ (observed) and satellite-based MODIS (estimated) 1339 

obtained from the HYBAM monitoring system (http://hidrosat.ana.gov.br). 1340 

 1341 

There are significant challenges applying RS to monitoring of AB aquatic ecosystems: i) 1342 

frequent cloud cover makes it difficult to acquire images; ii) the optical complexity of the waters 1343 

that flow throughout the AB, characterized by high variability in the concentration of the OACs; 1344 

iii) the lack of sensors with high radiometric, spectral, spatial resolution and signal-to-noise ratio 1345 

to detect the small changes in upwelling radiance from the water column; and iv) the difficulty of 1346 

http://hidrosat.ana.gov.br/
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using RS in narrow rivers and small lakes. These challenges have existed since the beginning of 1347 

RS applications to study of Amazonian aquatic ecosystems in the early 1980s, that focused on 1348 

calibration/validation of algorithms based on in situ data. These methods were based mostly on 1349 

empirical approaches (Bayley & Moreira, 1978; Bradley, 1980; Mertes et al., 1993), with 1350 

acceptable accuracy limited in time and space to the dataset for which the algorithm was developed 1351 

(M. W. Matthews, 2011; Odermatt et al., 2012). In the last decade, efforts have been made to adapt 1352 

ocean color protocols (Mueller et al., 2003) to acquire inherent optical properties (IOPs) of the 1353 

Amazonian waters (L. A. S. de Carvalho et al., 2015; M. P. F. Costa et al., 2013; Jorge et al., 2017; 1354 

Maciel, Barbosa, et al., 2020; Pinet et al., 2017; Valerio et al., 2018), allowing for the development 1355 

of semi-analytical algorithms (SAA). As the apparent optical properties (AOPs) are proportional 1356 

to the IOPs, SAA uses an inversion process based on radiative transfer theory to obtain IOPs from 1357 

the AOPs. Once the IOPs are known, they are used to retrieve the OAC concentrations. Therefore, 1358 

SAA algorithms better identify each constituent contribution, providing more comprehensive 1359 

temporal and spatial coverage (Dekker, 1993; Novoa et al., 2017). 1360 

The flourishing of satellite RS in the second decade of the 21st century is due to two crucial 1361 

technological advances. First, a new generation of sensors was better designed to study complex 1362 

aquatic environments, with improved spectral and radiometric resolution (Landsat-8, Sentinel-2, 1363 

CBERS-04A). Second, the unprecedented increase in computing performance and data storage has 1364 

improved image processing capability. However, the low radiometric resolution provided by 1365 

sensors onboard earlier Landsat (Landsat-5 and Landsat-7) satellites has not prevented the 1366 

development of studies taking advantage of the substantial temporal database available (1972 to 1367 

now) as reported in Lobo et al. (2015) and Montanher et al. (2018).  1368 

In preparation for new sensors, studies of spectral behavior of Amazon water types among 1369 

a wide range of OAC concentrations have been done (C. C. F. Barbosa, 2005; Nobrega, 2002; 1370 

Rudorff, 2006). Those spectra were organized into a spectral library linked to OACs data to create 1371 

reference spectra for water types classification (Lobo et al., 2012). The spectral library is an input 1372 

to a Spectral Angle Mapper algorithm for deriving water type maps from Hyperion and Medium 1373 

Resolution Imaging Spectrometer (MERIS) images acquired simultaneously with field campaigns, 1374 

with reasonable accuracies (48% and 67% for Hyperion and MERIS respectively). This updated 1375 

library was applied to classify Brazilian water types (E. F. F. da Silva et al., 2020). In proof of 1376 

concept studies, MODIS images from AQUA and TERRA satellites were successfully used for 1377 

estimating Chl-a (Novo et al., 2006) and TSS (Espinoza-Villar et al., 2018; Fassoni-Andrade & 1378 

Paiva, 2019; Marinho et al., 2018; J. M. Martinez et al., 2009) in Amazonian water bodies with a 1379 

size compatible with the spatial resolution of the sensors. 1380 

Chl-a estimation, a proxy for phytoplankton abundance, remains challenging in the 1381 

Amazon floodplain lakes due to high TSS masking chl-a spectral features (Z.-P. Lee et al., 2016) 1382 

at some times (C. C. F. Barbosa et al., 2009, 2015; Bourgoin et al., 2007; R. D. Ferreira et al., 1383 

2013; Maciel et al., 2019). A spectral mixture algorithm can overcome this problem in some cases 1384 

(Novo et al., 2006; Rudorff et al., 2006). Highest chlorophyll concentrations were observed in low 1385 

water periods (November and December) in the middle reach of the Amazon floodplain, as a result 1386 

of lakes enriched by dissolved nutrients in less turbid waters (Novo et al., 2006). However, the 1387 

empirical nature of those algorithms prevents their wide application. Therefore, new approaches 1388 

have been investigated, including the use of semi-analytical algorithms (Flores Júnior, 2019).  1389 

CDOM retrieval based on satellite imagery is scarce in Amazon lakes since the isolation of CDOM 1390 
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signature from the water leaving signal is complex in turbid waters (Kutser et al., 2016). M. P. da 1391 

Silva et al. (2019) proposed an empirical algorithm for estimating CDOM absorption at 440nm 1392 

from Sentinel-2/MSI images. Table 5 presents a summary of these studies. 1393 

 There are many studies on sediment retrieval from satellite data. These studies are mainly 1394 

focused on TSS estimates for rivers (Bernini et al., 2019; Espinoza-Villar et al., 2018; Kilham & 1395 

Roberts, 2011; Lobo et al., 2015; Maciel et al., 2019; Maciel, Novo, et al., 2020; Montanher et al., 1396 

2014; Park & Latrubesse, 2014; Villar et al., 2013; Yepez et al., 2018) rather than for Amazon 1397 

floodplain lakes (Alcântara et al., 2009; Fassoni-Andrade & Paiva, 2019; Maciel et al., 2019; 1398 

Rudorff et al., 2006, 2007). Most of them are based on empirical algorithms, and only recently, 1399 

some semi-analytical algorithms became available (Table 5). The HYBAM observatory provides 1400 

an example of systematically derived TSS concentration using empirical algorithms from MODIS 1401 

at 16 stations (TSS time-series; http://hidrosat.ana.gov.br) in the main sediment-contributing 1402 

rivers, including Amazon-Andean rivers in Peru and Bolivia (Espinoza-Villar et al., 2018; R. 1403 

Espinoza Villar et al., 2012; J. M. Martinez et al., 2009; Villar et al., 2013). Figure 8e is an 1404 

example of a suspended sediment time-series obtained from the HYBAM monitoring system in 1405 

Amazon River between 1999 and 2017 and illustrates substantial variability of TSS concentration, 1406 

ranging from 25 up to 250 mg L-1.  1407 

Montanher et al. (2014) mapped TSS in five Amazonian rivers using multiple regression 1408 

and observed that regional-calibrated algorithms performed better than global algorithms due to 1409 

changes in optical properties of rivers. Park & Latrubesse (2014) also observed that calibrating a 1410 

separate empirical algorithm for low and high-water seasons provided better results for the 1411 

Amazonian river waters. High variability in the OACs in floodplain lakes makes algorithm 1412 

parametrizations difficult. For example, in the Curuai floodplain (lower reach of the AB), TSS 1413 

concentrations can vary from ~5 mg L-1 in the high-water season up to 1000 mg L-1 in the low 1414 

water season due to sediment resuspension by winds. Despite those issues, recent work provide 1415 

successful TSS estimates in the floodplains of the lower Amazon River (Maciel et al., 2019; 1416 

Maciel, Novo, et al., 2020). 1417 

TSS trends have been documented in the Amazon River (J. M. Martinez et al., 2009; 1418 

Montanher et al., 2018) and the Madeira River (Latrubesse et al., 2017; Li et al., 2020) that 1419 

might be related to dam construction (see Section 6.4 for details). RS data in AB were also used 1420 

to evaluate siltation impacts caused by artisanal gold mining in the Tapajós River basin (Lobo et 1421 

al., 2015, 2016; see Section 6.4 for details). Furthermore, Fassoni-Andrade & Paiva (2019) 1422 

mapped for the first time the spatial-temporal pattern of sediment in clear, white, and black water 1423 

of the Amazon rivers (Figure 8d). Despite errors in the empirical model, temporally filtered 1424 

reflectance in red and infrared revealed sediment variations in rivers and lakes. Therefore, it was 1425 

possible to characterize hydrological processes, such as backwater effects, overbank flow, and 1426 

sediment resuspension in lakes. It was observed that depression lakes of the middle reach receive 1427 

sediments-rich water by overbank flow during the flood, and resuspension of sediments occurs in 1428 

the low water period, as previously documented (Bourgoin et al., 2007). In ria lakes, the main 1429 

water source comes from the local basin (surface runoff and local rainfall) with river inflows 1430 

adding sediment during the low water period. 1431 

 1432 

Table 5. OACs algorithms for the AB. OAC range refers to the minimum and maximum values; 1433 

Algorithm Type (AT) refers to Empirical (E) or Semi-Analytical (SAA). In algorithm equation 1434 
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column, fphy refers to phytoplankton fraction from Linear Mixture Model, Rrs (λ) is the RS 1435 

reflectance, 𝑝(λ) is water reflectance. R² is the coefficient of determination, SE is the Standard 1436 

Error, MSE is the mean square error, %NMSE is the normalized mean squared error, MAPE is 1437 

the Mean Absolute Percentage Error, RMSE is the root mean square error, PE is the percentage 1438 

error. For the equations of statistical metrics, the reader is referred to each reference.  1439 

Study Area Sensor Name OAC OAC Range AT Algorithm Equation 
Validation Statistical 

Results 
Reference 

Low Amazon MODIS Terra Chl-a 
10-120 μgL-1 

 
E 𝐶ℎ𝑙 = 3.9 ∗ 𝑒0.0175∗𝑓𝑝ℎ𝑦 

R² = 0.76 

SE = 19 μgL-1 

(Novo et al., 

2006) 

Mamirauá 

Sustainable 

Development 

Reserve 

Sentinel-2 CDOM ~1 – 6 m-1 E 𝑎𝑐𝑑𝑜𝑚(440) = 4.39
𝐵2
𝐵3 + 0.59

𝐵6
𝐵5

− 6.67 

R² = 0.75 

MSE = 0.53 m-1 

%NMSE = 15.12% 

(M. P. da Silva 

et al., 2019) 

Curuai Lake 
Sentinel-2 and 

Landsat-8 

TSS 

and 

TSI 

7-43.5 mgL-1 

(TSS) 

 

3.4-33.8 mgL-1 

(TSI) 

E 

ln(𝑇𝑆𝑆𝑂𝐿𝐼) = 9.656 + 1.672
∗ ln⁡(𝑅𝑟𝑠(550)) 

ln(𝑇𝑆𝐼𝑂𝐿𝐼) = 10.73 + 2.08
∗ ln⁡(𝑅𝑟𝑠(550) 

ln(𝑇𝑆𝑆𝑀𝑆𝐼) = 8.318 + 1.336
∗ ln⁡(𝑅𝑟𝑠(550)) 

ln(𝑇𝑆𝐼𝑀𝑆𝐼) = 8.447 + 1.511
∗ ln⁡(𝑅𝑟𝑠(550) 

 

R² = 0.71, MAPE = 

16.81%, RMSE = 3.54 

R² = 0.86, MAPE = 18.08, 

RMSE = 1.97 

R² = 0.69, MAPE = 16.67, 

RMSE = 3.58 

R² = 0.81, MAPE = 18.62, 

RMSE = 3.1 

(Maciel et al., 

2019) 

Curuai Lake WFI CBERS-4 TSS 9-28 mgL-1 SAA 𝑇𝑆𝑆 =
293.930 ∗ ⁡𝑝550

1 − 𝑝/0.345
+ 1.341 

R² = 0.75 

MAPE = 27.08% 

RMSE = 5.73 mgL-1 

(Maciel et al., 

2019) 

Tapajós River  
Landsat-5/TM 

LISS-III 
TSS ~0 – 120 mgL-1 E 

𝑝𝑠𝑢𝑟𝑓(𝑅𝑒𝑑) = 2.64 ∗ (𝑇𝑆𝑆

− 2.27)0.45 

R² = 0.94 

RMSE = 1.39 mgL-1 

(Lobo et al., 

2015) 

Solimões River MODIS TSS 50-700 mgL-1 E 𝑇𝑆𝑆 = 759.12 ∗ (
𝑝𝑛𝑖𝑟
𝑝𝑟𝑒𝑑

)
1.92

 
r = 0.89 

RMSE = 70.23 mgL-1 

(Villar et al., 

2018) 

Orinoco River Landsat-8 TSS ~25-210 mgL-1 E 
𝑇𝑆𝑆 = 1.35512 ∗ 𝑝𝑛𝑖𝑟 ∗ 1000

− 2.9385 

R² = 0.94 

MAPE = 19.8% 

RMSE = 12.8 mgL-1 

(Yepez et al., 

2018) 

Madeira River MODIS TSS 25-622 mgL-1 E 𝑇𝑆𝑆 = 1020 ∗ (
𝑝𝑛𝑖𝑟
𝑝𝑟𝑒𝑑

)
2.94

 r = 0.79 (Villar et al., 

2013) 

Amazon River MODIS TSS 7-130 mgL-1 E 
TSS Fraction from spectral 

unmixing model 
RE = 10 mgL-1 (estimated) 

(Kilham & 

Roberts, 2011) 

Amazon White 

water rivers 
Landsat-5 TSS 0-3561 mgL-1 E Multiple regression R² = 0.76 

(Montanher et 

al., 2014) 

Madeira River 
TriOS Ramses 

(In situ) 
TSS 0-450 mgL-1 SAA 

Relationship between backscattering 

coefficient at 550nm and TSS 
R² = 0.7345 

(Bernini et al., 

2019)  

Amazon white 

water rivers 

TriOS Ramses 

(In situ) 
TSS 5-620 mgL-1 E 𝑇𝑆𝑆 = 20.41 ∗ (𝑝860)

1.173 R² = 0.89 
(J. Martinez et 

al., 2015)  

Amazon rivers 

and lakes 

MODIS 

Terra and 

Aqua 

TSS 0-600 mgL-1 E 
𝑇𝑆𝑆

= 𝑒𝑥𝑝
20∗𝑝𝑟𝑒𝑑+7.68∗𝑝𝑛𝑖𝑟+0.31∗

𝑝𝑟𝑒𝑑
𝑝𝑛𝑖𝑟

⁡
 

R² = 0.7 

RMSE = 75.6 mgL-1 

(Fassoni-

Andrade & 

Paiva, 2019) 

 1440 

One of the main challenges regarding water color RS is identifying and separating each 1441 

constituent contribution from the water column emerging signal. The high sediment 1442 

concentrations, which can mask the contributions of Chl-a and CDOM, makes this challenge 1443 

especially significant in Amazonian waters. The semi-analytical approach, which has performed 1444 

well in other complex waters (Gholizadeh et al., 2016; Werdell et al., 2018; Zheng & DiGiacomo, 1445 

2017), is an alternative to overcome this challenge. However, it depends on sensors with spectral, 1446 

radiometric, and spatial characteristics suitable for inland waters for calibrating high-performance 1447 

algorithms. Initial applications of this approach in Amazonian waters, using Landsat-8/OLI, 1448 
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Sentinel-2/MSI, and Sentinel-3/OLCI data, have shown promising results (Bernini et al., 2019; L. 1449 

A. S. de Carvalho et al., 2015; Jorge et al., 2017; Maciel, Barbosa, et al., 2020). Furthermore, 1450 

hyperspectral sensors missions such as NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem 1451 

(PACE; Werdell et al., 2019) and recently launched ones such as PRISMA (Giardino et al., 2020; 1452 

Niroumand-Jadidi et al., 2020) may help to overcome this challenge. Due to the extensive temporal 1453 

variability in the constituent concentration, a promising approach is to integrate hybrid and semi-1454 

analytical algorithms to obtain adequate accuracy in a wide range of OACs concentration. To cope 1455 

with the frequent cloud coverage and obtain data compatible with aquatic dynamics, the 1456 

concomitant use of inter-calibrated sensors data (Landsat-8/OLI, Sentinel-2/MSI, Sentinel-1457 

3/OLCI, CBERS-4A/MUX), called the virtual constellation, can be a solution. In this sense, two 1458 

ongoing initiatives are the Brazil Data Cube project 1459 

(http://brazildatacube.dpi.inpe.br/portal/explore) and the Harmonized Landsat Sentinel (Claverie 1460 

et al., 2018), which propose to provide intercalibrated data from different sensors. Moreover, to 1461 

investigate dynamic processes in aquatic ecosystems, high spatiotemporal resolution nanosatellites 1462 

represent a promising tool for understanding the short-term responses of floodplain lakes' biota to 1463 

hydrological changes (Maciel, Novo, et al., 2020; Nagel et al., 2020).  1464 

All the improvements in RS technologies in the last decades have supported more accurate 1465 

algorithms for suspended sediment retrieval in the AB. However, as demonstrated in Table 5, Chl-1466 

a and CDOM estimates are still a challenge in those optically complex waters. The accurate 1467 

retrieval of Chl-a and CDOM is dependent on precise RS data, which demands the inversion of 1468 

those OACs. In this sense, new sensors with high radiometric and spectral resolution are 1469 

imperative. Finally, more robust techniques, such as semi-analytical algorithms, machine learning 1470 

approaches, and cloud computing platforms (e.g., Google Earth Engine), can improve water 1471 

quality RS studies in the AB. 1472 

 1473 

5. Total water storage and groundwater storage 1474 

Water mass redistribution is a key parameter needed to understand the climate system 1475 

and its temporal variations at monthly to multi-decadal time-scales. Over land, it corresponds to 1476 

the continuous exchange of water masses between surface (i.e., rivers, lakes, wetlands, snow 1477 

cover, and mountain glaciers) and sub-surface (soil moisture and groundwater) storages, and 1478 

with the atmosphere and the ocean through rainfall, evapotranspiration, and runoff. Total water 1479 

storage is the sum of the water contained in the different hydrological reservoirs. The importance 1480 

of surface water in the AB was presented in Section 4. Groundwater storage also plays a major 1481 

role in the hydrology of the AB and exerts a large influence on climate variability and rainforest 1482 

ecosystems (Pokhrel et al., 2013). Strong memory effects of the Amazon groundwater system 1483 

propagate climate anomalies over the region for several years (Frappart et al., 2019; Miguez-1484 

Macho & Fan, 2012; Pfeffer et al., 2014). 1485 

The GRACE mission, in operation from March 2002 to June 2017, and the GRACE 1486 

Follow-On mission (GRACE FO), in orbit since May 2018, enable the monitoring of the spatio-1487 

temporal changes of Terrestrial Water Storage (TWS) (Tapley et al., 2004). Its temporal anomaly 1488 

is derived from GRACE observations which measure the very small variations in the Earth’s 1489 

gravity field (Tapley et al., 2004). GRACE-derived TWS Anomaly (TWSA) observations, in 1490 

spite of their coarse spatial resolution of ~200-300 km, have been widely used to analyze the 1491 
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impact of climate variability and global changes on the water masses redistribution over land 1492 

(Tapley et al., 2019), and groundwater storages in combination with external observations 1493 

(Frappart & Ramillien, 2018).  1494 

Over the whole AB, GRACE-derived TWS annual amplitude was found to range from 1495 

300 to 450 mm (Figure 9; J. L. Chen et al., 2009; Crowley et al., 2008; Frappart, Seoane, et al., 1496 

2013; Xavier et al., 2010). This range corresponds to twice the annual amplitude of surface water 1497 

storage of the whole basin (Frappart et al., 2012; Ndehedehe & Ferreira, 2020), meaning that the 1498 

annual amplitude of the subsurface storage variations (soil moisture and groundwater) also 1499 

represents half of the TWS annual amplitude. Large variations of this value were observed 1500 

among the major Amazon sub-basins depending on the extent of floodplains (Frappart et al., 1501 

2011, 2019; Papa et al., 2013). Rainfall and GRACE-based TWSA were found to be highly 1502 

correlated in the AB and its major sub-basins (over 2003-2010), even at interannual time-scales 1503 

with Pearson's correlation coefficients generally higher than 0.7 (except in the basins located in 1504 

the Andes) with a time-lag varying from 0 to 3 months (Frappart, Ramillien, et al., 2013; 1505 

Ndehedehe & Ferreira, 2020). Similar results were obtained between TWSA and river discharges 1506 

over the same time spans (Frappart, Ramillien, et al., 2013). Good agreement was also observed 1507 

between TWS and satellite-derived surface water extent (from GIEMS), rainfall, and discharge 1508 

over various time-span (Papa et al., 2008; Prigent et al., 2007, 2012; Tourian et al., 2018). These 1509 

studies revealed the complexity of water transport among the different sub-basins of the Amazon 1510 

with the presence of hysteresis in the relationship between surface water extent and TWSA.  1511 

The analysis of the spatio-temporal patterns of TWS changes provided new information 1512 

on the impact of the extreme climate events (exceptional droughts and floods which occurred in 1513 

2005, 2010, 2012-2015, and 2009, 2012, respectively) on land water storage in the whole AB or 1514 

in its major sub-basins (J. L. Chen et al., 2009, 2010; Espinoza et al., 2013; V. G. Ferreira et al., 1515 

2018; Frappart, Ramillien, et al., 2013). Examples of maps of difference in TWSA between a 1516 

given month and its climatological mean are presented in Figure 9a-b for May 2009, and 1517 

October 2010, respectively. These months were chosen as they correspond to the extremum of 1518 

these climate events (droughts of 2005, 2010, and 2015, flood of 2009). This information has 1519 

revealed to be complementary to what can be obtained using spatialized rainfall and in situ water 1520 

levels and discharges. For instance, the patterns of minimum TWSA during the droughts of 2005 1521 

and 2010 were found to be in good coincidence across the basin with the areas with large fire 1522 

activity (Aragão et al., 2008; Zeng et al., 2008) and of considerable tree mortality (Phillips et al., 1523 

2009) as reported in Frappart, Ramillien, et al. (2013). TWSA also helped, jointly with 1524 

hydrological modeling, to characterize the recent extreme droughts which occurred in the 1525 

Amazon, highlighting the importance of the interactions between subsurface and surface water 1526 

storages to mitigate the deficit in surface reservoirs (Chaudhari et al., 2019).  1527 

 1528 
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 1529 

Figure 9. Maps of TWSA during two extreme events (a) the flood in May 2009, and (b) the 1530 

drought in October 2010. Mean annual changes in groundwater storage anomaly - GWSA (c) 1531 

and associated standard deviation (d) over 2003–2010 (adapted from Frappart et al., 2019). (e) 1532 

Time series of GRACE-based TWSA (km3) over the AB between 2003-2016. The vertical lines 1533 

show the months of maximum (May 2009) and minimum (October 2010) values. 1534 

 1535 

A direct approach to estimate GW storage anomalies is to remove the contribution of the 1536 

different hydrological compartments from GRACE-based TWSA as follows: 1537 
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 1538 

GW = TWS - SW - SM - CW - SWE    (2) 1539 

 1540 

where  represents the anomaly of water storage in the different hydrological 1541 

compartments, SW is the surface water storage, SM is the soil moisture or water contained in the 1542 

root zone, CW is the water contained in the canopy, and SWE is the snow water equivalent. This 1543 

latter term was neglected in the studies performed in the AB as no reliable information on this 1544 

water storage was available. In most of the cases, water from the other compartments (SW and 1545 

SM) are provided by model outputs and/or in situ measurements. For the Amazon, it is necessary 1546 

to accurately take into account the SW component as it represents around half of the TWSA 1547 

(Frappart et al., 2012, 2019). Using external information from hydrological models for SW, SM, 1548 

and CW, groundwater storage anomalies were estimated over 2003-2015, revealing a strong link 1549 

between geological properties and GW storage: the largest groundwater storage capacity in 1550 

Brazil was found in regions with the highest permeability of the rock layers (e.g., the Guarani 1551 

and Alter do Chão aquifers; Hu et al., 2017). But in these cases, SW storage was limited to river 1552 

storage, neglecting the storage in the extensive floodplains of the AB. In order to adequately take 1553 

into account the contribution of SW components, methodologies were developed to estimate SW 1554 

storage variations from RS observations (Frappart et al., 2008, 2012; Ndehedehe & Ferreira, 1555 

2020). SW storage anomalies were obtained by combining surface water extent (generally from 1556 

GIEMS, see Section 4.2) and altimetry-based time series of water levels (see Section 4.1) over 1557 

rivers and floodplains. Frappart et al. (2012) estimated the monthly variations of SW storage at 1558 

the basin scale during the 2005 drought and found that the amount of water stored in the river 1559 

and floodplains of AB during this extreme event was 130 km3 (70%) below its 2003–2007 1560 

average, representing almost a half of the anomaly of minimum TWS as estimated by GRACE. 1561 

Using this newly external information on SW storage variations, along with SM storage 1562 

estimates from hydrological models, GW storage anomalies were first estimated over 2003-2004 1563 

in the Negro River Basin, one of the largest tributaries to the AB (Frappart et al., 2011). The 1564 

spatial pattern of the annual amplitude of GW anomalies agrees well with the regional 1565 

hydrogeological maps and the amplitude are consistent with observations of water level at local 1566 

wells and altimetry-based time series of water levels in two adjacent wetlands where the 1567 

groundwater table reaches the surface during the whole hydrological cycle (Frappart et al., 1568 

2011).  1569 

This approach was then extended to the whole AB over 2003-2010, using about 1000 1570 

ENVISAT RA-2 altimetry VSs of surface water elevation (Frappart et al., 2019). SW storage 1571 

over the entire basin  had an annual amplitude ranging between 900 and 1300 km3 (Frappart et 1572 

al., 2012). GW estimates had good agreement with scarce in situ groundwater observations and 1573 

low-water maps of GW table (Frappart et al., 2008). At basin-scale, the results have realistic 1574 

spatial patterns when compared to hydrogeological maps of Brazil (e.g., porosity maps, aquifer 1575 

boundaries, GW recharge). The seasonal amplitude of GW was estimated to contribute between 1576 

20 to 35% of the GRACE-derived TWS amplitude in the AB (Frappart et al., 2019). The impact 1577 

of the 2005 extreme drought on GW storage was also observed and lasted several years (Frappart 1578 

et al., 2019). 1579 
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 Radar altimetry was used to estimate low-water maps of GW table in the central part of 1580 

the AB (Frappart et al., 2008). Owing to the connection between surface and groundwater during 1581 

the low water period in the alluvial plains of the central Amazon (54°-70° W, 0°-5°S), annual 1582 

lower water levels of 593 altimetry VSs were interpolated to generate yearly maps of 1583 

groundwater base level (GWBL) between 2003 and 2009. The results show that GWBL is 1584 

governed by the surface topography and that several years were needed for GWBL to recover 1585 

from the extreme drought of 2005 (Pfeffer et al., 2014). 1586 

The recent launch of the GRACE Follow-On (GRACE-FO) offers an opportunity to 1587 

extend the monitoring of TWS and GWS changes after 2018. Despite a lack of data between 1588 

October 2017 (end of GRACE operation) and May 2018 (launch of GRACE-FO), two decades 1589 

of TWSA will be soon available, allowing analysis of the impact of multi-year climatic events 1590 

such as ENSO on land and ground water storages. The major drawbacks of these data are their 1591 

low spatial (~200 km) and temporal (1 month) temporal resolutions which are not sufficient to 1592 

study the dynamics of fast hydrological events. To overcome these drawbacks, the GRACE-FO 1593 

payload contains advanced versions of the sensors present on-board GRACE and a novel laser 1594 

ranging  interferometer (LRI),  measuring  the  satellite-to-satellite  distance  in  parallel  with  1595 

the  K-band radar instrument. The LRI is expected to be 26-times  more accurate  than the K-1596 

band radar instrumenton on-board GRACE (Tapley et al., 2019). This better expected accuracy is 1597 

likely to improve the quality and the spatial resolution of the retrieved TWSA. New approaches 1598 

based on the use of Kalman filter were developed to increase the TWSA temporal resolution to 1599 

quasi-daily without degrading the spatial resolution (Ramillien et al., 2015, 2020).  1600 

 1601 

6. Integrative and interdisciplinary studies 1602 

RS data have provided breakthrough advances in understanding of the AB’s hydrology 1603 

and associated aquatic environments. In Sections 2 to 5 we have presented and discussed 1604 

scientific advances for individual components. In this Section we introduce research agendas that 1605 

have benefited from the integration of observations from multiple components of the Amazon 1606 

water cycle. These include the computation of the water budget (6.1), application of hydrological 1607 

models (6.2), understanding of aquatic ecosystems (6.3) and past and ongoing environmental 1608 

changes over the AB (6.4). 1609 

 1610 

6.1. Water budget 1611 

In order to better understand the complex hydrological processes in the AB, it is 1612 

necessary to monitor each component of the water cycle, and to understand how these 1613 

components link and interact. Thus, studying the AB water budget (WB) requires use of a large 1614 

variety of observations, especially because the AB includes complex local environments (e.g., 1615 

floodplains) and processes (e.g., soil moisture and canopy transpiration) which are difficult to 1616 

characterize by satellite observations.  1617 

Among the WB literature, the AB has been one major region among global analyses of 1618 

the water cycle (Munier & Aires, 2018; Pan et al., 2012; Sahoo et al., 2011; Y. Zhang et al., 1619 

2018) or the main focus of the analysis (Azarderakhsh et al., 2011; Builes‐Jaramillo & Poveda, 1620 

2018; Moreira et al., 2019; P. T. S. Oliveira et al., 2014). Most WB studies used only one 1621 
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satellite product for each water component (Azarderakhsh et al., 2011; Builes‐Jaramillo & 1622 

Poveda, 2018; Maeda et al., 2015; Moreira et al., 2019; P. T. S. Oliveira et al., 2014; Rodell et 1623 

al., 2011). Use of a multiplicity of the satellite products for each water component can reduce 1624 

uncertainties, through an approach that is based on observations only (Filipe Aires, 2014) or 1625 

integrating model simulations and re-analyses (Pan et al., 2012; Y. Zhang et al., 2018). 1626 

Continuous quality improvement and increased use of satellite products, associated with 1627 

more sophisticated integration techniques, have allowed better characterization the water cycle. 1628 

WB analyses have been used to i) directly estimate a missing water component such as 𝐸𝑇 1629 

(Maeda et al., 2017; Rodell et al., 2011), 𝑅 (Azarderakhsh et al., 2011; P. T. S. Oliveira et al., 1630 

2014), and terrestrial water storage change 𝑑𝑆 (Moreira et al., 2019); ii) diagnose the 1631 

hydrological coherence of a combination of RS-based estimates and investigating discrepancies 1632 

(Builes‐Jaramillo & Poveda, 2018; Moreira et al., 2019; P. T. S. Oliveira et al., 2014); and iii) to 1633 

optimize RS-based estimates to obtain a hydrologically coherent water cycle (Munier & Aires, 1634 

2018; Pan et al., 2012; Pan & Wood, 2006; Pellet et al., 2021; Sahoo et al., 2011). The three 1635 

main uses of WB closure are detailed in the following paragraphs.  1636 

When estimating missing water components, the objective can be to investigate seasonal 1637 

patterns (Azarderakhsh et al., 2011; Moreira et al., 2019) and more complex features such as 1638 

trends and impacts due to land use and land cover changes (P. T. S. Oliveira et al., 2014). The 1639 

studies provide uncertainties for their estimates based on the relative uncertainties of the other 1640 

components (Rodell et al., 2011). When focusing on 𝐸𝑇, the literature stresses that 𝐸𝑇 is 1641 

controlled by both 𝑃 and radiation without being limited by one of these two (Maeda et al., 1642 

2017); but the seasonality remains unclear due to large uncertainty in 𝑃. Nevertheless, the 1643 

indirect estimation of 𝐸𝑇 has been used by Rodell et al. (2011) to evaluate model 𝐸𝑇 outputs 1644 

over the Tocantins basin and the authors concluded that much effort are still required on the 𝐸𝑇 1645 

modeling. 1646 

Diagnosing WB coherency by combining RS products is a useful tool to assess the 1647 

quality of the RS products. For instance, Moreira et al. (2019) demonstrated that the MSWEP 1648 

and GLEAM datasets reduce the WB imbalance. P. T. S. Oliveira et al. (2014) showed that 1649 

recent versions of the TMPA also improve WB closure compared to older versions. Builes‐1650 

Jaramillo & Poveda (2018) have jointly evaluated the surface and atmospheric water balances 1651 

over the Amazon, and their diagnostic of the discrepancy between various ET estimate showed 1652 

that RS-based ET products balance better the WB than the model and reanalysis outputs. As 1653 

reported in Builes‐Jaramillo & Poveda (2018) and Moreira et al. (2019), the WB imbalance 1654 

relates at sub-basin to the drainage area and the climatic conditions (i.e. tropical or mountainous) 1655 

which impact the signal-to-noise ratio of each water component. 1656 

Several studies have used the WB closure as a constraint for the optimization of satellite 1657 

estimates, jointly for each water component. Pan & Wood (2006) developed an optimization of 1658 

the satellite products using an assimilation scheme within a land surface model at the basin scale. 1659 

This method has then been applied to the AB (Pan et al., 2012; Sahoo et al., 2011). Zhang et al. 1660 

(2018) extended this scheme to the pixel scale by considering only simulated R. Similarly, Aires 1661 

(2014) described several approaches to integrate satellite observation (simple weighting, optimal 1662 

interpolation, post-filtering and neural networks) with the WB closure constraint but without the 1663 

use of surface or hydrological models to obtain an observational database. Munier & Aires 1664 

(2018) investigated AB hydrology using this framework, and Pellet et al. (2021) added inter-1665 
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basins constraints on the budget closure using river discharges over several stations in the basin. 1666 

This technical framework allows for the optimization of the satellite datasets and can be used to 1667 

develop new tools in hydrology such as the assimilation of GRACE data (Y. Zhang et al., 2018). 1668 

For instance, in Pellet et al. (2021), the spatial patterns of 𝑃, 𝐸𝑇 and 𝑑𝑆 were used to estimate the 1669 

river discharge along the river network.  1670 

The estimation of the uncertainty of each water component is one of the main objectives 1671 

of a WB analysis. Such characterizations are generally component- and site-specific. For 1672 

instance, Moreira et al. (2019) extensively evaluated the satellite estimate uncertainty of 𝑃 and 1673 

𝐸𝑇 using in situ data (i.e., 300 precipitation gauges and fourteen eddy-covariance monitoring 1674 

sites), however this approach is limited due to the sparsity of the observation network. Sahoo et 1675 

al. (2011) used the distance to non-satellite estimate while Y. Zhang et al. (2018) and Pellet et al. 1676 

(2021) used the spread of the satellite as a proxy for uncertainty. Azarderakhsh et al. (2011) or 1677 

Munier and Aires (2018) used a literature review based on RS expertise to quantify the 1678 

uncertainties of the satellite products. Studies generally assume a value of 5% to 10% of error for 1679 

𝑅 while 𝑑𝑆 errors from GRACE are often computed following the specifications for leakage and 1680 

measurement covariance errors (Rodell et al., 2004). All the studies agree in the relatively high 1681 

contribution of the 𝑃 estimate in the total WB imbalance (~40%). Moreira et al. (2019) and P. T. 1682 

S. Oliveira et al. (2014) found a positive bias in 𝑃 when comparing them to in situ data, but all 1683 

the integration approaches (Pan et al., 2012; Pellet et al., 2021; Sahoo et al., 2011) result in an 1684 

increased 𝑃 estimate. Furthermore, Moreira et al. (2019) considered that 𝑑𝑆 is the second 1685 

contributor to the WB imbalance (~25%) while Sahoo et al. (2011) and Pellet et al. (2021) found 1686 

a higher contribution from 𝐸𝑇 (~30%). All the optimization strategies have shown that the WB 1687 

can be balanced within the range of the RS-based uncertainties. 1688 

Figure 10a represents the climatology of the four water components in three basins and 1689 

using several datasets for each water component. The three basins are: northern Negro catchment 1690 

upstream of the Serrinha station, the central basin upstream of the Manacapuru station (including 1691 

the drainage area upstream of the Tabatinga station) and the southern basin upstream of the 1692 

Fazenda (Fz) Vista Alegre station (including the drainage area upstream of Porto-Velho station). 1693 

The climatological season (i.e., annual cycle) of all the water components are represented in 1694 

mm/month. All satellite products have bias and uncertainties, but this multi-component analysis 1695 

can isolate the spatial patterns over the AB. For instance, the annual cycles of the WB differ on 1696 

the northern and southern basins. As reported in the literature (Espinoza, Sörensson, et al., 2019; 1697 

Marengo, 2005), over southern basin, 𝑃 is driven by the monsoon with a peak in January and has 1698 

larger seasonal variations (e.g. min-max range) and lower annual average than on the northern 1699 

basin, where 𝑃 peaks in May. The 𝑃 seasonality drives 𝑅 over all basins (north and south) with a 1700 

time-lag of one-two months. Over the central-western basin, 𝑅 can be higher than 𝑃 for a 1701 

particular month and 𝑃-𝑅 peak is about 4 months related to the runoff and river discharge travel 1702 

times inside the basin (Sorribas et al., 2020). 𝑑𝑆 is in phase with 𝑃 in the southern basin, but 1703 

shows a particular season over the Negro and Branco river basins: 𝑑𝑆 is equal to zero during the 1704 

dry season and a linear transition exists between maximum and minimum. Over these basins, 𝑑𝑆 1705 

become negative while 𝑅 was increasing, and reached its maximum 2 months later. This 1706 

illustrates the effect of water storage in floodplain before releasing it into the river. 𝐸𝑇 seasonal 1707 

variation is weaker but 𝐸𝑇 peak seems to be in phase with 𝑃 over southern basin arguing for a 1708 

water-limited behavior while 𝐸𝑇 peak follows the 𝑃 minimum month in northern basin of an 1709 
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energy-limited system (Maeda et al., 2017). In Pellet et al. (2021), the correction of 𝐸𝑇 based on 1710 

the closure of the water cycle enhances the water limitation regime over the central AB and the 1711 

energy limitation over the northern AB. In the south, during dry months (JJA), 𝐸𝑇 is higher than 1712 

𝑃, and water that evaporates is provided by the soil storage which continues to lose water until 1713 

November. For this season, the role of 𝐸𝑇 on the water cycle is relatively more important in the 1714 

dry season than in the rainy season (Marengo, 2005). 1715 

 1716 

 1717 

Figure 10. a) seasonal climatology of all the water component: precipitation (𝑃), 1718 

evapotranspiration (𝐸𝑇), water storage change (𝑑𝑆) and discharge measured at in situ gauges (𝑅) 1719 

described by one or multiple datasets. b) Probability Density Function (PDF) of the resulting WB 1720 

imbalances are shown at sub-basin scale (right). PDF provides the bias and variance of the 1721 

imbalance. 1722 

 1723 

To investigate the overall WB imbalance related to the bias and uncertainty of the all the 1724 

water components, Figure 10b shows the Probability Density Function (PDF) of these 1725 

imbalances at sub-basins scale. Spatially, there is a gradient in the mean of the PDF between the 1726 

western and southern sub-basins. Western sub-basins have a lack of water (negative bias in the 1727 

PDF), while southern sub-basins have an excess of water (positive bias). This gradient was 1728 

reported by Builes‐Jaramillo & Poveda (2018). Furthermore, the variance of the WB imbalance 1729 

increases from south to north with the annual mean of P suggesting that a large part of imbalance 1730 

is due to 𝑃 (Moreira et al., 2019; Pellet et al., 2021). The optimization strategy based on the 1731 

closure of the WB leads to a bigger correction of the water component over western and central 1732 

sub-basins (Pellet et al., 2021). 1733 
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The remaining precipitation uncertainties of the globally calibrated satellite products are 1734 

mainly due to the increase of the precipitation measurement errors by satellite products during 1735 

the rainy season, and the lack of in situ gauges used in calibration (Moreira et al., 2019). The AB 1736 

hydrology could benefit from the use of a dedicated network of precipitation gauges such as 1737 

HYBAM Observatory Precipitation (J. C. Espinoza Villar, Ronchail, et al., 2009; Guimberteau et 1738 

al., 2012) to obtain a regionally-calibrated satellite product for precipitation. Its gauges density 1739 

over the AB is higher than the global gridded rainfall dataset generally used to calibrate satellite 1740 

products (Guimberteau et al., 2012). 1741 

Estimating 𝐸𝑇 in the AB remains a challenge (see Section 3). In Figure 10, the use of 1742 

different 𝐸𝑇 datasets can lead to a difference of 30-50 mm/month which represent up to 50% of 1743 

the 𝐸𝑇 value. Following Moreira et al. (2019), the establishment of generic methods for 1744 

estimating uncertainties is of importance for improving our understanding of the terrestrial water 1745 

cycle. As for 𝑃, one source of the improvement will be the extensive use and increase of an eddy 1746 

covariance network to better understand the uncertainties in 𝐸𝑇 models.  1747 

One technical improvement in the WB based optimization approach might come with the 1748 

spatial resolution of the analysis. WB analysis has been mostly done at the basin scale over the 1749 

AB (Munier & Aires, 2018; Sahoo et al., 2011) even if several studies have been conducted in 1750 

sub-basins defined by river discharge stations (Azarderakhsh et al., 2011; Pellet et al., 2021).  1751 

Using topography information, it should be possible to consider the runoff over land and 1752 

downscale the satellite products while closing the WB at a pixel level. The satellite datasets 1753 

could even be downscaled temporally to obtain a better time resolution.  1754 

As discussed in Section 5, attempts have been made to decompose the TWS from 1755 

GRACE into its surface (Frappart et al., 2012; Papa et al., 2013) and groundwater (Frappart et 1756 

al., 2019) components. Such decomposition could also be attempted within a full terrestrial WB 1757 

analysis, especially when reliable soil moisture satellite estimates over the AB will become 1758 

available. As mentioned in Section 4, long-term surface water datasets would also be necessary 1759 

(Filipe Aires et al., 2017; Parrens et al., 2019; Prigent et al., 2020). 1760 

The GRACE-FO mission launched in 2018, extension of the TRMM data record with the 1761 

GPM mission, and the launch of the SWOT mission will provide a comprehensive set of new 1762 

observations. The continuity of these satellite missions monitoring the water components is 1763 

mandatory to improve our understanding of spatial hydrology patterns through more precise WB 1764 

analyses, and assess potential long-term trends.  1765 

 1766 

6.2. Modeling the Amazon water cycle and its wetlands 1767 

Hydrologic and hydraulic models represent the water cycle storages and fluxes through a 1768 

set of mathematical equations. Such process-based models are suitable tools to understand 1769 

Amazon hydrological processes such as river-floodplain water exchange and groundwater-1770 

surface water  interactions (Miguez-Macho & Fan, 2012; Paiva, Buarque, et al., 2013) and past  1771 

floods and droughts (Wongchuig et al., 2017), to estimate variables in ungauged regions (e.g., 1772 

distributed river discharge for the last century; Wongchuig et al., 2019), and to perform scenarios 1773 

of hydrological alteration due to deforestation, flow regulation by reservoirs, and climate change 1774 

(M. E. Arias et al., 2020; Guimberteau et al., 2017; Júnior et al., 2015; Lima et al., 2014; Mohor 1775 
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et al., 2015; Pokhrel et al., 2014; Pontes et al., 2019; Sorribas et al., 2016; Zed Zulkafli et al., 1776 

2016). 1777 

During the last decades, many models have been applied in the Amazon at different 1778 

scales, from reach (i.e., more detailed studies addressing a few kilometers long river-floodplain 1779 

area) to the whole basin scale. Because of the basin's remoteness and vast dimensions, RS 1780 

datasets are usually adopted as either forcings (e.g., precipitation), a priori information to 1781 

estimate parameter values (e.g., topographic data), validation, or calibration/assimilation data 1782 

(e.g., discharge, river water levels). A major distinction can be made between (i) hydrological 1783 

models that simulate vertical processes as evapotranspiration, soil water infiltration and runoff 1784 

generation mechanisms, and (ii) hydraulic models of surface waters, which represent flow 1785 

propagation along rivers and floodplains with physically-based equations, and allow the 1786 

computation of variables such as surface water elevation and slope, river discharge, and surface 1787 

water extent and storage (Figure 11). More recently, the so-called hydrologic- hydraulic models 1788 

have been developed to couple the strengths of both approaches (Fleischmann et al., 2020; Hoch 1789 

et al., 2016; Paiva, Buarque, et al., 2013), and there may be cases where simplified inundation 1790 

schemes are represented within hydrologic models to estimate wetland flooding dynamics. Table 1791 

6 summarizes the differences between the two approaches. 1792 
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 1793 

Figure 11. Recent applications of hydrologic and hydraulic models in the AB have added 1794 

insights into the role of river floodplains on (a) hydrograph shape (Fleischmann et al., 2016) and 1795 

(c) in-stream travel times (Sorribas et al., 2020), and provided the estimation of (b) long-term 1796 

discharge climatology (Paiva, Buarque, et al., 2013), (c) long-term water level time series 1797 

(example for the location of Manaus; Wongchuig et al., 2019), and (d) floodplain water depths 1798 

(example for the Curuai Lake, 2014 high and low water seasons; Rudorff et al., 2014a). 1799 
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 1800 

Table 6. Summary of main differences between hydrologic and hydraulic models of surface 1801 

waters, with examples of model applications in the AB. Some examples are provided in both 1802 

categories since they refer to hydrologic-hydraulic models. 1803 

 Hydrological models Hydraulic models of surface waters 

Main 

simulated 

process 

Vertical processes (e.g., evapotranspiration, 

soil water infiltration and runoff generation 

mechanisms) and groundwater dynamics 

River-floodplain interaction (e.g., 

floodplain storage, backwater effects) 

Main forcing 

(boundary 

conditions) 

Precipitation 
River discharge, river water level and 

precipitation 

Main output 

variables 

Water balance, evapotranspiration, soil 

water and groundwater storage, river 

discharges 

Inundation maps, river-floodplain 

water depths, longitudinal water 

levels along rivers, river discharges 

Typical 

scientific 

outcomes 

Quantification of water balance 

components, water storage partition 

between surface and subsurface reservoirs, 

evapotranspiration dynamics, impacts of 

human alteration on water balance 

components (e.g., changes in precipitation 

partition into 𝐸𝑇 and runoff) 

Floodplain water storage and 

residence time, water travel times 

across river-floodplain systems, 

rating curves (water level-discharge 

relationships) for operational use, 

impacts of human alteration on flood 

dynamics 

Examples of 

studies 

Beighley et al., 2009; Coe et al., 2002; M. 

H. Costa & Foley, 1997; Cuartas et al., 

2012; Miguez-Macho & Fan, 2012; Paiva, 

Buarque, et al., 2013; Vörösmarty et al., 

1989 

Fleischmann et al., 2020; Garambois 

et al., 2017; Getirana et al., 2012; 

Miguez-Macho & Fan, 2012; Paiva, 

Buarque, et al., 2013; Paris et al., 

2016; Pinel et al., 2019; Rudorff et 

al., 2014a; Sorribas et al., 2020; 

Trigg et al., 2009; Wilson et al., 

2007; Yamazaki, Lee, et al., 2012  

 1804 

The first generation of models in the Amazon involved the development of large scale 1805 

hydrological models, starting with the studies by Vörösmarty et al. (1989), Costa and Foley 1806 

(1997) and Coe et al. (2002). With the advent of RS datasets and higher computational capacity, 1807 

several models have been developed, improving the physical representation of hydrological 1808 

processes, increasing the model spatial resolution and moving from monthly to daily estimates 1809 

(Beighley et al., 2009; Coe et al., 2008; Luo et al., 2017; Miguez-Macho & Fan, 2012; Paiva, 1810 

Buarque, et al., 2013). These models usually adopt the following RS-based input data: 1811 

precipitation with the TMPA product (Collischonn et al., 2008; Getirana et al., 2012; Zubieta et 1812 

al., 2015), and more recently GPM-IMERG (Zubieta et al., 2017) and MSWEP (Beck, Van Dijk, 1813 

et al., 2017); landscape properties including terrain lengths and slopes, based on DEMs (most 1814 

studies using SRTM DEM); and land use and vegetation maps (global maps as FAO, or regional 1815 

ones as the Brazilian RadamBrasil soil maps). The most common validation datasets from RS are 1816 
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water level from satellite altimetry (Section 4.1), surface water extent (Section 4.2), and total 1817 

water storage (Section 5).  1818 

These model applications deepened our comprehension of the water partition between 1819 

soil, surface water and groundwater, and acted as laboratories to improve global hydrological 1820 

models, which in turn are fundamental elements of Earth System models. The assessment of land 1821 

surface and global hydrological models in the Amazon has been a standard procedure in 1822 

geoscientific model development and in model intercomparison projects (Alkama et al., 2010; 1823 

Bertrand Decharme et al., 2008; Getirana et al., 2012, 2014; Getirana, Peters-Lidard, et al., 2017; 1824 

Guimberteau et al., 2014, 2017; Pilotto et al., 2015; Towner et al., 2019; Yamazaki, Baugh, et 1825 

al., 2012; Yamazaki et al., 2011; Z. Zulkafli et al., 2013). At the basin scale, the fraction of the 1826 

total water storage corresponding to surface waters was estimated as 56%, 41% and 27% by 1827 

Paiva, Buarque, et al. (2013), Getirana et al. (2017) and Pokhrel et al. (2013), respectively. These 1828 

values have been compared to RS-based estimates (Frappart et al., 2012, 2019; Papa et al., 1829 

2013). Furthermore, basin-scale average 𝐸𝑇 estimated as 2.39 to 3.26 mm/day by an ensemble of 1830 

land surface models (Getirana et al., 2014), and as 2.72 mm/day by Paiva, Buarque, et al. (2013), 1831 

were slightly lower than values by basin-scale RS (Paca et al., 2019) and an in situ eddy-1832 

covariance network (M. H. Costa et al., 2010), which estimated values of 3.11 to 3.58 mm/day 1833 

across a gradient from southern dry to equatorial wet Amazon forests. The role of soil water 1834 

storage to sustain dry season 𝐸𝑇 in the Amazon was shown by modeling experiments at local 1835 

(Fang et al., 2017) and basin scale (Getirana et al., 2014). Some studies addressed the role of 1836 

groundwater and soil storage on the water balance, and the importance of its representation into 1837 

hydrological models. Applications at headwater basins showed the predominance of groundwater 1838 

on headwater water storage (Cuartas et al., 2012; Niu et al., 2017), in agreement with in situ 1839 

monitoring studies (Hodnett et al., 1997). Miguez-Macho & Fan (2012) suggested the same 1840 

pattern at the whole basin scale. Their model also indicated an important two-way feedback 1841 

between floodwater and groundwater, and the existence of large areas not subject to surface 1842 

flooding across the basin, but where a high water table level would be responsible for keeping 1843 

high soil water content year-round. The simulation of multiple soil layers in the ORCHIDEE 1844 

land surface model, in contrast to a simple 2-layer “bucket” model, was also shown to improve 1845 

the representation of the soil water dynamics and the total water storage in the Amazon, 1846 

especially for the drier regions in the southern sub-basins (Guimberteau et al., 2014). 1847 

Among hydraulic models of surface waters, a pioneer study by Wilson et al. (2007) is one 1848 

of the first hydraulic modeling experiments performed over large domains. The authors applied 1849 

the LISFLOOD-FP model to a 260 km reach of the Solimões River, and estimated the river-1850 

floodplain water exchange as at least 40% of the river volume in that reach. For a relatively 1851 

different reach in the Central Amazon (from São Paulo de Olivença to Óbidos), Richey et al. 1852 

(1989) estimated this ratio as 30% based on a simpler routing method, while Sorribas et al. 1853 

(2020) estimated a value of 40% for the AB system, based on large scale hydraulic modeling 1854 

(see below). The authors also found the model accuracy to be higher for the high water period, as 1855 

has been also reported by recent studies (Pinel et al., 2019; Rudorff et al., 2014a), likely due to 1856 

misrepresentation of the terrain heterogeneities and small disconnected lakes during the dry 1857 

season. Furthermore, since the river-floodplain water exchange often occurs through floodplain 1858 

channels and breached levees that hinder its conceptualization as a simple overbanking flow 1859 

(Trigg et al., 2012), hydraulic models have the challenge to estimate effective channel 1860 

parameters that represent these complex processes (Fleischmann et al., 2018; Trigg et al., 2009). 1861 
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Other applications at reach or floodplain lake scale were developed by Bonnet et al. (2008, 1862 

2017), Ji et al. (2019), Trigg et al. (2009) and Wilson et al. (2007), and addressed the relative 1863 

role of local runoff and river inflow as the main water input, ranging from local runoff-1864 

dominated systems in the Lago Calado (Ji et al., 2019; Lesack & Melack, 1995) to river-1865 

dominated ones in the Curuai (Figure 11d) and Janauacá systems (Bonnet et al., 2008, 2017; 1866 

Pinel et al., 2019; Rudorff et al., 2014b, 2014a), through either channelized or diffuse flow 1867 

patterns. In the case of Curuai and Janauacá, the Amazon or Solimões river was responsible for 1868 

82% and 93% of the floodplain annual influxes, respectively (Bonnet et al., 2017; Rudorff et al., 1869 

2014b).  1870 

The first basin-scale inundation model was introduced by Coe et al. (2002), and 1871 

numerous hydrologic models were developed and coupled to inundation schemes afterwards 1872 

(Coe et al., 2008; Getirana et al., 2012; Getirana, Peters-Lidard, et al., 2017; Hoch et al., 2016; 1873 

Luo et al., 2017; Miguez-Macho & Fan, 2012; Paiva, Buarque, et al., 2013; Yamazaki et al., 1874 

2011; Yamazaki, Lee, et al., 2012). The models featured varying degrees of physics 1875 

representation, with the simulation of floodplains moving from simple storage components to 1876 

dynamic hydraulic schemes, which can represent relevant processes such as backwater effects. 1877 

For hydraulic models, additional RS-based information required as input data includes river 1878 

channel geometry as width, and floodplain topography from DEMs (mainly SRTM and its 1879 

derivatives with vegetation removal to represent the bare terrain; see Baugh et al. (2013), 1880 

O’Loughlin et al. (2016), Yamazaki et al. (2019) and Fassoni-Andrade, Paiva, Rudorff, et al. 1881 

(2020). For local scale hydraulic models, additional parameterization usually involves the 1882 

definition of floodplain roughness based on land cover maps (Pinel et al., 2019; Rudorff et al., 1883 

2014a). RS validation datasets are typically surface water elevation and surface water extent 1884 

(Hall et al., 2011; Schumann et al., 2009).  1885 

These hydraulic model applications revealed the combination of backwater effects and 1886 

floodplain storage to drive the flood wave behavior along Amazon rivers (Paiva, Buarque, et al., 1887 

2013), causing strong attenuation and delay up to 2.5 months. Floodplain storage is also 1888 

responsible for the general negative hydrograph skewness in the main Amazon rivers, with a 1889 

slower rising and a faster falling limb (Fleischmann et al., 2016; Figure 11a). Sorribas et al. 1890 

(2020) used particle tracking methods to estimate surface water travel times along the AB as 45 1891 

days (median), with 20% of Amazon river waters flowing through floodplains (Figure 11c). 1892 

While basin-scale applications have employed 1D models (longitudinal direction along rivers), 1893 

the necessity of representing the 2D diffuse flow in floodplains, especially during receding 1894 

waters, was highlighted by Alsdorf et al. (2005), who combined interferometry data with a 1895 

simple continuity-based model to show that floodplain storage changes decrease with distance 1896 

from the main channel. Generally, the water level in the river-floodplain system is not horizontal, 1897 

and the river-floodplain is not homogeneously mixed (Alsdorf et al., 2007), as assumed by 1898 

several 1D models. While a proper characterization of the complex river-floodplain interactions 1899 

with hydraulic models has been done at local scales (Pinel et al., 2019; Rudorff et al., 2014a), it 1900 

is still to be developed for the regional scale – for instance, to be able to infer hyperresolution 1901 

(e.g., 30 m spatial resolution) flooding patterns for the whole central Amazon at weekly to 1902 

monthly resolution. Finally, the full coupling between hydrologic and hydraulic models has been 1903 

suggested to improve the representation of the floodplain-upland interactions, for instance 1904 

through a more proper representation of open water evaporation in flooded areas (Getirana, 1905 

Kumar, et al., 2017). However, recent studies have suggested that this process has relatively low 1906 
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impact on the total 𝐸𝑇 estimates because of the general energy-limited (and not water-limited) 1907 

𝐸𝑇 in the Amazon (Fleischmann et al., 2020; Paiva, Buarque, et al., 2013). A different 1908 

conclusion is expected for semi-arid wetlands (Fleischmann et al., 2018). 1909 

Regional scale validation of inundation models has been done with surface water extent 1910 

(Getirana et al., 2012; Luo et al., 2017; Paiva, Collischonn, et al., 2013; Wilson et al., 2007; 1911 

Yamazaki et al., 2011) based on the products by Hess et al. (2003), GIEMS from Prigent et al. 1912 

(2007), and more recently with the SWAF database (Parrens et al., 2017) (see Section 4.2 for a 1913 

description of these products). Although the flooding seasonal cycle is usually well captured by 1914 

most models, estimates usually diverge in terms of magnitude (Fleischmann et al., 2020), and the 1915 

fusion between different techniques is likely the optimal solution. However, more detailed 1916 

validation experiments, for instance with maps based on SAR data, are needed, although many 1917 

SAR data classifications were already developed for individual Amazon wetlands (Section 4.2). 1918 

A recent application used ALOS/PALSAR imagery for a local scale model validation in the 1919 

Janauacá floodplain system (Pinel et al., 2019). 1920 

Regarding surface water elevation, hydraulic models are typically capable of representing 1921 

anomalies, but estimates of absolute values tend to be less accurate (Fleischmann et al., 2019). 1922 

The hundreds of virtual stations available (see Section 4.1) have provided breakthrough 1923 

improvements of modelling systems, especially in terms of distributed model validation with 1924 

dozens of virtual stations (Fleischmann et al., 2020; Getirana, Peters-Lidard, et al., 2017; Paiva, 1925 

Buarque, et al., 2013) and recent model calibration and assimilation (Brêda et al., 2019; A. M. 1926 

Oliveira et al., 2021). Validation exercises yielded Nash-Sutcliffe coefficients higher than 0.6 for 1927 

60% of the 212 ENVISAT virtual stations assessed by Paiva, Buarque, et al. (2013), and 1928 

amplitude errors lower than 0.8 m and absolute bias lower than 2.3 m for most of the stations 1929 

analyzed by Yamazaki, Lee, et al. (2012). The combination of satellite altimetry with a hydraulic 1930 

model for an ungauged reach of the Xingu River led Garambois et al. (2017) to propose the 1931 

concept of hydraulic visibility through RS datasets, i.e., the capability of current and future 1932 

satellite altimetry data to properly estimate river hydraulic variables. Altimetry data were shown 1933 

to be relevant for the understanding of the hydraulic functioning of ungauged braided reaches in 1934 

Amazonian rivers, especially along stretches with heterogeneous bed morphology and strong 1935 

downstream control, which have major effects on surface water elevation and slope (Birkett et 1936 

al., 2002).  1937 

The main output variables that have been addressed by hydrologic-hydraulic models are 1938 

𝐸𝑇, soil water storage, river discharge, surface water elevation, and surface water extent. 1939 

However, other variables are also important for an effective understanding of the water cycle, 1940 

and need to be better constrained within modeling systems. For instance, only a few studies have 1941 

addressed simulated water velocity (C. M. Dias et al., 2011; Fassoni-Andrade, 2020; Pinel et al., 1942 

2019) and flood storage (Fleischmann et al., 2020; Getirana, Kumar, et al., 2017; Paiva, Buarque, 1943 

et al., 2013) in the Amazon wetlands, which are fundamental variables to understand flood 1944 

dynamics, even though the latter (flood storage) was already estimated by different RS methods 1945 

(see Section 5). 1946 

As there are still uncertainties in both models and RS estimates, model calibration and data 1947 

assimilation (DA) techniques have been developed to improve model predictability, based on the 1948 

optimal combination/analysis of these two. Model calibration was performed with satellite 1949 

altimetry by Getirana et al. (2013) and A. M. Oliveira et al. (2021), showing the benefits of using 1950 
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such datasets toward model general improvement in terms of discharge estimation. In turn, the 1951 

evaluation of DA techniques (mainly the Kalman Filter-based methods) within the Amazon 1952 

involved many experiments with RS data (e.g. satellite altimetry), from reach to regional scale 1953 

(Brêda et al., 2019; Emery et al., 2018; Garambois et al., 2017; Paiva, Collischonn, et al., 2013). 1954 

These studies showed the applicability of such methods to improve model estimates and 1955 

representation of the water cycle in general. The usefulness of DA schemes for better estimating 1956 

discharges was demonstrated for forecasting (Paiva, Collischonn, et al., 2013), comprehension of 1957 

past extreme events (Wongchuig et al., 2019), and near-real time discharge estimation (Paris et al., 1958 

2016). The study by Wongchuig et al. (2019) was the first to show discharge estimation in a 1959 

spatially distributed way for the last 100 years (Figure 11e), estimating extreme drought and flood 1960 

events in unrecorded locations. They follow a general pattern of significant trend of increasing 1961 

drought events in the south and flood events in the western and northwestern regions of the 1962 

Amazon (Callède et al., 2004; Correa et al., 2017; J. C. Espinoza Villar, Guyot, et al., 2009; Lopes 1963 

et al., 2016; Molina-Carpio et al., 2017).  RS data other than discharge and water levels can also 1964 

be used through DA and could be applied in the Amazon, e.g., soil moisture (Baguis & Roulin, 1965 

2017; Crowley et al., 2008; Massari et al., 2015); terrestrial water storage change (Khaki et al., 1966 

2018, 2019) and flooded water extent. Additionally, the forthcoming SWOT mission will provide 1967 

breakthrough information for hydraulic modeling of the Amazon rivers. Many studies have been 1968 

discussing the utility of the mission to better estimate hydraulic variables in the Amazon, from 1969 

reach (lower Madeira River; Brêda et al., 2019) to the basin scale (Emery et al., 2020; Wongchuig 1970 

et al., 2020). New frameworks for the incorporation of satellite altimetry water levels will set up 1971 

the development of the next generation of hydraulic models for the AB, aiming at better 1972 

representing local processes as water surface heterogeneities that occur due to hydraulic controls 1973 

as channel width reductions (Garambois et al., 2017; Montazem et al., 2019; Pujol et al., 2020).  1974 

Most model applications in Amazon wetlands focused either on parts of the central 1975 

Amazon floodplains or the whole AB. The simulation of river floodplains is still poorly 1976 

performed over complex, dynamic river systems as in the Andes foothills, which are associated 1977 

to multiple alluvian fans, wetlands disconnected from the main river in terms of surface waters 1978 

but connected through groundwater (e.g., the groundwater-fed backswamp forests; Hamilton et 1979 

al., 2007), and relatively quick hydrographs, which in turn hamper RS-based monitoring. In 1980 

addition to river floodplains, other types of wetlands exist in the AB, which are often named as 1981 

interfluvial wetlands (Junk et al., 2011). They combine endogenous and exogenous flooding 1982 

processes to different degrees (Bourrel et al., 2009), and are more subject to local rainfall and 1983 

less connected to adjacent rivers (V. Reis et al., 2019). They are associated with varying 1984 

vegetation and ecosystem types (e.g., savanna, forest, grasslands). While 1D hydraulic models 1985 

have proven satisfactory to simulate flooding along river floodplains (Trigg et al., 2009), 1986 

interfluvial wetlands require a 2D simulation to properly capture the wetland diffuse flow. 1987 

Fleischmann et al. (2020) provided a first model assessment focusing on the Negro interfluvial 1988 

wetlands, which are associated to neotectonic events and savanna environment within the 1989 

Amazon rainforest (Rossetti et al., 2017), and thus largely differ from the central Amazon in 1990 

terms of flooding, vegetation and soil characteristics. Belger et al. (2011) used a time series of 1991 

Radarsat images and in situ measurements of water level and local rainfall to estimate changes in 1992 

inundation in an interfluvial wetland in the Negro basin. 1D models were shown to be unrealistic 1993 

for simulating surface water elevation in these areas. Future studies should further address the 1994 

hydrology of these complex wetland systems, including the Llanos de Moxos (Hamilton et al., 1995 
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2004; Ovando et al., 2018), Roraima (Hamilton et al., 2002) and Peruvian (Kvist & Nebel, 2001) 1996 

interfluvial wetlands, aiming at better understanding the hydrological differences between 1997 

floodplains and interfluvial wetlands, which in turn will improve our understanding of the 1998 

various particular Amazon ecosystems relying on them, and the differences in terms of river-1999 

wetland connectivity.  2000 

The downstream part of the AB remains relatively unexplored in terms of hydraulic 2001 

modelling and RS. This can be explained by the intricate dynamics of the estuary, which has 2002 

energetic behaviour over a broad range of timescales from the intra-daily tides propagating 2003 

upstream from the Atlantic Ocean through the Amazon delta to the seasonal-to-interannual 2004 

timescales driven by the hydrology of the basin. Moreover, tidal effects remain sensible up to 2005 

about 900 km upstream of the river mouth (Kosuth et al., 2009). One of the challenges in the 2006 

hydraulic continuum of the lower Amazon is the understanding of the relative roles of the 2007 

upstream forcing and of the oceanic influence in shaping the spatial and temporal patterns of 2008 

variability of water level, flow velocity and flooding extent along the course of the estuary. 2009 

Promising initiatives have been made to model this complex estuary, mostly relying on coastal 2010 

ocean circulation models, either in two-dimensional configurations (Gabioux et al., 2005; Gallo 2011 

& Vinzon, 2005), or more recently through full-blown tri-dimensional modeling (Molinas et al., 2012 

2020). These studies in particular shed light on the distinct behaviour of the tidal waves during 2013 

their upstream propagation in the Amazon estuary. However, to date a comprehensive, high-2014 

resolution hydraulic modeling framework embracing the complex geometry of the whole 2015 

hydraulic continuum of the lower Amazon, and accounting for the full range of interactions 2016 

between oceanic and riverine forcing factors, is lacking. This can be explained, at least partly, by 2017 

the fact that the monitoring of water level variability is instrumental in the success of a hydraulic 2018 

modeling of the lower Amazon for calibration/validation purposes; however, spaceborne 2019 

altimetry has been hardly used in the Amazon estuary.  2020 

Finally, new EO data as SWOT-derived water levels (Biancamaria et al., 2016), channel 2021 

water widths (G. H. Allen & Pavelsky, 2018; Yamazaki et al., 2014), floodplain topography 2022 

(Fassoni-Andrade, Paiva, Rudorff, et al., 2020), and soil moisture estimates (SMOS, SMAP), as 2023 

well as new precipitation datasets (e.g., rainfall estimation using soil moisture data as the 2024 

SM2RAIN Brocca et al., 2013, 2014), gravimetry missions (GRACE-FO), and techniques to 2025 

retrieve groundwater storages (e.g., Frappart et al., 2019), open great opportunities for the next 2026 

decade of hydrological and hydraulic modeling development in the AB. A major goal of the 2027 

Amazon modeling community should be to move towards hyper resolution models, capable of 2028 

providing locally relevant estimates everywhere (Bierkens et al., 2015; Fleischmann et al., 2019; 2029 

Wood et al., 2011), as well as better representing all processes within the water cycle, including 2030 

groundwater dynamics which has been misrepresented in most surface water-oriented 2031 

hydrological models (Miguez-Macho & Fan, 2012; Sutanudjaja et al., 2018). Such modeling 2032 

systems could then be coupled to models of other processes, as recently done by researchers 2033 

aiming at understanding flooding impacts on photosynthesis and biosphere in general (Castro et 2034 

al., 2018), feedbacks between surface waters and atmosphere (M. J. Santos et al., 2019), 2035 

sediment exports and floodplain trapping (Fagundes et al., 2021; Rudorff et al., 2017), carbon 2036 

storage and emissions through wetlands and uplands (Hastie et al., 2019; Lauerwald et al., 2020), 2037 

and dynamics of biogeochemistry cycles at the basin scale or over wetlands (Guilhen et al., 2038 

2020). All these efforts will require additional RS data, and will move forward our predictability 2039 

of the effects of ongoing environmental changes in the AB. 2040 
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 2041 

6.3. Aquatic ecosystems 2042 

Floodplains are the largest aquatic system in the AB, support a diverse biota and are 2043 

important to the biogeochemistry and economy (Hess et al., 2015; Junk, 1997; Junk et al., 2011; 2044 

Melack et al., 2009). Amazon floodplains contain thousands of lakes, thousands of km2 of 2045 

vegetated wetlands and are characterized by large seasonal and inter-annual variations in depth 2046 

and extent of inundation. Hydrological conditions are central to the ecological structure and 2047 

function of these aquatic ecosystems, and floodplain hydrology is complex because it combines 2048 

local inputs and regional-scale fluxes with large spatial variability. Applications of innovations 2049 

in RS and hydrological measurements and modeling to the investigation of Amazon floodplains 2050 

have led to advances in understanding of the ecology of floodplains, in general.  2051 

Key aspects of hydrology relevant to floodplain ecosystems in the Amazon and elsewhere 2052 

are the amplitude, duration, frequency, and predictability of variations in discharge and 2053 

inundation (Melack & Coe, 2021). Two conceptual frameworks of general relevance to river 2054 

systems were motivated by studies in the Amazon. Junk et al. (1989) emphasized the flood pulse 2055 

and defined floodplains in terms of river stage, associated physical and chemical conditions, and 2056 

adaptions of organisms to these conditions; Junk (1997) elaborated these concepts for the central 2057 

Amazon. Mertes (1997) examined hydrologic aspects of inundation of floodplain systems with 2058 

RS and simple models, and introduced the concept of the perirheic zone, the mixing zone of 2059 

water from the river and local catchment. Both these conceptual developments are supported by 2060 

hydrological measurements of Amazon floodplain lakes, the first by Lesack & Melack (1995), 2061 

subsequent modeled by Ji et al. (2019) and Bonnet et al. (2008, 2017). Floodplains play an 2062 

important role in the carbon balance and nitrogen biogeochemistry of the AB and are sites of 2063 

large fluxes of methane and carbon dioxide to the troposphere and high rates of aquatic plant 2064 

production. Studies designed to estimate the magnitude and variability of gas fluxes and 2065 

productivity in the Amazon have combined RS with field data in innovative ways applicable to 2066 

aquatic ecosystems in general. Melack et al. (2004) used habitat-specific methane fluxes in 2067 

combination with seasonal changes in the surface water extent of the aquatic habitats derived 2068 

from active and passive microwave RS to estimate regional methane fluxes. On the mainstem 2069 

Solimões-Amazonas rivers and their fringing floodplains, annual methane emissions were 2070 

estimated to vary between approximately 0.7 to 2.4 TgC yr-1 (Melack et al., 2004). Furthermore, 2071 

methane fluxes per m2 were higher during lower water levels than during high water in an 2072 

Amazon floodplain lake, and fluxes in proximity to vegetation were higher than those from 2073 

habitats in open water (P. M. Barbosa et al., 2020). Richey et al. (2002) and Melack (2016) also 2074 

used estimates of surface water extent to calculate carbon dioxide fluxes. Guilhen et al. (2020) 2075 

estimated N2O emissions from denitrification in Amazonian wetlands by adapting a simple 2076 

denitrification model forced by open water surface extent from the Soil Moisture and Ocean 2077 

Salinity (SMOS) satellite, and reported a pattern in denitrification linked to inundation. 2078 

Seminal approaches with RS data were used to delineate inundated area and extent of 2079 

flooded forests, open water and herbaceous plants (e.g., Hamilton et al., 2002; Hess et al., 1995, 2080 

2003, 2015); Section 4.2) and used to improve estimates of seasonal and interannual variations in 2081 

methane fluxes. As described in Section 4.2, new satellite-borne sensors and remote-sensing 2082 

products can now be used to update such approaches (e.g., Parrens et al., 2019; Prigent et al., 2083 

2020). These data can be combined with remotely sensed changes in aquatic habitats, recent field 2084 
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measurements (e.g., Amaral et al., 2020; P. M. Barbosa et al., 2020), and modeling (e.g., Potter 2085 

et al., 2014) to significantly improve estimates of emissions. More generally, the vegetative-2086 

hydrologic classification scheme used in these analyses meets the criteria for a “functional 2087 

parameterization” of wetlands (Sahagian & Melack, 1998), with classes suitable for 2088 

biogeochemical and biodiversity applications 2089 

The primary productivity of aquatic plants is often high but challenging to measure, 2090 

especially for herbaceous plants with large seasonal and spatial variations. On Amazon 2091 

floodplains, productivity of herbaceous aquatic plants is strongly influenced by hydrological 2092 

variations (Engle et al., 2008; Junk, 1997). For instance, growth of herbaceous aquatic plants in 2093 

floodplain lakes follows water level variation. Extending field measurements of plant 2094 

productivity to a regional scale was first done by M. Costa (2005) using SAR estimates of plant 2095 

biomass. Lower values were found in regions where plants developed only in the beginning of 2096 

the flood season, and higher values in areas closer to the Amazon River, where the availability 2097 

and influence of nutrient-rich water is greater. Further work by T. S. F. Silva et al. (2010) and T. 2098 

S. F. Silva et al. (2013) used C-band SAR combined and optical data to investigate responses of 2099 

horizontal expansion and vertical growth of herbaceous plants to variations in the flooded area 2100 

and water level in two large floodplains along the Amazon River. Over the period from 1970 to 2101 

2011 vertical growth varied by a factor of 2 and maximum annual cover varied by a factor 1.5. 2102 

Years with exceptionally large changes in water level resulted in the highest productivity 2103 

because horizontal expansion and vertical growth were both enhanced. 2104 

The productivity of Amazon aquatic ecosystems is also related to nutrient supply and 2105 

optical conditions within the water (Melack & Forsberg, 2001). Applications of satellite-borne 2106 

imaging spectrometers to the optically complex waters of the Amazon have reviled chlorophyll 2107 

and suspended sediment levels (e.g., C. C. F. Barbosa et al., 2009; Novo et al., 2006; Section 2108 

4.4), which are related to planktonic productivity. Other studies employing data from optical 2109 

sensors have been used to describe aquatic vegetation (e.g., Josse et al., 2007; Novo & 2110 

Shimabukuro, 1997; Wittmann et al., 2002), and indicate fluvial dynamics (Constantine et al., 2111 

2014; Mertes et al., 1995), both important aspects of aquatic ecosystems. However, observations 2112 

with optical RS are frequently impeded by cloud cover or smoke, and forest canopies are often 2113 

too dense to allow detection of flooding. Alternatively, time series of SAR data are available for 2114 

several subregions within the AB and can be used to generate high-resolution maps of vegetation 2115 

and inundation. For example, Ferreira-Ferreira et al. (2015) used a hydrologically-based time 2116 

series of ALOS/PALSAR-1 SAR data to distinguish between land cover classes and map water 2117 

extent and mean flood duration (Figure 12). The authors depicted the uneven distribution of 2118 

flooded areas at different water levels, i.e., some water level stages result in large expansions of 2119 

the inundated areas while other stages have less effect.  2120 

 2121 
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 2122 

Figure 12. Major vegetation types and estimated mean flood duration maps in the Mamirauá 2123 

Sustainable Development Reserve, Central Amazon, Brazil (Adapted from Ferreira-Ferreira et 2124 

al., 2015). The maps were based on a time series of ALOS/ PALSAR-1 image data comprising 2125 

nine dates between 2007 and 2010 chosen to provide the largest and most uniform range of water 2126 

level conditions within the available imagery for the area. The water bodies were derived from 2127 

the flood class of 365 days per year on average, i.e., permanent water bodies. More details on 2128 

Ferreira-Ferreira et al. (2015). 2129 

 2130 

Complex flow patterns, revealed by interferometric SAR analyses (Alsdorf et al., 2007), 2131 

and differences in sources of water, evident in hydrological models (Bonnet et al., 2017; Ji et al., 2132 

2019), account, in part, for the variations in nutrients, suspended sediments, and productivity 2133 

(Forsberg et al., 2017). A further example of how advances in hydrological modeling contributed 2134 
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to the understanding of Amazon floodplains is provided by Rudorff et al. (2014a, 2014b). They 2135 

added a simple model of hydrological balance to the LISFLOOD-FP hydraulic flooding model 2136 

and applied it over 15 years. This work also emphasized the importance of detailed topography 2137 

which they derived from a combination of data from the SRTM with extensive echo-sounding. 2138 

The model simulated well changes in water level, flooding extent, and river-floodplain flows. 2139 

Rudorff et al. (2017) combined these results with measurements of suspended sediments to 2140 

demonstrate variations in sediments supply and loss from the floodplain. 2141 

Variations in the distribution and inundation of floodplain habitats play a key role in the 2142 

ecology and production of many commercially important fish in Amazonia. Lobón-Cerviá et al. 2143 

(2015) demonstrated that number of fish species and their abundance were directly related to 2144 

presence of flooded forests and inversely related to distance from the river. Arantes et al. (2018)  2145 

used both Landsat and SAR data to characterize aquatic habitats and found that spatial patterns 2146 

of fish biodiversity on Amazon floodplains were associated with forest cover and landscape 2147 

gradients. Additional examples of connections between fisheries and fish ecology are provided in 2148 

Melack et al. (2009) and Melack et al. (2021). 2149 

Tree phenology on both fertile, eutrophic floodplains (várzea) and nutrient-poor, 2150 

oligotrophic floodplains (igapó) follow variations in inundation (Junk et al., 2010). Seasonal 2151 

inundation also provides connectivity that is critical for gamma diversity (Thomaz et al., 2007; 2152 

Ward et al., 2002). Avian diversity varies among the aquatic habitats (Cintra, 2015; Laranjeiras 2153 

et al., 2021). At the community level on large river floodplains, birds and fishes have more stable 2154 

communities in environments with rhythmic annual floods (Jardine et al., 2015; Luz-Agostinho 2155 

et al., 2009). In a floodplain lake near the confluence of Amazon and Negro rivers, for instance, 2156 

Röpke et al. (2017) detected an abrupt and persistent change in fish assemblage structure that 2157 

lasted for more than a decade after the extreme drought of 2005.  2158 

Disturbances of the natural variations of flooded area, hydrological connectivity or land 2159 

cover are disruptive for wetland systems. Resende et al. (2019) used SAR RS to assess the 2160 

impacts of the Balbina dam to the downstream igapó forests in the Uatumã River. The authors 2161 

showed that 12% of the floodplain forests died because of the altered flood pulse and another 2162 

29% of the remaining living forest stands may be undergoing mortality. Schöngart et al. (2021) 2163 

provide further evidence for changes in floodplain forests below the Balbina dam over 35 years. 2164 

Castello et al. (2018) combined fisheries data and habitat coverage derived from SAR analyses to 2165 

determine effects of land cover change on fishery yields. They showed that removal of flooded 2166 

forests can reduce fish yields and that other floodplain habitats cannot replace forest removal to 2167 

improve fish yields.  2168 

Several challenges and knowledge gaps remain in the linkage of hydrology to the 2169 

functioning of aquatic ecosystems in the AB and elsewhere. Wet soil without standing can have 2170 

high rates of biogeochemical processes such as methane release. While difficult to detect with 2171 

RS, models offer promise if operating at the correct scales. Streams and small rivers as well as 2172 

ponds can release disproportionally high amounts of carbon dioxide, but their surface areas are 2173 

seldom known; high spatial resolution RS products will help alleviate this problem.  Interfluvial 2174 

and savanna wetlands, often inundated by rain rather than rivers, are not well represented by 2175 

basin-scale hydrological models and will require fine-scale topographic data combined with 2176 

multi-temporal RS of inundation. Within the AB, particularly large data gaps exist in the Llanos 2177 
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de Moxos (Bolivia), peatlands in the Pastaza-Marañón foreland basin (Peru), and coastal 2178 

freshwater wetlands. 2179 

 2180 

6.4. Environmental changes 2181 

In the last decades, the Amazon has been subject to large environmental changes. 2182 

Extensive rainforest areas have been deforested, being converted to pasturelands, croplands, or 2183 

mining. These land cover changes alter the partitioning of precipitation into evapotranspiration, 2184 

surface runoff and deep drainage, transport of sediments, river discharge and river color, and 2185 

influence the processes of formation of rainfall in Amazonia. At the same time, forest areas have 2186 

been flooded by artificial dams to produce hydropower, affecting flood pulses downstream of the 2187 

dam, while the forests' ecohydrology has adapted to the flood patterns. RS has been an important 2188 

tool to detect and map these environmental changes and their impacts on the hydrological cycle. 2189 

The role of deforestation on the AB hydrological cycle could only be understood after 2190 

large-scale mapping of land use and land cover (LULC) in Amazonia. The first of these maps 2191 

were produced by Cardille et al. (2002). They merged RS imagery from AVHRR with 2192 

agricultural census data to produce a spatially-explicit LULC map for the Amazon and Tocantins 2193 

basins for 1995. Based on this dataset and agricultural census data for 1960, M. H. Costa et al. 2194 

(2003) evaluated how land use increases in the upper Tocantins basin affected its discharge from 2195 

1949-1969 to 1979-1999. Although precipitation did not change significantly from the former to 2196 

the latter period, the annual mean discharge increased by 24% (P < 0.02), while the rainy season 2197 

discharge increased by 28% (P < 0.01), and seasonal peaks occurred about one month earlier. 2198 

Such variations could be credited both to reduced ET and reduced infiltration during the rainy 2199 

season. The reduction in evapotranspiration is a consequence of three factors: the increased 2200 

albedo reduces the net radiation at the surface; the reduced roughness length decreases 2201 

atmospheric turbulence, weakening vertical motions; and the reduced root depth leaves less soil 2202 

moisture available to plants. Additional factors that can also influence local evapotranspiration 2203 

include compaction of the soil surface or sub-surface and reduction of leaf area index through 2204 

grazing (M. H. Costa, 2005). 2205 

Other LULC maps were produced for the Brazilian Amazon using similar techniques 2206 

(Leite et al., 2011 for 1940-1995; L. C. P. Dias et al., 2016 for 1940-2012). Purely RS products 2207 

are available for more recent periods, like the MODIS MOD44 tree cover product (2002-recent), 2208 

Landsat-based PRODES (1988-recent, http://www.obt.inpe.br/prodes/) and TerraClass (2004-2209 

2014, https://www.terraclass.gov.br/) official government products for the Brazilian Amazon, 2210 

and MapBiomas for the Pan-Amazonia (1985-recent, https://mapbiomas.org/). Several authors 2211 

have used these datasets to study the effects of LULC changes on the hydrological regime of 2212 

several of the Amazon tributaries and the Amazon-Cerrado arc-of-deforestation as a whole (M. 2213 

E. Arias et al., 2018; Cavalcante et al., 2019; Coe et al., 2011; Levy et al., 2018; Panday et al., 2214 

2015), generally finding increased mean and low-flow discharge with deforestation. 2215 

In addition to river discharge, LULC changes may also affect the precipitation, 2216 

particularly during the beginning and end of the rainy season. The first evidence of this was 2217 

provided by Butt et al. (2011). They compared four Landsat-based land cover maps from 1975 to 2218 

2005 against the rainy season onset dates calculated from daily rain gauge data, concluding that, 2219 

for stations that lie inside the major deforested area, the rainy season's onset has significantly 2220 
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shifted to, on average, 11 days (and up to 18 days) later in the year over the last three decades. 2221 

However, for stations that lie in areas that have not been heavily deforested, the onset has not 2222 

shifted significantly. Recent studies confirmed these results. Repeating the same analysis for 2223 

southern Amazonia from 1974 to 2012, and after removing regional trends and interannual 2224 

variability, Leite-Filho et al. (2019) confirmed a delay in the onset of 1.2–1.7 days per each 10% 2225 

increase in deforestation. In addition, the probability of occurrence of dry spells in the early and 2226 

late rainy season is higher in areas with greater deforestation.  2227 

Moreover, using daily rainfall data from the Tropical Rainfall Measurement Mission 2228 

3B42 product and the L. C. P. Dias et al. (2016) 1-km land-use dataset, Leite-Filho et al. (2020) 2229 

evaluated the quantitative effects of deforestation on the onset, demise, and length of the rainy 2230 

season in southern Amazon for 1998–2012. After removing the effects of geographical position 2231 

and year, they verified a relationship between onset, demise, and length of the rainy season and 2232 

deforestation. Onset delays ~0.4 ± 0.12 day, demise advances ~1.0 ± 0.22 day, and length 2233 

decreases ~0.9 ± 0.34 day per each 10% deforestation increase relative to the existing forested 2234 

area (P < 10-5 in all three trends). 2235 

Another breakthrough owned to RS was identifying the “deforestation breeze” effect, 2236 

which affects rainfall distribution. Khanna et al. (2017)  used remotely-sensed land-use, 2237 

precipitation, and cloudiness data combined with a regional climate model, finding that small-2238 

scale deforestation patches trigger thermally-driven atmospheric circulation cells in Rondônia. 2239 

This circulation creates a precipitation anomaly dipole over the deforested area, with enhanced 2240 

precipitation downwind and suppressed precipitation upwind in the thermal cell's descending 2241 

branch. The observed dipole in Rondônia is substantial, with the precipitation change in the two 2242 

regions being ±25% of the deforested area mean. 2243 

Although several techniques to infer surface water and channel properties from RS have 2244 

been developed in recent years (as described in Section 4), there are still relatively few studies 2245 

that apply these techniques to assess how anthropic and natural environmental changes affect 2246 

these properties in the AB. Latrubesse et al. (2017) used tree cover data from Hansen et al. 2247 

(2013), Landsat images, and RS estimates of TSS of Park & Latrubesse (2014) to investigate the 2248 

current and potential impacts of dams in the basin. They found that the Santo Antônio and Jirau 2249 

dams caused a 20% reduction in mean surface suspended sediment concentration in the Madeira 2250 

River, despite unusually high flood discharges in the years analyzed after their start-of-operation. 2251 

They also used Landsat images to calculate channel migration rates for each sub-basin, finding 2252 

an average migration rate of 0.02±20% channel widths per year. 2253 

Satellite retrieval of TSS has also been used to document trends in the Amazon River's 2254 

main stem, although there is no apparent consensus on the causes of the observed trends. Such 2255 

techniques allow for expansion and extrapolation of field datasets, being especially useful in the 2256 

Amazon since runoff and TSS are poorly correlated at the Amazon River's lowest reaches due to 2257 

asynchronism of the peak water discharges of the Solimões, Madeira, and Negro rivers (Filizola 2258 

& Guyot, 2009). J. M. Martinez et al. (2009) used 18 TSS sampling campaigns from 1995 to 2259 

2003 and MODIS images to obtain a 12-year (1995-2007) continuous series of TSS at the 2260 

Óbidos station, the last gauge station in the Amazon river before it reaches the Atlantic Ocean. 2261 

They find a 20% increase in sediment discharge in the period with no discernible trends in water 2262 

discharge and cite changes in land use and rainfall patterns as likely explanations. Recently, Li et 2263 

al. (2020) used similar techniques to obtain an updated (1996-2018) time series of TSS and find 2264 
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that sediment loading increased until 2007 but decreased afterward. They infer that this reversal 2265 

is due to decreased sediment contribution from the Madeira river after the construction of the 2266 

Santo Antônio and Jirau dams in the late 2000s, in agreement with Latrubesse et al. (2017). 2267 

 Montanher et al. (2018) used similar techniques to generate an extended 32-year (1984-2268 

2016) time series of suspended sediment transport (SST, the product of TSS by river discharge). 2269 

They argued that there is a recurrent pattern of SST rising and falling in cycles likely associated 2270 

with climate fluctuations and that trends such as those observed by J. M. Martinez et al. (2009) 2271 

are a consequence of short time series. However, SST depends on river discharge variability, and 2272 

J. M. Martinez et al. (2009) and Li et al. (2020) found no trends in river discharge in their shorter 2273 

time series.  2274 

Some studies also investigated the impact of mining on suspended solids in sub-basins of 2275 

the Amazon. Artisanal and small-scale mining, especially gold, is common in some regions, such 2276 

as the Tapajós River basin. These small mining operations often use low-end techniques such as 2277 

water jets and dredges that can cause proportionally high land degradation levels and water 2278 

contamination (Lobo et al., 2018). They are also often illegal and unregistered, making RS an 2279 

important tool for identifying and mapping these activities. The only publicly available dataset 2280 

(to our knowledge) on mining areas in the AB is the TerraClass project, which is based on visual 2281 

interpretation of Landsat images and is available only for a few years between 2004-2014. Lobo 2282 

et al. (2018) combined multiple datasets to develop an automated classification method that can 2283 

distinguish between industrial and small-scale mining and ore types based on Sentinel-2. They 2284 

found that in 2017 64% of the total mining area in the several key mining regions in the basin 2285 

was comprised of small-scale gold and tin mining. 2286 

Lobo et al. (2015) estimated total suspended solids (TSS) in the Tapajós River basin 2287 

based on Landsat images. They found that increases in TSS are strongly associated with reported 2288 

increases in mining activity at seasonal and decadal timescales. Lobo et al. (2016) updated the 2289 

Landsat-based identification of mining areas from the TerraClass project. They described the 2290 

evolution of mining areas in the same basin, identifying different eras of mining impacts on TSS 2291 

related to the introduction of different technologies and variations in the gold price. Comparing 2292 

sub-basins with different kinds of land alteration, they also indicated that mining activities have a 2293 

much higher effect on TSS than deforestation for agricultural purposes.  2294 

Landsat images have also been used to document and understand a major hydro-2295 

morphological event in the Amazon: the recent capture of almost all of the water flow from the 2296 

Araguari River by the Amazon River (E. S. dos Santos et al., 2018). The Araguari is a large 2297 

river, with an average annual discharge >1000 m3 s-1, which used to flow directly to the Atlantic 2298 

Ocean until the rapid formation of the Urucurituba channel connecting it to the Amazon River in 2299 

the early 2010s. The initial headwater migration of the proto-Urucurituba was likely associated 2300 

with deforestation for buffalo farming around 2007. The first connection to the Araguari was 2301 

attributed to a high flow event in 2011. The rapid growth of the channel, which increased in 2302 

width by about 5 m per month until 2015, is likely a consequence of complex hydro-2303 

morphodynamic processes related to tidal currents and estuarine deposition that ultimately led to 2304 

the blockage of the Araguari River mouth. This channel's formation caused large changes in the 2305 

hydraulic pattern, sediment dynamics, and ecosystems in the Araguari estuary, being the first 2306 

known observation of estuarine distributary network development by headwater erosion.  2307 
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RS techniques contributed input, calibration, and validation data to many models that 2308 

provided important insights on the consequences of environmental changes in the AB (see 2309 

Section 6.2). These models can integrate hydrological, hydraulic, climate, and land-use processes 2310 

and are important tools in many studies investigating the impacts of past and future changes in 2311 

the environment. A main application of these models is to analyze future scenarios (e.g., climate 2312 

change, deforestation). Another application is attributing the effects of different processes in the 2313 

variability of the observed data.  2314 

Sorribas et al. (2016) examined climate change projections on discharge and inundation 2315 

extent in the AB using the regional hydrological model MGB with 1-dimensional river hydraulic 2316 

and water storage simulation in floodplains forced by five GCMs IPCC’s Fifth Assessment 2317 

Report CMIP5. The model was validated against a mix of in situ and RS data. Results indicate an 2318 

increased mean and maximum river discharge for large rivers draining the Andes in the 2319 

northwest contributes to increased mean and maximum discharge and inundation extent over 2320 

Peruvian floodplains and Solimões River in western Amazonia. In contrast, decreased river 2321 

discharges (mostly dry season) are projected for eastern basins and decreased inundation at low 2322 

water in the central and lower Amazon.  2323 

With the renewed interest in the last decades in constructing hydroelectric dams in the 2324 

AB (Castello & Macedo, 2016), many modeling studies attempted to quantify the environmental 2325 

impacts of new and existing dam projects. Forsberg et al. (2017) used several models to evaluate 2326 

the impacts of six planned dams in the Andean region of the Amazon. Since a sizable portion of 2327 

sediment production in the basin occurs in this region, these dams are predicted to reduce the 2328 

basin-wide supply of sediments, phosphorus, and nitrogen by 64%, 51%, and 23%, respectively. 2329 

Along with changes in nutrient and sediment supply, mercury dynamics and flood pulse 2330 

attenuation are projected by the authors to cause major impacts on downstream aquatic and 2331 

floodplain fertility and channel geomorphology. Indeed, Resende et al. (2019) found massive 2332 

tree mortality in floodplain forests (igapó) downstream of the Balbina reservoir using SAR 2333 

images, with about 40% of the igapó 49 km downstream of the reservoir either dead or 2334 

undergoing mortality.  2335 

Expected environmental changes in the basin, such as deforestation and climate change, 2336 

can also significantly impact hydropower production itself, often leading to generation well 2337 

below the dam’s expected capacity. Most recent dam designs follow a run-of-the-river concept, 2338 

avoiding the large environmental impacts of enormous reservoirs from older designs but making 2339 

power generation more dependent on river discharge variations (M. H. Costa, 2020). M. E. Arias 2340 

et al. (2020) combine a land-use and a hydrological model to assess the direct impacts of climate 2341 

change and deforestation on hydropower production of existing and planned dams in the Tapajós 2342 

basin. Although decreasing evapotranspiration from deforestation tends to increase annual mean 2343 

discharge, reduced water retention increases surface runoff and flash flows during the rainy 2344 

season and reduces discharge during the dry season. Since turbines are normally working at 2345 

maximum capacity in the rainy season, this excess flow is wasted, and generation in the dry 2346 

season is reduced. M. E. Arias et al. (2020) find that projected climate change and deforestation 2347 

combined can delay peak energy generation by a month (worsening the mismatch between peak 2348 

production and consumption), reduce dry season generation by 4-7% and increase interannual 2349 

variability of power production by 50-69%.  2350 
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Deforestation has the indirect effect of reducing precipitation and delaying the onset of 2351 

the rainy season, which further illustrates the dependency of hydropower generation on forests. 2352 

Stickler et al. (2013) combine land-use, hydrological, and climate models to assess the direct and 2353 

indirect effects of deforestation alone on hydropower generation of the Belo Monte energy 2354 

complex in the Xingu River basin. They find that when considering only the direct effects of 2355 

deforestation on river flow, a 20-40% deforestation of the basin would lead to a 4-12% increase 2356 

in mean discharge with similar increases in power generation. However, when the climate effects 2357 

of deforestation of the Amazon region were considered, rainfall inhibition in the basin 2358 

counterbalanced the direct effects and led to a 6-36% reduction in discharge. Under the business-2359 

as-usual deforestation scenario for 2050 (40% of the Amazon forest removed), they simulated 2360 

that power generation was reduced to 25% of maximum plant output.  2361 

 2362 

7. Synthesis of scientific advances, future challenges and priorities 2363 

The various achievements of more than three decades of scientific advances on the 2364 

hydrology of the AB with satellite data, along with the development of new RS techniques, and 2365 

some selected research opportunities, are summarized in Table 7 and Table 8. Section 7.1 2366 

presents the main findings obtained in the AB, which has been a RS laboratory for hydrology 2367 

advancement. Section 7.2 highlights how these experiences can be used to foster the 2368 

understanding of the water cycle in other large river basins worldwide. Section 7.3 discusses the 2369 

knowledge gaps and research opportunities on AB waters, thanks to an unprecedented and 2370 

continued monitoring of AB with upcoming and future satellite missions. Finally, Section 7.4 2371 

discusses how to move forward from scientific advances toward more sustainable water 2372 

resources and risk management, and Section 7.5 highlights recommendations for future studies 2373 

on Amazon waters from space. 2374 

 2375 

Table 7. Synthesis of scientific advances in understanding the Amazon hydrology with RS 2376 

Variable 
Seminal developments in 

RS performed in Amazon 

Breakthrough lessons about 

Amazon / General hydrology learnt 

from RS 

Knowledge gaps and new 

opportunities for the Amazon 

Precipitation 

1) Spatial distribution of rainfall at 

regional scale (Espinoza et al. 2009). 

2) Rain trend over the last few decades 

(Paca et al. 2020). 

1) Spatial distribution of "hot-spot" 

regions (Chavez & Takahashi, 2017; 

Espinoza et al., 2015).  

2) Reduced rainfall over main rivers 

(Paiva et al., 2011). 

3) Rainforest inducted early wet 

season onset (Wright et al., 2017). 

1) Improved algorithms for orographic 

rains (Dinku et al., 2011; Toté et al., 

2015). 

2) Strategic network of rain gauges. 

3) Low-cost satellite constellation 

(Peral et al., 2019). 
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Evapotranspiration 

1) Water flux estimates in the tropics 

at large scales (Fisher et al., 2009). 

2) Observational data for model 

calibration and validation and multi-

model assessments (Rocha et al., 

2009; Goncalves et al., 2013). 

1) Understanding of environmental 

drivers and 𝐸𝑇 seasonality basin-wide, 

with more energy limitation and small 

seasonality in the wettest parts (central 

Amazon), and the opposite in southern 

ones. 

2) Decreasing 𝐸𝑇 due to deforestation 

and cropland expansion (Spera et al., 

2016; Zemp et al., 2017; Oliveira et 

al., 2019). 

1) Modeling high spatial resolution  

(< 30 m) 𝐸𝑇 estimates on long time 

series (> 40 yr). 

2) Combining surface energy balance 

(SEB) models and models less 

dependent on land cover 

parameterization. 

3) New data fusion techniques using 

multiple RS sources (multispectral, 

thermal and microwave) to reduce the 

cloud cover effects on SEB 

approaches. 

Surface water 

elevation (SWE) 

1) Large scale water level and slope 

estimates by radar altimetry 

(Guskowska et al 1990; Birkett et al 

2002). 

2) Water level changes from 

interferometry estimates (Alsdorf et al 

2000; 2007). 

3) Monitoring of SWE and level-

discharge rating curves in ungauged 

rivers (Silva et al 2014; Paris et al 

2016). 

1) Characterization of water level 

variation in rivers and wetland forests 

(Birkett et al 2002; Alsdorf et al 2003, 

2007). 

2) River-floodplain connectivity (Park 

et al 2020, Alsdorf et al 2003). 

3) Flood storage in river-wetland 

systems (Frappart et al 2005, Alsdorf, 

2003). 

1) 2D characterization of water levels 

(SWOT swath data; Biancamaria et al 

2016). 

2) Finer spatio-temporal resolution for 

water level and slope. 

3) New techniques for fusion with 

local to regional modeling (Yamazaki 

et al 2011; Paiva et al 2013). 

Surface water extent 

1) First large scale extent and 

variability of surface water and 

inundations in floodplains (Sippel et 

al., 1994; Hess et al. 2003). 

2) Relationship between surface water 

extent and discharge (Sippel et al., 

1998). 

3) High resolution floodplains 

dynamic and discrimination of aquatic 

vegetation types for large area 

(Ferreira-Ferreira 2015). 

1) Seasonal and interannual inundation 

patterns in the AB (Hamilton et al., 

2004; Hess et al., 2015, Aires et al., 

2017). 

2) Contribution of inland water and 

floodplains variability to the Amazon 

Carbon cycle and emissions (Richey et 

al., 2002, Raymond et al. 2013, 

Melack et al., 2004). 

1) Finer spatio-temporal resolution of 

surface water and floodplain 

inundation extent variability with 

SWOT and NISAR. 

2) New development of fusion 

techniques with IA to combine various 

RS observations (visible, IR, 

microwave, GNSS-R). 

3) Ensure long term observations to 

monitor climate/anthropgenic changes. 

Floodplain and river 

channels topography 

1) Adjustment of Digital Elevation 

Models (Yamazaki et al 2012, Baugh 

2013). 

2) Topography estimates in seasonally 

flooded areas (Fassoni et al 2020). 

1) Characterization of floodplain 

channels and lakes (Sippel 1997, Trigg 

2012; Fassoni 2020). 

2) Assessment of river channel 

migration (Constantine et al., 2014; 

Santos et al., 2018). 

1) Characterization of topography in 

flooded forests. 

2) Long term estimation to monitor 

geomorphological changes in 

floodplain and river channels. 

Water quality: 

Sediments, 

chlorophyll and 

colored dissolved 

organic matter 

1) Estimates of sediment concentration 

in rivers (Bayley & Moreira, 1978; 

Mertes et al., 1993), chlorophyll in 

floodplain lakes (Novo, 2006), and 

colored dissolved organic material in 

lakes (M. P. da Silva et al., 2019). 

2) Semi-analytical algorithms for 

water quality estimates (Bernini et al. 

2019, Maciel et al. 2020, Sander de 

Carvalho et al. 2015). 

1) Spatiotemporal dynamics maps of 

the underwater light field and optically 

active constituents (Novo et al. 2006, 

Martinez et al. 2009, Maciel et al. 

2019, 2020; Fassoni et al., 2019). 

2) Extended time-series of suspended 

sediments in the Amazon Region 

(Montanher et al. 2018, Martinez et al. 

2009, Li et al. 2020). 

1) Evaluation of phytoplankton 

community dynamics using RS as a 

proxy for biodiversity indicator in 

Amazon waters. 

2) Robust algorithms for CDOM and 

Chlorophyll-a retrieval in optically 

complex inland waters. 
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Total water storage 

(TWS) and 

groundwater storage 

(GWS) 

1) Large scale estimates of the TWS 

using GRACE data (Tapley et al., 

2004). 

2) Determination of GWS changes 

using RS products and model outputs 

(Frappart et al., 2011). 

1) Spatial signatures of droughts and 

floods in TWS (Chen et al., 2009). 

2) Spatio-temporal signatures of 

droughts on surface water storage 

(Frappart et al., 2012; Papa et al., 

2013). 

3) Temporal variations of GWS 

(Frappart et al., 2019). 

1) More accurate estimates of surface 

water storage from SWOT will 

improve the determination of GWS 

anomalies. 

2) Long-term monitoring of TWS and 

GWS (GRACE and GRACE-FO). 

 

 2377 

Table 8. Synthesis of scientific advances in multidisciplinary and integrative efforts in 2378 

understanding of the AB hydrology and ecosystems 2379 

 
Breakthrough lessons about Amazon / 

General hydrology learnt 

Knowledge gaps and new  

opportunities for the Amazon 

Water budget 

1) Sub-basin scale water cycle analysis 

(Azarderakhsh et al. 2011). 

2) Water budget closure enforcement (Pan et al 

2012). 

3) Continuous river discharge estimate based on 

water cycle closure with satellite estimate. 

1) Finer spatio-temporal resolution of the water budget 

analysis using river map information. 

2) Sensitivity of the closure to the water component 

bias in particular ET estimate. 

3) Groundwater exchange estimate might be obtained 

at fine scale in constraining the water cycle at the 

surface. 

Modeling the 

Amazon water 

cycle and its 

wetlands 

1) River-floodplain hydrodynamic interactions at 

local and large scales (Wilson et al., 2007; Paiva 

et al., 2013; Rudorff et al., 2014; Sorribas et al 

2020). 

2) Groundwater dynamics across scales and 

climates, and floodplain-groundwater interaction 

(Miguez-Macho & Fan, 2012). 

3) TWS components (surface, subsurface) at basin 

scale (Paiva et al., 2013; Pokhrel et al, 2013). 

1) Finer spatio-temporal resolution of flood dynamics, 

considering sedimentation processes, in diverse 

wetland types (floodplains and interfluvial). 

2) Better parameterization of groundwater processes 

across the AB. 

3) Lack of convergence among water storage partition 

(e.g., divergent estimates of surface water fraction). 

Aquatic 

ecosystems 

1) Integration of temporal and spatial variations of 

inundation and associated aquatic habitats into 

estimation of carbon dioxide and methane fluxes 

to the atmosphere (Richey et al. 2002; Melack et 

al. 2004). 

2) Areal estimation of major aquatic habitats in 

Amazon, and seasonal and interannual variations 

in the areas (Melack and Hess 2010; Hess et al. 

2015). 

3) Biomass and growth of aquatic plants on 

floodplains (Costa 2010, Silva et al. 2014). 

1) Extent of saturated soils under forests and in 

riparian corridors. 

2) Modeling of inundation variations in interfluvial 

wetlands and savanna wetlands. 

3) Areal extent of streams and small rivers, especially 

in Andean region. 

4) High-resolution topographic data on floodplains. 

Environmental 

changes 

1) Effects of changes in land use on the river 

discharge (Costa et al. 2003). 

2) Influence on changes in land use on onset of the 

rainy season (Butt et al. 2011; Leite-Filho et al. 

2019) and duration of the rainy season (Leite-

Filho et al. 2020). 

1) Need to better understand the interactions between 

local changes in land use and large-scale climate 

mechanisms on the water cycle of the AB. 

2) Initiate monitoring of forest degradation in its 

different forms, so that the long-term effects on forest 

hydrology can be studied. 

3) Apply existing techniques to assess changes in 

water and floodplain properties caused by anthropic 

changes (land use change, damming, mining). 
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 2380 

7.1. The Amazon Basin as a remote sensing laboratory for hydrology 2381 

As the largest river basin in the world, characterized by strong hydrological signals in 2382 

precipitation, evapotranspiration, water storage change and discharge, the AB has been an ideal 2383 

laboratory for the seminal development of RS techniques and their applications to foster our 2384 

understanding of hydrological processes. Table 7 summarizes for various hydrological variables 2385 

key seminal developments made in the RS field over AB along with breakthrough lessons learnt 2386 

regarding AB hydrological functioning. Additionally, Figure 13 illustrates the major 2387 

characteristics of AB hydrological storages and fluxes as characterized by RS observations and 2388 

analyses. Over the past decades, the need to understand the ongoing environmental changes in 2389 

the AB, that could impact the global water, energy and carbon cycles, has motivated a series of 2390 

multidisciplinary and integrative efforts that foster scientific advances in our understanding of 2391 

AB hydrology and ecosystems (Table 8). 2392 

 2393 

 2394 

Figure 13. Schematic illustration of the integrated hydrological processes of the water cycle in 2395 

the AB. The main sensors on board orbiting satellites that have helped measure these processes 2396 

are indicated. The annual estimates of each component averaged over the entire basin are shown. 2397 

The references (*) related to these estimates are provided along the text in Section 7.1. 2398 
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 2399 

Advances in precipitation estimates from RS have allowed the characterization of the 2400 

spatial and temporal distributions of rainfall at local to regional scale over AB and provide 2401 

records long enough to assess rainfall trends over the last few decades (Table 7 and Table 2 for 2402 

developed precipitation products). The average rainfall in the AB was estimated as 2200 mm yr-1 2403 

(Figure 3), and the heaviest rainfall occurs in hot-spot regions in the Andes mountain ranges 2404 

initiated by convection processes altered by the topography, where rainfall can reach values 2405 

higher than 6000 mm yr-1 (Chavez & Takahashi, 2017; Espinoza et al., 2015; Figure 3).  Large-2406 

scale analysis of RS-derived precipitation revealed the effect of winds over large water bodies 2407 

that causes reduced rainfall over these areas (Paiva et al., 2011). 2408 

RS observations were key to providing the first large-scale estimates of 2409 

evapotranspiration in tropical regions, especially over AB, and also provided unprecedented 2410 

observational data for the evaluation, calibration and validation of models (Table 2). 2411 

Furthermore, RS allowed the characterization of 𝐸𝑇 temporal and spatial variability over the AB 2412 

(Figure 4) and the understanding of its environmental drivers, revealing contrasting regimes 2413 

between the more energy-limited ones in the equatorial part of the basin, and more water-limited 2414 

regimes in the southern areas (Maeda et al., 2017). AB annual average evapotranspiration is 2415 

estimated as 1100 to 1500 mm yr-1 (based on SSEBOp, MOD16, PML, and GLEAM global 2416 

models - Figure 4, and water balance by Builes‐Jaramillo & Poveda (2018), with higher rates in 2417 

the northern portions, as in the Negro River basin, decreasing towards the southern parts (Baker 2418 

et al., 2020; Maeda et al., 2017). Various RS-based approaches result in significant divergences 2419 

in the estimation of evapotranspiration over AB (Figure 4 and Figure 10). For instance, RS-2420 

based 𝐸𝑇 annual rates at the AB scale were 15-37% higher than those obtained from water 2421 

balances (Baker et al., 2020). 2422 

The characterization of continental water surfaces, including their elevation and extent, 2423 

was possible thanks to adaptations of satellite techniques not primarily designed for applications 2424 

to hydrology or inland water monitoring. A striking example is that of altimetry satellite 2425 

missions, initially designed for the observation of the ocean, but with promising applications to 2426 

the large rivers of the Amazon (Guzkowska et al., 1990) and with the potential to derive SWE of 2427 

rivers and lakes. Since then, various altimetry databases for the global monitoring of lakes and 2428 

rivers have been developed (Table 3). The SAR differential interferometry technique, originally 2429 

developed in geophysics, was also tested and applied for the first time in central Amazon 2430 

floodplains to characterize SWE changes (Alsdorf et al., 2000). Both altimetry and SAR 2431 

techniques were important to characterize SWE variations in AB rivers and their connectivity 2432 

with the floodplains (Park, 2020). The water surface gradient of the Amazon River varies both 2433 

spatially and temporally, with values ranging from 1.5 cm km-1 (800–1020 km upstream) to 4.0 2434 

cm km-1 (2900–4000 km upstream; Birkett et al., 2002). The monomodal flood pulse of the main 2435 

Amazon River is well captured with radar altimetry (~4-12 m amplitude; Figure 5). This pulse 2436 

controls the SWE variations in the central Amazon floodplains. During the annual flood, the 2437 

SWE variations in rivers and adjacent floodplains, as seen from SAR or altimetry, are similar 2438 

(Alsdorf et al., 2007), but connectivity is reduced during the low-water period (Park, 2020) as the 2439 

flows are controlled by the local topography (Alsdorf et al., 2007) and SWE in both 2440 

environments is not always equivalent (Alsdorf, 2003).  2441 
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The first large-scale surface water extent mapping from RS was also carried out for the 2442 

AB (Sippel et al., 1994). Many estimates and databases, using a wide range of sensors, have been 2443 

developed since then at different spatial and temporal scales (Table 4). These include innovative 2444 

high resolution mapping of wetlands and flooded vegetation using L-band SAR (Hess et al., 2445 

2003), which provided the first estimates of flood extent in the entire Amazon wetlands, ranging 2446 

between 285 x 10³ and 635 x 10³ km² in periods of low (Oct-Dec) and high waters (Apr-Jun), 2447 

respectively (Hess et al., 2015; Figure 6). Significant differences among various RS-based 2448 

estimates of surface water extent exist over AB (Figure 6), with in general lower maximum 2449 

flooded area found by coarse scale products as compared to SAR-derived maps. Seminal 2450 

approaches with RS data were used to delineate AB large-scale surface water area and extent of 2451 

flooded forests, open water and herbaceous plants, revealing their complex seasonal and 2452 

interannual patterns influenced by local and regional-scale variability (Filipe Aires et al., 2017; 2453 

Hamilton et al., 2004; Hess et al., 2015; Melack & Hess, 2010). While the width of the Amazon 2454 

River floodplain is similar throughout the central Amazon, the area of flooded forest decreases 2455 

from upstream to downstream, where both the number and size of open water lakes increases 2456 

(Hess et al., 2015; Mertes et al., 1996). 2457 

Mapping surface water extent in the AB, in combination with field data, enabled 2458 

pioneering regional estimates of methane emissions (Table 7), with an estimate of methane 2459 

emissions of ~22 Tg C yr-1 for the lowland basin (Melack et al., 2004). The spatial configuration 2460 

of the Amazon floodplain habitats in relation to vegetation types is related to flooding patterns 2461 

(Figure 13; Ferreira-Ferreira et al., 2015). Herbaceous aquatic plants on central Amazon 2462 

floodplains have a growth related to water level variation and the flood extent (M. Costa, 2005; 2463 

T. S. F. Silva et al., 2013). Furthermore, the increasing effect of dams in the AB has been 2464 

assessed through analyses of flood extent dynamics (Li et al., 2020; C. M. Souza et al., 2019) 2465 

and impacts on tree mortality (Resende et al., 2019). 2466 

The first morphometric characterization in AB using RS data showed that 11% of the 2467 

floodplain along the Amazon River and lower reaches of major tributaries is covered with lakes 2468 

(Sippel et al., 1992). In fact, the floodplain topography along the Amazon River is complex with 2469 

several channels and lakes connected to the river (Latrubesse, 2012; Mertes et al., 1996). 2470 

Floodplain channel widths vary largely (10–1000 m), and channel depths are tied closely to the 2471 

local amplitude of the Amazon River flood pulse (Trigg et al., 2012; Figure 7). The recent 2472 

capture of almost all of the water flow from the Araguari River by the Amazon River, the first 2473 

known observation of estuarine distributary network development by headwater erosion, was 2474 

also documented with RS techniques (E. S. dos Santos et al., 2018). The need for accurate 2475 

topographic data for hydrological applications was emphasized in several studies in the central 2476 

Amazon (Baugh et al., 2013; Wilson et al., 2007; Yamazaki, Baugh, et al., 2012), in which key 2477 

improvements such as vegetation removal were made. Global DEMs still do not accurately 2478 

represent the floodplain topography, but surface water extent data combined with WSE allowed 2479 

the first topographic mapping in seasonally flooded areas in the central Amazon (Fassoni-2480 

Andrade, Paiva, Rudorff, et al., 2020). In these areas 75% of the open-water areas have depth of 2481 

less than 2 m (8 m) in the low (high) water period (Fassoni-Andrade, Paiva, Rudorff, et al., 2482 

2020). 2483 

The Amazon River exports the largest sedimentary supply to the world’s ocean (1.1 x 2484 

109 tons per year; (Armijos et al., 2020; Figure 13). Several seminal studies and algorithm 2485 
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developments using RS to characterize water composition of rivers and lakes were primarily 2486 

conducted in AB (see Table 5), such as the pioneering estimates of sediment concentration in 2487 

rivers (Bayley & Moreira, 1978; Mertes et al., 1993), chlorophyll in floodplain lakes (Novo et 2488 

al., 2006) and colored dissolved organic material (M. P. da Silva et al., 2019). The spatio-2489 

temporal pattern of these components is related to SWE variations and mixing processes from 2490 

different sources. The shallow depths during the low water period and the large area of 2491 

floodplain lakes favor conditions for sediment resuspension (Bourgoin et al., 2007; Fassoni-2492 

Andrade & Paiva, 2019; Figure 8). The mapping of chlorophyll in floodplain lakes showed 2493 

higher pigment concentrations during the low water season (Novo et al., 2006). Increasing trends 2494 

in sediment concentration in rivers were linked to changes in land use (J. M. Martinez et al., 2495 

2009; Amazon River) and the impact of mining (Lobo et al., 2015, 2016; Tapajós River). 2496 

Conversely, the construction of the Santo Antônio and Jirau dams seems to have contributed to a 2497 

reduction of sediment concentration in the Madeira River (Latrubesse et al., 2017; Li et al., 2498 

2020). 2499 

Due to large spatial and temporal changes of freshwater stored in surface, soil root zone 2500 

and aquifers, AB is the ideal laboratory to explore measurements of gravity field variations from 2501 

the GRACE satellite mission and derive TWS variations, linked to the redistribution of water 2502 

mass over the continental surfaces (Figure 9). The first GRACE-derived estimates of TWS 2503 

variations (Tapley et al., 2004) and groundwater storage changes (Frappart et al., 2011) were 2504 

presented for the AB. TWS change in the AB is estimated as ~1800-2700 km3 yr-1 (Figure 13) 2505 

with different contributions from surface water storage (~49%), root zone soil moisture (~27%), 2506 

and groundwater (~24%) (Frappart et al., 2019). The residence time of the water stored in the 2507 

AB, i.e., the average time that the water remains in the AB before leaving by runoff or 2508 

evapotranspiration, was estimated at two months (Tourian et al., 2018). GRACE data helped to 2509 

monitor periods of extreme droughts (e.g., 2009) and floods (e.g., 2005, 2010; J. L. Chen et al., 2510 

2009), quantify water deficit during such events (Frappart et al., 2012), understand groundwater 2511 

dynamics across different scales and climates, and the interaction between floodplains and 2512 

groundwater (Miguez-Macho & Fan, 2012). 2513 

RS has proven to be a great complement to in situ observations that have traditionally 2514 

been used to calibrate/assimilate and validate hydrologic and hydrodynamic models (Table 6 and 2515 

Figure 11). In the case of the AB, the pioneering development or application of models have 2516 

provided major understanding of basin-wide river-floodplain systems (Coe et al., 2002; Paiva, 2517 

Buarque, et al., 2013; Rudorff et al., 2014a; Sorribas et al., 2020; Trigg et al., 2009; Wilson et 2518 

al., 2007; Yamazaki et al., 2011), the role of groundwater in hydrological buffering and 2519 

headwater basin dynamics (Cuartas et al., 2012), and partitioning of total water storage (Paiva, 2520 

Buarque, et al., 2013; Pokhrel et al., 2013). The study by Wilson et al. (2007) was one of the first 2521 

large scale hydraulic models developed, while with the first large-scale hydrologic-2522 

hydrodynamic model of the AB by Paiva, Buarque, et al. (2013) it was possible to represent 2523 

physical processes such as the backwater effects in the main river and the attenuation of the flood 2524 

wave due to water storage in the floodplains. Applications of two-dimensional models in a reach 2525 

of the Amazon River showed that the floodplain receives large amounts of water from the river, 2526 

and small increases in peak discharge promote large changes in this flow (Rudorff et al., 2014b). 2527 

Recently, Sorribas et al. (2020) estimated, using an innovative hydrological tracking model, 2528 

surface water travel times along the AB as 45 days (median), with 20% of Amazon River waters 2529 

flowing through floodplains. Furthermore, with the integration of RS data and hydrological 2530 
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modeling, the assessment of past floods and droughts was possible (Frappart et al., 2012; 2531 

Wongchuig et al., 2019).  2532 

RS techniques were also important for understanding how the hydrological cycle 2533 

responds to environmental changes. Long-term changes in discharge could be attributed to 2534 

changes in land cover via changes in evapotranspiration, as first shown for the Tocantins River 2535 

(M. H. Costa et al., 2003). The average annual discharge increased by 24% between 1949-1986 2536 

and 1979-1998, associated with increased agricultural land use in the basin (from 30% to 49%). 2537 

The presence of the forest was established as important for determining precipitation patterns 2538 

both in and outside the region. The deep roots, low albedo and high 𝐸𝑇 rates of the rainforest 2539 

induce the wet season onset to be several weeks before what it would be without it, in a 2540 

mechanism dubbed ‘shallow convection moisture pump’(Wright et al., 2017). The changes in 2541 

land-surface fluxes caused by deforestation were found to cause reductions in precipitation 2542 

totals, delays on the rainy season onset and longer dry spells during the wet season, with negative 2543 

consequences for hydropower generation, regional agriculture and the resilience of the forest 2544 

itself (M. E. Arias et al., 2020; Butt et al., 2011; M. H. Costa, 2020; Leite-Filho et al., 2020; 2545 

Spera et al., 2014; Stickler et al., 2013). 2546 

 2547 

7.2. The benefits of the lessons learnt in the Amazon to understand the hydrology of other 2548 

large tropical river basins 2549 

  AB can be seen as a RS laboratory for fostering the understanding of the water cycle and 2550 

hydrology in general. While these advances have prompted the scientific understanding of AB 2551 

hydrology, they have also set up new developments, techniques and analysis that contribute to a 2552 

better understanding of the hydrological cycle of other large basins worldwide, and at the global 2553 

scale. Without being exhaustive, we discuss here some key studies that benefit from such 2554 

advances and how they have contributed to hydrological progress in other regions. In particular, 2555 

as the second largest river basin in the world, with similar environmental characteristics as AB 2556 

such as extensive floodplains and dense forests, the Congo River Basin is the new frontier of 2557 

tropical hydrological research (Alsdorf et al., 2016), gaining more scientific attention in recent 2558 

years and benefiting from the lessons learnt from AB hydrology. The “Hydrologic Research in 2559 

the Congo Basin” conference in Washington, D.C (USA) in 2018 delineated new research 2560 

opportunities for the basin. This effort to gather African and international communities around a 2561 

joint objective of a better understanding of the Congo basin response to climate change led to an 2562 

extensive monograph (Alsdorf et al., 2021) that indicates the usefulness of RS and model 2563 

methodologies built for AB.  2564 

The first development of satellite altimetry datasets (Section 4.1) in AB was turned into 2565 

freely available global datasets providing long-term WSE at thousands of virtual stations (Table 2566 

3) enabling the characterization of the surface hydrology variability from altimetry in the Congo 2567 

basin (Paris et al., 2020), Indian inland waters (Ghosh et al., 2017) and the Niger River basin 2568 

(Normandin et al., 2018). The integration of satellite altimetry and hydrological modeling had 2569 

seminal advances in the AB, including model validation and development of rating curves for 2570 

near real-time monitoring of discharges from the space (Section 6.2), that were further performed 2571 

in other tropical basins as the Congo (Paris et al., 2020), Tsiribihina in Madagascar 2572 
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(Andriambeloson et al., 2020), Niger (Fleischmann et al., 2018), and Ogooué (Bogning et al., 2573 

2020).  2574 

  Studies based on initial RS developments in the Amazon further performed comparative 2575 

hydrology approaches, for instance by studying jointly the floodplain dynamics in the central 2576 

Amazon, the Congo and the Brahmaputra wetlands with SAR (H. C. Jung et al., 2010), 2577 

highlighting the unique features of each of these river systems. AB, with its extensive river 2578 

floodplains, largely contrasts with Congo Cuvette Centrale, mainly dominated by interfluvial 2579 

wetlands, with less river-wetland interaction (H. C. Jung et al., 2010). Following studies using 2580 

SAR observations to map flood and wetlands extent and distinguish vegetation types in AB 2581 

(Section 4.2), seasonal flooding dynamics, water level variations and vegetation types over the 2582 

Congo basin were derived from JERS-1 (Å. Rosenqvist & Birkett, 2002) or ALOS-PALSAR 2583 

SAR and Envisat altimetry data (Kim et al., 2017). 2584 

The development of large scale, multi-satellite RS techniques to monitor surface water 2585 

storage variability, with initial techniques and analysis developed and assessed for AB (Sections 2586 

4.1 and 5) were further applied to the Orinoco River in South America (Frappart et al., 2015), to 2587 

study droughts in the Ganges-Brahmaputra River (Papa et al., 2015) and to quantify the relative 2588 

contribution of surface and groundwater variations in the Mekong (Pham-Duc et al., 2019), the 2589 

Chad (Pham-Duc et al., 2020) and the Congo (M. Becker et al., 2018; Yuan et al., 2017) basins.  2590 

Given the global relevance in terms of climate and ecosystems, the presence of large 2591 

floodplains and dimensions in accordance with the resolution of coarse scale models, many 2592 

advances and developments of land surface and hydrological models were first assessed over AB 2593 

(Section 6.2), especially the introduction of basin-scale inundation schemes that were later 2594 

introduced to other river basins (Andriambeloson et al., 2020; Paris et al., 2020), at continental 2595 

scale (Siqueira et al., 2018) and at the global scale (Alkama et al., 2010; B Decharme et al., 2596 

2012; Yamazaki et al., 2011). Recent advances in large-scale sediment transport using RS 2597 

observations and modeling followed a similar path, with pioneering works in AB (Section 4.4) 2598 

being followed by progress for all South America (Fagundes et al., 2021). 2599 

 2600 

7.3. Tackling the current knowledge gaps with future satellite missions 2601 

This review shows the tremendous achievements made during more than three decades of 2602 

scientific advance on the hydrology and the water cycle of the AB with the help of RS. It also 2603 

helped to identify the various knowledge gaps remaining to promote a comprehensive 2604 

understanding of the AB hydrology. Here, we summarize these knowledge gaps (Table 7 and 2605 

Table 8), present the new research opportunities with the upcoming and future satellite missions. 2606 

Regarding RS-based precipitation, current algorithm challenges involve the definition of 2607 

dynamic thresholds of temperature brightness in IR sensors, and processing of MW data to avoid 2608 

confusing the summit of the Andes snowy peaks with cold clouds (Dinku et al., 2011; Toté et al., 2609 

2015). Better algorithms for the detection of solid precipitation are necessary for improved 2610 

understanding of local processes in AB headwaters in the Andes mountains (Hurley et al., 2015; 2611 

Levizzani et al., 2011; Peng et al., 2014). In situ observations are fundamental for the calibration 2612 

of remote sensors, therefore a strategic network of traditional stations and ground-based radars in 2613 

key points of the AB must necessarily be part of a future agenda. Finally, new low-cost 2614 
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technologies such as nanosatellites have proven to be viable while maintaining scientific 2615 

requirements, which should continue to be encouraged for future missions (Peral et al., 2019). 2616 

RS models can reasonably estimate average 𝐸𝑇 rates in the AB, but correctly 2617 

representing 𝐸𝑇 seasonality is still a challenge, as well as understanding differences among 2618 

individual 𝐸𝑇 components as soil evaporation, transpiration and interception. More studies are 2619 

needed to disentangle the controls of 𝐸𝑇 across the basin (water and energy limitation, and 2620 

vegetation phenology), since multiple drivers operate simultaneously (Maeda et al., 2017). 2621 

Besides, a major knowledge gap is the difference between 𝐸𝑇 in Amazon uplands and wetlands, 2622 

and the effect of open water evaporation on the regional climate. Current satellite-based models 2623 

need to minimize the use of parameterization (or better constrain it), while the accuracy of input 2624 

data must be improved. A major limitation of SEB models is their requirement of clear sky 2625 

conditions, which may be improved by the use of microwave data (Holmes et al., 2018) and the 2626 

combination with other types of 𝐸𝑇 models as those based on vegetation index models. In situ 2627 

measurements are fundamental to achieve this goal, yet today there are only eight flux towers 2628 

with publicly available data in the AB. For vegetation index-based models (e.g., MOD16, 2629 

GLEAM), improving the understanding of soil water deficit controls on 𝐸𝑇 across the basin is 2630 

also necessary, given the high dependence of these products on soil moisture content. Some 2631 

breakthrough ongoing and future missions will provide a new understanding of 𝐸𝑇 dynamics in 2632 

AB. The ECOSTRESS is addressing the response of vegetation to water deficit with 2633 

unprecedented details, while the VIIRS collects visible and infrared imagery, extending the time 2634 

series from its predecessor MODIS and improving its estimates, and the FLEX mission will map 2635 

vegetation fluorescence, a proxy of photosynthetic activity and vegetation stress and health. The 2636 

continuity of the Landsat missions will ensure the development of long-term 𝐸𝑇 at high spatial 2637 

scale, while the GRACE-FO mission will provide new data for water balance approaches to 2638 

estimate 𝐸𝑇. This will ultimately allow us to model 𝐸𝑇 at high spatial resolution (< 30 meters) 2639 

and for long time periods (> 40 years). 2640 

The surface water bodies and aquatic ecosystems of AB are still challenging the current 2641 

available RS observations. Despite the substantial progress in the last decades, there are still 2642 

limitations. Currently, there is a trade-off over AB between spatial and temporal resolutions in 2643 

satellite observations, with generally high temporal sampling associated with lower spatial 2644 

resolution and vice-versa. Therefore, there is a need for finer spatio-temporal resolution to 2645 

adequately monitor water extent, level and slope of the surface water and floodplain inundation. 2646 

There is also a need to improve the accuracy of these estimates in order to understand more local 2647 

phenomena, such as floodplain-river exchanges and dynamics or the complex flooding processes 2648 

of extensive interfluvial areas. Similarly, only few lakes and reservoirs in AB are monitored 2649 

routinely from space, using altimetry for instance. The context of the AB, with dense vegetation 2650 

and cloud cover, makes it still challenging to monitor surface waters such as permanently or 2651 

seasonally flooded forests and floating herbaceous plants. 2652 

The forthcoming NASA/ISRO L-band SAR mission, with its combination of radar 2653 

wavelengths and polarizations and 12-day orbit passes, will help to precisely measure small 2654 

changes of SWE in AB, including areas with standing vegetation. Furthermore, with its 2655 

technology based on swath altimetry from the KaRIn, quasi-global coverage and joint 2656 

observation of surface water elevation, extent, river width and slope, the SWOT mission, to be 2657 

launched in 2022, will permit an unprecedented monitoring of AB surface water and rivers at 2658 
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100 m resolution in two horizontal dimensions. The centimetric accuracy in SWE and slope 2659 

(Desai, 2018) will help to better characterize freshwater fluxes in the AB. The current satellite 2660 

altimetry missions, especially the Copernicus program, is now setting the era of operational 2661 

monitoring from space at large scale for the coming decades, with clear benefits for large tropical 2662 

transboundary watersheds such as AB. With nearly two thousand virtual stations distributed over 2663 

the basin, potentially hundreds more, freely available on multiple websites, conventional satellite 2664 

altimetry can favorably complement the traditional and necessary in situ network. Since the main 2665 

limitation for a broader use of current satellite altimetry remains its relatively low temporal 2666 

sampling, future missions in development, such as SMASH (Blumstein et al., 2019), broadcasted 2667 

together with the current constellation, should help to tackle this issue. Further developments in 2668 

satellite observations are nevertheless required to fully characterize AB surface water extent and 2669 

elevation and should combine, in the future, the benefits of SWOT swath global measurements 2670 

with high temporal sampling of SMASH-like constellation, into a SWOT-like satellite 2671 

constellation providing global and daily observations. 2672 

Besides the concept of new satellite missions, it is worth noticing that the upcoming 2673 

unprecedented availability of information regarding AB surface water extent and elevations will 2674 

challenge the current analysis capabilities. New development of analysis tools or fusion 2675 

techniques with artificial intelligence to combine various RS observations (visible, IR, MW, 2676 

GNSS-R) are needed. Similarly, new techniques for fusion with local to regional modeling, data 2677 

assimilation and better constraining of uncertain hydraulics should also dramatically increase our 2678 

capacity to model the AB and the variations of its water cycle. 2679 

Floodplain and river channel topography have not yet been fully characterized in the AB, 2680 

despite recent efforts with local and regional estimates, preventing a better understanding of 2681 

habitats related to flood pulse and limiting the accuracy of hydraulic models. In addition, the 2682 

association between sediment concentration in rivers and channel migration is still poorly 2683 

understood (Constantine et al., 2014). The development of new techniques and RS data for 2684 

topography mapping are needed. The main challenge is vegetation removal, as many sensors do 2685 

not have the ability to penetrate vegetation. LiDAR and altimetric data, such as ICESat-2 2686 

(launched in 2018), which allow bare earth mapping, have still been little exploited in the AB for 2687 

this task. Furthermore, NISAR and SWOT satellites will open opportunities with more accurate 2688 

estimates of the surface water extent and distributed SWE over water bodies. Thus, new 2689 

methodologies for topographic mapping, such as the waterline method (Salameh et al., 2019) and 2690 

Flood2Topo (Fassoni-Andrade, Paiva, & Fleischmann, 2020) can be better developed.  2691 

White, black and clear water rivers of AB have particular characteristics with large 2692 

variation of COA (sediment, chlorophyll and CDOM). Despite the development of many 2693 

algorithms for estimating these components, little has been explored to implement those 2694 

algorithms to address scientific questions, as also reported by Topp et al. (2020) worldwide. 2695 

Sediment concentration estimates could be better exploited to assess the effects of dams, mining, 2696 

and land use changes in the AB. In addition, the characterization of natural processes, such as the 2697 

spatio-temporal variation of phytoplankton in lakes, has not been widely explored. On the other 2698 

hand, there are still technical challenges for these estimates using RS data, such as the high cloud 2699 

cover in the AB. The main challenge is the discretization of the COA spectra, which can be 2700 

partially overcome with new sensors with high radiometric and spectral resolution.  2701 
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The recent launch of the GRACE-FO mission offers an opportunity to extend the 2702 

monitoring of TWS and GWS changes over more than two decades, allowing to start analyzing 2703 

the impact of multi-year climatic events such as ENSO on land and groundwater storages over 2704 

AB. The major drawbacks of these data remain their low spatial and temporal (~200 km and 1 2705 

month) resolutions which are not sufficient to study the dynamics of more local and rapid 2706 

hydrological events. To overcome these drawbacks, the GRACE-FO payload contains advanced 2707 

versions of the sensors used on-board GRACE, allowing a better expected accuracy to improve 2708 

the quality and the spatial resolution of the retrieved TWSA. Combined with new 2709 

methodological approaches based on the use of Kalman filter, it should increase the TWSA 2710 

temporal resolution to quasi-daily without degrading the spatial resolution (Ramillien et al., 2711 

2015, 2020). With the upcoming availability of SWOT observations, unprecedented and finer 2712 

estimates of surface water storage over large areas will improve the determination of GWS 2713 

anomalies and will allow us to better understand the interactions between flood dynamics and 2714 

aquifer recharge in the AB. Groundwater exchange in the AB, which remains poorly 2715 

characterized with satellites, should also benefit from the integration of these new observations, 2716 

and could be further estimated in better constraining the water budget at the surface. A 2717 

comprehensive set of observations dedicated to hydrology, with the continuity of the current 2718 

satellite missions, is mandatory to improve our understanding of hydrology patterns through 2719 

more precise water budget analyses and to assess long-term trends. 2720 

Given the uncertainties in both hydrological models and RS estimates, model calibration 2721 

and data assimilation techniques have been recently developed by incorporating mainly water 2722 

level (satellite altimetry) data and, to a lesser extent, GRACE TWS. Other variables to be better 2723 

assimilated are flood extent and storage, soil moisture and evapotranspiration. While most 2724 

hydrologic and hydraulic model applications have been used to estimate variables such as 2725 

evapotranspiration, soil water storage, river discharge, surface water elevation and extent, new 2726 

studies must investigate other variables such as water velocity and flood storage. There is also a 2727 

lack of convergence among water storage partitions (e.g., divergent estimates of surface water 2728 

fraction), which must be addressed by better constraining models with EO observations, and by 2729 

performing model intercomparison projects. On the other hand, while the Amazon wetlands were 2730 

mainly studied for the central Amazon river floodplains, other types of wetlands do exist, as the 2731 

interfluvial ones in large areas of the Llanos de Moxos, Pacaya-Samiria and Negro, and deserve 2732 

more efforts from the hydrological community, especially considering their particular flood 2733 

dynamics, more dependent on local rainfall. Furthermore, high resolution 2D modelling of the 2734 

full Amazon mainstem mapping velocity fields and detailed river-floodplain interactions was 2735 

still not explored. The downstream part of the AB also remains relatively unexplored in terms of 2736 

hydrodynamic modelling and RS, e.g., the relative roles of the upstream forcing and the oceanic 2737 

influence on the dynamics of the river-estuary-ocean continuum. In addition to a better 2738 

representation of hydrological processes, e.g., groundwater dynamics which is poorly 2739 

represented in surface hydrology-oriented models, the future of hydrologic-hydrodynamic 2740 

models is largely dependent on the growing availability of new EO data. These include SWOT-2741 

derived water levels and discharges, channel water widths, floodplain topography, soil moisture 2742 

(e.g., SMOS, SMAP), precipitation (e.g., SM2RAIN), gravimetry (GRACE-FO), and techniques 2743 

to retrieve groundwater storages (e.g., Frappart et al., 2019). These data will promote the basis 2744 

for modeling estimates at high temporal and spatial resolution, aiming ultimately at providing 2745 

locally relevant hydrological estimates everywhere (Bierkens et al., 2015; Wood et al., 2011). 2746 



manuscript submitted to Reviews of Geophysics 

 

87 

 

 

While most major components of the water cycle have been relatively well addressed in 2747 

the literature as shown along this review, soil moisture stands out as the less reliable component. 2748 

This relates to the difficulty to retrieve this variable under densely vegetated areas (Prigent et al., 2749 

2005). The relatively poor performance of current soil moisture datasets (e.g., SMAP, AMSR-E 2750 

and SMOS) on these environments is well known, even when products are combined (Y. Y. Liu 2751 

et al., 2011) or merged (F Aires et al., 2005; Kolassa et al., 2016). Most soil moisture-oriented 2752 

studies were performed with hydrological models and in situ data, in a few headwater locations. 2753 

Moreover, there is an inherent ambiguity in passive microwave observations between water-2754 

saturated soils and surface waters. As a consequence, the large surface water fraction in AB 2755 

affects the soil moisture retrievals by this type of observations. This ambiguity in the satellite 2756 

observation has triggered the development of a product such as SMOS-based surface water 2757 

product (Parrens et al., 2017). There is an urgent need to better monitor soil moisture at different 2758 

spatial-temporal resolutions in the AB, especially considering its major role in controlling the 2759 

Amazon forest dynamics and phenology, evapotranspiration, and the water cycle in general. This 2760 

observation supports the development of SMOS-HR, the High Resolution follow-on mission of 2761 

SMOS, which is currently undergoing feasibility study by the French space agency and which 2762 

goal is to ensure continuity of L-band measurements while increasing the spatial resolution to 2763 

~10 km without degrading the radiometric sensitivity and keeping the revisit time of 3 days 2764 

unchanged.  2765 

Similarly, river discharge, which is historically one of the first hydrological variables that 2766 

has been observed in situ is still not properly measured from space. This review stresses that 2767 

there is a need to accurately estimate river discharge using RS in AB with fine spatial and 2768 

temporal resolution. River discharge has already been estimated indirectly by RS data (e.g., 2769 

Brakenridge et al., 2007; LeFavour & Alsdorf, 2005; Tarpanelli et al., 2013; Zakharova et al., 2770 

2006), but still poorly complements the current in situ network of AB. Upcoming missions, such 2771 

as SWOT, in combination with current satellite missions, will soon help us move toward a more 2772 

comprehensive monitoring of river discharge in AB. 2773 

The ongoing and future environmental alterations in the AB urge the understanding of the 2774 

basin hydrology under the perspective of a changing system. The long term effects of multiple 2775 

human impacts (land use change, climate change, damming, mining, fires) on the Amazon must 2776 

be better understood. Changes in land-atmosphere feedback due to deforestation will affect the 2777 

AB water cycle, but the extent is still under debate. There is relatively little understanding of 2778 

how these interact, especially in terms of how the impact of land-use changes in local climate 2779 

can be different under large scale meteorological conditions that are changing with the global 2780 

climate (e.g., Leite-Filho et al., 2020) and how these would affect the land and water ecosystems 2781 

in the basin. Furthermore, techniques to map forest degradation and discern primary and 2782 

secondary vegetation are still relatively new, and the impacts of those subtler but pervasive land-2783 

use changes on AB hydrology is yet to be understood. Finally, although the influence of the 2784 

Amazon forest on the hydroclimate outside the AB has been increasingly documented, the 2785 

consequences of its deforestation and degradation outside the basin is yet to be understood. 2786 

Furthermore, the proliferation of dams in tropical basins as the Amazon, Congo and 2787 

Mekong require basin-scale planning and analysis tools to foster mutual benefits in 2788 

understanding these changes (e.g. Latrubesse et al., 2017; Schmitt et al., 2019; Winemiller et al., 2789 

2016), and RS data stand out as powerful tool to monitor large scale impacts of existing man-2790 
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made reservoirs (e.g., Resende et al., 2019), and infer their characteristics, such as water level 2791 

and stage-area-volume relationships (e.g., Fassoni-Andrade, Paiva, & Fleischmann, 2020; Gao et 2792 

al., 2012). Better data and knowledge of these impacts are also the base for better hydro-2793 

geomorphological models that could be used to quantify the expected impacts of planned 2794 

reservoirs and therefore aid in creating designs that minimize environmental impacts. 2795 

 2796 

7.4. How to use RS-based scientific advances to foster water resources management in the 2797 

Amazon basin? 2798 

While the AB served as an important laboratory for RS development that produced 2799 

significant scientific advances related to its hydrological processes in the last decades (Table 7 2800 

and Table 8), the Amazon currently undergoing extensive anthropogenic pressure (Section 6.4), 2801 

and urgently calls for better basin-scale water resources planning and new environment 2802 

monitoring tools. RS has the potential to democratize essential information for decision makers, 2803 

for instance to monitor "politically ungauged" regions where information is not publicly 2804 

available (Gleason & Durand, 2020). Although RS is now a reality and documented knowledge 2805 

on the AB is much better than decades ago, there is still an open road to move all these advances 2806 

towards effective applications in decision making and water resources management. 2807 

Deforestation and fire monitoring may be the most advanced and promising example in 2808 

the context of AB environmental management. Since 1988, satellite-based monitoring systems 2809 

using MODIS, Landsat and CBERS imagery as the DETER (Diniz et al., 2015, 2810 

http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/deter/), PRODES 2811 

(http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes), Imazon 2812 

(https://imazon.org.br/categorias/boletim-do-desmatamento/) and Queimadas 2813 

(http://queimadas.dgi.inpe.br/queimadas/portal) have been systematically supporting local 2814 

governments and NGOs on the monitoring and control of deforestation and fires. Technical 2815 

advances made it possible to monitor deforestation in near real time, on the scale of days, weeks, 2816 

or months. However, institution building, along with related civil-society engagement, is still 2817 

needed to facilitate effective actions within complex government frameworks and bridge the gap 2818 

between technology and policy towards deforestation reduction (Finer et al., 2018). 2819 

Amazon neighborhood countries have mature Water Resources Agencies, Geology and 2820 

Hydrometeorological Services as the ANA, the Peruvian and Bolivian National Meteorology and 2821 

Hydrology Services (SENAMHIs) and the Brazilian Geological Survey (CPRM). These 2822 

institutions have dedicated efforts on the challenging task of systematic in situ monitoring of 2823 

Amazon vast territory and rivers and promoting open hydrological datasets. In this sense, RS is 2824 

starting to be incorporated into operational monitoring (e.g., SIPAM http://hidro.sipam.gov.br/, 2825 

Hidrosat, J. C. Carvalho et al., 2015; near real-time flood simulations at sub-daily scale, Llauca 2826 

et al., 2021). In particular, precipitation has been widely monitored through RS data by multiple 2827 

meteorological agencies, while other water cycle variables have received less attention. These 2828 

organizations have been developing technical reports about the national situation and water 2829 

resources planning including the AB (e.g., Water Resources Situation Report, Agência Nacional 2830 

de Águas, 2019a; National Water Security Plan, Agência Nacional de Águas, 2019b; flow 2831 

forecasts at national level and at hourly and daily scale by SENAMHI Peru available at: 2832 

https://www.senamhi.gob.pe/?&p=pronostico-caudales). Currently, they are mostly supported by 2833 

http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/deter/
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
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the national hydrometeorological networks that are still scarce and could be greatly enhanced 2834 

with the data and knowledge produced by RS. Some of these countries also have advanced Water 2835 

Resources Laws and regulation, such as the Brazilian National Water Resources Management 2836 

System created by Law 9433, 1997 (Brasil, 1997), but most of the efforts on the development 2837 

and implementation of such regulation is devoted to river basins in more densely populated 2838 

regions and not in the context of the complexity of the international/transboundary and larger 2839 

river basin of the world. Also, even though AB is in the epicenter of international scientific 2840 

discussion, it appears not to be the main focus of technical and scientific developments on the 2841 

water resources field in the Amazon countries, as revealed by recent synthesis of advances from 2842 

Brazilian water community (Paiva, 2020). 2843 

Most flooding studies in the Amazon have aimed at understanding ecosystem services 2844 

and the natural system (Sections 4.2 and 6.2), but many Amazon urban centers are under flood 2845 

risk (e.g., Amazon River at Iquitos, Madeira River at Porto Velho, Acre River at Rio Branco, 2846 

Juruá river at Cruzeiro do Sul), and suffer annually from overbanking flow (Fleischmann et al., 2847 

2020). While this paper is being drafted, the Brazilian Acre state is recovering from a 2848 

humanitarian crisis caused by floods at Acre River at Rio Branco and Juruá River at Cruzeiro do 2849 

Sul, enhanced by the COVID-19 pandemic. Thus, the several developed flood monitoring tools 2850 

could be translated into effective flood risk mapping and real-time monitoring for disaster 2851 

management. International initiatives such as the Copernicus Emergency Management Service 2852 

(https://emergency.copernicus.eu/) and the International Charter “Space and Major Disasters” 2853 

(https://disasterscharter.org/) have the potential to provide important EO data for real-time 2854 

disaster management. Furthermore, the transboundary character of many Amazon sub-basins 2855 

(e.g., Madeira River, with floods at Porto Velho in Brazil being partially generated in upstream 2856 

Bolivian reaches) makes RS data a fundamental tool to fulfill the disparity in data availability 2857 

among countries. On the other hand, in many areas of the Amazon, droughts have a larger 2858 

societal impact than floods, given the adaptation of livelihoods to the annual flooding regime, 2859 

and the interruption of provision of goods and general transport through rivers during extremely 2860 

dry periods (Zeng et al., 2008). Recent technical efforts include evaluation of hydrological 2861 

forecasts from physically based hydrological models supported by RS (Section 6.2), 2862 

development of site specific statistical forecasting and real-time monitoring systems (e.g. SACE 2863 

system from http://www.cprm.gov.br/sace/; systems available for the Madeira, Acre, Xingu, 2864 

Branco and some reaches of the Amazon mainstem), prototypes of hydrological model based 2865 

monitoring systems (e.g. South America River Discharge Monitor - SARDIM 2866 

https://sardim.herokuapp.com/; G. G. dos Reis et al., 2020), global flood forecast systems (e.g. 2867 

GLOFAS, Alfieri et al., 2013) and efforts on monitoring and alerts of natural hazards by centers 2868 

as CEMADEN from Brazil (Centro Nacional de Alerta e Monitoramento de Desastres Naturais). 2869 

Drought monitor systems based on in situ and RS-based observations and local community 2870 

interpretation (e.g., ANA Drought Monitor http://monitordesecas.ana.gov.br/) are evolving and 2871 

there are no operational hydrological forecasting systems at the AB, national or continental 2872 

scales (Fan et al., 2016). 2873 

Impacts from human activities may propagate through the Amazon River network and 2874 

neighbor countries, since the ongoing developments of hydropower projects and agricultural 2875 

expansion alter the hydrological, sediments and ecosystem dynamics (Anderson de Castro et al., 2876 

2018; Forsberg et al., 2017). Recent research has explored integrated planning looking for the 2877 

best hydropower development solutions (Almeida et al., 2020; Winemiller et al., 2016), while 2878 

https://emergency.copernicus.eu/
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organizations as the Amazon Cooperation Treaty Organization aim at promoting sustainable 2879 

development of the AB with the participation of its neighborhood countries. However, current 2880 

national scale policies and regulation do not promote fully integrated water resources planning, 2881 

as new projects are usually accessed individually. RS can definitely encourage a common and 2882 

transparent understanding of AB water related issues. 2883 

The RS scientific community has now the challenge to promote knowledge, datasets and 2884 

applications on water-environmental changes, aiming at enhanced water resources management 2885 

and planning. Potential pathways include: (i) training decision makers and multiple stakeholders 2886 

on the language of RS (e.g., Applied Remote Sensing Training Program - ARSET 2887 

https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset); (ii) encouraging local 2888 

engagement by bridging the gap between RS based science and in situ and traditional knowledge 2889 

(Runde et al., 2020); (iii) initiatives of science communication and citizen science (Buytaert et 2890 

al., 2014; e.g. www.amazoniacienciaciudadana.org/, https://www.ufrgs.br/conexoesamazonicas/ , 2891 

https://ipam.org.br/biblioteca/?biblioteca=artigos-cientificos, 2892 

https://imazon.org.br/categorias/outros/, https://infoamazonia.org/) (iii) development of open 2893 

access datasets focused on specific applications (e.g. aquatic ecosystem conservation, 2894 

Venticinque et al., 2016); (iv) developing monitoring systems focused on environmental changes 2895 

and water related disasters; (v) developing open hydrological repositories (e.g. HYBAM, 2896 

https://hybam.obs-mip.fr/,  SERVIR-Amazonia, https://servir.ciat.cgiar.org/); (vi) developing a 2897 

basin-scale research agenda focused on directly supporting water resources decision making (e.g. 2898 

scenarios of hydropower development; Almeida et al., 2020). 2899 

 2900 

7.5. Recommendations 2901 

Based on the knowledge gaps and the perspectives presented in the previous sections, we 2902 

provide the following recommendations for the future studies on Amazon waters from space. 2903 

Recommendation 1: Observations 2904 

Current limitations of satellite data for AB are often related to the space-time resolution 2905 

(e.g., SWE and slope, surface water extent, ET), time span (e.g., surface water extent, TWS, 2906 

GWS, ET, topography) and accuracy (e.g., surface water extent, GWS anomalies). The largest 2907 

limitations so far in monitoring the AB hydrology from space refer to soil moisture and river 2908 

discharge, which have been poorly addressed due to vegetation interference in sensors or by the 2909 

nature of the variable, respectively, which hampers its estimation from the space. The increasing 2910 

availability of long term archives of RS datasets should be ensured by national space and water 2911 

agencies, in complement to existing in situ monitoring networks, which are fundamental to 2912 

properly calibrate and validate RS estimates. Latency time of RS data distribution (e.g., 2913 

precipitation and SWE) should be reduced to a few hours to be used by water/risk management. 2914 

Ensuring satellite observation to be archived into climatic datasets can foster the understanding 2915 

the impacts of climate change and human activities on the basin. 2916 

Recommendation 2: Models, algorithms and integration 2917 

Technical limitations are related to the development of algorithms (e.g., orographic rains, 2918 

CDOM and chlorophyll retrieval, water budget closure, hydrodynamic models), and data fusion 2919 

(e.g., ET, SWE, surface water extent). The recognition of uncertainties in multiple RS data and 2920 

https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset
http://www.amazoniacienciaciudadana.org/
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https://ipam.org.br/biblioteca/?biblioteca=artigos-cientificos
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trade-offs between temporal and spatial resolution point to the need of more integrative 2921 

approaches, e.g., for mapping long term flooding and evapotranspiration patterns at high spatio-2922 

temporal resolutions, and artificial intelligence will play a major role in this. The better coupling 2923 

of EO datasets with hydrological-hydraulic models and land surface models (e.g., data 2924 

assimilation, spatiotemporal interpolation) is also a necessary step forward in Earth System 2925 

modeling, by considering the dynamic aspect of AB hydrology. 2926 

Recommendation 3: Characterization of hydrological processes in a changing Amazon 2927 

Upcoming and future satellite observations will bring new opportunities for the AB 2928 

regarding the characterization of natural processes, including phytoplankton in waters, floodplain 2929 

topography, aquatic ecosystems, groundwater dynamics, as well as the monitoring of 2930 

anthropogenic environmental changes. The development of long term datasets is fundamental to 2931 

understand Amazon hydrological processes across multiple decades. While RS data currently 2932 

focus on a set of a few hydrological variables, there are many others that require more attention 2933 

from the hydrologic community, such as river discharge and water velocity, surface and 2934 

groundwater storage, soil moisture, CDOM and Chlorophyll-a. Most studies in the AB also focus 2935 

on a few areas (e.g., the várzea environment in the central Amazon floodplains), and many other 2936 

complex river-wetland systems or streams and small rivers, especially in Andean region, also 2937 

require attention. 2938 

Recommendation 4: Towards the use of RS to support sustainable science in AB   2939 

The AB harbors an incredibly large and still poorly known biodiversity, which provides 2940 

massive ecosystem services for the globe, as well as some of the most complex and intriguing 2941 

river-wetland systems in the world. While EO through satellites has provided breakthrough 2942 

scientific advances on the comprehension of the AB water cycle in the last decades, the 2943 

forthcoming years with the new hydrology-oriented missions will provide a new milestone on 2944 

the monitoring of Amazon waters from space. Advance knowledge from RS should be translated 2945 

into valuable information and indicators to support environmental governance and sustainable 2946 

science in AB. RS has the potential to democratize essential information for decision makers, 2947 

moving towards a more sustainable future for the largest basin in the world. 2948 
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