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Abstract

Most cumulus parametrizations today make use of a simple conceptual model of convection, called the mass-flux approach.

This approach depicts convection as an ensemble of updrafts and downdrafts occurring within a model grid-box. The aim of

this study is to determine convective mass-fluxes and their constituents on the scale of a 100 km GCM grid-box from a C-band

polarimetric radar and thereafter investigate the relative role of area fraction and vertical velocity in determining the shape

and magnitude of bulk mass-flux profiles. We make use of observational estimates of these quantities spanning 13 wet seasons

in the tropical region of Darwin. Following a bulk approach, the results show that the distribution of mass-flux is positively

skewed and its mean profile peaks at 4 km. This is the result of constant area fractions and increasing vertical velocities below

that level. Above 4 km, in-cloud vertical velocity plays a marginal role compared to the convective area fraction in controlling

mass-flux profiles.
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Key Points:8

• An observationally based data set of convective mass-flux spanning more than a9
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detrainment above that level.14
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Abstract15

Most cumulus parametrizations today make use of a simple conceptual model of convec-16

tion, called the mass-flux approach. This approach depicts convection as an ensemble17

of updrafts and downdrafts occurring within a model grid-box. The aim of this study18

is to determine convective mass-fluxes and their constituents on the scale of a 100 km19

GCM grid-box from a C-band polarimetric radar and thereafter investigate the relative20

role of area fraction and vertical velocity in determining the shape and magnitude of bulk21

mass-flux profiles. We make use of observational estimates of these quantities spanning22

13 wet seasons in the tropical region of Darwin. Following a bulk approach, the results23

show that the distribution of mass-flux is positively skewed and its mean profile peaks24

at 4 km. This is the result of constant area fractions and increasing vertical velocities25

below that level. Above 4 km, in-cloud vertical velocity plays a marginal role compared26

to the convective area fraction in controlling mass-flux profiles.27

1 Introduction28

It has long been recognised that deep convective systems play a key role in regu-29

lating the large scale circulations and thermal structure of the atmosphere in the trop-30

ics (Riehl & Malkus, 1958, 1979; Emanuel et al., 1994; Simpson et al., 1998; de Rooy et31

al., 2008; Labbouz et al., 2018). Despite this, the underlying physical processes connected32

to convective clouds and their response to a warmer climate are not yet fully understood.33

Cumulus convection is observed to organise into strong narrow updrafts which cover34

a small horizontal fraction of the large-scale atmosphere (e.g., Oerlemans, 1986; Davies35

et al., 2013; Louf et al., 2019). Because of the limited spatial resolution of General Cir-36

culation Models (GCMs), atmospheric convection occurs at a sub-grid scale and, thus,37

must be parameterized (Arakawa, 2004). As a result, progress in simulating clouds and38

precipitation in GCMs strongly relates to improvements in the cumulus cloud param-39

eterizations and their coupling to boundary layer and cloud processes (e.g., Bechtold et40

al., 2008; Jakob, 2010).41

Most cumulus parametrizations today make use of a simple conceptual model of42

convection, called the mass-flux approach (e.g., Ooyama, 1971; Yanai et al., 1973; Arakawa43

et al., 1974; Tiedtke, 1989). This approach depicts convection as an ensemble of updrafts44

and downdrafts occurring within a model grid-box. The area covered by the up- and down-45

drafts is assumed to be small compared to the grid-size. The mass-flux for an individ-46

ual draft is defined as the product of the air density, the fractional area covered by the47

draft and the vertical velocity inside it. Most commonly, parametrizations apply the so-48

called bulk-mass-flux approach (e.g., Tiedtke, 1989; Gregory & Rowntree, 1990), where49

only the average properties of the cloud ensemble are considered. The alternative spec-50

tral approach, where different cloud types are assumed to co-exist or even compete with51

each other (e.g., Arakawa et al., 1974; Wagner & Graf, 2010) , while available, is less com-52

monly used due to computational constraints. The essential assumption in either approach53

is that the vertical transport of any scalar is well represented by the product of the mass-54

flux and the bulk updraft scalar excess with respect to the updraft environment.55

While conceptually simple, the evaluation of mass-flux approaches is challenging56

as it requires concurrent knowledge of the fractional area covered by convective clouds57

and the vertical velocity inside the clouds in domain of roughly 100 km at a side to match58

current global climate model resolutions. As a result, much of the evaluation and param-59

eter estimation for mass-flux schemes has relied on the use Cloud-Resolving and Large-60

Eddy Simulation Models (e.g., A. P. Siebesma et al., 1996; de Rooy et al., 2008; A. Siebesma61

et al., 2020). These model experiments are often limited to short temporal extent and62

idealised atmospheric conditions. Furthermore, they show limits in reproducing convec-63

tive organisation and taking into account the large scale conditions (Schalkwijk et al.,64

2015; Schemann et al., 2020).65
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The few observational estimates of mass-fluxes that exist for deep convection, are66

based on short-term field campaigns. Early on, heat and water budget analyses applied67

to radiosonde-arrays were combined with some simple assumptions to provide indirect68

estimates of the bulk-properties of convective mass-fluxes in both deep (e.g., Yanai et69

al., 1973) and shallow convection (e.g., Nitta & Esbensen, 1974; Nitta, 1975). Direct mea-70

surements of vertical velocities in convection became available from aircraft campaigns71

(e.g., Byers & Braham, 1949; Marwitz, 1973; LeMone & Zipser, 1980; Anderson et al.,72

2005; May et al., 2008). While providing several breakthroughs in our understanding of73

tropical convection, the small-scale nature of these observations and the absence of con-74

current knowledge of the distribution of clouds over a large area prevents their use in75

evaluating the mass-flux concept.76

More recently, long-time radar observations from both space and the ground have77

been used to extensively study the behaviour of tropical convection and its relationship78

to state of the larger-scale atmosphere. Examples include the Tropical Rainfall Measure-79

ment Mission (TRMM, (Kummerow et al., 1998)) data sets to study convective char-80

acteristics, such as convective vigour (Zipser, 2003), types of convective systems (Nesbitt81

et al., 2000; Jr. et al., 2015) and the role of stratiform processes in tropical rainfall (Schumacher82

& Houze, 2003). Recent studies using a more than a decade long calibrated radar data83

set acquired at Darwin, Australia, (Jackson et al., 2018) specifically retrieved the frac-84

tional area covered by convection and related it to precipitation and the large-scale sate85

of the atmosphere (e.g., Davies et al., 2013; Louf et al., 2019). They found that convec-86

tive rainfall in the radar domain (≈130 km radius) was very strongly related to the area87

fraction of active convective cells and that this area fraction was generally small. This88

important finding indicated that predicting area fraction is an important step in deter-89

mining precipitation and hence the overall heating in a convecting column.90

Long-term measures of vertical velocity are not as trivial to obtain as for area frac-91

tion. Nevertheless, they are essential for a better evaluation of the mass-flux approach92

in GCMs. Some recent studies (e.g., Giangrande et al., 2013; Kumar et al., 2015; Gian-93

grande et al., 2016) used wind profiler retrievals to attain long-term measurements. A94

limitation of these studies is the set of assumptions made to use observations at a point95

location to describe mass-flux at the scale of a GCM grid-box. To overcome this limi-96

tation, a later study from Kumar et al. (2016) proposed a parametric equation of ver-97

tical velocity inside convective updrafts as a function of radar reflectivity products: the98

0-dBZ echo top height (ETH) and the height-weighted reflectivity index (ZHWT ). The99

present work makes use of this parametric approach to determine mass-flux and, in turn,100

the rate of mixing between the updraught and the environment (entrainment/detrainment)101

(Arakawa et al., 1974).102

Observations on a scale of 100 km from a scanning C-band dual-polarisation radar103

(CPOL; Keenan et al. (1998)) in Darwin, are used in this paper. The Darwin region ex-104

periences a tropical climate with a dry and a wet season, the latter typically starts in105

late November or early December and lasts until late April. The brings with it heavy106

monsoonal downpours and cyclone activity. Its unique topography and the availability107

of a comprehensive long-term observational record, make the Darwin region an ideal lo-108

cation to study different regimes of tropical convection (Kumar et al., 2012; Davies et109

al., 2013; Kumar et al., 2015, 2016).110

The aim of this study is to provide observationally based profiles of convective mass-111

flux, net fractional entrainment and their constituents using the C-band dual-polarisation112

radar (CPOL; Keenan et al. (1998)). With the quantities attained, a second goal is to113

investigate the relative role of area fraction and vertical velocity in determining the mag-114

nitude and shape of mass-flux profiles.115

The article is organised as follows. In section 2 the data set used for the study is116

introduced. Section 3 describes the mass-flux equation and the assumptions used to de-117
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Figure 1. Schematic representation of a scene. The left panel shows three groups of rainy

pixels (clouds) classified at zb = 2.5 km: two are convective (wavy patter) and one is classified

as stratiform (brick pattern). On the right panel a cross section taken within the convective

clouds shows the vertical extent of convective pixels from 2.5 km to the respective 0-dBZ echo

top height. The dashed lines mark the 7 and 15 km levels.

rive this quantity. Section 4 presents the main results of the analysis for the full data118

set (sections 4.1 and 4.2) and for composites of radar scenes with different cloud top heights119

(section 4.3).120

2 Data121

This study uses 13 wet seasons of data gathered by a C-Band Polarimetric radar122

(CPOL) located near Darwin, Australia (12.25◦S, 131.04◦E) (Keenan et al., 1998). The123

measurements cover the period of October 2001 to April 2015, with a gap in 2008, when124

the radar antenna and receiver needed replacement.125

Measurements are available with a time resolution of 10 minutes, which is the time126

needed for the radar to perform a full three-dimensional scan. In this work each full radar127

scan will be referred to as a scene. Only measurements within the range 20 − 120km128

from the radar location are considered. This accounts for both the cone of silence around129

the radar and minimises any range-dependence issues far away from the radar (Kumar130

et al., 2013). The data is interpolated onto a three-dimensional regular grid with a 2.5131

km x 2.5 km horizontal spacing and 0.25 km vertical spacing (∆z) ranging from 2.5 km132

to 13.5 km above the surface.133

For each vertical column defined by the grid, the data set includes:134

a) A convective/stratiform classification for each rainy grid point. Radar pixels are135

classified as either convective or stratiform using the algorithm of Steiner et al. (1995).136

This method classifies pixels with large values of radar reflectivity at 2.5 km height as137

convective. It also classifies sufficiently intense precipitation next to a convective pixel138

as convective. Other precipitating radar pixels are classified as stratiform. The left panel139

of Figure 1 helps visualising the outcome of this classification in an simplified gridded140

domain. The wavy pattern is for convective pixels and the brick pattern is for stratiform141

pixels. This study makes use of the convective pixel information only.142

b) The 0-dBZ echo top height (ETH). This is the height where 0 dBZ at the top143

of a column of consecutive reflectivity values greater than zero is reached. This has been144
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shown to be a reasonable proxy of cloud top height as demonstrated by Casey et al. (2012)145

and Kumar et al. (2013). Convective columns, a proxy for convective clouds, are then146

defined as the vertical region from 2.5 km above the surface to the 0-dBZ height for each147

convective pixel. This is visualised in the right panel of Figure 1.148

c) The height-weighted reflectivity index (ZHWT ). Kumar et al. (2016) found that149

the intensity of convection, expressed through the vertical velocity in convective drafts,150

is strongly related to a vertical integral measure of radar reflectivity in convective pix-151

els. They defined a height-weighted index as152

ZHWT = log10

∑
k

Z · zk, (1)153

where Z is the radar reflectivity and z is the height in km. Compared to a simple154

sum of the reflectivity in linear units, ZHWT results to be better linked to vertical ve-155

locity throughout the evolution of a convective cell. The height-weighting in equation156

(1) gives additional weight to the upper part of updrafts, in which velocities tend to be157

stronger, while reflectivities tend to be lower due to the presence of ice.158

As a key goal of this work is to study vertical profiles of convective mass-flux (see159

below), only scenes where convection occurs in at least one pixel and covers at least two160

vertical layers are chosen for analysis. It is worth noting that the CPOL radar only de-161

tects precipitation-size particles. As a result, non-precipitating clouds are not included162

in the analysis and all results relate to precipitating convection only.163

3 Estimation of convective mass-flux164

The goal of this study is to use the observations described above to estimate bulk165

mass-flux profiles for every convective scene in the data set. For simplicity, downdrafts166

are disregarded so that the resulting mass-flux only refers to positive upward vertical ve-167

locities inside convection. As the data set provides a very high time resolution of ten min-168

utes, sequences of radar scenes will not be independent of each other. As this is a first169

attempt at exploiting the radar record to study mass-flux characteristics, a simple di-170

agnostic approach is used, that is each scene is treated as independent and information171

about the life cycle of convective cells is not taken into account. This matches common172

practice in cumulus parametrisations used in weather and climate models. As mass-fluxes173

cannot be directly measured, the present study applies the approach proposed by Kumar174

et al. (2016), in which the mass-flux is computed from observational estimates of area175

fraction and vertical velocity within each radar scene, as176

Mt(z) = ρ(z)wt(z)at(z), (2)177

where ρ(z) is the density, wt(z) is the vertical velocity averaged over all convective clouds178

(see below), and at(z) is the fractional area of the radar scene that is covered by con-179

vective clouds. Note that the vertical velocity w and the cloud fraction a are functions180

of both height and time. Since the density ρ does not vary strongly with time we use a181

climatological time independent profile derived from a variational analysis algorithm (Zhang182

& Lin, 1997) applied to the ECMWF Interim Reanalysis (Dee et al., 2011) for the Dar-183

win region (Davies et al., 2013; Louf et al., 2019). The estimation of area fraction and184

vertical velocity is described next.185

3.1 Estimation of area fraction186

The area fraction covered by convective clouds as a function of height is estimated187

by combining the results of the pixel rainfall classification algorithm with the estimate188

of cloud top height for each pixel. As discussed above, reflectivity at the lowest level (2.5189
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km height) for each radar scene is used to classify each pixel as either convective or strat-190

iform using the algorithm by Steiner et al. (1995). Dividing the area of convective pix-191

els by the total radar scene area provides the convective area fraction at the 2.5km-level.192

Next, the 0-dBZ cloud top estimate for all convective pixels is used to determine193

the cloud depth at each individual convective pixel. It is worth noting that cloud depth194

can vary strongly from pixel to pixel. From the cloud-top information it is then straight-195

forward to calculate the number of pixels that are convective at each height above the196

2.5km-level and from that the convective area fraction as a function of height, at(z). As197

the cloud top algorithm requires consecutive layers of reflectivity above the 0-dBZ thresh-198

old for a layer to be classified as cloud, the fractional area can only stay constant or de-199

crease with height. Once more, it is important to remember that the area fraction refers200

only to grid cells where precipitating convection occurs and that grid cells with strat-201

iform clouds do not contribute to the cloud fraction.202

3.2 Estimation of updraft vertical velocity203

To estimate the updraft vertical velocity a statistical model is applied that relates204

velocity to cloud depth and reflectivity, as proposed by Kumar et al. (2015, 2016). The205

model was developed using retrievals of in-cloud vertical motion from dual frequency wind-206

profiler observations within the CPOL radar domain (Williams, 2012). The main equa-207

tions of the statistical model as it is applied here are presented below. For a detailed de-208

scription, parameter estimation and evaluation of the statistical model the reader is re-209

ferred to Kumar et al. (2016).210

The model starts by using the 0-dBZ echo top height to classify convective pixels211

into three cumulus modes. It then assigns an idealised updraft wind profile shape (see212

equation (3)) to each radar pixel depending on its 0-dBZ echo top height.213

The idealised updraft wind profiles for the three cumulus modes are defined as214

wu(z) =


0.404z + 0.9922, for ETH ≤ 7km

−0.0016z4 + 0.0519z3 − 0.571z2 + 2.7z − 2.7351, for 7 < ETH ≤ 15km

−0.0454z2 + 1.0889z − 0.8963 for ETH > 15km

(3)215

Having determined the shape of the vertical velocity profile as a function of echo216

top height at a single pixel, its magnitude needs to be estimated. This is achieved by scal-217

ing the profiles from equation (3) with a reflectivity-dependent scaling factor such that218

the vertical velocity at each convective pixel, i, and time, t, is given by:219

wi,t(z) = wu(z)TZ(z). (4)220

The scaling factor, TZ(z), is expressed as221

Tz(z) =

(
wres + wu

wu

)(
wu(z)0.5

w0.5
u

)
, (5)222

where wu is the column-mean updraft velocity estimated from equation (3). wu reads223

wu =

∑
k wu,k ·∆z

ETH− zb
, (6)224

where the summation is over all discrete levels, spaced ∆z = 0.25 km, from zb =225

2.5 km to ETH.226
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Importantly, a reflectivity-dependent velocity, wres is introduced as227

wres = a+ bZHWT, (7)228

where a and b are empirical coefficients and their formulation was suggested by Kumar229

et al. (2016) as a = 4.3911 − 1.2381 · ETH and b = −0.06064 + 0.02095 · ETH, where230

ETH is expressed in km.231

wres quantifies the intuitive assumption that the vertical motion at convective pix-232

els with larger reflectivity (note that a height-weighted integral of reflectivity is used)233

is likely stronger leading to more intense rainfall.234

3.3 Estimation of the bulk mass-flux235

Once a vertical velocity profile for each convective grid cell has been obtained us-236

ing the method above, the bulk vertical velocity is calculated by averaging over all con-237

vective pixels at each height z to yield238

wt(z) =

∑
i wi,t(z)

Nc(z)
, (8)239

where Nc is the number of convective pixels at height z.240

Combining the result of equation (8) with the estimate of area fraction discussed241

in section 3.1 then allows the calculation of the bulk mass-flux, Mt, at every level using242

equation (2).243

4 Results244

4.1 Mass-flux and its components245

Combining the estimates of area fraction and bulk vertical motion described in sec-246

tion 3 allows for the calculation of the bulk convective mass-flux for every 10-minute radar247

scene that contains convective pixels. Figure 2 shows the distribution of all components248

of the mass-flux as from equation (2). Panel (a) depicts the distribution of mass-flux Mt,249

(b) of the convective area fraction at, (c) of the bulk vertical velocity wt and (d) of the250

product of density and vertical velocity ρ·wt. In each panel, the solid line depicts the251

mean value, the dashed line show the median and the dotted lines are the 25 and 75 per-252

centiles of the total mass-flux distribution. Note that all percentiles are calculated sep-253

arately for each vertical level and that the following set of equations hold at every level254

z:255

〈w〉 =

∑T
t=1 wtat∑T
t=1 at

,256

〈a〉 =
1

T

T∑
t=1

at , (9)257

〈M〉 = ρ〈w〉〈a〉258

where the chevrons refer to the temporal average of a quantity and T is the total num-259

ber of scenes.260

The bulk mass-flux profiles (Figure 2a) show a well-known shape, with an increase261

in mass-flux at low levels, a peak at about 4-5 km above the surface followed by a steady262

decrease above that level (Yanai et al., 1973; Emanuel et al., 1994; Betts, 1975). The peak263

mean value of mass-flux is about 0.017 kg m−2 s−1. The distribution shows a pronounced264

skewness at all levels, with the median values being much smaller than the mean. The265
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Figure 2. Temporal mean (solid), median (dashed), lower and upper quartiles (dotted) of

bulk mass-flux (a), convective area fraction (b), bulk vertical velocity (c) and the product of

density and bulk vertical velocity (d) for the entire data set.
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peak median value is 0.0075 kg m−2 s−1 and it occurs slightly lower in the atmosphere266

than the peak mean value. The profile associated with the lower quartile indicates the267

prevalence of convective clouds with tops below 8 km and very weak mass-fluxes. The268

upper quartile shows a peak value near 0.025 kg m−2 s−1 with a more rapid decrease of269

mass-flux above the peak level than the mean or median. The pronounced skewness of270

the distribution suggests that, for the large majority of the radar scenes, mass-flux is small.271

The few occasions with very strong mass-fluxes skew the mean towards larger values. This272

confirms the well-known fact that strong convection is a sporadic occurrence (Houze Jr,273

1973).274

Decomposing the bulk mass-flux into contributions from the convective area frac-275

tion (Figure 2b) and bulk velocity (Figure 2c) provides a first insight into how the mass-276

flux profiles attain their distinct shape. First, it is evident that the skewness of the bulk277

mass-flux distribution is a result of a skewed distribution of convective area fraction, while278

for the vertical velocity median and mean values are almost identical.279

It is worth remembering that, a decrease in area fraction indicates a loss of con-280

vective pixels with weak in-cloud vertical motion. Therefore, the increase of the bulk-281

vertical velocity with height is not only a result of in-cloud buoyancy (as would be the282

case for a single cloud) but also a result of fewer but stronger updraft that constitute283

the ensemble mean.284

The increase in mass-flux below 4 km is associated with an increase in bulk ver-285

tical velocity. The convective area fraction is almost constant below 4 km, leading the286

in-cloud mass-flux (ρ·w) to dominate the shape of the area average mass-flux. Between287

4 and 6 km, the bulk vertical velocity does not increase significantly and the reduction288

of fractional area is more pronounced compared to lower levels. As a result, the mass-289

flux decreases with height in this 2 km layer. Above 6 km, both vertical velocity and in-290

cloud mass-flux are increasing with height. Nevertheless, a rapid decrease of bulk mass-291

flux is observed as a result of a rapid decrease in convective area fraction. This impor-292

tant characteristic of the observed cloud ensemble is a direct result of fewer and fewer293

clouds reaching the upper levels of the atmosphere. The small discontinuity at 7 km is294

a direct result of the vertical velocity model for different cloud depth (see equation (3))295

not matching between cloud types at this level.296

Given the large skewness of the bulk mass-flux distributions it is worth investigat-297

ing its behaviour near the upper tail of the distribution. For this purpose Figure 3 shows298

the mean (solid line) and the 90th, 95th and 99th percentiles (dotted lines) of the bulk-299

mass-flux, convective area fraction and bulk vertical velocity. The figure also shows four300

individual profiles chosen as having the maximum mass-flux of all scenes at 2.5 km (blue),301

5 km (red), 10 km (green) and 13.5 km (orange). The figure strongly supports the no-302

tion that it is the convective area fraction that largely determines the magnitude of the303

bulk mass-flux. For example, the scene with the strongest mass-flux at 2.5 km (blue line)304

also shows an exceptionally large area fraction at this level but its value of vertical ve-305

locity is not particularly strong.306

There is also a noteworthy difference between the shape of the strongest bulk mass-307

flux profiles and those of the mean or median. Whereas the mean profile decreases with308

height, the strongest individual mass-flux profiles remain constant or even increase slightly309

with height. Figure 3 reveals that this is the result of an almost constant convective area310

fraction to a great depth in the atmosphere. The fact that this is not visible in the 95th311

or even 99th percentile of the distribution does indicate that this bulk mass-flux behaviour312

is very rare. Given the strong connection of bulk mass-flux to area average rainfall (Louf313

et al., 2019) these events are likely the most extreme rainfall events in the region (in an314

area average sense) and their difference in mass-flux behaviour warrants further study315

in the future.316
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Figure 3. Temporal mean (black solid), 90th, 95th, 99th percentiles (black dotted) and the

strongest mass-fluxes at various heights (see text). The three panels show bulk mass-flux (a),

area fraction (b) and vertical velocity (c).
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4.2 Vertical derivatives317

To gain more insight into the vertical structure of the bulk-mass flux, the fractional318

change of the mass-flux with height can be related to the fractional change in area frac-319

tion and vertical velocity, using equation (2) as320

1

Mt

∂Mt

∂z
=

1

at

∂at
∂z

+
1

ρwt

∂(ρwt)

∂z
. (10)321

In mass-flux models, the fractional change of mass-flux has been related to the frac-322

tional entrainment and detrainment rates, ε and δ, as (Tiedtke, 1989):323

1

M

∂M

∂z
= ε− δ. (11)324

The fractional entrainment ε describes the inflow of environmental air into the cloudy325

updraft, while the fractional detrainment δ describes the outflow of cloudy air into the326

environment. Whereas there have been numerous studies that determined fractional en-327

trainment and detrainment rates from numerical simulations (e.g. A. P. Siebesma et al.328

(1996); Lin et al. (1997); Carpenter et al. (1998)), to the best of our knowledge, there329

have been no direct observational estimates of the net effect of these mixing processes330

for deep convection. Applying equation (10) to the radar data set provides a first esti-331

mate of the net effect of these two processes based on long-term radar observations.332

Using the date of the mass-flux, the area fraction and the vertical velocity, all three333

terms in equation (10) can be determined and their temporal averages are displayed in334

Figure 4. There are several distinct regions in the profile of the vertical derivative of the335

mass-flux (Figure 4(a)). Below roughly 4 km, the derivatives are positive. This is the336

result of a strongly positive vertical derivative of the vertical velocity term (Figure 4(c)),337

while the median of the vertical derivative of area fraction is zero in this region (Figure338

4(b)). Above 4 km, the vertical derivative of the mass flux is negative. The derivative339

is fairly constant between five and ten kilometres and then increases in magnitude. This340

is is the result of a steadily strengthening negative vertical gradient in normalised area341

fraction, while the bulk vertical velocity gradients are small. We note once again that342

the spike observed at 7 km in Figure 4(c) is an artefact of the switching of calculation343

of the updraft vertical velocity for clouds deeper than 7 km from that for shallower ones344

(equation (3)). While this limits our interpretation of the vertical velocity evolution it-345

self, the absence of a similar spike in the mass-flux derivative in Figure 4(a) demonstrates346

that the results for the overall mass-flux evolution are dominated by the much more di-347

rectly observed convective area fraction.348

As discussed above, the fractional change of mass-flux represents the net effect of349

entrainment and detrainment on the bulk mass-flux. (e.g., Tiedtke, 1989; A. P. Siebesma,350

1996; de Rooy et al., 2012). When positive, there is net gain of mass in cloudy air through351

entrainment from the environment, while negative values indicate a net transfer of cloudy352

mass to the environment through detrainment. Our results show that, on average, con-353

vective cloud ensembles in the study area experience a strong and steady net entrain-354

ment from their base to about 4 km, moderate net detrainment between 4 and 10 km355

and strong net detrainment above 10 km. We note that this behaviour represents the356

entire cloud ensemble and is likely a combination of different behaviours of clouds of vary-357

ing depth. To investigate this further, the next section will divide the data set into scenes358

that are characterised by clouds of different depth to investigate how different ”cloud modes”359

might shape the overall mass-flux profile in Figure 2.360

–11–



manuscript submitted to JGR

Figure 4. Temporal mean (solid), median (dashed), and upper and lower quartile (dotted)

of the normalised vertical derivative of mass-flux (a), of area fraction (b) and of the product of

density and vertical velocity (c) as a function of height.
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4.3 Composite analysis by maximum Echo Top Height361

We take advantage of the echo top height (ETH) information in our data set to di-362

vide the radar scenes based on the maximum echo top height (ETHmax) found in each363

of them. Following the study of Kumar et al. (2013) we choose the threshold values of364

7 km and 15 km to define three classes of scenes: ETHmax ≤ 7km, 7km < ETHmax ≤365

15km, and ETHmax > 15km. We then analyze the composite mass-flux behaviour for366

each of these three classes to see how they may shape the overall mass-flux profiles dis-367

cussed above. We adopt the terminology of Kumar et al. (2013) and refer to these scenes368

as congestus, deep and overshooting. We use this nomenclature in a loose sense and note369

that unlike in Kumar et al. (2013), who classified individual clouds in this way, we as-370

sign the name to an entire scene if the maximum height reached by any cloud in the scene371

fulfils the criterion that defines the class.372

Figure 5 shows the ETH distributions for all convective pixels for the entire data373

set (Figure 5(a)) and for three sub-groups of scenes selected based on the maximum ETH374

found in them (Figure 5(b-d)). The overall ETH distribution (Figure 5(a)) is quite broad375

with ETH between 6 and 12 km almost equally likely. There are small peaks at 7 and376

9 km, respectively. Selecting scenes where the maximum ETH in the scene is below 7377

km by definition eliminates all pixels with higher ETH. 21% of the scenes in our data378

set fall into this category. They represent relatively shallow congestus cloud fields. We379

note that these clouds still contain sufficient precipitation to be detected by the radar380

and should not be confused with non-precipitating shallow cumulus clouds, which are381

not detectable by the radar. The ETH distribution for the congestus class shows a rapid382

decrease of cloud top likelihood from the minimum detectable value (2.5 km) to the max-383

imum (7km) (Figure 5(b)). This is consistent with a strong reduction of cloud area with384

height that is frequently reported in shallow cumulus fields (Brown et al., 2002; A. P. Siebesma385

et al., 2003; VanZanten et al., 2011), which according to our results translates to con-386

gestus cloud fields as well.387

The shape of the distribution of deep convective cloud fields is very similar to the388

overall distribution except for the drop-off in likelihood which occurs at lower ETH and389

the lack of clouds deeper that 15 km, which has been introduced by the definition of deep390

convective scenes (Figure 5(c)). This similarity is in large part due to the fact that 63%391

of all scenes fall into this category. Remarkably, while by definition the maximum ETH392

in the scene is above 7 km, the distribution still peaks at 7 km. This indicates that even393

in cloud fields that contain deep convection, the most frequently observed clouds in the394

scene have moderate ETH between 6 and 8 km.395

Scenes that contain overshooting convection constitute 16% of the total data set.396

The ETH distribution in the presence of overshooting clouds is distinctly different from397

all other categories (Figure 5(d)). The maximum likelihood of ETH shifts upward to val-398

ues between 12 and 13 km, indicating the presences of a relatively large number of deep399

clouds (Figure 3). These scenes therefore represent the most wide-spread vigorous deep400

convection found in our data set.401

Having separated all radar scenes into maximum ETH categories, we now analyse402

the vertical structure of the mass-flux, its components and their vertical derivatives (Fig-403

ure 6). Each class of radar scenes is represented by the same colours used in Figure 5.404

There is a very clear separation in mass-flux strength between the categories (Figure 6(a)).405

The congestus class is characterised by very small mass-fluxes while scenes with over-406

shooting convection show very large mass-fluxes. The deep class shows moderate values407

of mass-flux. It is evident that the main difference between classes comes from the con-408

vective area fraction (Figure 6(b)), while the updraft velocities (Figure 6(c)) are of sim-409

ilar order of magnitude in all classes, with the overshooting class showing values roughly410

1 m/s larger than those for the deep class.411
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Figure 5. Frequency distribution of 0-dBZ ETH, used as a proxy for the height of convection

in a pixel. In (a) all scenes of the data set are used, (b) refers to scenes where the tallest convec-

tive cell is lower than 7 km: Composite 1, (c) is obtained using scenes with the maximum extent

of convection between 7 and 15 km: Composite 2, (d) is obtained from scenes with convective

cells rising taller than 15 km: Composite 3.
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Figure 6. Vertical profiles of bulk mass-flux (a), area fraction (b) and vertical velocity (c)

as well as their normalised vertical derivatives (d-f) for the congestus (blue), deep (green) and

overshooting (red) classes of radar scenes. Solid lines indicate the median and dashed lines the

25th and 75th percentile, respectively.

There are notable differences in the vertical structure of mass-flux between the three412

classes. In congestus convection, the maximum mass flux is found at the lowest level in413

the data set (2.5 km) and is decreasing with height at all levels above with a rate that414

increases with height (Figure 6(d)). Once again, this behaviour is largely the result of415

a rapid decrease of area fraction with height (Figure 6(e)) accompanied by a weakly de-416

creasing velocity component (Figure 6(f)). For both deep and overshooting convection,417

the mass-flux increases with height below 4 km with a larger rate found in overshoot-418

ing convection. This larger rate of mass-flux increase at low levels is the result of larger419

rates of increase in the vertical velocity component, while the vertical derivatives of area420

fraction are close to zero for both deep and overshooting cases. Above 4 km the verti-421
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cal derivative of mass-flux is negative for both deep and overshooting convection mostly422

owing to negative derivatives for area fraction. Notably, the values for deep convection423

are several times larger than those for overshooting convection, indicating a more rapid424

decrease of mass-flux in the middle to upper troposphere. The apparent acceleration of425

the updrafts between 8 and 12 km is also slightly larger in the overshooting case. We426

note again that this ”acceleration” in the bulk velocity is likely the result of the loss of427

weaker clouds from the ensemble and does not necessarily indicate an increase of veloc-428

ity in individual clouds.429

5 Conclusions430

The aim of this study was to derive convective mass-fluxes and their constituents431

on the scale of a GCM grid-box from a C-band polarimetric radar and thereafter inves-432

tigate the relative role of area fraction and vertical velocity in determining mass-flux.433

We made use of observational estimates of mass-flux spanning 13 wet seasons in the trop-434

ical region of Darwin. To the authors’ knowledge, this is the first time that such long-435

standing measurements are exploited to retrieve a climatology of mass-flux. The excep-436

tionally comprehensive data set allowed to elucidate on the statistical distribution of these437

profiles.438

The analysis showed that, in this area, the ensemble mass-flux of precipitating con-439

vective clouds peaks at 4 km. Its distribution is positively skewed with the tail highlight-440

ing the presence of rare but very strong mass-fluxes. It was also found that the skewed441

distribution and the magnitude of mass-flux are largely determined by the fractional area442

covered by convection, while the in-cloud vertical velocity plays a less significant role.443

A similar result was reported in a study by Kumar et al. (2015) where it is stated that444

mass-flux is most strongly regulated by area fraction, although vertical velocity revealed445

non-negligible properties related to cloud dynamics. These results encourage parame-446

terization methods that aim to estimate area fraction and vertical velocity separately447

(de Rooy & Pier Siebesma, 2010; Peters et al., 2013, 2017; A. Siebesma et al., 2020). Our448

results also suggested that, in a cloud ensemble, information on the vertical rate of change449

of the area fraction can reduce the need for parameterizing detrainment.450

Figure 7 summarises the results of this study showing together the mean vertical451

derivatives of mass-flux (solid), area fraction (dash-dot) and in-cloud mass-flux (dash).452

The reader is reminded of equation (10) which implies that the solid line in Figure 7 re-453

sults from combining the dashed line with the dash-dotted line. Each panel includes pro-454

files from all scenes (black) and one of the three classes of scenes defined in section 4.3:455

congestus (blue), deep (green), overshooting (red).456

All panels prove that the vertical rate of change of mass-flux (solid) mimics the ver-457

tical rate of change of convective area fraction (dash-dot), except for the layer below 4458

km in scenes with deep or overshooting clouds. By separating the data set into compos-459

ites according to the tallest convective cell, it was possible to demonstrate that the most460

common cloud field (63% of the scenes) presents the maximum 0-dBz ETH between 7461

and 15 km. Remarkably, even in such cloud fields, containing deep convection, the most462

frequently observed clouds have moderate ETH between 6 and 8 km.463

An analysis of the normalised vertical derivative of mass-flux further allowed to elu-464

cidate on the mixing process of clouds with the environment (i.e. net entrainment or net465

detrainment). In fact, positive values in Figure 7 indicate net fractional entrainment while466

negative values correspond to net fractional detrainment. From the considered ensem-467

bles of precipitating convective clouds it is possible to distinguish two regions in the ver-468

tical dimension: the first, below 4 km, is dominated by net fractional entrainment; the469

second, above 4 km, is dominated by net fractional detrainment. The region above 4 km470
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Figure 7. For each composite (Composite 1 (a), Composite 2 (b), Composite 3 (c)), mean

profiles of all terms in equation (10) compared with means attained using all scenes (black lines).

Solid line refers to 1
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is further divided into two layers. From 4 to 10 km an intermediate reduction rate of mass-471

flux is observed, while above 10 km mass-flux reduces more rapidly.472

As this is a first attempt at characterising mass-flux from radar reflectivities, we473

adopted a simple bulk approach where all convective cells in the field are lumped together474

and the profiles of the ensemble are studied. Although this approach does not provide475

information on single clouds and their individual mass-flux profiles, the bulk approach476

was chosen because it is widely used in current GCMs. Furthermore, the methods of this477

work do not exclude the possibility of performing a similar analysis with a spectral ap-478

proach. In fact, CPOL radar data are spatially distributed and individual clouds can be479

identified within a scene (Kumar et al., 2013; Louf et al., 2019).480

Despite the great potential of deriving mass-flux from radar reflectivity, this study481

is based on a single radar location and further investigation is needed before extending482

our conclusions to other regions of the Earth. Future works should also focus on account-483

ing for the effect of non-precipitating convection as this can sensibly alter the total mass-484

flux of a cloud field, especially in what we called congestus scenes.485
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