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Abstract

A novel Bayesian Hierarchical Network Model (BHNM) for ensemble forecasts of daily streamflow that uses the spatial depen-

dence induced by the river network topology and hydrometeorological variables from the upstream contributing area between

station gauges is presented. Model parameters are allowed to vary with time as functions of selected covariates for each day.

Using the network structure to incorporate flow information from upstream gauges and precipitation from the immediate

contributing area as covariates allows one to model the spatial correlation of flows simultaneously and parsimoniously. An

application to daily monsoon period (July-August) streamflow at four gauges in the Narmada basin in central India for the

period 1978 – 2014 is presented. The covariates include daily streamflow from upstream gauges or from the gauge above of

the upstream gauges depending on travel times and daily, 2-day, or 3-day precipitation from the area between two stations.

The model validation indicates that the model is highly skillful relative to climatology and relative to a null-model of linear

regression. We applied the BHNM out of sample to two high flooding years. High skill in both the timing and magnitude of

the events is demonstrated.
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Key Points:12

• We developed a Bayesian Hierarchical Network Model (BHNM) for ensemble fore-13
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Abstract19

A novel Bayesian Hierarchical Network Model (BHNM) for ensemble forecasts of20

daily streamflow that uses the spatial dependence induced by the river network topol-21

ogy and hydrometeorological variables from the upstream contributing area between sta-22

tion gauges is presented. Model parameters are allowed to vary with time as functions23

of selected covariates for each day. Using the network structure to incorporate flow in-24

formation from upstream gauges and precipitation from the immediate contributing area25

as covariates allows one to model the spatial correlation of flows simultaneously and par-26

simoniously. An application to daily monsoon period (July-August) streamflow at four27

gauges in the Narmada basin in central India for the period 1978 – 2014 is presented.28

The covariates include daily streamflow from upstream gauges or from the gauge above29

of the upstream gauges depending on travel times and daily, 2-day, or 3-day precipita-30

tion from the area between two stations. The model validation indicates that the model31

is highly skillful relative to climatology and relative to a null-model of linear regression.32

We applied the BHNM out of sample to two high flooding years. High skill in both the33

timing and magnitude of the events is demonstrated.34

1 Introduction35

Riverine floods are one of the major causes of destruction of property and loss of36

life each year across the world (Tanoue et al., 2016; Wallemacq & House, 2018). This37

is the case in India, where floods occur mostly during the summer monsoon season of38

June - September, when the country receives more than 80% of annual rainfall. Exten-39

sive damages to life and property occur annually during the monsoon season floods in40

India. The deaths caused by flood events substantially increased in the 21st century (EM-41

DAT) with an average death toll of 1500 per year (The Data Centre of Central Water42

Commission), which results in associated damages worth 18 billion INR (CAG, 2017).43

The extreme rainfall events in the summer monsoon season result from synoptic-scale44

cyclonic depressions (Hunt et al., 2016; Hunt & Fletcher, 2019). Climate change is pro-45

jected to enhance the frequency and intensity of extreme precipitation events (Ali & Mishra,46

2018; Goswami et al., 2006; Papalexiou & Montanari, 2019; Wasko & Sharma, 2017) and47

damages caused by floods will further increase. This highlights the importance of accu-48

rate flood forecasting. India has achieved significant progress in predicting extreme pre-49
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cipitation events using Numerical Weather Prediction models and Ensemble Prediction50

systems (Pattanaik et al., 2019; Sridevi et al., 2020).51

While precipitation forecasts are increasingly becoming skillful, forecasts of stream-52

flow and, consequently, floods remain less so and vary widely across River Basins.53

For daily streamflow forecasting, physically based and statistical models are two54

broad categories of widely used approaches (e.g., Yuan et al., 2015; Zhang et al., 2018).55

Physically based models consider different hydrological processes and their interactions56

and model them with deterministic equations. Statistical models, on the other hand, model57

the relationship between the current day’s streamflow with input forcings such as pre-58

cipitation, antecedent streamflow, and soil moisture, etc., statistically, from historical ob-59

servations, thereby capturing the hydrologic processes implicitly. Here we consider a sta-60

tistical model. A brief survey about statistical models is provided below.61

Typical statistical models used for rainfall-runoff are largely regression based us-62

ing linear, non-linear, and machine learning techniques. Multiple linear regression(MLR;63

Gaume & Gosset, 2003; Kisi, 2008; Papacharalampous & Tyralis, 2018), autoregressive64

(AR; Kişi, 2004; Kisi, 2008; Sivakumar, 2016), and autoregressive moving average mod-65

els (ARMA; Can et al., 2012; T. J. Chang et al., 1987; Sivakumar, 2016) are reported.66

The streamflow on a day is modeled as a function of streamflow and precipitation from67

preceding days. Precipitation from the current day is included to incorporate daily pre-68

cipitation forecasts when available. Such models have been applied for daily streamflow69

forecasting in Europe (Can et al., 2012; Gaume & Gosset, 2003; Kişi, 2004; Kisi, 2008),70

US (T. J. Chang et al., 1987; Papacharalampous & Tyralis, 2018), and China (Sun et71

al., 2019). To address non-linearity, machine learning techniques such as artificial neu-72

ral network (ANN; Abdollahi et al., 2017; Govindaraju, 2000; Isik et al., 2013), adap-73

tive neuro-fuzzy inference system (ANFIS; F. J. Chang & Chen, 2001; Jang et al., 1997;74

Li et al., 2018; Zounemat-Kermani & Teshnehlab, 2008) and, support vector machines75

(SVM; Ghorbani et al., 2016; Karimi et al., 2018; Londhe & Gavraskar, 2015), are gain-76

ing prominence. These models have been applied in Europe (Firat, 2008; Gaume & Gos-77

set, 2003; Hadi & Tombul, 2018), Asia (F. J. Chang & Chen, 2001; Pramanik & Panda,78

2009; Shiau & Hsu, 2016), US and Canada (Isik et al., 2013; Moradkhani et al., 2004;79

Vafakhah, 2012). Studies have also found machine learning models to be more skillful80

than linear models (Firat, 2008; Hadi & Tombul, 2018; Vafakhah, 2012). However, they81
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have been found to be uninterpretable (”black box”), prone to overfitting, and usually82

do not quantify uncertainty in the parameters and model estimates.83

Traditional statistical models mentioned above assume stationarity of the daily stream-84

flow process and are typically implemented at single sites individually. However, to cap-85

ture spatial correlation such as daily streamflows on a river network, multivariate ver-86

sions are needed, which are not easy to develop in the traditional approaches. Lastly,87

the uncertainties in parameters and model estimates are not formally modeled, and un-88

derestimating of extremes is common. In order to model and mitigate flooding on a river89

network, forecasts are required at all the sites simultaneously capturing their space-time90

correlation structure along with all the attendant uncertainties. Consequently, the main91

research question is whether can we model streamflow over the entire river network that92

captures the space-time dependence structure, non-stationarity, and robust estimation93

of uncertainties?94

Motivated by this question, we develop a novel Bayesian Hierarchical Network Model95

(BHNM) inspired by the framework proposed in Ravindranath et al. (2019), who devel-96

oped it for paleo-streamflow reconstruction in the Upper Missouri River Basin. We demon-97

strate this framework by its application to model and predict daily summer monsoon (July-98

August) streamflow at four gauges in the Narmada River Basin network in central In-99

dia. The manuscript is organized as follows. In section 2, the framework, in general, is100

described. The application set up for the Narmada basin network is then described, fol-101

lowed by the specific form of the model structure and model cross-validation procedure102

in section 3. The results are described in section 4, and section 5 presents a summary103

and discussion of the results.104

2 Proposed Framework105

The proposed Bayesian Hierarchical Network Model (BHNM) for daily streamflow106

has two components: the general model structure and calculation of the likelihood func-107

tion and specification of priors.108

2.1 General Model Structure109

In order to model the daily streamflow at n locations simultaneously, the model struc-110

ture takes advantage of the feature of the river network by treating the streamflow pro-111
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cesses as a spatial Markov process (Ravindranath et al., 2019). In this, flow at a down-112

stream gauge, i, at day t is dependent on: flow at one or two most immediate upstream113

feeder gauges at day t − k with k > 0 (depending on travel time); precipitation and114

other hydrometeorological variables that represent inputs to the streamflow between the115

streamflow gauges. Thus, in a Bayesian framework, the joint conditional probability den-116

sity of streamflow at the gages on the network on day t, conditioned on the suite of co-117

variates (flow and hydrometeorological variables from upstream) as:118

f
(
Q

(1)
t , · · · , Q(n)

t

∣∣∣Q(2)
t−k, · · · , Q

(n)
t−k,X

(1)
t−k, · · · ,X

(n)
t−k

)
= f

(
Q

(1)
t

∣∣∣Q(j>1)
t−k ,X

(1)
t−k

)
(1)119

·f
(
Q

(2)
t

∣∣∣Q(j>2)
t−k ,X

(2)
t−k

)
· . . . · f

(
Q

(i)
t

∣∣∣Q(j>i)
t−k ,X

(i)
t−k

)
120

· . . . · f
(
Q

(n−1)
t

∣∣∣Q(n)
t−k,X

(n−1)
t−k

)
· f
(
Q

(n)
t

∣∣∣X(n)
t−k

)
121

Where X denotes the set of hydrometeorological covariates. The right-hand side122

of equation 1 is the mathematical factorization of the joint conditional density as a prod-123

uct of individual conditional densities using the fundamental Bayes rule (Jensen & Nielsen,124

2007). This factorization is consistent with the physical dependencies between stream-125

flow gauges and their feeder gauges and hydrometeorological variables. A conceptual sketch126

of the BHNM for daily streamflow is shown in Figure 1.127

The daily streamflow at each gauge is conditionally assumed to follow a Gamma128

probability density function (other distributions as appropriate could be considered) with129

parameters that can vary with time through a multi-level specification in terms of other130

predictors. Thus, daily streamflow at each gauge i at the day t is expressed as:131

Q
(i)
t ∼ Gamma

(
r
(i)
t , λ

(i)
t

)
(2)132

where r
(i)
t > 0 is the shape parameter and λ

(i)
t > 0 is the rate parameter at the133

gauge i and day t. These parameters can be expressed in terms of the expected value,134

µ
(i)
t , and variance,

(
σ
(i)
t

)2
, of Q

(i)
t (Wilks & Daniel, 2011) as follows:135

λ
(i)
t =

µ
(i)
t(

σ
(i)
t

)2 ; r
(i)
t =

(
µ
(i)
t

)2
(
σ
(i)
t

)2 ; (3)136
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Under the non-stationary assumption, µ
(i)
t , and σ

(i)
t are modeled as linear functions137

of the flow at the upstream feeder gauges depending on travel time, and m hydromete-138

orological variables at day t− k:139

µ
(i)
t =

β
(i)
0 + X

(i)
t−kβ

(i)
x + β

(i)
Q Q

(j>i)
t−k if feeder site applies

β
(i)
0 + X

(i)
t−kβ

(i)
x if feeder site does not applies

(4)140

σ
(i)
t =

φ
(i)
0 + X

(i)
t−kφ

(i)
x + φ

(i)
Q Q

(j>i)
t−k if feeder site applies

φ
(i)
0 + X

(i)
t−kφ

(i)
x if feeder site does not applies

(5)141

where β
(i)
0 and φ

(i)
0 are the intercept terms for µ

(i)
t and σ

(i)
t ; β(i)

x and φ(i)
x are m×142

1 vector of regression coefficients related to hydrometeorological variables for µ
(i)
t and143

σ
(i)
t ; β

(i)
Q and φ

(i)
Q are regression coefficients related to the feeder site for µ

(i)
t and σ

(i)
t ;144

X
(i)
t−k is a 1 ×m vector of hydrometeorological variables on the day t − k; and Q

(j>i)
t−k145

corresponds to the flow at the feeder site at the day t−k. All of the model covariates146

change with time to help capture nonstionarity.147

2.2 Likelihood and Priors148

The posterior distributions of the regression coefficients, θ = [β,φ], given the data149

(observed daily streamflow at each gauge and values of hydrometeorological variables)150

and considering a record length of T days by Bayes’ rule, is151

p (θ|data) ∝
T∏

t>k

n∏
i=1

p
(
Q

(i)
t

∣∣∣θ(i), Q
(j>i)
t−k ,X

(i)
t−k

)
· p
(
θ(i)
∣∣∣ , Q(j>i)

t−k ,X
(i)
t−k

)
(6)152

where the term p
(
Q

(i)
t

∣∣∣θ(i), Q
(j>i)
t−k ,X

(i)
t−k

)
corresponds to the equation 2, and p

(
θ(i)
∣∣∣ , Q(j>i)

t−k ,X
(i)
t−k

)
153

can be rewritten as154

p
(
θ(i)
∣∣∣Q(j>i)

t−k ,X
(i)
t−k

)
= MVN

(
ln
(
β(i)

)∣∣∣0,Σ(i)
β

)
·MVN

(
ln
(
φ(i)

)∣∣∣0,Σ(i)
φ

)
·p
(
Σ

(i)
β

)
·p
(
Σ

(i)
φ

)
(7)155

where MVN
(

ln
(
β(i)

)∣∣∣0,Σ(i)
β

)
and MVN

(
ln
(
φ(i)

)∣∣∣0,Σ(i)
φ

)
represent prob-156

ability density of multivariate normal distributions with mean 0 and covariance matrix157
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Σ(i) corresponding to the priors of the log of β(i) =

[
β
(i)
0 ,β

(i)

x , β
(i)
Q

]
and φ(i) =

[
φ
(i)
0 ,φ

(i)

x , φ
(i)
Q

]
158

at the gauge i, respectively; and p
(
Σ

(i)
β

)
and p

(
Σ

(i)
φ

)
are the priors of the covariance159

matrix of β(i) and φ(i), which based on Gelman and Hill (2006) are assumed to follow160

an inverse-Wishart distribution to ensure a positive definite covariance matrix161

Σ
(i)
β Inv wishart (ν,AI) ; Σ

(i)
φ Inv wishart (ν,BI) ; (8)162

where ν corresponds to the degrees of freedom (m+1), I is an (m+ 2)× (m+ 2)163

identity matrix, and A and B are scalars properly set for Σ
(i)
β and Σ

(i)
φ , respectively. In164

equation 7 ln
(
β(i)

)
and ln

(
φ(i)

)
were considered to ensure positive shape and rate pa-165

rameters. The model parameters, as can be seen, are modeled jointly to capture their166

inter-correlations.167

3 Application to Narmada River Basin, India168

We demonstrate the BHNM with application to Narmada River Basin in west-central169

India. The study basin, data, selection of covariates, model structure for the Narmada170

basin, and the cross-validation procedures are described below.171

3.1 The study Basin172

The Narmada River basin (Figure 2), with 98,796 km2 (Narmada basin organiza-173

tion, 2019), originates in the Amarkantak hills of central India and is the largest river174

that drains into the Arabian Sea in the West. It is a narrow and elongated basin that175

stretches in the East-West direction (Figure 2). It is an important source of water re-176

sources for the populous States of Madhya Pradesh and Gujarat. The basin receives an177

average rainfall of 1120 mm, with most of it arriving during the summer monsoon sea-178

son of June – September. The upper parts of the basin at higher elevations receive higher179

precipitation relative to the lower basin (Banerjee, 2009). The flooding in the basin mostly180

occurs during July-August, the focus of our application. The basin and the key stream-181

flow gauges are shown in Figure 2.182
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3.2 Data183

Observed daily streamflow during the peak monsoon season (July-August) at four184

gauge stations in the Narmada basin: Sandiya, Handia, Hoshangabad, and Mandlesh-185

war were obtained from India Water Resource Information System (IWRIS) (Figure 2)186

for the period 1978 – 2014. Garudeshwar gauge station was not considered in this study187

since it had longer missing periods (summers of 1988, 1989, 1995, and 2004).188

For the hydrometeorological variable, we used daily gridded precipitation data from189

the India Meteorology Department (IMD) for 1978 – 2014. The gridded precipitation190

data was prepared using the inverse distance weighted scheme based on observations from191

6995 meteorological stations across India (Pai et al., 2014) and is available at 0.25◦ spa-192

tial resolution from 1951-2018. The gridded daily precipitation captures the key features193

such as high seasonal rainfall over the core monsoon region and orographic rainfall in194

the Western Ghats and foothills of Himalaya (Pai et al., 2014). Previous studies have195

widely used the IMD precipitation for hydrometeorological studies (Ali et al., 2019; Shah196

& Mishra, 2016).197

3.3 Covariates198

We considered antecedent daily streamflow from upstream (feeder) gauges and spa-199

tial average precipitation from the area between the station gauges. The covariates are200

considered until the previous day (lag-1 day), i.e., we have a 1-day lead time for the stream-201

flow forecast. The antecedent streamflow and precipitation capture the hydrologic basin202

characteristics and forcing input before the streamflow signal on any given day. Due to203

the presence of dams for Mandleshwar and Sandiya, the spatial average precipitation was204

obtained from the area between the station gauge and the upstream dam. We obtained205

the best set of covariates for each station gauge based on the highest Pearson correla-206

tion coefficient. Besides, we checked their significance based on the posterior distribu-207

tion of the model coefficients that they do not cross zero.208

Figure 3 shows the best set of covariates for daily streamflow at each gauge. The209

best covariates we obtained based on the highest correlation for each gauge point. For210

Mandleshwar (Figure 3a, b), the best covariates were daily spatial average precipitation211

of t − 1 day and streamflow at the upstream gauge of Hoshangabad of day t − 1. For212

Handia (Figures 3c, d), two-day accumulated spatial average precipitation of days t−213
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1 and t−2 and day t−1 day streamflow at Hoshangabad were the best. For Hoshangabad214

gauge (Figures 3e, f), two-day spatial average precipitation of days t−1 and t−2 and215

day t−1 streamflow at the upstream gauge, Sandiya were the best covariates. For the216

headwater, Sandiya gauge (Figures 3g, h), three-day spatial average precipitation above217

the gauge of days t−1, t−2, and t−3, and the streamflow at day t−1 from the same218

gauge emerged as the best covariates. Since Sandiya does not have a gauge above it, we219

chose the flow at this gauge from day t−1 as a covariate. All the correlation coefficients220

(R) between daily streamflow covariates are ∼ 0.8 and higher, while the correlations with221

precipitation are ∼ 0.6. However, it is interesting to note that for Madleshwar gauge,222

the correlation of daily streamflow with precipitation is lowest (∼ 0.5). This, we sur-223

mise, is due to a dam downstream near Handia gauge, which can control the flow at Man-224

dleshwar gauge that is unrelated to the precipitation. Thus, we chose the streamflow at225

Hoshangabad gauge as a covariate for Mandleshwar. Also, the lagged time of the covari-226

ates is consistent with the travel time of the reaches. However, naturalized streamflow227

will likely have a stronger correlation between streamflow and precipitation.228

3.4 Model Structure for the Narmada River Basin229

The BHNM for the Narmada basin follows the generalized framework described in230

section 2.1. The schematic of the model for the basin is shown in Figure 4. The covari-231

ates identified and described in the previous section are incorporated in the model rep-232

resented in the model equations below:233

Q
(i)
t ∼ Gamma

(
r
(i)
t , λ

(i)
t

)
i = 1, 2, 3, 4 (9)234

λ
(i)
t =

µ
(i)
t(

σ
(i)
t

)2 ; r
(i)
t =

(
µ
(i)
t

)2
(
σ
(i)
t

)2 ; i = 1, 2, 3, 4 (10)235

Mandleshwar:236

µ
(1)
t = β

(1)
0 + β

(1)
1 P

(1)
1d,t−1 + β

(1)
Q Q

(3)
t−1237

σ
(1)
t = φ

(1)
0 + φ

(1)
1 P

(1)
1d,t−1 + φ

(1)
Q Q

(3)
t−1 (11)238
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Handia:239

µ
(2)
t = β

(2)
0 + β

(2)
1 P

(2)
2d,t−1 + β

(2)
Q Q

(3)
t−1240

241

σ
(1)
t = φ

(1)
0 + φ

(2)
1 P

(2)
2d,t−1 + φ

(2)
Q Q

(3)
t−1 (12)242

Hoshangabad:243

µ
(3)
t = β

(3)
0 + β

(3)
1 P

(3)
2d,t−1 + β

(3)
Q Q

(4)
t−1244

245

σ
(3)
t = φ

(3)
0 + φ

(3)
1 P

(3)
2d,t−1 + φ

(3)
Q Q

(4)
t−1 (13)246

Sandiya:247

µ
(4)
t = β

(4)
0 + β

(4)
1 P

(4)
3d,t−1 + β

(4)
2 Q

(4)
t−1248

249

σ
(4)
t = φ

(4)
0 + φ

(4)
1 P

(4)
3d,t−1 + φ

(4)
2 Q

(4)
t−1 (14)250

where P
(i)
xd,t−1 is the x-day spatial average precipitation for the gauge station i. The251

priors of β(i) and φ(i) are for each streamflow gauge multivariate normal distribution252

with mean 0 and covariance matrix Σ
(i)
β and Σ

(i)
φ , respectively (equation 7). For the pri-253

ors of the covariance matrix according to equation 8, for each station gauge, we consider254

weakly informative priors with ν = 4, A = 10, and B = 10.255

The model was implemented in R (R Core, 2017) using the program JAGS (Just256

Another Gibbs Sampler; Plummer, 2003) and the R package rjags (Plummer, 2019), which257

provides an interface from R to the JAGS library for Bayesian data analysis. Posterior258

distributions of the parameters and predictive posterior distributions of the streamflows259

(ensembles) for all days were estimated using the Gibbs sampling algorithm for the Markov260

Chain Monte Carlo method (Gelman & Hill, 2006; Robert & Casella, 2011) based on the261

priors assigned. We ran three parallel chains with different initial values, and each sim-262

ulation was performed for 100,000 iterations with a burn-in size value of 50,000 to en-263

sure convergence. To reduce the sample dependence (autocorrelation), we chose a thin-264

ning factor of 50. The scale reduction factor R̂ (Gelman & Rubin, 1992) was used to check265

the model convergence in that R̂ values less than the critical value of 1.1 suggests good266

convergence of the model. In all of our runs the R̂ values were less than 1.1 at 3,000 sam-267

ples, indicating model convergence. Consequently, the posterior distributions of the pa-268

rameters and the predictive posterior distribution of daily streamflows consists of 3,000269

ensembles.270
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3.5 Model Cross-Validation271

Since this study’s goal is to provide a daily streamflow forecast for risk-based flood272

mitigation, we chose to implement a leave-two-years-out cross-validation for years with273

high flow values. In this, two consecutive years from the common record (1978–2014),274

in which a high flow occurred, are chosen as validation years, and the BHNM built us-275

ing the remaining observations, also known as the calibration years. The fitted model276

is applied to provide estimates for the two validation years. This cross-validation pro-277

cedure was repeated four times, and the two consecutive years periods considered with278

high flows were: 1984-1985; 1990-1991; 1996-1997; 2013-2014. Figure 5 shows the time279

series of July-August daily streamflow for 1970-2014 at the Mandleshwar gauge station280

and black boxes that denote the four validation periods considered.281

We included a comparison of the cross-validation results of the BHNM with those282

of a standard Multi-Linear Model (MLM). By ”standard”, we mean that a simple multi-283

linear regression model with the same covariates presented in section 3.3 fitted to daily284

streamflow at each gauge station via the Maximum Likelihood (ML) method. The pa-285

rameters follow a multivariate normal distribution with mean and covariance matrix equal286

to the estimates and covariance matrix obtained from the ML (Bracken et al., 2018), thus,287

providing parameter ensembles and consequently, flow ensembles generated from the lin-288

ear regression model for each parameter sample. Note that, unlike the BHNM, the multi-289

linear model is fitted at each gauge separately and thus does not contain correlation across290

the station gauges. Also, the uncertainty estimates from ML tend to be lower.291

In this study, three verification metrics were computed: rank histograms, the con-292

tinuous ranked probability skill score (CRPSS), and the energy skill score (ESS).293

Rank histograms indicate the level of uniform distribution of observations through-294

out the ensemble forecast and, thus, its reliability. A rank histogram is computed from295

the rank or position of the observed value relative to the ensemble members over a num-296

ber of cases (the length of the validation records; Hamill, 2001; Mendoza et al., 2015).297

If the ensemble at a given point is reliable, the resulting rank histogram should be uni-298

form (flat rank histogram). Overpopulation of the lowest or highest ranks is a sign of299

positive or negative biases in the ensemble forecast. A lack of variability in the ensem-300

ble will show up as a U-shaped, or concave, rank population. Overpopulation of the mid-301

dle ranks means an excess of dispersion (overdispersion). It should be noted that a flat302
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rank histogram is a necessary but not sufficient condition for determining that the en-303

semble is reliable (Hamill, 2001).304

Along with the rank histogram, we also consider a discrepancy index (DI) to quan-305

tify the departure of the histogram from uniformity (Delle Monache et al., 2006; Men-306

doza et al., 2015). It is computed as follows:307

DI =

M+1∑
i=1

∣∣∣∣countiN
− 1

M + 1

∣∣∣∣ 100 (15)308

where M is the number of ensemble members (so M+1 is the number of bins in309

the rank histogram), counti is the number of times the observed event falls into the ith310

bin, and N is the sample size. Lower DI means that the ensemble better achieves the311

condition of reliability.312

The continuous rank probability score (CRPS) evaluates the accuracy of the em-313

pirical/probabilistic forecasts by estimating the area between the cumulative distribu-314

tion functions of the forecasted streamflow and the observed streamflow (Gneiting & Raftery,315

2007; Hersbach, 2000). For a station gauge on a specific day, it is defined as316

CRPS =

∫ ∞
−∞

[F (Q)−H (Q−Qo)]
2
dQ (16)317

H (Q−Q0) =

0 Q < Qo

1 Q ≥ Qo

(17)318

where F (Q) is the CDF associated with the forecast, Qo is the observed stream-319

flow, and H (Q−Q0) is the well-known Heaviside function. The continuous ranked prob-320

ability skill score (CRPSS) is then defined accordingly:321

CRPSS = 1− CRPSforecast

CRPSreference
(18)322

where CRPSforecast is the CRPS of the forecast model, CRPSreference is the CRPS323

of the reference forecast. The CRPSS ranges from −∞ to 1. CRPSS < 0 indicates that324

the reference forecast has higher skill than the forecast model, CRPSS = 0 implies equal325

skill, and CRPSS > 0 implies that the forecast model has a higher skill, with CRPSS =326

1 being a perfect score.327
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The energy score (ES) assesses probabilistic forecasts of a multivariate quantity (Gneiting328

& Raftery, 2007; Gneiting et al., 2008):329

ES =
1

M

M∑
j=1

∣∣∣∣Qj −Qo

∣∣∣∣− 1

2M2

M∑
i=1

M∑
j=1

∣∣∣∣Qi −Qj

∣∣∣∣ (19)330

where M is the size of the ensemble forecast, Qj is the n×1 vector of the jth en-331

semble forecast at day t, Qo is the n × 1 vector of observed streamflow at day t, and332

||·|| denotes the Euclidean norm. This is a direct generalization of the continuous ranked333

probability score (equation 16), to which the energy score reduces in dimension d = 1.334

Then, the energy skill score (ESS) is defined as335

ESS = 1− ESforecast

ESreference
(20)336

where ESforecast is the ES of the forecast model, ESreference is the ES of the ref-337

erence forecast. As for the CRPSS, the ESS ranges from −∞ to 1, and its values have338

the same meaning.339

In this study, we considered climatology as the reference model.340

4 Results341

We present results from model calibration followed by results of leave two-year cross-342

validation and the forecast verification metrics.343

4.1 Calibration344

We calibrated the BHNM for the entire record (1978-2014). Figure 6 shows the pre-345

dictive posterior distribution ensembles of July-August daily streamflow for Mandlesh-346

war (the terminal gauge) for the whole time record (1978-2014) and the last two-year347

period 2013-2014 for a closer visualization of the timing of the high flows. The flow en-348

sembles are generated from the Gamma distribution using the posterior samples of the349

model parameters. The flow ensembles are presented as time series of boxplots. The sim-350

ulated median daily flows are generally lower than the observed flows; however, almost351

all the observed high flows are captured within the ensemble variability with few excep-352

tions (e.g., high value in 1996, Figure 6a). The daily streamflow timing is captured very353
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well by the posterior ensembles, as can be seen in Figure 6b for the two-year period 2013-354

2014. The scatter plots of daily observed streamflow vs. ensemble median of the pos-355

terior distribution and the related correlation coefficients (R) and relative bias for peak356

flows (computed only for dates where the observed flow exceeds the 90th quantile) are357

shown in the upper right corner. The R values were 0.83 and 0.92 for 1978-2014 and 2013-358

2014, respectively, while relative bias for peak flows were -0.19 and -0.21 of the observed359

mean high peak flows for 1978-2014 and 2013-2014, respectively.360

The posterior flow ensembles for the Sandiya gauge (the headwater gauge) are shown361

in Figure 7 (same as Figure 6). In this case, there is a clear underestimation of the high362

streamflow values by the ensemble median, and the ensembles variability cannot fully363

capture most of them (Figure 7a). Also, there is a delay of one day in the peak stream-364

flows’ simulated timing (Figure 7b). The timing of the streamflows’ peak is closely re-365

lated to the travel time from the upstream gauge. Sandiya being the uppermost gauge366

in the basin, does not have this information available; thus, the model’s simulated tim-367

ing is off by a day. Additional covariates need to be explored for this gauge (uppermost368

gauge in general) from hydrometeorological variables that can capture the surface pro-369

cesses. The overall performance of the ensembles in terms of Perason correation, R val-370

ues was good (0.83 and 0.9 for 1978-2014 and 2013-2014, respectively). As in Mandlesh-371

war, for Sandiya, a negative relative bias was obtained (-0.32 and -0.29 of the observed372

mean high peak flows for 1978-2014 and 2013-2014, respectively).373

4.2 Cross-Validation374

The leave two-year out cross-validation, following the procedure described in sec-375

tion 3.5, was performed. The daily posterior ensemble flow forecasts for the four vali-376

dation periods: 1984-1985, 1990-1991, 1996-1997, and 2013-2014 were obtained and shown377

in Figure 8. At each gauge, this consists of streamflow simulations for 496 days cover-378

ing the four periods, and as in calibration, each day has 3,000 posterior predictive en-379

sembles. Figure 8 shows the predictive posterior ensemble forecast of July-August daily380

streamflow presented as boxplot time series for the four validation periods at Mandlesh-381

war and Sandiya gauge stations, along with the scatterplot of predictive median and ob-382

served flows – similar to Figure 6. As in Figure 6, in Figure 8a, it can be seen that for383

Mandleshwar gauge, the ensemble median slightly underestimates the observed for high384

streamflow values, but the ensembles variability can capture most of them except for a385
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few events (July 30 of 1991 and July 29 of 1996). For Sandiya, as in the calibration, there386

is an evident underestimation of the high streamflow values by the ensemble median, and387

the ensemble variability cannot fully capture most of them (Figure 8b). While R val-388

ues of the posterior and observed flows showed excellent performance (0.85 and 0.84 for389

Mandleshwar and Sandiya, respectively), negative relative bias values were obtained (-390

0.23 and -0.35 of the observed mean high peak flows for Mandleshwar and Sandiya, re-391

spectively). As in the calibration, better performance for intermediate station gauges was392

achieved (Figure S3 in the supplemental information).393

4.3 Cross-Validation Skill Metrics394

To assess the reliability of the ensembles forecast, rank histograms of the ensem-395

ble forecast of July-August daily streamflow during cross-validation periods for the BHNM396

and MLM models at Mandleshwar gauge station are presented in Figure 9. The shape397

of rank histograms and DI values demonstrate that a better spread is generated from398

the ensembles forecast of the BHNM since its rank histogram is almost uniform (Fig-399

ure 9a) with a low DI value. For MLM, the U-shaped of the rank histogram and high400

DI value indicate a lack of variability in the ensemble. We obtained similar results for401

the other gauges (Figures S4-S6 in the supplementary information).402

To assess the at site (marginal) probabilistic skill of the proposed model, we com-403

puted the CRPSS for two subsets: 496 days of the four validation periods, and for the404

days with high flows, which for each gauge are defined as the days when the observed405

streamflow exceeds their 75th percentile streamflow. The CRPSS calculated for each fore-406

cast day are shown as boxplots in Figure 10 for forecasts from BHNM (sky blue boxes)407

and MLM (gray boxes) for the two subsets. For the four validation periods combined408

(Figure 10a), most of the values remain above zero (over 75%) for both models. How-409

ever, the variability of CRPSS from BHNM is lower than that of MLM. The median CRPSS410

from BHNM is higher than that of MLM except for Sandiya (median of the distribution411

is lower for BHNM, Figure 10a). BHNM exhibits better overall performance for high flow412

days than MLM in reduced variability and higher median values for all the gauges (Fig-413

ure 10b). These findings are important for skillful forecasts of high flows that cause flood-414

ing in the basin since this forecast could be useful for flood early warning and mitiga-415

tion. These results indicate a consistent and robust performance of the posterior ensem-416

bles from BHNM.417
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To assess the skill of the model ensembles in their ability to capture the joint de-418

pendence across gauges, we computed the ESS for 496 days of four validation periods.419

Figure 11 shows ESS distributions of BHNM (sky blue boxes) and MLM (gray boxes)420

for the four validation periods. The ESS for the BHNM remains entirely above zero com-421

pared to that from MLM, and the median ESS from BHNM is higher. These results in-422

dicate a higher skill of the BHNM ensembles to predict the joint flow distribution across423

gauges, which is especially crucial for flood mitigation across the river network and not424

just at single locations.425

5 Summary and Discussion426

We formulated and presented a Bayesian Hierarchical Network Model (BHNM) for427

daily streamflow. The model uses the spatial dependence induced by the river network428

topology and hydrometeorological variables from the upstream contributing area between429

the covariates’ gauges. For the application presented, daily streamflow at each station430

is assumed to be distributed as a Gamma probability density function with spatial and431

temporal non-stationary in the distribution parameters. The distribution parameters for432

each day and at each gauge are modeled as linear functions of selected covariates. With433

suitable priors, the posterior distribution of the model parameters and consequently, the434

predictive posterior distribution ensembles of daily streamflow are obtained.435

We applied this to forecast daily summer (July-August) streamflow at four gauges436

in the Narmada River Basin network in west-central India for the period 1978 – 2014,437

at one day lead time. The covariates included streamflow from upstream feeder gauges438

and spatial average precipitation from the area between stations, from previous 1, 2, or439

3 days, that attempts to reflect the antecedent land conditions. The probabilistic skill440

and reliability of the ensemble forecasts individually and jointly were assessed by rank441

histograms and skill scores such as continuous cumulative rank probability skill score (CRPSS)442

and energy skill score (ESS). The model ensembles capture the daily streamflow and mag-443

nitudes quite well along with the flow peaks’ timing, except for the headwater gauge. We444

computed the skill metrics in leave-two-year cross-validation for 496 days of the four val-445

idation periods and only days with high flows. We found the posterior ensemble fore-446

cast from BHNM to be highly skillful, consistent, and reliable compared to the traditional447

multi-linear model. The skill is higher and robust, especially for high flow days, raising448
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the prospect that this BHNM can be used in real-time coordinated flood mitigation and449

early warning across the river basin.450

The proposed Bayesian Hierarchical Network Model (BHNM) has benefits com-451

pared to stationary, at site Bayesian, and non-Bayesian models:452

• Using the network structure in incorporating flow information from upstream gauges453

and precipitation from upstream contributing areas as covariates, communicates454

information through the network and captures the spatial correlation of flows si-455

multaneously456

• Compared to an at-site multi-linear model (MLM), BHNM shows better perfor-457

mance by capturing the river network’s spatial dependence and the uncertainty458

at each station gauge.459

The headwater gauges need special attention, for they do not have station gauges460

upstream to provide information about the basin hydrology. The modeling framework461

is general in that it can be adapted to model other space-time variables, admit other po-462

tential distributions such as Lognormal, Weibull, Generalized Extreme Value, etc. Fur-463

ther, this model can be combined with precipitation and basin hydrologic forecasts as464

covariates. Preliminary results combining hydrologic forecasts from the Variable Infil-465

tration Capacity (VIC) model for the Narmada River basin with the BHNM showed good466

forecast skill with promising avenues for combining statistical and physical model fore-467

casts.468

This framework can be applied to basins with non-natural flow regimes by incor-469

porating the right feeder gauge. Another alternative would be replacing the spatial av-470

erage precipitation with another potential predictor more skillful such as the reservoir471

levels through its operation rule if known. These considerations allow that the model to472

replicate the effect of some human interventions such as dams.473
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Can, , Tosunoğlu, F., & Kahya, E. (2012). Daily streamflow modelling using autore-502

gressive moving average and artificial neural networks models: case study of503
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Figure 1. Conceptual sketch of Bayesian Hierarchical Network Model. n streamflow gauges

and n hydrometeorological covariates vectors are shown in the graph for illustrating the con-

cept of the graphical network model. Physically informed modeling structure using regional

hydrometeorological covariates and feeder streamflow gauges is explored using factorization into

lower-dimensional conditional probability distributions as shown in the directed graph. The con-

ditional distributions generated at each stage of the chart serve as statistical interpretations of

the modeling structure and provide the basis for converting the graphical model into a set of

equations for estimating the parameters of the streamflow network’s likelihood function for all

gauges (nodes) in the network simultaneously using a Bayesian estimation scheme.
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Figure 2. Map of the Narmada basin boundary in India showing the digital elevation model

of the basin (SRTM DEM); the locations of five sub-basin outlets: Sandiya, Hoshangabad, Han-

dia, Mandleshwar, and Garudeshwar; and some of the major dams in the basin are marked:

Bargi, Tawa, Indirasagar, Jobat, and Sardar Sarovar (from upstream to downstream direction).
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Figure 3. Scatter plots of daily streamflow on day t vs. best lag -1 day covariates selected for

each station gauge: Mandleshwar streamflow vs. (a) daily spatial average precipitation, (b) and

daily Hoshangabad streamflow; Handia streamflow vs. (c) 2-day spatial average precipitation,

(d) and daily Hoshangabad streamflow; Hoshangabad streamflow vs. (e) 2-day spatial average

precipitation, (f) and daily Sandiya streamflow; Sandiya streamflow vs. (g) 3-day spatial average

precipitation, (h) and lag -1 day daily Sandiya streamflow. All Pearson correlation coefficients, R,

are significant (P − value < 0.1).
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Figure 4. Schematic of the BHNM for the Narmada River basin.

1978 1982 1986 1990 1994 1998 2002 2006 2010 2014

0

10

20

30

40

50

Time

S
tr

ea
m

flo
w

, Q
(t)

 (1
03 m

3 s−1
) 19

84
−

19
85

19
90

−
19

91

19
96

−
19

97

20
13

−
20

14

Figure 5. Time series of July-August daily streamflow for 1978-2014 at the Mandleshwar

gauge station. Black boxes denote the four validation periods considered for the Cross-Validation.
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Figure 6. Predictive posterior distribution ensembles of simulated July-August daily stream-

flow for the Mandleshwar gauge station presented as boxplot time series for (a) entire record

(1978-2014) and (b) 2013-2014. The boxplots represent the posterior distribution estimates of the

daily streamflow. Outliers are not displayed. Red lines correspond to the observed daily stream-

flow and blue-dashed lines to the posterior median daily streamflow. Scatterplots of the posterior

median and observed flows along with the 1:1 line and relative bias for peak flows (computed

only for dates where the observed flow exceeds the 90th quantile) and R values are on the upper

right of each panel. R values are significant (P − value < 0.1). The black box in panel a shows

the temporal windows for time series in panel b.
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Figure 7. As in Figure 6, but for the Sandiya gauge station. R values are significant

(P − value < 0.1).
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Figure 8. Same as Figure 6 but predictive posterior ensemble forecast of July-August daily

streamflow presented as boxplot time series for the four validation periods (1984-1985, 1990-1991,

1996-1997, and 2013-2014) at (a) Mandleshwar and (b) Sandiya gauges. The boxplots represent

the simulated posterior distribution of the daily streamflow. Outliers are not displayed. Red lines

are the observed daily streamflow, and blue-dashed lines the posterior median daily streamflow.

Scatter plots of the posterior median and observed flows along with the 1:1 line and bias for peak

flows (computed only for dates where the observed flow exceeds the 90th quantile) and R values

are on the upper right of each panel. R values are significant (P − value < 0.1). Black-dashed

vertical lines indicate the division between validation periods.
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Figure 9. Rank histograms of the ensembles forecast of July-August daily streamflow during

cross-validation periods. (a) the Bayesian Hierarchical Network Model and (b) the Multi-Linear

Model at Mandleshwar gauge station. DI denotes the discrepancy index.

(a) (b)
MLM MLM

Figure 10. Boxplots of cumulative ranked probability skill score (CRPSS) statistic of stream-

flow ensembles from BHNM (sky blue boxes) and MLM (gray boxes) models for (a) 496 days of

the four validation periods and (b) days with high flows. For boxplots, whiskers show the 95%

credible intervals, boxes the interquartile range, and the horizontal lines inside the boxes, the

median. Outliers are not displayed. Climatology was considered as the reference forecast model.
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MLM

Figure 11. Boxplots of the energy skill score (RPSS) statistic of streamflow ensembles from

BHNM (sky blue boxes) and MLM (gray boxes) for the four validation periods. For boxplots,

whiskers show the 95% credible intervals, boxes the interquartile range, and the horizontal lines

inside the boxes, the median. Outliers are not displayed. Climatology was considered as the

reference forecast model.
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