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Abstract

The High Accuracy Satellite Drag Model (HASDM) is the operational thermospheric density model used by the US Space

Force (USSF) Combined Space Operations Center (CSpOC). By using real-time data assimilation, HASDM can provide density

estimates with increased accuracy over empirical models. With historical HASDM density data being released publicly for the

first time, we can analyze the data to identify dominant modes of variations in the upper atmosphere. As HASDM is a close

relative to the Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), we look at time-matched density data

to better understand the models’ characteristics. This model comparison is conducted through the use of Principal Component

Analysis (PCA). We then compare both datasets to the CHAllenging Minisatellie Payload (CHAMP) and Gravity Recovery

and Climate Experiment (GRACE) accelerometer-derived density estimates. By looking at the principal components and PCA

scores from the two models, we confirm the increased complexity of the HASDM dataset while the CHAMP and GRACE

comparisons show that HASDM more closely matches the accelerometer-derived densities with mean absolute differences of

23.81% and 30.84% compared to CHAMP and GRACE-A, respectively.
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Abstract13

The High Accuracy Satellite Drag Model (HASDM) is the operational thermospheric14

density model used by the US Space Force (USSF) Combined Space Operations Center15

(CSpOC). By using real-time data assimilation, HASDM can provide density estimates with16

increased accuracy over empirical models. With historical HASDM density data being re-17

leased publicly for the first time, we can analyze the data to identify dominant modes of18

variations in the upper atmosphere. As HASDM is a close relative to the Jacchia-Bowman19

2008 Empirical Thermospheric Density Model (JB2008), we look at time-matched density20

data to better understand the models’ characteristics. This model comparison is conducted21

through the use of Principal Component Analysis (PCA). We then compare both datasets to22

the CHAllenging Minisatellie Payload (CHAMP) and Gravity Recovery and Climate Ex-23

periment (GRACE) accelerometer-derived density estimates. By looking at the principal24

components and PCA scores from the two models, we confirm the increased complexity25

of the HASDM dataset while the CHAMP and GRACE comparisons show that HASDM26

more closely matches the accelerometer-derived densities with mean absolute differences of27

23.81% and 30.84% compared to CHAMP and GRACE-A, respectively.28

1 Introduction29

Over the past seven decades, the scientific community has developed and advanced30

thermospheric density models. A significant subset of these models are empirical. Empirical31

models use long-term trends from measurements over an array of instruments to fit para-32

metric equations that describe the system. Even within this subset, there are multiple fami-33

lies/series of models that use different types of measurements and have evolved over decades.34

Three of these series, discussed by Emmert (2015), are the MSIS (Picone et al. 2002), DTM35

(Bruinsma, Sean 2015), and Jacchia series (Bowman et al. 2008).36

Mass Spectrometer Incoherent Scatter Radar (MSIS) models typically used mass spec-37

trometer and incoherent scatter radar measurements but have evolved and now incorporate38

additional data (e.g. accelerometer-derived density estimates). The Drag Temperature Model39

(DTM) series used orbit-derived density data but more recently incorporates accelerometer-40

derived density and mass spectrometer data. The Jacchia series of models (e.g. Jacchia-7041

and JB2008) strictly use both orbit- and accelerometer-derived density estimates.42

The most recent in the Jacchia series is the JB2008 density model. JB2008 was an im-43

provement to its predecessors and incorporated new solar and geomagnetic indices to drive44

the model. It uses the �10, (10, "10, and .10 indices and proxies to model variations caused45

by solar heating. In addition to 0? , JB2008 utilizes �BC to better model density during geo-46

magnetic storms.47

The thermosphere is a dynamic, highly-driven system impacted by external forces (e.g.48

space weather events) and internal dynamics. Solar irradiance is a major source of varia-49

tion, providing the baseline average density (Qian and Solomon 2011). This process is well-50

represented by solar indices, particularly at low latitudes (Vickers et al. 2014). However,51

these indices are not adequate in characterizing the thermosphere during solar minimum52

(Bowman et al. 2008), when composition changes and other processes become more relevant53

(Mehta et al. 2019). During events like solar flares or coronal mass ejections (CMEs), mass54

and energy from the Sun interact with the magnetosphere causing Joule heating and auro-55

ral particle precipitation into the thermosphere (Fedrizzi et al. 2012; Deng et al. 2013). This56

causes sudden and often large changes in mass density. Due to a lack of pre-storm condition-57

ing and inability to model traveling atmospheric disturbances, empirical models frequently58

under-perform during these events (Bruinsma et al. 2021).59

The challenge of accurately modeling thermospheric mass density over a multitude60

of conditions has severe repercussions in the context of orbit determination and Space Sit-61
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uational Awareness (SSA). Operators rely on these density models for decision making in62

regards to collision avoidance operations, where inaccuracies and uncertainties can have dire63

consequences. Insufficient knowledge of future satellite position can result in a collision be-64

tween two objects. A potential collision would drastically increase the number of objects in65

a given orbital regime, increasing the probability of future collisions. This could result in a66

cascade, known as Kessler Syndrome (Kessler and Cour-Palais 1978), which could make67

certain orbital regimes inaccessible. In an effort to avoid this, we look to improve our model-68

ing and forecasting capabilities. A significant improvement in model accuracy came from the69

implementation of real-time data assimilation, notably utilized by HASDM.70

HASDM was developed by Storz et al. (2005) and is an assimilative extension of the71

Jacchia 1970 upper atmosphere density model (Jacchia 1970). HASDM employs Dynamic72

Calibration of Atmosphere (DCA) which uses calibration satellite observations to make cor-73

rections to its background empirical density model. This assimilation technique was intro-74

duced as an application for HASDM by Casili and Barker (2002), but was expanded later to75

estimate 13 global density correction parameters (Storz et al. 2005). HASDM is not available76

for public use, but the global density outputs from the model were released to the public for77

the first time by Tobiska et al. (2021). It is called the SET HASDM density database. This78

database contains three-dimensional density grid from the start of 2000 to the end of 2019 at79

a three-hour cadence.80

In this work, we will leverage Principal Component Analysis (PCA) in order to study81

the most dominant sources of variance within the HASDM dataset and a spatiotemporally-82

matched JB2008 dataset. The resulting principal components and PCA scores give insight83

into the processes that drive the variance within the models. This methodology has been84

used to analyze thermospheric density datasets previously and is often used in the develop-85

ment of reduced-order models (Mehta and Linares 2017; Mehta et al. 2018; Gondelach and86

Linares 2020). For this paper, the use of PCA is restricted to scientific investigation.87

The availability of accelerometer-derived density estimates has been advantageous88

for model development and assessment. Over the lifetime of satellites with on board ac-89

celerometers (e.g. CHAMP and GRACE), we accumulate measurements over a plethora of90

altitudes and space weather conditions (Luhr et al. 2002; Bettadpur 2012). Researchers have91

used these measurements to derive density estimates by removing accelerations from other92

sources (Sutton 2008; Doornbos 2012; Mehta et al. 2017). We use the estimates from (Mehta93

et al. 2017) for comparisong with the HASDM and JB2008 models.94

The paper is organized as follows, we start by detailing the HASDM and JB2008 mod-95

els. Then, we discuss the use of PCA as an investigatory tool followed by the results of the96

analysis. After, we compare the HASDM and JB2008 densities to CHAMP and GRACE97

density estimate over the entire availability of their measurements, with a focus on storm-98

time and quiet conditions.99

2 Model Background100

The most recent Jacchia model, JB2008, achieved improved accuracy largely due to its101

incorporations of new solar and geomagnetic indices. These indices are used in temperature102

corrections, semiannual functions, and new Dst temperature equations . The model reduced103

non-storm density errors by > 5% and reduced storm-time density errors from Jacchia-70 by104

> 60%, from NRLMSIS by > 35% and from JB2008 (with only 0?) by 16% (Bowman et al.105

2008).106

Using a similar background density model, HASDM is able to further reduce these er-107

rors. By building on the density correction work of Marcos et al. (1998) and Nazerenko et al.108

(1998), HASDM can provide dynamic global density corrections via 13 spherical harmonic109

coefficients through its DCA algorithm. HASDM also exploits a prediction filter for its DCA110

corrections. Through this filter, the model adjusts an extrapolated time series of 27 days (one111

–3–



Confidential manuscript submitted to Space Weather

solar rotation) for the correction coefficients using wavelet and Fourier analysis (Storz et al.112

2005). For satellite trajectory estimation, HASDM uses a technique, called segmented solu-113

tion for ballistic coefficient (SSB), that enables the estimated ballistic coefficient to deviate114

over the fitting period.115

2.1 Model Drivers116

The most common solar proxy used in density modeling is �10.7, referred to in this pa-117

per as �10. Originally identified and measured by Covington (1948), �10 serves as a proxy118

for solar extreme ultraviolet (EUV) emissions which deposit energy into the thermosphere.119

The 10.7 in the subscript refers to the 10.7 cm wavelength of the solar radio flux being mea-120

sured. While this does not directly interact with Earth’s atmosphere, it has been shown to be121

a reliable proxy for thermospheric heating (Tobiska et al. 2008a). �10 is measured in solar122

flux units (10−22, <−2 �I−1) indicated as sfu.123

The (10 index characterizes the integrated 26-32 nm solar EUV emission. This index124

is influenced by temperatures in the chromosphere and solar corona (Tobiska et al. 2008a).125

These emissions penetrate into the middle thermosphere and are absorbed by atomic oxy-126

gen (Tobiska et al. 2008b). While the emissions that (10 represents have no relationship to127

the 10.7 cm wavelength, they are normalized and converted to sfu through linear regression.128

Similar fits are done for "10 and .10 to convert to uniform units.129

"10 is a proxy representative of far ultraviolet (FUV) photospheric 160 nm Schumann-130

Runge Continuum emissions. The proxy corresponds to processes in the lower thermosphere131

and is consistent with molecular oxygen dissociation (Tobiska et al. 2008b). The final solar132

driver for JB2008 is .10, which is a composite index. This hybrid represents X-ray emissions133

in the 0.1-0.8 nm range and H Lyman-U 121 nm emissions. During solar maximum, the X-134

ray emissions are more heavily weighted, and the opposite is true for solar minimum. For135

each of these four solar drivers, 81-day centered averages are generated and used for predic-136

tion in JB2008.137

The first of the two geomagnetic drivers for JB2008 is the geomagnetic planetary am-138

plitude, 0? . 0? is the linear equivalent of the geomagnetic planetary index,  ? , which has139

a quasi-logarithmic scale (McClain and Vallado 2001). It has a 3-hour cadence and is of-140

ten used in density models. However, using �BC during geomagnetic storms results in in-141

creased accuracy over 0? for density modeling (Bowman et al. 2008). The �BC index is142

largely driven by the strength of the ring current in the inner magnetosphere. This makes it143

an ideal indicator of ring current strength and therefore geomagnetic storms (Ganushkina144

et al. 2017).145

For operational use of HASDM, forecasts of these drivers are required. Space Envi-146

ronment Technologies (SET) provides the driver forecasts using multiple algorithms/sources.147

The solar drivers are forecasted using the SOLAR200 algorithm (Tobiska et al. 2000). 0?148

forecasts come from the National Oceanic and Atmospheric Administration (NOAA) Space149

Weather Prediction Center (SWPC) forecasters, and �BC forecasts are a produced by the150

Anemomilos algorithm (Tobiska et al. 2013). Error statistics of historical forecasts for all151

six drivers were presented as a community benchmark by Licata et al. (2020).152

In addition to these space weather drivers, the models use temporal inputs (e.g. univer-153

sal time (UT) and day of year). To model/correlate seasonal and annual trends, we generated154

sinusoidal inputs based on the day of year. The first two are sine and cosine functions with155

periods of six months. This is used to test correlations with semiannual trends. The last two156

are sine and cosine functions with periods of one year to correlate with annual trends. We157

did not include any functions of UT, because it is difficult to find linear correlations with158

these short period fluctuations, particularly when the cadence of the data is only 1/8 of the159

function’s period.160
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3 Principal Component Analysis161

The spatial resolution of these models are 15◦ longitude, 10◦ latitude, and 25 km alti-162

tude spanning from 175-825 km. This results in 12,312 grid points for every three hours be-163

tween the start of 2000 to the end of 2019. Principal Component Analysis is a dimensionality164

reduction technique that translates the dataset using linear functions to maximize variability165

and preserve information. The resulting information’s dimensions are ordered from most-to-166

least contribution to the system’s variance. Therefore, you can truncate the data at the desired167

point and only sacrifice a nominal amount of information (Jolliffe and Cadima 2016). This168

compaction forces important information from the dataset to be represented in fewer dimen-169

sions, simplifying the analysis.170

In previous work, Mehta and Linares (2017) developed a methodology for reduced or-171

der modeling where PCA was used to reduce the dimensionality of MSIS densities. This al-172

lowed the authors to analyze the dominant sources of variance. We apply that same method-173

ology (PCA implemenation) to identify principal components for both the HASDM and174

JB2008 datasets. The steps to achieve this will be described, but the original work of (2017)175

provides a thorough description of the process. This methodology was used on a TIE-GCM176

dataset to create a linear dynamic reduced order model (Mehta et al. 2018).177

Initially, the spatial dimensions are flattened to make the spatiotemporal dataset two-178

dimensional. Then a common logarithm of the density values in taken in order to reduce the179

variance of the dataset from five orders of magnitude to less than one. Next, we subtract the180

mean values for each cell to center the data. Finally, we perform a singular value decomposi-181

tion using the svds function in MATLAB to obtain the U, �, and V matrices. The normalized182

and centered density data is denoted by M. Equation 1 shows the relationship between these183

four matrices and the basis of PCA.184

M = U�VT (1)

The U matrix is the left unitary matrix, and it is made of orthogonal vectors that represent185

the principal components. � is a diagonal matrix consisting of the squares of the eigenvalues186

that correspond to the vectors in U. We can extract temporal coefficients (shown in Equation187

2) by performing matrix multiplication between two of the components in Equation 1.188

c(t) = �VT (2)

Using �, the energy/variance contribution of each principal component can be acquired as189

detailed in (Mehta and Linares 2017).190

4 PCA Results191

We begin by perform PCA on the entire dataset (2000-2020) to get insight into the gen-192

eral density formulations. Then, we look into specific conditions, such as solar maximum193

and solar minimum, where different processes drive the global density variations.194

4.1 2000-2020 Analysis195

Figure 1 shows both the individual and cumulative variance captured by the first 20196

principal components (PCs). In the left subplot, it becomes clear that the contribution of the197

first PC for both models is significant, capturing over 60% of the system’s total variance.198

More importantly, the first PC for JB2008 captures over 10% more variance than it does for199

HASDM. There is also more variance captured by the second PC for JB2008, but beyond200

that, the individual variance captured is marginally greater for HASDM. This is due to the201

∼ 75% captured in the first PC for JB2008.202

The cumulative variance is shown in the right subplot. It is abundantly clear that the205

variance captured by JB2008 is more substantial than by HASDM. Since JB2008 is an em-206
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Figure 1. Individual (left) and cumulative (right) variance captured by the first 20 principal components203

for the two density datasets.204

pirical model, there are well-defined relationships between the various drivers and the overall207

system. Therefore, PCA is able to capture those processes in fewer PCs. HASDM, being an208

assimilative model, produces densities that account for an increased number of processes,209

making its structure more complex and more difficult to be captured by PCA.210

Figures 2, 3, and 4 display the first five principal components (from U) for both models211

at 400 km, the first ten PCA scores (commonly referred to as temporal coefficients), and the212

results from a Pearson’s correlation coefficient analysis (Schober et al. 2018) between the213

scores and drivers, respectively.214

The first PC for both models represents solar heating. There is peak around 14 hours221

local time and a minimum at 2 hours. Looking at this in relation to Figure 1, we can de-222

duce that the effect of solar heating contributes significantly more to JB2008 than it does223

for HASDM. From Figure 4, the first coefficient is highly correlated to �10 and the other so-224

lar indices; there is a 90% or greater correlation to all four solar indices/proxies and their225

centered averages. This explains the larger magnitude at solar maximum around 2001 com-226

pared to around 2013. What also stands out is the not insignificant correlation to the geo-227

magnetic indices. There are large spikes that coincide with events such as the Halloween228

storm of 2003 and the St. Patrick’s day storm of 2017.229

The second PC likely represents annual variations. It shows how the density varies230

fairly linearly with respect to latitude. Based on the day of year, this PC can change in inten-231

sity and orientation. This is caused by the sinusoidal trend of U2 with a period of ∼ 365 days.232

The signs of the PCs and scores are important as they are multiplied for their contribution.233

The third PC is representing the same process(es) between the models. It is important234

to note that PCA does not guarantee that a each PC corresponds to a single process. Based235

on the first two, there is an evident dominant process representing it, but this is not always236

the case. The third coefficient is the most complex of the first three. During solar maximum,237

the trends seem to mimic coefficient 1, but its magnitude increases again during solar mini-238

mum. This increase no longer seems to relate to the first coefficient. Based on the correlation239

values, it can be deduced that the third PC is mostly representative of solar activity in regards240

to the entire time period. The combination of processes captured by this principal component241

makes linear correlation analysis difficult, especially over this time span. Looking at shorter242

windows (see the next two subsections) uncovers different processes captured by U3, depend-243

ing on the conditions.244
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Figure 2. First five principal components for HASDM (left) and JB2008 (right) at 400 km.215

In Supplementary Material SM1, the movement of the peak in U3 provides insight to245

HASDM. At lower altitudes (250-450 km), the HASDM peak has a ∼ 4 hour shift relative246

to JB2008 which is seen in Figure 2. The JB2008 peak is located between 12 and 14 hours247

local time while HASDM’s are around 9 hours. Beyond 450 km, the peak in both models248

shifts to 2 hours local time and towards the equator. They exhibit similar trends up to 825249

km which hints at the reliance on HASDM’s background model when the signal decreases at250

higher altitudes. We suspect that this represents the Winter helium bulge based on the local251

time of the peak (Keating and Prior 1968; Reber and Hays 1973).252

The last two PCs shown in Figure 2 for the two models are flipped, meaning the fourth253

for HASDM has the same source as the fifth for JB2008 and vice versa. There is only a254

2.25% difference between PCs 4 and 5 for HASDM which signifies that their respective255

contribution to the system’s overall variance is similar. PC 4 for HASDM and 5 for JB2008256

seem to be further effects of solar heating, while the other two are similar to PC 3. U4 for257

HASDM and U5 for JB2008 both have some correlation to geomagnetic activity, while U5258

for JB2008 has moderately strong correlation to the semiannual cosine wave. In Figure 2, the259

difference between PCs 3 and 5 for HASDM and PCs 3 and 4 for JB2008 is the location of260

the peak present in either the northern or southern poles.261

Note that in the caption, the absolute sum for both models is shown, and the value for262

JB2008 is over 20% larger than for HASDM. This is as expected due to the simplicity in the263

density formulation of an empirical model relative to an assimilative one. Beyond these dis-264

cussed principal components and scores, there is not an abundance of information. These265

correlation coefficients were generated using the entire twenty year period. However, looking266

at the coefficient plots and correlations for a single year shows that there is more information267

that cannot be seen by looking at such a broad period.268

–7–



Confidential manuscript submitted to Space Weather

Figure 3. PCA scores/coefficients for both HASDM and JB2008 across two solar cycles.216

4.2 Solar Maximum269

Figure 5 shows the first ten PCA scores for both models during 2001 (solar maximum),270

and Figure 6 contains the corresponding correlation coefficients.271

The first coefficients for both models in Figure 5 are nearly identical, alluding to the277

similarities in how solar drivers impact the resulting density grids in both models. There is278

lower correlation between U1 and the solar drivers relative to the twenty-year analysis. There279

is now increased correlation with the other drivers (e.g. geomagnetic and temporal). The280

geomagnetic indices have more correlation during this year, because there is a larger portion281

of the time period with moderate or high geomagnetic activity compared to the complete282

period. There are also increases in correlation for the temporal drivers, but it is not entirely283

clear if that is coincidental with how solar heating varied over this particular year.284

U2 again shows a distinct annual trend, but there are some differences highlighted by285

the shortened time period. The variation for HASDM seems to contain additional processes,286

identified by the more complex structure within the mean annual trend. There is a strong287

correlation with the annual cosine wave, as was the case for the entire period. Similar to U1,288

there are moderate correlations with all of the solar drivers. This is again likely a byproduct289

of how the solar drivers varied over the year. This is reinforced by the correlation values for290

JB2008 combined with the near-perfect cosine wave seen in Figure 5.291

The third coefficient is nearly a mirror image of the first coefficient for both HASDM292

and JB2008. This was suspected when looking at the coefficient plot for the entire period,293
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Figure 4. Pearson correlation coefficients between all inputs and PCA scores for HASDM217

and JB2008 between 2000 and 2020. The sum of the absolute values for HASDM and JB2008218

are 16.95 and 20.70, respectively. The colors represent the correlation coefficients with blue219

being -1.0, white being 0.0, and red being 1.0.220

but it did not show up in the correlation values from Figure 4. Clearly, U3 contains multiple294

processes that are difficult to observe from afar. The correlation values for U3 with both mod-295

els is almost exactly the opposite of the values for U1 which reinforces the observation.296

U4 is quite interesting as it is representing different processes between the models and297

more than one for HASDM. For JB2008 it is inversely correlated to an annual cosine wave298

with little influence from another source. However, U4 for HASDM shows some relation to a299

semiannual trend with influence from geomagnetic storms, having large spikes that coincide300

with those in U1 which is reaffirmed by the correlation coefficients.301

The fifth coefficient for HASDM has quite a peculiar set of correlation values. Its most302

significant correlations are to a semiannual sine wave and an annual cosine wave. Looking303

at Figure 5, it visually appears noisy, because the spikes do not correspond to spikes in the304

other coefficients. However, there are likely other contributions not captured by these drivers.305
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Figure 5. PCA coefficients for both HASDM and JB2008 for 2001.272

For JB2008, there are non-negligible correlations with the solar drivers and the temporal306

cosine inputs.307

Other interesting findings for 2001 include HASDM’s U7 and U9 along with JB2008’s308

U8 and U10. HASDM’s seventh coefficient visually shows a strong semiannual trend. When309

looking at Figure 6, there is more correlation to the annual trend and most of the solar in-310

dices. This is peculiar, because the qualitative study of the coefficient shows much more311

signal in relation to a semiannual variation. After consulting the correlation coefficients for312

HASDM’s U9, the similarity to U1 and U3 becomes more clear. It seems to be largely influ-313

enced by solar heating but is less evident.314

The eighth coefficient for JB2008 at first glance looks to have a semiannual quality, but315

after looking at the correlation values, its relationship to solar heating becomes more appar-316

ent. In fact, it looks like the third coefficient, only with a visually stronger signal. JB2008’s317

U10 likely represents an annual cosine wave. However, it is difficult to see due to the y-axis318

bounds determined by the range of U10 for HASDM.319

The most distinct difference between Figure 4 and 6 is the increase in the prevalence of320

color and therefore significant correlations. Nearly every coefficient for both models has at321

least one driver with 40% or greater correlation. Again, JB2008 has more cumulative corre-322

lation than HASDM, due to the increased processes in HASDM not modeled by the current323

set of drivers.324
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Figure 6. Pearson correlation coefficients between all inputs and PCA scores for HASDM and JB2008273

only during 2001 (solar maximum). The sum of the absolute values for HASDM and JB2008 are 45.82274

and 56.76, respectively. The colors represent the correlation coefficients with blue being -1.0, white being275

0.0, and red being 1.0.276

4.3 Solar Minimum325

With the plethora of new information obtained by looking at the coefficients during a326

shorter period of solar maximum, it is important to see differences during solar minimum.327

Figure 7 shows the coefficients for both models during 2019, and Figure 8 contains the corre-328

sponding correlation coefficients.329

Visually, some coefficients show stark contrasts to 2001. Primarily, U1 for both models335

represents a noisy semiannual cosine wave. The apparent noise is even peculiar; it seems to336

jump between a fixed range about the mean for most of the year. Another notable difference337

between the years for U1 is the change in sign. For 2001, all values were negative and mostly338

larger in magnitude, but the 2019 values are all positive. The correlations for U1 deviate from339

the previous two cases. There is no longer a strong correlation between U1 and solar heating340

for either model. In fact, the correlation with geomagnetic activity is more pronounced than341
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Figure 7. PCA coefficients for both HASDM and JB2008 for 2019.330

solar heating. The correlation with the semiannual cosine wave is the strongest of the inputs342

for JB2008 and one of the strongest for HASDM.343

During this solar minimum, there was very low solar activity and few active regions344

giving the usual 27-day signal a longer 3-4 month signal, so other processes begin to domi-345

nate. This explains why the PCA coefficients are drastically dissimilar to those of solar max-346

imum, and why other drivers become more pronounced. Looking at the cumulative corre-347

lation for the models, there is a substantial decrease from solar maximum; they are approxi-348

mately 60% and 65% of the 2001 values for HASDM and JB2008, respectively.349

U2 for both models is again a clear annual cosine wave. In comparison to 2001, the val-350

ues and variance for the two models are more aligned. There is a strong positive correlation351

to the annual cosine wave, as was the case for the other two periods.352

For both HASDM and JB2008, U3 is difficult to visually discern. There are no signif-353

icant long-term variations for JB2008. The only drivers with correlations greater than 30%354

are the two geomagnetic indices. The general appearance of U3 is similar for HASDM but it355

has a relatively sharp increase about 1/3 through the year, and a drop around 2/3 through the356

year. HASDM has similar correlation values for the geomagnetic indices but also has note-357

worthy correlations to the temporal drivers and to �10.358

U4 for HASDM has no apparent long-term trend (similar to JB2008’s U3), but it is359

moderately correlated to the geomagnetic drivers. For JB2008, there is a strong positive cor-360

relation to the annual cosine wave, which can be seen in the coefficient’s trend. U5 has tem-361
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Figure 8. Pearson correlation coefficients between all inputs and PCA scores for HASDM and JB2008331

only during 2019 (solar minimum). The sum of the absolute values for HASDM and JB2008 are 30.02332

and 34.10, respectively. The colors represent the correlation coefficients with blue being -1.0, white being333

0.0, and red being 1.0.334

poral trends for both models, but it is semiannual for JB2008 and annual for HASDM. Both362

show a strong signal.363

All the higher order coefficients are either temporal variations or indistinct, with the364

exception of U7 for JB2008. It appears to have a semiannual component, but the baseline365

seems to decrease linearly. Oddly, U7 shows to be more strongly correlated to the annual sine366

wave than the semiannual sine wave. This coefficient also has a 72% negative correlation to367

.812 . However, the variation’s source is not definitive.368

The largest correlation to any solar driver for HASDM is the correlation to "812 in U2369

and U5, but that is likely a consequence of those two coefficients being highly correlated to370

the annual cosine wave. The only other notable connection for HASDM is the strong positive371

correlation to the semiannual cosine wave in U7. In fact, the three strongest correlations for372

HASDM are to temporal drivers.373
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5 CHAMP & GRACE Density Estimates374

The CHAMP and GRACE datasets used in this study originate from Mehta et al. (2017).375

Both satellites have near polar orbits, covering nearly all latitudes, and over their respective376

lifetimes, CHAMP and GRACE datasets cover altitudes ranging from 300-535 km. This,377

in conjunction with the date range covered by the satellites, makes their density estimates378

invaluable for model comparison. Figure 9 shows altitudes each dataset covers along with379

orbit-averaged densities over their mission spans. This study only included GRACE-A data380

due to similarities between the twin satellites’ orbits.381

Figure 9. Altitude (left) and orbit-averaged densities (right) for CHAMP and GRACE-A.382

There is minimal overlap between the altitudes of the two satellites, resulting in the383

lower densities encountered by GRACE-A in the right panel. The orbit-averaged densities384

were computed using a centered window with a span of 90 minutes, approximately one orbit.385

Both the CHAMP and GRACE-A datasets contain files for every day containing in-386

formation such as GPS time, solar local time (SLT), latitude, altitude and density. CHAMP387

has measurements every 10 seconds, while GRACE-A provides measurements every 5 sec-388

onds. In order to compare the satellite density estimates to the two models, we implement a389

trilinear interpolation algorithm using the global density grids from the models. Since the390

temporal resolution of the model densities are only every three hours, we maintain the same391

density grids over each three-hour period. The authors appended the existing CHAMP and392

GRACE density data of (Mehta et al. 2017) with the HASDM and JB2008 densities and have393

made them publicly available to the community (see Data Statement).394

6 Model-Satellite Density Comparison395

Figure 10 shows histograms of the ;>610 orbit-averaged densities for both satellites and396

models. HASDM and JB2008 overpredict relative to CHAMP and GRACE-A. However,397

the HASDM distributions have a marginally smaller bias for both satellites. The shape of398

the HASDM distributions more closely matches the high fidelity CHAMP and GRACE-A399

estimates with the smaller peaks being present on the right side. The JB2008 has similar400

distributions to both satellites but appears more generalized.401
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Figure 10. Histograms for CHAMP (left) and GRACE-A (right) orbits and corresponding densities402

from HASDM (top) and JB2008 (bottom). Values are centered averages with a window of 90 minutes,403

approximately one orbit.404

Having spatiotemporally matched model densities to every measurement, mean abso-405

lute differences were computed for both the orbit and orbit-averaged densities. The results406

are shown in Table 1, broken down by year.407

Table 1. Mean absolute percent difference error statistics for both models and satellites.408

"OA" denotes orbit-averaged.409

CHAMP CHAMP (OA) GRACE-A GRACE-A (OA)
Year HASDM JB2008 HASDM JB2008 HASDM JB2008 HASDM JB2008
All 29.35% 33.96% 23.81% 27.63% 41.80% 50.52% 30.84% 39.75%

2002 22.10% 24.31% 19.31% 20.37% 27.70% 29.66% 23.03% 24.50%
2003 23.04% 23.26% 19.48% 18.58% 35.91% 36.97% 29.64% 28.81%
2004 25.23% 22.88% 21.57% 17.88% 41.05% 38.04% 34.22% 30.45%
2005 28.24% 33.29% 23.92% 28.52% 45.06% 57.95% 37.02% 50.45%
2006 29.72% 39.85% 24.47% 34.38% 36.90% 53.41% 30.67% 48.31%
2007 31.33% 37.99% 25.29% 31.77% 48.20% 63.89% 30.47% 45.20%
2008 41.31% 50.44% 28.07% 35.59% 40.65% 52.55% 24.67% 38.43%
2009 33.66% 41.80% 27.93% 35.62% 49.11% 63.35% 29.06% 45.25%
2010 32.33% 24.52% 28.05% 20.49% 44.69% 41.75% 37.44% 34.05%

HASDM densities more closely match both CHAMP and GRACE-A estimates over-410

all. However, there are years for both satellites where JB2008 predicts densities closer to the411

satellite estimates. The general trend is increased similarities to the satellite densities towards412

solar maximum, which decreases towards solar minimum. The models have lower percent413

differences when looking at orbit-averaged values, because they are tracking general density414
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trends much better than the short period disturbances. The decrease in the density differences415

range from 3 − 13% and 4 − 15% for HASDM and JB2008, respectively when comparing416

the orbit to obit-averaged differences for CHAMP. For GRACE-A, the differences are more417

pronounced, being 5 − 20% for HASDM and 5 − 19% for JB2008. Considering the similar-418

ity in orbit inclination, this disagreement between the orbit and orbit-averaged differences is419

likely attributed to the altitude. To more closely examine the densities, we look at both active420

and quiet six-day periods (Figures 11 and 12 respectively). Figure 11 shows densities along421

CHAMP and GRACE-A orbits during the 2003 Halloween storm.422

Figure 11. Densities from CHAMP, GRACE-A, HASDM, and JB2008 following a storm period423

in 2003. Center panels are orbit-averaged densities, and bottom panels show �10 and 0? .424

Looking at the storm time drivers, �10 starts off with substantial magnitude before425

decaying during the geomagnetic storms. 0? peaks at the maximum possible value of 400426

twice during this period; it happening even once is an extremely rare occurrence. Outside427

of these storms, there is little geomagnetic activity. For the quiet period, �10 remains at so-428

lar minimum levels, and stays between 69 and 70 sfu. Concurrently, 0? varies continuously429

but never exceeds 12 ( ? = 3-). The densities spike on two occasions, coinciding with the430

two geomagnetic storms. When 0? initially reaches 400, the density responds to about half431

the magnitude increase of the first peak. 0? then drops before maintaining 300 2nT for a few432

hours; this is immediately before the density reaches its maximum value for this storm as433

there is a delayed density response.434

There is a quicker overall response to the second storm, when 0? maintains its maxi-435

mum value for a longer duration. Pre-storm conditioning could also cause the more abrupt436

density response. These trends are true for both satellite orbits. HASDM and JB2008 both437

have similar small biases before the storm, and HASDM over-predicts density relative to the438

satellites and JB2008.439

However, the density recovery post-storm is modeled significantly closer to the satel-440

lite by HASDM than JB2008. This divergence may be caused by the NO production during441
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the storm, a known cooling mechanism. This flows meridionally towards the equator in the442

days after the storm and is captured by HASDM but not modeled in JB2008. The mean dif-443

ferences for orbit-averaged densities with respect to CHAMP are 16.27% and 34.33% for444

HASDM and JB2008, respectively. Relative to GRACE-A, the mean differences are 23.09%445

and 46.58% for HASDM and JB2008, respectively. In Figure 12, the same information is446

presented for a quiet period in 2009.447

Figure 12. Densities from CHAMP, GRACE-A, HASDM, and JB2008 during a quiet period448

in 2009. Center panels are orbit-averaged densities, and bottom panels show �10 and 0? .449

In the orbit density plots, both models follow the oscillations well but have positive bi-450

ases. Again, HASDM is tracking the satellite densities more closely than JB2008. This is451

confirmed in the orbit-averaged plots with HASDM being discernibly closer to the satellite452

densities. JB2008 predicts density closer to HASDM for CHAMP (lower altitude) than for453

GRACE-A. Referring back to Figure 9, the difference in average altitude for the satellites454

in 2009 is approximately 150 km. This explains the order of magnitude difference in den-455

sities and shows that HASDM more closely matches satellite estimates at higher altitudes.456

The mean differences for orbit-averaged densities with respect to CHAMP are 26.34% and457

37.07% for HASDM and JB2008, respectively. Regarding to GRACE-A, the mean differ-458

ences are 15.81% and 36.28% for HASDM and JB2008, respectively.459

There are considerable peaks in the JB2008 densities, seen in all four panels. It is460

more pronounced in the orbit-averaged density plots, particularly for the GRACE-A orbit.461

These seem to be a response to the geomagnetic activity (seen in the bottom-right panel). All462

JB2008 density peaks lag 0? spikes by about 12 hours and deviate from HASDM and satel-463

lite densities. 0? is a good indicator of the source, because JB2008 uses 0? when no storms464

are detected. JB2008 is overestimating the impact of the 0? fluctuations relative to HASDM465

and considering the satellite densities.466
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7 Summary467

In this work, we perform scientific investigation into HASDM and JB2008 densities468

by leveraging PCA, and we conduct an assessment of these models relative to CHAMP and469

GRACE-A density estimates. To analyze the model data, PCA was applied after normaliza-470

tion and centering. This resulted in a useful covariance matrix and time-dependent coeffi-471

cients. The covariance matrix can be examined about any axis to identify spatial features472

that contribute significantly to the variance in the dataset. By looking at SLT-latitude slices473

at 400 km, we identified key contributions to the system’s variance. The most important for474

both models was solar heating, followed by annual variations. The third mode primarily rep-475

resented the impact of geomagnetic activity. The fourth and fifth modes were difficult to dis-476

cern but were flipped between the models; this means that their relative importance is differ-477

ent.478

Next, we explored the time-dependent coefficients, or PCA scores. There were strik-479

ing similarities for the first three coefficients between models, but it becomes challenging to480

compare for the higher-order coefficients. In the correlation analysis, most driver-coefficient481

combinations produced weak correlations, with the exception of U1. To investigate the pro-482

cesses at solar maximum, the window was limited to 2001. This resulted in more distinct483

trends in the coefficient plots, highlighting the effects of solar and geomagnetic activity along484

with annual and semiannual trends. JB2008 had more evident variations and subsequently485

higher correlations to the drivers. The HASDM coefficients had weaker signals and correla-486

tions. Relative to the 20-year analysis, the correlation figures displayed stronger correlations487

across a majority of coefficients. The solar drivers had non-negligible correlations with most488

of the coefficients due to the variance caused by EUV irradiance.489

This study was performed once more on 2019, to investigate the datasets during solar490

minimum. The coefficients had weaker signal compared to 2001, and the correlations seen491

in 2001 had changed drastically. The solar drivers had less impact on the variance, and the492

temporal drivers had more pronounced correlations.493

Last, we compared the two models to CHAMP and GRACE-A accelerometer-derived494

density estimates. The HASDM density distribution more closely match those of CHAMP495

and GRACE-A, yet both models had similar biases relative to the satellite densities. Mean496

absolute differences were assessed across the datasets along with yearly values. Overall,497

HASDM’s predictions were closer to CHAMP’s estimates (orbit=29.35% & averaged=23.81%)498

than JB2008’s (orbit=33.96% & averaged=27.63%). This observation was also true with re-499

spect to GRACE-A: HASDM (orbit=41.80% & averaged=30.84%) JB2008 (orbit=50.52% &500

averaged=39.75%).501

We looked at both storm and quiet periods to see how well the models tracked satel-502

lite densities on a shorter time-scale. In general, HASDM tracked both satellites’ estimates503

better, particularly for the orbit-averaged densities. Over the two geomagnetic storms in the504

2003 Halloween storm, HASDM predicted higher peak densities than JB2008 or the satel-505

lites, but it modeled the pre- and post-storm densities well. There were spikes for JB2008’s506

density predictions during the solar minimum/quiet period that showed an overestimation of507

0? fluctuations on density.508

8 Future Work509

In the future, we plan to develop machine-learned (ML) models on the PCA coeffi-510

cients using various drivers. Not only will it generate a computationally efficient predictive511

model, it will allow us to perform nonlinear analysis into the contribution of these and ad-512

ditional drivers to the PCA scores. These models can leverage ML techniques to also model513

uncertainty in the system (Licata et al. 2021).514
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9 Data Statement515

The JB2008 model is available for download at at https://spacewx.com/jb2008/,516

and requests can be submitted for access to the SET HASDM density database at https:517

//spacewx.com/hasdm/. The historical space weather indices used in this study can also518

be found at the JB2008 link.519

Original CHAMP and GRACE density estimates from (Mehta et al. 2017) can be520

found at http://tinyurl.com/densitysets. As a product of this work, we appended521

the HASDM and JB2008 density estimates to those files. These updated files can be found at522

https://zenodo.org/record/4602380#.YEwEw-1KhuU523
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