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Abstract

Climate change affects the water cycle. Despite the improved accuracy of simulations of historical temperature, precipitation

and runoff in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6), the uncertainty of the future sensitivity

of global runoff to temperature remains large. Here, we identify an emergent relationship between the historical sensitivity of

precipitation to temperature change (1979–2014) and the future sensitivity of runoff to temperature change (2015–2100), which

can be used to constrain future runoff sensitivity estimates. Using this constraint, we estimate that the uncertainties in future

sensitivity of runoff have been reduced by 7.2 – 12.0%. The constrained sensitivity of runoff is much larger (36 – 104%) than

that directly inferred from original CMIP6 projections. Our constrained sensitivities also indicate more extreme wet conditions

and fewer dry conditions. These results suggest that the future global land water cycle is accelerating and comes with more

hydroclimatic extremes than previously projected
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Abstract: Climate change affects the water cycle. Despite the improved accuracy of simulations of 20 

historical temperature, precipitation and runoff in the latest Coupled Model Intercomparison Project 21 

Phase 6 (CMIP6), the uncertainty of the future sensitivity of global runoff to temperature remains 22 

large. Here, we identify an emergent relationship between the historical sensitivity of precipitation to 23 

temperature change (1979 – 2014) and the future sensitivity of runoff to temperature change (2015 – 24 

2100), which can be used to constrain future runoff sensitivity estimates. Using this constraint, we 25 

estimate that the uncertainties in future sensitivity of runoff have been reduced by 7.2 – 12.0%. The 26 

constrained sensitivity of runoff is much larger (36 – 104%) than that directly inferred from original 27 

CMIP6 projections. Our constrained sensitivities also indicate more extreme wet conditions and 28 

fewer dry conditions. These results suggest that the future global land water cycle is accelerating and 29 

comes with more hydroclimatic extremes than previously projected.30 



Plain language summary: Climate change can affect river flow, which in turn affects the water 31 

availability for society and the environment. However, how much global river flow will change due 32 

to rising temperatures remains largely uncertain. A recently introduced methodology (the emergent 33 

constraint) can reduce the uncertainties in anticipated future river flow change by using empirical 34 

relationships between the current climate and the projected climate. After we apply this method to 35 

the latest generation of Earth system models, we substantially reduce the uncertainty of future 36 

projections, and the results suggests that land water cycle is accelerating faster and comes with a 37 

more extreme wet and fewer extreme dry conditions than previously projected. 38 

    39 

Keywords: Emergent constraint; CMIP6; CMIP5; Land surface runoff; Precipitation; Temperature; 40 

Climate extremes; Hydrology;41 



1 Introduction  42 

Land surface runoff is changing with the global climate warming (Labat et al., 2004; Chai et al., 43 

2020). These runoff changes can affect water availability for irrigation, hydropower generation, 44 

vegetation growth, industry and human use, especially in arid and semi-arid regions (Sorg et al., 45 

2012). Thus, it is important to provide an accurate estimate of the feedback of future global runoff to 46 

rising temperatures. Such knowledge would not only help to better understand the effects of climate 47 

change on the terrestrial-water cycle, but could also assist in creating effective decision-making tools 48 

for water resources management and environmental protection (Rothausen et al., 2011).  49 

 50 

There are however large uncertainties in the future effects of climate on global runoff, largely 51 

caused by poor simulation of rainfall and the inaccurate representations of the soil-plant-atmosphere 52 

system and human impacts (e.g. dams’ operation and irrigation) in current Earth System Models 53 

(ESMs) (Du et al., 2016). Such uncertainties are sometimes to the extent that even the sign of the 54 

runoff change is unknown (Gedney et al., 2006; Piao et al., 2007; Shi et al., 2011). For the models 55 

included in the 5
th

 generation Climate Model Intercomparison Project (CMIP5) (Taylor et al., 2012), 56 

the spread of global runoff across these models was rather large, as described in reports of the 57 

International Panel on Climate Change and several other studies (IPCC 2014; Alkama et al., 2013; 58 

Zhang et al., 2014; Yang et al., 2019). Compared to CMIP 5, the latest generation of ESMs (CMIP6) 59 

has increased both the vertical and horizontal spatial resolutions in the models, and includes more 60 

comprehensive numerical experimental designs and more detailed processes descriptions. (Meehl et 61 

al., 2014; Hall et al., 2019). Yet, the latest generation of ESMs (CMIP6) is still expected to have 62 

significant uncertainty in projecting the response of global runoff to a warming climate (Tokarska et 63 



al., 2020; Wang et al., 2020).  64 

 65 

An evaluation technique — the emergent constraint method (Hall et al., 2006), can reduce the 66 

uncertainties of future climate projections, by using strong empirical relationships between current 67 

climate and the projected future changes across a range of models (Wenzel et al., 2016, Cox et al., 68 

2013 and 2018; Sherwood et al., 2014;; Eyring et al., 2019; Terhaar et al., 2020; Chai et al., 2021). It 69 

thereby offers perspective to also reduce the uncertainties in runoff projections under climate change 70 

(Hall et al., 2019). A key challenge in introducing a new emergent constraint is the identification of 71 

factor that dominates the uncertainties in global runoff sensitivity, and thereby allows constraining 72 

projections of the future climate (Brient et al., 2020). In addition, the empirical relationship would 73 

need to be grounded in a physical mechanism we understand (Brient et al., 2020). However, finding 74 

such a climate factor can be difficult, because runoff changes in response to warming are affected by 75 

many interrelated processes, including atmosphere, soil, and vegetation dynamics (Piao et al., 2007).  76 

 77 

In this study, we aim to narrow the large spread of future runoff sensitivities (∆R/∆T) derived 78 

from CMIP6 and CMIP5 simulations (Zhang et al., 2014). First, we evaluate the performance of 21 79 

CMIP6 models’ simulations of the historical climate by comparing them with both observations 80 

(HadCRUT5) and CMIP5 simulations of temperature, precipitation and runoff for the period 1979 – 81 

2014 (See details in SI 1). Subsequently, we assess the uncertainties in future ∆R/∆T during 2015 – 82 

2100 both for CMIP6 models (under climate scenarios SSP126, SSP245, SSP370 and SSP585 83 

(O'Neill et al., 2016)) and for CMIP5 models (under climate scenarios RCP26, RCP45, RCP60 and 84 

RCP85 (Taylor et al., 2012)). We use the simulations of precipitation, evaporation, snow melt and 85 



soil water content from these earth system model ensembles to infer a main cause of the trends in 86 

future ∆R/∆T. Identifying such a climate factor would enable to introduce a new emergent constraint 87 

reduces the uncertainties of estimated ∆R/∆T, under the condition that we find a strong relationship 88 

between historical climate changes of the identified variable and future ∆R/∆T.  89 

 90 

2 Performance of CMIP6 models  91 

2.1 Temperature simulations 92 

The latest generation of CMIP6 models reproduce historical temperatures at both the regional 93 

and the global scale better compared to the CMIP5 models (Figs. 1a and b and Fig. S1). CMIP6’s 94 

performance is weakest in some mountainous regions (e.g. the Himalayas and Andes) and high 95 

latitude regions such as eastern Greenland and eastern Siberia (Fig. 1b), but the bias is smaller than 96 

in CMIP5 models (Fig. S1). Similar to the previous-generations of ESM ensembles (Rogelj et al., 97 

2012; Keenan et al., 2018), the CMIP6 simulations project widespread warming under various 98 

emission scenarios whereby temperatures are rising throughout the 21st century (Fig. 1a and Fig. S2). 99 

The highest rates of surface warming are expected at high latitudes, due to polar amplification 100 

(Stuecker et a., 2018; Biskaborn et al., 2019). Up to the year 2050, the global warming trends are 101 

largely similar across the four emission scenarios (SSP126, SSP245, SSP370 and SSP585), while 102 

after 2050 the projected temperatures diverge more clearly between the emission scenarios (Fig. 1a). 103 

This divergence is caused by substantially lower CO2 emissions after 2050 under SSP126 and 104 

SSP245 compared to SSP370 and SSP585 (Gidden et al., 2019). Between the periods 2015 – 2024 105 

and 2091 – 2100, the global land surface temperature is estimated to increase by 1.11 ± 0.52 ℃ (i.e. 106 

mean ± standard deviation) under SSP126, up to 5.61 ± 1.08 ℃ under SSP585 (Fig. 1a). These 107 



reported temperature increases are comparable with those in other studies that also use CMIP6 but 108 

with slightly different ensembles (Cook et al., 2020; Fan et al., 2020; Tokarska et al., 2020).  109 

 110 

Figure 1. CMIP6 simulations of global temperature (℃), precipitation (mm day
-1

) and runoff (mm day
-1

), 111 

and their comparison to the HadCRUT5 observational data set and CMIP5 simulations. Panels (a), (c) and (e) 112 

show the means and complete ensemble range of simulated trends in global mean temperature, precipitation and 113 

runoff based on CMIP6 models during 1979 – 2100 and in observations during 1979 – 2014, respectively. Panels (b) 114 

and (d) show the historical temperature and precipitation of CMIP6 minus the observed temperature and 115 

precipitation during 1986 – 2005. Panel (f) shows the CMIP6-based global distribution of runoff for the period of 116 

1986 – 2005.  117 

 118 

2.2 Precipitation simulations 119 

CMIP6 models simulate historical precipitation better than CMIP5. Noticeable improvements 120 

include the reduced underestimation of precipitation in southeastern China, India and South America 121 



(Figs. 1c and d, Fig. S3). However, most CMIP6 models still considerably overestimate global 122 

precipitation, whereby overestimations appear especially strong in several mountain regions (e.g. the 123 

Himalayas and Andes), but to less extent than in CMIP5 projections (Fig. 1d and Fig. S3). Future 124 

global precipitation is predicted to increase, especially in mountain regions, in major monsoon 125 

regions, and at high latitudes (Fig. S4). Both these regional and global increases in precipitation are 126 

consistent with projections of CMIP5 models (IPCC 2014). CMIP6 predicts future precipitation to 127 

reduce mainly in large parts of South America, the Mediterranean, Southern Africa and Oceania, 128 

which is also largely consistent with CMIP5. By the end of the 21st century (2091 – 2100), global 129 

precipitation is projected to increase by 0.063 ± 0.023 mm day
-1

 (SSP126) up to 0.197 ± 0.065 mm 130 

day
-1

 (SSP585) compared to 2015 – 2024.  131 

 132 

2.3 Land surface runoff simulations 133 

The CMIP6 historical runoff simulations (Fig. 1f) are significantly lower compared to the 134 

observation-based Global Composite Runoff Fields from the Global Runoff Data Centre (Fig. S5) 135 

(Fekete et al., 2002), but the underestimation of the global runoff is smaller than for CMIP5 (Fig. S6). 136 

Models that are unable to reproduce past climate variations may have biases in their future climate 137 

predictions (Klein et al., 2015). Therefore, the underestimation of historical runoff is likely to lead to 138 

a underestimation of projections of future runoff. Underestimations of historical runoff are mainly 139 

found in humid regions, including eastern North America, Europe, Southeast Asia, Central Africa, 140 

and Indonesia. Such biases in modeled global runoff have also been reported in CMIP5 and are 141 

likely largely the result of poor descriptions of precipitation, the soil-plant-atmosphere system and 142 

human impacts (e.g. dams’ operation and irrigation) (Du et al., 2016; Lehner et al., 2019). Global 143 



runoff is generally projected to increase over the 21st century (Fig. 1e). The estimated increase in 144 

global runoff for the period of 2091 – 2100 compared to 2015 – 2024 ranges from 0.009 ± 0.009 mm 145 

day
-1

 (SSP126) up to 0.035 ± 0.032 mm day
-1

 (SSP370), which equates to roughly a 2.25 ± 1.88% to 146 

10.24 ± 10.91% increase. Especially East Asia, Central Africa and high northern latitudes show 147 

strong increases in surface runoff over the 21
st
 century (Fig. S7), which is consistent with the 148 

projected precipitation increases in these same regions (Fig. S4). In contrast, future land surface 149 

runoff is projected to decrease across largely parts of Europe, central North America, Southern 150 

Africa, and the Amazon basin.  151 

 152 

3 Climate sensitivities 153 

3.1 Global precipitation sensitivity to temperature 154 

CMIP6 models indicate that Earth’s warming climate increases global precipitation (Figs. 1a 155 

and c). The atmosphere can be expected to reduce its radiative energy under climate warming, which 156 

would result in increased longwave emission due to higher temperatures
 
(Previdi et al., 2010). To 157 

obey conservation of energy, atmospheric latent heating would increase as an important 158 

compensating process, which in turn would increase global precipitation (Liepert et al., 2009). 159 

Because of these basic physical mechanisms, we hypothesize that a strong relationship between 160 

global precipitation and global land surface temperature will exist. We indeed find a strong linear 161 

relationship between precipitation and land surface temperature anomalies (∆P/∆T, mm day
-1 

℃
-1

), 162 

both for the historical simulations (r=0.95, p value<0.001) as well as the future projections (r≥0.98, p 163 

value<0.001) (Fig. 2a and Fig. S8). The historical observations also have trends in global 164 

precipitation and temperature that are synchronously rising (Fig. 2b). Linear estimates of ∆P/∆T 165 

using CMIP6, whether derived from the historical simulations (0.0482 mm day
-1 

℃
-1

, Fig. 2a) or 166 



derived from the future projections (0.0343 – 0.0528 mm day
-1 

℃
-1

) are considerably lower than to 167 

the linear estimates of ∆P/∆T derived from the three observational data sets (0.0557 – 0.0612 mm 168 

day
-1 

℃
-1

, Fig. 2c). Precipitation increases are expected to also increase in land surface runoff (e.g., 169 

Labat et al., 2004). Therefore, the likely underestimation of ∆P/∆T derived from CMIP6 simulations 170 

may also cause an underestimation of ∆R/∆T. This potential underestimation of ∆R/∆T is also 171 

expected to be present in CMIP5 models, because they yield even lower ∆P/∆T estimates (0.0312 – 172 

0.0550 mm day
-1 

℃
-1

,
 
Fig. S8) than CMIP6.  173 

 174 

Figure. 2 Estimates of global ∆P/∆T (mm day
-1 

℃
-1

) and global ∆R/∆T (mm day
-1 

℃
-1

). Panel (a) shows the 175 

linear regression relations between annual average daily precipitation and annual average temperature based on 176 

CMIP6 outputs for the historical period of 1979 – 2014 (P=0.0482T, r=0.93, p value<0.001), and for the future 177 



period of 2015 – 2100 under SSP126 (P=0.0528T, r=0.88, p value<0.001), SSP245 (P=0.0393T, r=0.96, p 178 

value<0.001), SSP370 (P=0.0348T, r=0.98, p value<0.001) and SSP585 (P=0.0343T, r=0.99, p value<0.001). 179 

Panel (b) shows the trends in the observed precipitation and temperature during 1979 – 2014 using HadCRUT5 180 

data set. Panel (c) shows the observed ∆P/∆T during 1979 – 2014 using HadCRUT5 data set (P=0.0557T, r=0.51, p 181 

value<0.001), HadCRUT5 – GPCC data set (P=0.0612T, r=0.55, p value<0.001) and GISS – GPCC data set 182 

(P=0.0609T, r=0.56, p value<0.001). Panel (d) shows the linear regression relations between runoff and 183 

temperature based on CMIP6 outputs for the historical period of 1979 – 2014 (R=0.0142T, r=0.85, p value<0.001), 184 

and for the future period of 2015 – 2100 under SSP126 (R=0.0085T, r=0.64, p value<0.001), SSP245 (R=0.0072T, 185 

r=0.88, p value<0.001), SSP370 (R=0.0084T, r=0.95, p value<0.001) and SSP585 (R=0.0060T, r=0.95, p 186 

value<0.001). Panels (e) and (f) show the spread of ∆R/∆T across CMIP6 models and across CMIP5 models, 187 

respectively.  188 

 189 

 190 

3.2 Global runoff sensitivities and their uncertainties 191 

Similar to the above-reported sensitivities of precipitation to temperature changes, we also find 192 

a clear sensitivity of global runoff to temperature (∆R/∆T, mm day
-1 

℃
-1

). This relation is something 193 

to be expected because runoff tends to vary systematically with precipitation amounts. CMIP6 194 

outputs exhibit a significant linear relationship between runoff and temperature (Fig. 2d), both in the 195 

historical simulations (r=0.85, p value<0.001) as well as in the future projections (0.64≤r≤0.95, p 196 

values<0.001), which corroborates the existence of a distinct global ∆R/∆T. Positive relationships 197 

between runoff and temperature also exist in CMIP5 models (0.29≤r≤0.92, p values<0.001; Fig. S9). 198 

Using a similar approach as for the CMIP6 multi-model mean in Fig. 2d, we derived an estimate of 199 

future global ∆R/∆T for each individual model (Fig. 2e). As expected, estimated ∆R/∆T relationships 200 

show considerable variation across the CMIP6 models, to the extent that both positive and negative 201 

sensitivities are estimated for a single emission scenario (Fig. 2e). A wide range of ∆R/∆T 202 

relationships are also visible in all RCP scenarios for the 5th generation of CMIP models (Fig. 2f), 203 

but with narrower ranges than CMIP6 (possibly due to smaller climate sensitivity (∆T/∆CO2) in 204 

CMIP5 than in CMIP6). It should be noted that across all four emission scenarios the means of 205 

estimated ∆R/∆T in CMIP6 (0.005 – 0.011 mm day
-1 

℃
-1

) are higher than those of CMIP5 (-0.001 – 206 



0.004 mm day
-1 

℃
-1

). This again suggests that in general, the CMIP6 generation models show a 207 

smaller underestimation of the future runoff sensitivity compared to CMIP5.  208 

 209 

4 Emergent constraint   210 

4.1 Physical mechanisms  211 

Identifying a dominant climatic factor that drives future runoff changes and its uncertainties is 212 

key for increasing the confidence and understanding of the emergent constraint. Once this climatic 213 

factor is identified, we can use observations of this climate factor to reduce the uncertainties in 214 

estimated ∆R/∆T. This is done by combing the empirical relationship between current variability in 215 

this climatic factor and the future ∆R/∆T (See SI 2.1 and 2.2 for details). The water balance dictates 216 

that long-term changes in runoff depend on changes in precipitation, snow melt, soil water storage 217 

and total evaporation (Lutz et al., 2014; Schoener et al., 2019). The last term, evaporation, is not only 218 

driven by near-surface atmospheric conditions, but is also strongly modulated by physiological and 219 

structural components of the vegetation (Gedney et al., 2006; Piao et al., 2007). Such complex 220 

interacting mechanisms that can affect land surface runoff, might make it difficult to distinguish a 221 

single main driving factor.  222 

 223 

 Through a simple linear regression analysis method we explored the factors contributing to 224 

inter-model spread in estimated ∆R/∆T values. Such an approach has been earlier applied to 225 

investigate the main drivers behind the changes in seasonal sea-ice albedo feedback (Thackeray et al., 226 

2019). The correlation coefficients of the linear relationships between future global runoff changes 227 

and its potential main driving variables (Fig. 3a, and Fig. S10) show that both precipitation and total 228 

evaporation exhibit a strong positive relationship with future runoff changes (0.64≤r≤0.9, p 229 



value<0.001). On the contrary, changes in snow melt and soil water storage appear less important as 230 

they show much weaker relationships with changes in global runoff (0.04≤r≤0.34, p values>0.1) (Fig. 231 

3a). Spatially and temporally varying land surface conditions can make the drivers of regional runoff 232 

changes more complex, but on global scale, the effects of precipitation and total evaporation change 233 

appear far greater than the other factors. We note that increasing surface air temperatures can be 234 

expected to result in a widespread increase in evaporation, which should logically result in a decline 235 

of global runoff. However, the future global runoff is predicted to increase in both the CMIP6 and the 236 

CMIP5 models. Therefore, we still identify precipitation as the dominant climatic factor affecting 237 

changes in runoff that can be used for constraining future ∆R/∆T. This constrained relation still holds 238 

in the observations of 120 larger rivers as there are significant relations between the observed 239 

precipitation and runoff (r>0.5 at 68% of the rivers, Fig. 3b), even though these rivers are strongly 240 

affected by damming and other human influences (Nilsson et al., 2005). Because changes in 241 

precipitation drive runoff changes, and are therefore both are similar in spatial and temporal 242 

character, we expect that we can constrain the uncertainties in future ∆R/∆T using the historical 243 

∆P/∆T that we defined above (Fig. 2a).      244 



 245 

Figure. 3 Emergent constraint on the future global ∆R/∆T. Panel (a) shows the correlation coefficients r for the 246 

linear relations between the future runoff changes (∆R) and the future changes in precipitation (∆P), total 247 

evaporation (∆ET), soil water content (∆SW) and snow melting runoff (∆SR) respectively, from 2015 – 2024 to 248 

2091 – 2100 based on CMIP6 projections. Panel (b) shows correlation coefficients r for the linear relations 249 

between the observed precipitation and the runoff in the 120 large rivers. Panel (c) shows the emergent constraint 250 

for the outputs from CMIP6 models under SSP585. Note: red line is the linear relationship between “the future 251 

global ∆R/∆T during 2015 – 2100 (see left y-axis)” and “the historical global ∆P/∆T during 1979 – 2014 (see 252 

bottom x-axis)”; yellow shading is the observational ∆P/∆T from the HadCRUT5 (0.056 ± 0.016 mm day
-1 

℃
-1

). 253 

The blue shading is the 90% prediction error of the linear fitting; the black line and blue line are the probability 254 

density functions (PDFs, see top x-axis and left y-axis) for the future global ∆R/∆T before and after emergent 255 

constraint (See SI 2.3 for more details); Panel (d) is the linear relationship between future ∆P/∆T and ∆R/∆T under 256 

SSP585. Note: The unconstrained and constrained ∆R/∆T under SSP585 are 0.007 ± 0.010 mm day
-1

 ℃
-1 

and 257 

0.0117 ± 0.0090 mm day
-1

 ℃
-1

, respectively. Panels (e) and (f) are linear relationships between ∆P/∆T and future 258 

yearly changes in global average annual light rainfall days, and between ∆P/∆T and future yearly changes in global 259 

average annual heavy rainfall days under SSP585. Note: See detailed trends in global average annual light and 260 



heavy rainfall days in Fig. S11 and Fig. S12, respectively.   261 

 262 

4.2 Constrained runoff sensitivity  263 

  Despite the relatively large variations in estimates of historical ∆P/∆T and future ∆R/∆T across 264 

CMIP6 models (Fig. 2e), we still identify strong linear relationships between them across all 265 

emission scenarios (0.67 ≤r≤ 0.71, p values < 0.001, Fig. 3c for SSP585, and Fig. S13 for SSP126, 266 

SSP245 and SSP370). By using the observational ∆P/∆T from the HadCRUT5 dataset (yellow 267 

shading in Fig. 3c), we find that most of the CMIP6 climate models lie outside the nominal 268 

uncertainty bounds of the observational estimates. This may seem unexpected, but it has been shown 269 

that most models do indeed show a systematic bias in their predictions (Klein et al., 2015). This 270 

indicates that combining the empirical relationships of historical ∆P/∆T and future ∆R/∆T, we can 271 

constrain future ∆R/∆T, by projecting the observed ∆P/∆T onto the vertical axis (Fig. 3c). 272 

 273 

  The constrained future ∆R/∆T increases for all emission scenarios (blue line in Fig. 3c and Fig. 274 

S13) compared to the original CMIP6 outputs (black line). The original ∆R/∆T ranges from 0.005 ± 275 

0.0082 mm day
-1

.℃
-1 

(SSP126) up to 0.009 ± 0.0092 mm day
-1 

℃
-1 

(SSP370) (Table S7), whereas 276 

the constrained estimates range from 0.0102 ± 0.0075 mm day
-1 

℃
-1

 
1 

(SSP126) up to 0.0122 ± 277 

0.0081 mm day
-1 

℃
-1

 (SSP370). This increase indicates that the future ∆R/∆T has been 278 

underestimated in the multi-model means by 36 – 104% (0.0032 – 0.052 mm day
-1 

℃
-1

). Such a 279 

significant range in underestimation by the CMIP6 original outputs is also present when using the 280 

emergent constraint method with the other two observational data sets, where ∆R/∆T is 281 

underestimated by 0.0043 – 0.0065 mm day
-1 

℃
-1 

(Fig. S14 and Table S7). Furthermore, the 282 

constrained PDF of runoff sensitivity narrows compared to the unconstrained PDFs for all the 283 



emission scenarios, which indicates that the inter-model spread in the future ∆R/∆T successfully 284 

reduced after the emergent constraint. The reduced uncertainties are 8.5%, 7.2%, 12.0% and 10.0% 285 

for the emission scenarios from SSP126 to SSP585 respectively. Similar strong empirical 286 

relationships between historical ∆P/∆T and future ∆R/∆T also exist among CMIP5 models under 287 

RCP26, RCP45, RCP60 and RCP85 (0.34 ≤r≤ 0.71, p value < 0.05, Fig. S15), which again increases 288 

the estimates of future ∆R/∆T after applying the constraint. These results consistently show that our 289 

introduced emergent constraint is valid and can be applied to constrain the models. 290 

  291 

By multiplying the future increased multi-model mean temperature (∆T) by the constrained 292 

future ∆R/∆T, we estimate the constrained future runoff changes in 2091 – 2100 relative to 2015 – 293 

2024. Future runoff increases estimated using the constrain range from 0.0111 ± 0.0088 mm day
-1

 294 

(SSP126) up to 0.0656 ± 0.0504 mm day
-1 

(SSP585), which is much larger than those of the original 295 

future runoff from CMIP6 models which range from 0.009 ± 0.009 mm day
-1

 (SSP126) up to 0.035 ± 296 

0.032 mm day
-1

 (SSP370) (Table S7).  297 

 298 

4.3 Implications of the PDF shift  299 

The shift in PDFs of runoff sensitivity indicate that the probabilities of very low runoff 300 

sensitivities are much smaller than in the original CMIP6 outputs ( Fig. 3c,  Fig. S13 and Table S8). 301 

The constrained sensitivities indicate it is more likely to be that runoff sensitivities are very high. 302 

This suggests that global very wet conditions are more likely, and global very dry conditions more 303 

rare. In addition, the future annual ∆P/∆T exhibit a tight positive linear relationship with the future 304 

∆R/∆T for each emissions scenario (Fig. 3d and Fig. S16). This positive relationship, combined with 305 



the constrained future ∆R/∆T, will shift the ∆P/∆T to a higher value by compared to the 306 

unconstrained future ∆R/∆T. Both results suggest there may be an underestimation in future ∆P/∆T. 307 

This again suggest that Earth’s land surface may experience globally less dry conditions but more 308 

extreme wet conditions in future compared to the original CMIP6 projections. 309 

 310 

The expectation of more extreme wet conditions but fewer dry conditions is supported by 311 

investigating the relationships between the future ∆P/∆T and the future yearly changes in both global 312 

average annual light and heavy rain days (See SI 2.4). We find negative relations which indicate that 313 

a model with a higher ∆P/∆T has a fewer global average annual light rainfall days (Fig. 3e and Fig. 314 

S17). Thus, a potential underestimated ∆P/∆T (Fig. 3d) represents an overestimated frequency in 315 

future global average light days. In contrast, future yearly increases in global average annual heavy 316 

days exhibit a positive relationship with ∆P/∆T (Fig. 3f and Fig. S18). An underestimated ∆P/∆T 317 

moves the future yearly increase the number of global average annual heavy days. Using the 318 

constrained future ∆R/∆T from the two other observed data sets (Table S7), we still reach the 319 

conclusion that the future increases in global average light rainfall frequency has been overestimated 320 

by the CMIP6 models outputs, while that for the global average heavy rainfall frequency has been 321 

underestimated.  322 

 323 

5 Conclusions 324 

In this study, we find a strong physically-explainable empirical linear relationship between the 325 

inter-model spread in the historical global ∆P/∆T and the inter-model spread in the future global 326 

∆R/∆T both for CMIP6 models and for CMIP5 models. This emergent constraint relationship allows 327 



us to narrow the spread in future runoff sensitivities estimates from models. The constrained results 328 

reveal that sensitivities are much higher than those estimated directly from both the original CMIP6 329 

and CMIP5 outputs. This implies that the land water cycle may be accelerating faster than suggested 330 

by the models’ initial projections. The constrained estimates also suggest that future global climates 331 

will experience less global dry conditions but global more extreme wet conditions compared with the 332 

original CMIP6 projections. These implications for climates extremes are also supported by the 333 

CMIP6’s overestimated future increases in global average annual light rainfall days and CMIP6’s 334 

underestimated future increases in global average annual heavy rainfall days. We note that this result 335 

applies at the averaged global scale and is not necessarily opposed to the “dry regions get drier; wet 336 

regions get wetter” theorem that applies to the changes in the regional water cycle. Regional or 337 

continental scale feedbacks may still enhance the dryness parts of the globe. However, at the global 338 

scale the increased moisture holding capacity of the atmosphere leads to an accelerated hydrological 339 

cycle in which the Earth system overall is shifting towards a wetter state of the climate. 340 

 341 
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1. Data15

To investigate the performance of CMIP6 models and to estimate the uncertainties in ∆R/∆T,16

we collected monthly temperature, precipitation and land surface runoff from the 21 CMIP6 models17

(https://esgf-node.llnl.gov/projects/cmip6/, Table S1) both for the historical period (1979 – 2014) and18

for the future (2015 – 2100) under the emission scenarios of SSP126, SSP245, SSP370 and SSP58519

(O'Neill et al., 2016). We collected temperature and precipitation observations from the HadCRUT520

data set (http://www.cru.uea.ac.uk/), and observation-based Global Composite Runoff Fields and21

observed runoff in the 120 large rivers from the Global Runoff Data Centre22

(https://www.bafg.de/GRDC/EN/Home/homepage_node.html, Fekete et al., 2002). We collected23

monthly temperature, precipitation and land surface runoff values of 17 CMIP5 models (Table S2)24

for the historical period and the future period under the emission scenarios of RCP2.6, RCP4.5,25

RCP6.0, and RCP8.5 (https://esgf-node.llnl.gov/search/cmip5/, Taylor et al., 2012). We regridded all26

the CMIP5 and CMIP6 outputs to a common 0.25° × 0.25° latitude-longitude spatial resolution by27

using nearest neighbor interpolation method for calculating the CMIP6 multi-model mean values.28

Poor simulation of other hydrological variables (precipitation, snow melt, soil water content and29

evaporation) can cause large uncertainties of ∆R/∆T in each CMIP6 models. Therefore, to identify30

the dominant factor causing spread in the future ∆R/∆T across CMIP6 models through investigating31

regression relationships of future ∆R/∆T with other hydrological variables, monthly data of32

precipitation from 21 CMIP6 models, snow melting runoff from 16 CMIP6 models (Table S3), soil33

water content from 21 CMIP6 models (Table S4) and total evaporation from 19 CMIP6 models34

(Table S5) under the four emission scenarios of SSP126, SSP245, SSP370 and SSP585 are collected35

from https://esgf-node.llnl.gov/projects/cmip6/.36

https://esgf-node.llnl.gov/projects/cmip6/
http://www.cru.uea.ac.uk/
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/projects/cmip6/


37

To investigate the implications of the constrained ∆R/∆T on extreme rainfall events, the daily data of38

precipitation from 10 CMIP6 models (Table S6) under the four emission scenarios SSP126, SSP245,39

SSP370 and SSP585 is also collected from the CMIP6 database. To verify that our main findings are40

not dependent on a specific observational data set, we also collected the other two data sets, namely41

“GPCC and HadCRUT5” (https://www.cgd.ucar.edu/cas/catalog/surface/precip/gpcc.html) and the42

“GISS and GPCC” (https://www.esrl.noaa.gov/psd/data/gridded/data.gistemp.html), used for43

deriving ∆P/∆T from observations.44

45

2. Methods46

2.1 Emergent constraint method47

Earth system models are widely used to predict future climate changes at regional to global48

scale, but these climate projections have large uncertainties (Knutti et al., 2013). The “emergent49

constraint” method has been developed to reduce such uncertainties (Hall et al., 2006). Specifically,50

the emergent constraint method consists of a physically-explainable empirical relationship between51

the inter-model spread of an historical observable variable (namely “independent variable x”) and the52

inter-model spread of a future climate predicted variable (namely “dependent variable y”) (Cox et al.,53

2018; Chai et al., 2021). The “independent variable x” ideally is well enough observed to provide an54

accurate mean state, variability or variation trend (Klein et al., 2015). By projecting the observed55

estimate of the “independent variable x” with its observational uncertainty (±one standard deviation)56

onto the y-axis through the empirical linear relationship, a more reliable and accurate “dependent57

variable y” with hopefully narrower uncertainties can be obtained (Brient et al., 2020). Importantly,58

https://www.esrl.noaa.gov/psd/data/gridded/data.gistemp.html


because empirical relationships could just be fortuitous, a plausible physical mechanism is a59

fundamental requirement for the underlying empirical relationship (Hall et al., 2019).60

61

2.2 Building an emergent constraint relationship62

We use the least-squares linear regression method to build the emergent constraint relationships63

(Chai et al., 2021). The ‘prediction error’ of the regression is σy, calculated by equation (1); y(x) is64

the linear regression equation (2);65

2
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where yi (future global annual average ∆R/∆T) is the value given by xi (historical observed68

global annual average ∆P/∆T); a and b are the slope and intercept, respectively; s is used for69

minimizing the least-squares error, calculated by equation (3); and N is the number of data points70

(number of models). σx is the variance of xi, calculated by equation (4); x is the mean value;71
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74
2.3 Calculation of probability density75

Based on the assumption that all model simulations are equally likely and form a Gaussian76

distribution (Kwiatkowski et al., 2017), we calculate the probability density function (PDF) for the77

original inter-model spread of the future global annual average ∆R/∆T (y) using equation (5).78
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where PDF(y/x) is the probability density function around the best-fit linear regression, which80



represents the estimated probability density of y given x.81

We use the equation (6) to calculate the PDF for the constrained future global annual average82

∆R/∆T (y). Where PDF(F/H) is the probability density of “future global annual average ∆R/∆T (y)”83

given “historical observable global annual average ∆P/∆T (x)”; PDF(H) is the observation-based84

PDF for “observed global annual average ∆P/∆T (x)”; Thus, after the emergent constraint, the PDF85

for “the constrained future global annual average ∆R/∆T (y)” (PDF(F)) is calculated by numerically86

integrating PDF(F/H) and PDF(H).87
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89

2.4 Definition and calculation of annual heavy and light rain days90

Changes in heavy and light rainfall days can directly affect land surface runoff, leading to a91

tight relationship between these variables. After obtaining the constrained global annual average92

∆R/∆T, this relationship, combined with the constrained ∆R/∆T, is used to investigate the future93

changes in heavy and light rainfall days, which would be an indication for future changes of global94

average dry and wet conditions. Extreme light and heavy rainfall days here are defined as the days95

with rainfall (including days without rainfall) lower than the long-term 10th percentile and the96

rainfall higher than long-term 90th percentile, respectively. Based on the outputs of the daily97

precipitation during 2015 – 2100 from 12 CMIP6 models, we estimated the annual light and heavy98

rainfall days in each grid. The mean value of the annual light and heavy rainfall days in all terrestrial99

grids is regarded as the global average number of annual drought days and heavy rainfall days.100

101
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137
Figure S1. Comparison of CMIP5 simulations of global land surface temperature (℃)to observations from138
the HadCRUT5 data set. Fig. S1 shows the CMIP5-based difference that is estimated by the simulated historical139
temperature minus the observed temperature for the period of 1986 – 2005.140

141



142
Figure S2. Changes in future land surface temperature based on CMIP6 models. Panels (a), (b), (c) and (d)143
show the CMIP6 multi-model median change in 20-year return values of global annual average land surface144
temperature as simulated by CMIP6 models in 2081 – 2100 relative to 1986 – 2005 for the emission scenarios of145
SSP126, SSP245, SSP370 and SSP585, respectively.146

147



148
Figure S3. Compariosn of CMIP5 simulations global precipitation (mm day-1) with to observations from the149
HadCRUT5 data set. Fig. S2 shows the CMIP5-based difference that is estimated by the simulated historical150
precipitation minus the observed precipitation for the period of 1986 – 2005.151

152



153
Figure S4. Changes in future precipitation based on CMIP6 models. (a), (b), (c) and (d) are the CMIP6154
multi-model median change in 20-year return values of global annual average land surface precipitation as155
simulated by CMIP6 models in 2081 – 2100 relative to 1986 – 2005 for the emission scenarios of SSP126, SSP245,156
SSP370 and SSP585, respectively.157

158



159
Figure S5. Observation-based Global Composite Runoff Fields from the Global Runoff Data Centre.160

161



162
Figure S6. CMIP5-based distribution of the global land surface mean runoff over the period of 1986 – 2005.163

164



165

166
Figure S7. Changes in future land surface runoff based on CMIP6 models. Panels (a), (b), (c) and (d) are the167
CMIP6 multi-model median change in 20-year return values of global annual average land surface runoff as168
simulated by CMIP6 models in 2081 – 2100 relative to 1986 – 2005 for the emission scenarios of SSP126, SSP245,169
SSP370 and SSP585, respectively.170

171



172
Figure S8. Estimated global ∆P/∆T (mm day-1 ℃-1) based on CMIP5 model simulations. Fig. S8 shows the173
linear regression relations between annual average daily precipitation and annual average land surface temperature174
based on CMIP5 outputs for the historical period of 1979 – 2014 (P=0.0550T, r=0.90, p value<0.001), and for the175
future period of 2015 – 2100 under RCP26 (P=0.0414T, r=0.81, p value<0.001), RCP45 (P=0.0392T, r=0.97, p176
value<0.001), RCP60 (P=0.0397T, r=0.95, p value<0.001) and RCP85 (P=0.0312T, r=0.98, p value<0.001).177

178



179
Figure S9. Simulated global ∆R/∆T (mm day-1 ℃-1) based on CMIP5 models. Fig. S9 shows the linear180
regression relations between runoff and temperature based on CMIP5 outputs for the historical period of 1979 –181
2014 (R=0.0084T, r=0.77, p value<0.001), and for the future period of 2015 – 2100 under RCP26 (R=0.0031T,182
r=0.29, p value<0.005), RCP45 (R=0.0015T, r=0.51, p value<0.001), RCP60 (R=0.0035T, r=0.70, p value<0.001)183
and RCP85 (R=0.0037T, r=0.92, p value<0.001).184

185



186

187
188

Figure S10. Linear regression relations between the future land surface runoff changes (mm day-1) and the189
future main climatic factors changes (mm day-1) from 2015–2014 to 2091–2100 based on CMIP6 projections.190
Panels (a), (b), (c) and (d) show the relations between the future land surface runoff changes (∆R) and the future191
precipitation changes (∆P) under SSP126, SSP245, SSP370 and SSP585, respectively. Similarly panels (e), (f), (g)192
and (h) show the relations between the future land surface runoff changes (∆R) and the future evapotranspiration193
changes (∆ET). (i), (j), (k) and (l) are the relations between the future land surface runoff changes (∆R) and the194
future soil water content changes (∆SW). Panels (m), (n), (o) and (p) show the relations between the future land195
surface runoff changes (∆R) and the future snow runoff melting runoff changes (∆SR).196

197



198

Figure S11. Future changes in global average annual light rain days during 2015-2100 based on the outputs199
from the 12 CMIP6 models. (a), (b), (c) and (d) are the trends for the emission scenarios under SSP126, SSP245,200
SSP370 and SSP585, respectively. Each number represents a CMIP6 model (See full name in Table S6)201

202



203

204

Figure S12. Future changes in global average annual heavy rainfall days during 2015-2100 based on the205
outputs from the 12 CMIP6 models. Panels (a), (b), (c) and (d) show the trends for the emission scenarios under206
SSP126, SSP245, SSP370 and SSP585, respectively. Each number represents a CMIP6 model (See full name in207
Table S6)208

209



210
Figure. S13 Emergent constraint on the future sensitivity of global land surface runoff to temperature based211
on CMIP6 projections. (a), (b) and (c) are the emergent constraint for the outputs from CMIP6 models under212
SSP126, SSP245 and SSP370 respectively. Note: red line is the linear regression relationship between “the213
sensitivity of the future global annual land surface runoff to temperature during 2015-2100 (see left y-axis)” and214
“the sensitivity of the historical global annual precipitation to temperature during 1979-2014 (see bottom x-axis)”;215
yellow shading is the observational precipitation sensitivity from the HadCRUT5 (observed value ± 1 standard216
error, 0.056 ± 0.016 mm.day-1.℃-1). The blue shading is the 90% prediction error of the linear fitting; black line and217
blue line are the probability density functions (PDFs, see top x-axis and left y-axis) for the future global annual218
runoff sensitivities before and after emergent constraint, by assuming all models are following by Gaussian219
distribution (See method for PDF calculation);220

221



222

Figure. S14 Emergent constraint (EC) on the future annual runoff sensitivity from CMIP6 projections based223
on the datasets of “GPCC–HadCRUT5” and “GISS–GPCC”. These PDFs are respectively deduced from a, the224
SSP126 scenario, b, the SSP245 scenario, c, the SSP370 scenario, and d, the SSP585 scenario.225

226



227

Figure. S15 Emergent constraint on the future sensitivity of global land surface runoff to temperature228
based on CMIP5 projections. (a), (b), (c) and (d) are the emergent constraint for the outputs from CMIP5229
models under RCP26, RCP45, RCP60 and RCP85 respectively. Note: red line is the linear regression relationship230
between “the sensitivity of the future global annual land surface runoff to temperature during 2006-2100 (see left231
y-axis)” and “the sensitivity of the historical global annual precipitation to temperature during 1979-2005 (see232
bottom x-axis)”; yellow shading is the observational precipitation sensitivity from the HadCRUT5 (observed value233
± 1 standard error). The blue shading is the 90% prediction error of the linear fitting; black line and blue line are the234
probability density functions (PDFs, see top x-axis and left y-axis) for the future global annual runoff sensitivities235
before and after emergent constraint, by assuming all models are following by Gaussian distribution;236

237



238
Figure S16. Linear relationships between future annual ∆P/∆T and ∆R/∆T for the CMIP6 models under the239
emission scenarios of SSP126, SSP245 and SSP370.240



241
Figure. S17 Constraint on the future yearly changes in global average annual drought days using the242
constrained future annual runoff sensitivity. Panels (a), (b) and (c) are the constraint for the emission scenarios243
under SSP126, SSP245 and SSP370, respectively. Note: red line is the linear regression relationship between244
“future yearly changes in global average annual drought days during 2015-2100 (see left y-axis)” and “the245
sensitivity of the future global annual runoff to temperature during 2015-2100 (see bottom x-axis)”; yellow shading246
is the constrained future global annual runoff using the HadCRUT5 (observed value ± 1 standard error, 0.0117 ±247
0.009 mm day-1 ℃-1). The blue shading is the 90% prediction error of the linear fitting; black line and blue line are248
the probability density functions (PDFs, see top x-axis and left y-axis) for the future yearly changes in global249
average annual drought days before and after constraint, by assuming all models are following by Gaussian250
distribution;251

252



253

254
Figure. S18 Constraint on the future yearly changes in global average annual heavy rainfall days using the255
constrained future annual runoff sensitivity. Panels (a), (b) and (c) are the constraint for the emission scenarios256
under SSP126, SSP245 and SSP370, respectively. Note: red line is the linear regression relationship between257
“future yearly changes in global average annual heavy rainfall days during 2015-2100 (see left y-axis)” and “the258
sensitivity of the future global annual runoff to temperature during 2015-2100 (see bottom x-axis)”; yellow shading259
is the constrained future global annual runoff using the HadCRUT5 (observed value ± 1 standard error, 0.0117 ±260
0.009 mm day-1 ℃-1). The blue shading is the 90% prediction error of the linear fitting; black line and blue line are261
the probability density functions (PDFs, see top x-axis and left y-axis) for the future yearly changes in global262
average annual heavy rainfall days before and after constraint, by assuming all models are following by Gaussian263
distribution;264

265
266



Table S1. Full name of the 21 CMIP6 models used for the data of monthly precipitation, runoff and temperature during the historical period (1979–2014)
and the future period (2015–2100).

Precipitation / Runoff / Temperature

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 BCC-CSM2-MR BCC-CSM2-MR ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 CESM2 CESM2 BCC-CSM2-MR ACCESS-ESM1-5
3 BCC-CSM2-MR CESM2-WACCM CESM2-WACCM CESM2 BCC-CSM2-MR
4 CESM2 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CESM2
5 CESM2-WACCM CNRM-CM6-1-HR CNRM-CM6-1-HR CNRM-CM6-1-HR CESM2-WACCM
6 CNRM-CM6-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-CM6-1
7 CNRM-CM6-1-HR FIO-ESM-2-0 FIO-ESM-2-0 GISS-E2-1-G CNRM-CM6-1-HR
8 CNRM-ESM2-1 GISS-E2-1-G GISS-E2-1-G INM-CM4-8 CNRM-ESM2-1
9 FIO-ESM-2-0 HadGEM3-GC31-LL INM-CM4-8 INM-CM5-0 FIO-ESM-2-0
10 GISS-E2-1-G INM-CM4-8 INM-CM5-0 IPSL-CM6A-LR GISS-E2-1-G
11 HadGEM3-GC31-LL INM-CM5-0 IPSL-CM6A-LR MIROC6 INM-CM4-8
12 INM-CM4-8 IPSL-CM6A-LR MIROC6 MPI-ESM1-2-LR INM-CM5-0
13 INM-CM5-0 MCM-UA-1-0 MIROC-ES2L NorESM2-MM IPSL-CM6A-LR
14 IPSL-CM6A-LR MIROC-ES2L MPI-ESM1-2-LR MIROC6
15 MCM-UA-1-0 MPI-ESM1-2-LR NorESM2-LM MIROC-ES2L
16 MIROC6 NorESM2-MM NorESM2-MM NorESM2-LM
17 MIROC-ES2L UKESM1-0-LL UKESM1-0-LL NorESM2-MM
18 MPI-ESM1-2-LR
19 NorESM2-LM

20 NorESM2-MM
21 UKESM1-0-LL



Table S2. Full name of the 17 CMIP5 models used for the data of monthly precipitation, runoff and temperature

Precipitation / Runoff / Temperature

Number
Historical
period

Future period
under RCP26

Future period
under RCP45

Future period
under RCP60

Future period
under RCP85

1 ACCESS1-0 CNRM-CM5 ACCESS1-0 CSIRO-Mk3-6-0 ACCESS1-0
2 CNRM-CM5 CSIRO-Mk3-6-0 CNRM-CM5 GISS-E2-R CNRM-CM5
3 CSIRO-Mk3-6-0 GISS-E2-R CSIRO-Mk3-6-0 IPSL-CM5A-MR CSIRO-Mk3-6-0
4 CSIRO-Mk3L-1-2 IPSL-CM5A-MR CSIRO-Mk3L-1-2 MIROC-ESM GISS-E2-H-CC
5 GISS-E2-H-CC MIROC5 GISS-E2-H-CC MIROC-ESM-CHEM GISS-E2-R
6 GISS-E2-R MIROC-ESM GISS-E2-R NorESM1-M inmcm4
7 GISS-E2-R-CC MIROC-ESM-CHEM GISS-E2-R-CC NorESM1-ME IPSL-CM5A-MR
8 inmcm4 MPI-ESM-LR inmcm4 IPSL-CM5B-LR
9 IPSL-CM5A-MR MPI-ESM-MR IPSL-CM5A-MR MIROC-ESM
10 IPSL-CM5B-LR NorESM1-M IPSL-CM5B-LR MIROC-ESM-CHEM
11 MIROC5 MIROC-ESM MPI-ESM-MR
12 MIROC-ESM MIROC-ESM-CHEM
13 MIROC-ESM-CHEM MPI-ESM-MR
14 MPI-ESM-LR NorESM1-M
15 MPI-ESM-MR NorESM1-ME
16 NorESM1-M
17 NorESM1-ME



Table S3. Full name of the 16 CMIP6 models used for the data of monthly snow melt

Snow melting runoff

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5
3 BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR
4 CanESM5 CanESM5 CanESM5 CanESM5 CanESM5
5 CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE
6 CESM2 CESM2 CESM2 CESM2 CESM2
7 CESM2-WACCM CESM2-WACCM CESM2-WACCM CESM2-WACCM CESM2-WACCM
8 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1
9 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1
10 GISS-E2-1-G GISS-E2-1-G GISS-E2-1-G GISS-E2-1-G GISS-E2-1-G
11 HadGEM3-GC31-LL HadGEM3-GC31-LL HadGEM3-GC31-LL IPSL-CM6A-LR HadGEM3-GC31-LL
12 IPSL-CM6A-LR IPSL-CM6A-LR IPSL-CM6A-LR MIROC6 IPSL-CM6A-LR
13 MIROC6 MIROC6 MIROC6 MIROC-ES2L MIROC6
14 MIROC-ES2L MIROC-ES2L MIROC-ES2L MPI-ESM1-2-LR MIROC-ES2L
15 MPI-ESM1-2-LR MPI-ESM1-2-LR MPI-ESM1-2-LR UKESM1-0-LL MPI-ESM1-2-LR
16 UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL



Table S4. Full name of the 21 CMIP6 models used for the data of monthly soil water content

Soil water content

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5 ACCESS-ESM1-5
3 BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR BCC-CSM2-MR
4 CanESM5 CanESM5 CanESM5 CanESM5 CanESM5
5 CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE CanESM5-CanOE
6 CESM2 CESM2 CESM2 CESM2 CESM2
7 CESM2-WACCM CESM2-WACCM CESM2-WACCM CNRM-CM6-1 CESM2-WACCM
8 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1 CNRM-CM6-1-HR CNRM-CM6-1
9 CNRM-CM6-1-HR CNRM-CM6-1-HR CNRM-CM6-1-HR CNRM-ESM2-1 CNRM-CM6-1-HR
10 CNRM-ESM2-1 CNRM-ESM2-1 CNRM-ESM2-1 INM-CM4-8 CNRM-ESM2-1
11 HadGEM3-GC31-LL HadGEM3-GC31-LL HadGEM3-GC31-LL INM-CM5-0 HadGEM3-GC31-LL
12 INM-CM4-8 INM-CM4-8 INM-CM4-8 IPSL-CM6A-LR INM-CM4-8
13 INM-CM5-0 INM-CM5-0 INM-CM5-0 MIROC6 INM-CM5-0
14 IPSL-CM6A-LR IPSL-CM6A-LR IPSL-CM6A-LR MIROC-ES2L IPSL-CM6A-LR
15 MIROC6 MIROC6 MIROC6 MPI-ESM1-2-LR MIROC6
16 MIROC-ES2L MIROC-ES2L MIROC-ES2L MRI-ESM2-0 MIROC-ES2L
17 MPI-ESM1-2-LR MPI-ESM1-2-LR MPI-ESM1-2-LR NorESM2-LM MPI-ESM1-2-LR
18 MRI-ESM2-0 MRI-ESM2-0 MRI-ESM2-0 NorESM2-MM MRI-ESM2-0
19 NorESM2-LM NorESM2-LM NorESM2-LM UKESM1-0-LL NorESM2-LM
20 NorESM2-MM NorESM2-MM NorESM2-MM NorESM2-MM
21 UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL UKESM1-0-LL



Table S5. Full name of the 19 CMIP6 models used for the data of monthly total evaporation

Total evaporation

Number
Historical
period

Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 ACCESS-CM2 BCC-CSM2-MR BCC-CSM2-MR ACCESS-CM2 ACCESS-CM2
2 ACCESS-ESM1-5 CanESM5 CanESM5-CanOE BCC-CSM2-MR ACCESS-ESM1-5
3 BCC-CSM2-MR CanESM5-CanOE CESM2 CanESM5-CanOE BCC-CSM2-MR
4 CanESM5 CESM2 CESM2-WACCM CESM2 CanESM5-CanOE
5 CanESM5-CanOE CESM2-WACCM CNRM-CM6-1 CESM2-WACCM CESM2
6 CESM2 CNRM-CM6-1 CNRM-CM6-1-HR CNRM-CM6-1 CESM2-WACCM
7 CESM2-WACCM CNRM-CM6-1-HR CNRM-ESM2-1 CNRM-CM6-1-HR CNRM-CM6-1
8 CNRM-CM6-1 CNRM-ESM2-1 GISS-E2-1-G CNRM-ESM2-1 CNRM-CM6-1-HR
9 CNRM-CM6-1-HR GISS-E2-1-G INM-CM4-8 GISS-E2-1-G CNRM-ESM2-1
10 CNRM-ESM2-1 INM-CM4-8 INM-CM5-0 INM-CM4-8 GISS-E2-1-G
11 GISS-E2-1-G INM-CM5-0 IPSL-CM6A-LR INM-CM5-0 INM-CM4-8
12 INM-CM4-8 IPSL-CM6A-LR MCM-UA-1-0 IPSL-CM6A-LR INM-CM5-0
13 INM-CM5-0 MCM-UA-1-0 MIROC6 MCM-UA-1-0 IPSL-CM6A-LR
14 IPSL-CM6A-LR MIROC6 MIROC-ES2L MIROC6 MCM-UA-1-0
15 MCM-UA-1-0 MIROC-ES2L MPI-ESM1-2-LR MIROC-ES2L MIROC6
16 MIROC6 NorESM2-MM NorESM2-MM NorESM2-MM MIROC-ES2L
17 MIROC-ES2L NorESM2-MM
18 MPI-ESM1-2-LR
19 NorESM2-MM



Table S6. Full name of the 10 CMIP6 models used for the data of daily precipitation

Daily precipitation

Number
Future period
under SSP126

Future period
under SSP245

Future period
under SSP370

Future period
under SSP585

1 CESM2-WACCM BCC-CSM2-MR ACCESS-CM2 ACCESS-CM2
2 CESM2 CESM2-WACCM CESM2 CESM2-WACCM
3 CNRM-ESM2-1 CESM2 CNRM-ESM2-1 CESM2
4 HadGEM3-GC31-LL CNRM-ESM2-1 INM-CM4-8 INM-CM4-8
5 INM-CM4-8 INM-CM4-8 INM-CM5-0 INM-CM5-0
6 INM-CM5-0 INM-CM5-0 IPSL-CM6A-LR IPSL-CM6A-LR
7 IPSL-CM6A-LR IPSL-CM6A-LR NorESM2-MM NorESM2-LM
8 NorESM2-MM NorESM2-LM NorESM2-MM
9 UKESM1-0-LL NorESM2-MM
10 UKESM1-0-LL



Table S7. Observed annual precipitation sensitivity (∆P/∆T) ± one standard deviation from the four datasets, and predicted annual land surface runoff sensitivity
(∆R/∆T) ± one standard deviation based on CMIP6 models before and after emergent constraint.

Observed
precipitation

sensitivity ± one
standard deviation
(mm day-1 ℃-1)

Emission
Scenarios

Future runoff sensitivity
before emergent constraint

(mm day-1 ℃-1)

Future runoff sensitivity
after emergent constraint

(mm day-1 ℃-1)

Future original
runoff changes
± one standard
deviation
(mm day-1)

Future
constrained

runoff changes
± one standard
deviation
(mm day-1)

Mean value
one

standard
deviation

Mean value
one

standard
deviation

HadCRUT5 0.056 ± 0.016

SSP126 0.005 0.0082 0.0102 0.0075 0.009±0.009 0.0111±0.0088
SSP245 0.007 0.0097 0.0119 0.0090 0.019±0.022 0.0300±0.0225
SSP370 0.009 0.0092 0.0122 0.0081 0.035±0.032 0.0522±0.0342
SSP585 0.007 0.0100 0.0117 0.0090 0.032±0.039 0.0656±0.0504

HadCRUT5+GPCC 0.061 ± 0.016

SSP126 0.005 0.0082 0.0115 0.0075 0.009±0.009 0.0122±0.0088
SSP245 0.007 0.0097 0.0132 0.0090 0.019±0.022 0.0325±0.0225
SSP370 0.009 0.0092 0.0133 0.0081 0.035±0.032 0.0556±0.0342
SSP585 0.007 0.0100 0.0131 0.0090 0.032±0.039 0.0729±0.0504

GISS+GPCC 0.061 ± 0.015

SSP126 0.005 0.0082 0.0115 0.0075 0.009±0.009 0.0122±0.0077
SSP245 0.007 0.0097 0.0132 0.0090 0.019±0.022 0.0325±0.0225
SSP370 0.009 0.0092 0.0133 0.0080 0.035±0.032 0.0556±0.0342
SSP585 0.007 0.0100 0.0131 0.0090 0.032±0.039 0.0729±0.0560



Table S8. Implications of the unconstrained and the constrained future runoff sensitivities on the future extreme climates

SSP126
(mm day-1 ℃-1)

SSP245
(mm day-1 ℃-1)

SSP370
(mm day-1 ℃-1)

SSP585
(mm day-1 ℃-1)

<-0.0088 >0.0265 <-0.011 >0.0317 <-0.009 >0.0327 <-0.0114 >0.0325
Unconstrained 5% 0% 3% 0% 2% 0% 3% 0%
Constrained 0% 2% 0% 2% 0% 1% 0% 1%


