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Abstract

In this study the spatial structure of Trade Wind shallow cumulus populations is investigated as diagnosed from large-domain

high resolution cloud-resolving simulations. The main objective is to establish how inter-cloud spacing depends on cloud size,

information that is crucial for understanding cloud-radiation interaction and spatial organization, and for informing grey zone

parametrizations. A high-resolution cloud-resolving ICON simulation of Caribbean shallow convective cloud fields is used,

based on the NARVAL South field campaign. The size statistics of the simulated cloud population are found to compare well to

those derived from available satellite images. Four expressions for the nearest neighbor spacing are analyzed, including classic

definitions but also novel ones. We find that the dependence of cloud spacing on cloud size strongly depends on this definition.

The relation is exponential for the spacing between clouds of similar size, while it is logarithmic for the spacing between clouds of

any size. Further analysis suggests that the logarithmic dependence is caused by the abundance of closely-spaced small clouds.

The exponential size-dependence is argued to reflect the mesoscale dynamics driving the horizontal size of large convective cells.

The implications of the obtained results are briefly discussed.
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Abstract11

In this study the spatial structure of Trade Wind shallow cumulus populations is inves-12

tigated as diagnosed from large-domain high resolution cloud-resolving simulations. The13

main objective is to establish how inter-cloud spacing depends on cloud size, informa-14

tion that is crucial for understanding cloud-radiation interaction and spatial organiza-15

tion, and for informing grey zone parametrizations. A high-resolution cloud-resolving ICON16

simulation of Caribbean shallow convective cloud fields is used, based on the NARVAL17

South field campaign. The size statistics of the simulated cloud population are found to18

compare well to those derived from available satellite images. Four expressions for the19

nearest neighbor spacing are analyzed, including classic definitions but also novel ones.20

We find that the dependence of cloud spacing on cloud size strongly depends on this def-21

inition. The relation is exponential for the spacing between clouds of similar size, while22

it is logarithmic for the spacing between clouds of any size. Further analysis suggests that23

the logarithmic dependence is caused by the abundance of closely-spaced small clouds.24

The exponential size-dependence is argued to reflect the mesoscale dynamics driving the25

horizontal size of large convective cells. The implications of the obtained results are briefly26

discussed.27

Plain Language Summary28

Shallow cumulus cloud fields persistently cover large areas in the marine subtrop-29

ics. These low level clouds play an important role in Earth’s energy balance, because of30

the associated vertical transport of heat and moisture and their impact on radiation. Weather31

and climate models still struggle to correctly represent these cloud populations, which32

is partially due to our prevailing lack of understanding of their spatial structure. In this33

study unprecedented large-domain high resolution simulations and satellite images are34

used to investigate cloud spacing in more detail, revisiting classic studies that were purely35

based on observational data. The results show that in general cloud spacing increases36

with cloud size. However, the relation between size and spacing strongly depends on the37

way the spacing is defined: spacing between clouds of any size behaves logarithmic, while38

spacing between clouds of equal size shows an exponential size dependence. The results39

provide more insight into spatial organization of cumulus clouds, and can guide ongo-40

ing efforts to improve the representation of these clouds in circulation models.41
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1 Introduction42

Cumuliform low-level clouds persistently cover large areas of the marine subtrop-43

ics (Norris, 1998). The way these cloud fields interact with the atmospheric circulation44

and respond to a warming global climate, are complex scientific problems that are not45

completely understood yet (M. Zhang et al., 2013; Narenpitak et al., 2017). This lack46

of understanding is reflected in long-standing shortcomings in their representation in weather47

and climate models (Nam et al., 2012), and in their significant contribution to uncer-48

tainty in future climate predictions (Bony & Dufresne, 2005; Sherwood et al., 2014; Vial49

et al., 2016).50

The spatial variability of Trade wind cumulus cloud fields, in particular the spac-51

ing between individual cumulus clouds, has been identified as a key element for under-52

standing their role in Earth’s climate system. For example, spatial aggregation is involved53

in the interaction between cloud fields and a changing climate (Wing & Cronin, 2015;54

Bretherton & Blossey, 2017; Wing, 2019). The spacing between clouds also strongly af-55

fects how they interact with solar and terrestrial radiation, in particular when the three-56

dimensionality of radiative fluxes is taken into account (Jakub & Mayer, 2017). Cloud57

spacing also plays a role in the “grey zone problem”, which stands for the situation that58

previously unresolved convective processes are becoming (partially) resolved at the high59

resolutions now feasible in general circulation modeling (Wyngaard, 2004; Honnert et60

al., 2020). While spatial information is needed to make convection schemes scale-aware61

and scale-adaptive (Neggers, 2015; Brast et al., 2018), cloud spacing also affects the stochas-62

ticity in convective properties in the grey zone (Neggers et al., 2019).63

Observational research of cloud spacing goes back decades. Early studies mostly64

relied on high-altitude photography (Plank, 1969), satellite images (Sengupta et al., 1990)65

and scanning radar (Ali, 1998). Joseph and Cahalan (1990) first investigated the depen-66

dence of cloud spacing on cloud size, analysing satellite snapshots of cumulus clouds at67

various locations on the globe. They reported a positive linear relation between cloud68

size and the Nearest Neighbor Spacing (NNS), suggesting that larger clouds have a big-69

ger spacing. However, the spread in this relation was large, argued to be due to differ-70

ences in meteorological and surface conditions between the snapshots. Later studies used71

the cumulative distribution function of NNS to quantify the spatial organization in a cloud72

field (Weger et al., 1992; Nair et al., 1998), yielding an organizational metric that has73

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

become frequently used (Weger et al., 1993; Tompkins & Semie, 2017). However, the size74

dependence in cloud spacing has not been revisited since those early days.75

Large-Eddy Simulations (LES) can well be used to study cloud spacing. A key ad-76

vantage of LES over satellite images is the access it provides to full four-dimensional fields77

at high spatial-temporal resolutions. First-generation LES studies of cumulus cloud size78

distributions were still severely limited by domain size, which made these numerical ex-79

periments less useful for studying cloud spacing (Neggers et al., 2003). However, ongo-80

ing advances in supercomputing are currently allowing a dramatic increase in the domain81

sizes that can be applied (Heinze et al., 2017; Senf et al., 2018; Vial et al., 2019). As a82

consequence, the simulated cloud populations also become much more complete, which83

is particularly important for the largest cloud sizes. These large clouds occur more fre-84

quently and abundantly in a larger domain, and are no longer dynamically constrained85

in an artificial way by a too small domain size. As a result, the dependence of cloud spac-86

ing on cloud size can now reliably be investigated with LES across a much broader spec-87

trum of cloud sizes than was previously possible. While the NNS has appeared in some88

recent LES studies (Neggers et al., 2019), the unique new opportunities created by the89

use of a large domain size for studying cloud spacing have not yet been fully exploited.90

In this study we revisit the classic problem of cloud spacing in Trade Wind cumu-91

lus cloud fields, now using both super-large domain LES and satellite imagery, in com-92

bination. Our prime objective is to gain more insight into the dependence of cloud spac-93

ing on cloud size. Use is made of a high-resolution cloud-resolving simulation performed94

with the ICON model (Zängl et al., 2014) of Caribbean shallow convective cloud fields95

as observed during the recent NARVAL-South campaign near Barbados (Klepp et al.,96

2014). These simulations were generated in the context of the HD(CP)2 project (High97

Definition Clouds and Precipitation for Advancing Climate Prediction). The combina-98

tion of a large domain (150×400 km2) with a cumulus cloud-resolving horizontal res-99

olution (150 m) allows a statistically significant investigation of cloud spacing across a100

broad spectrum of cloud sizes, including very large ones. The location over the ocean101

ensures fairly homogeneous conditions concerning the state of the atmosphere and sur-102

face characteristics. The simulated cloud populations are compared to statistics derived103

from MODIS satellite images at 250 m resolution. A set of four definitions of the NNS104

is examined, including spacing between clouds of any size, spacing between clouds of sim-105

ilar size, and using both center-to-center and edge-to-edge distancing. The analysis fo-106
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cuses on the dependence of NNS on cloud size. For reference, the obtained results are107

compared to i) reference NNS values reflecting purely random distributions, and ii) re-108

sults from the classic observational studies on cloud spacing as mentioned above.109

The data and methods used in this study are described in Section 2. Section 3 then110

presents the results, including an assessment of the state of the cloud field and its evo-111

lution, population statistics and their comparison to observations, and a detailed anal-112

ysis of the cloud spacing. In Section 4 the main results are further interpreted, focus-113

ing on the size dependence in the cloud spacing. Section 5 then provides a brief sum-114

mary of the main results and conclusions, and gives an outlook on future research in-115

spired by this study.116

2 Data and methods117

2.1 20 December 2013118

The NARVAL-South Campaign took place throughout December 2013 and Jan-119

uary 2014 in the Caribbean Trade wind region upwind of Barbados, with the HALO air-120

craft functioning as the main instrument platform (Klepp et al., 2014). The target area121

of NARVAL-South is not routinely sampled by state-of-the-art meteorological instrumen-122

tation, with only a few permanent sites on islands far apart (Stevens et al. 2016, Lamer123

et al. 2015). Accordingly, NARVAL-South had the aim of filling the existing data gap124

on Atlantic Trade wind cumulus to support observational data analyses (Schnitt et al.,125

2017; Jacob et al., 2019) as well as high-resolution simulation efforts (Reilly et al., 2019;126

Naumann & Kiemle, 2020).127

The day of interest for this study is 20 December 2013, on which HALO performed128

Research Flight 08 (RF08). The MODIS Terra satellite image shown in Figure 1a gives129

a good impression of the cloud field on this day, showing a cumulus cloud population fea-130

turing a broad range of cloud sizes. Such cloud patterns are typical for the Caribbean131

Trade wind region (Bony et al., 2020). Figure 1b zooms in on the domain of interest up-132

wind of Barbados, indicating that in this region the cloud field was dominated by small-133

scale low level boundary layer cumulus with only a few larger ’flowers’ present. The lat-134

ter represent stratiform cumulus outflow near the Trade inversion. The MODIS reflectance135

is available at 250m gridspacing, which is comparable to the discretization of the LES136

experiment used in this study.137
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a)

b)

c)

Figure 1. MODIS Terra corrected reflectance (true color) images for 20 December 2013. a)

Caribbean at 1km resolution, and b) the area upwind of Barbados at 250m resolution. The Is-

land of Barbados is visible in panel b), on the left. Panel c) gives an overview of all four ICON

domains simulated with ICON LES. The orange box always indicates the inner ICON domain

resolved at 150m resolution of which the results are used in this study, and within which the

MODIS data is also analyzed. The HALO flight path is shown as a red line, while the locations

of the first two dropsondes of HALO RF08 are indicated by the blue and orange dots. The Bar-

bados radiosonde sounding is indicated by the green dot. Geotiff data obtained through NASA

Worldview (https://worldview.earthdata.nasa.gov/).
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Figure 2. Time-height plot of backscatter at 532 nm as sampled by the HSRL instrument as

part of the WALES system onboard HALO during RF08. Only the first part of RF08 is shown

during which the observed boundary layer structure was approximately similar. Clouds show up

as black areas. Dropsondes DS01 and DS02 are indicated by the dotted red lines.

More detailed information about the boundary layer cloud field in the target area138

is provided by the WALES instrument onboard HALO, as shown in Fig. 2. Only the first139

two-hour time segment of RF08 flight is shown during which defining features of the Trade140

wind boundary layer remained relatively unchanged, such as the cloud base and cloud141

top heights. After this period HALO entered a region in which the cloud structure deep-142

ened profoundly, losing these typical features. This motivated using 19 : 30 UTC as the143

upper time limit for the analysis of WALES cloud data. The clouds, showing up as black144

areas, are profoundly broken, and include many small cumulus clouds rooting in the sub-145

cloud layer as well as remnants of outflow situated below the inversion. These cloud pop-146

ulation statistics are similar to those discussed by (Naumann & Kiemle, 2020).147

Figure 3 shows observed vertical profiles sampled in or in the direct vicinity of the148

simulated domain. These locations are also indicated in Fig. 1a. Included are a radiosonde149

sounding at Barbados (at 12:00 UTC), the first two dropsondes DS01 and DS02 during150

HALO RF08 (launched at 17:12 and 17:23 UTC) just outside the simulated domain in151

upwind direction, and the cloud fraction profile as derived from the WALES data dis-152

cussed above. The typical features of a shallow cumulus topped Trade wind boundary153

layer are evident, such as a well-mixed subcloud layer and a conditionally unstable cloud154

layer which is capped by an inversion layer situated between 2200-2600 m height. The155
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Figure 3. Observed vertical profiles of a) potential temperature θ, b) water vapor specific

humidity qv and c) cloud fraction ac. Shown are the 12:00 UTC radiosonde sounding from the

TBPB station at Barbados (dotted), the first two DropSondes (DS) from HALO RF08 launched

at 17:12 (solid) and 17:23 UTC (dashed), and the WALES HSRL measurements above 250m

height and time-averaged over the first two hours of RF08 (shaded grey). The horizontal range

for WALES indicates the difference between the backscatter thresholds of 10 and 20 Mm−1 sr−1.

lower free troposphere above the inversion is statically stable and very dry in all sound-156

ings, containing almost no water vapor. The cloud fraction profile shows the double peak157

structure typical of Trade wind cumulus as found in numerous previous studies (Stevens158

et al., 2001; vanZanten et al., 2011; Nuijens et al., 2014). This structure reflects the pres-159

ence of cumuli above the top of the mixed-layer and cumulus outflow near the inversion160

as seen in Fig. 2.161

All thermodynamic soundings are strikingly similar concerning the vertical struc-162

ture of the boundary layer, apart from a slightly higher inversion over Barbados which163

might be an island effect. This good agreement between soundings that are separated164

quite far in both space and time suggests that the boundary layer structure was approx-165

imately in steady state as well as reasonably homogeneous across the target domain se-166

lected for simulation.167

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a)

b)

Figure 4. Snapshots of the simulated clouds on 20 December 2013 during the NARVAL-South

field campaign. Shown is the cloud mask based on projected liquid water in ICON resolved at

150 m for a) 13:50 UTC and b) 20:05 UTC. Cloudy grid-points are black, while cloud-free points

are white. The orange dot shows the location of the island of Barbados.

2.2 ICON simulations168

The simulation data used in this study to investigate the NNS in Trade Wind cu-169

mulus were generated in the context of the HD(CP)2 project with the Icosahedral Non-170

hydrostatic (ICON) model (Zängl et al., 2014; Heinze et al., 2017). At the top of the model171

hierarchy are the regional ICON simulations described by Klocke et al. (2017), which con-172

sist of a set of four one-way nested domains. At its boundaries the outer domain is forced173

by three hourly ECMWF forecast data. Their inner domain, simulated at a 1.2 km hor-174

izontal resolution, functioned as the outer domain for the higher resolution LES exper-175

iments considered in this study. The configuration of these ICON LES simulations is de-176

scribed in detail by the recent studies of Stevens et al. (2019), Vial et al. (2019) and Naumann177

and Kiemle (2020), and accordingly only a brief summary will be provided here. Three178
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further nested domain are included, with resolutions of about 600, 300 and 150 m. This179

yields a total of four domains simulated with LES, as shown in Figure 1c. The inner high-180

resolution domain (indicated as an orange box) is used in this study for the analysis of181

cloud spacing. It spans approximately 150 × 400 km2 in the horizontal and 21 km in182

the vertical, discretized at 150 levels (with 30 levels in the lowest 2 km). With a hori-183

zontal resolution of 150 m the resolution of the inner domain is high enough to switch184

off all subgrid parametrizations except the ones for the surface layer, turbulence, cloud185

microphysics (Baldauf et al., 2011), and radiation (Mlawer et al., 1997).186

The simulation starts at 12 UTC and ends 12 hours later. Every 15 minutes, a 3D187

field of liquid water is available as output, which serves as input for the clustering al-188

gorithm (as described in the next subsection). Figure 4 shows snapshots of the cloud mask189

based on the vertically integrated liquid water at two points in time in the simulation.190

The domain contains numerous resolved clouds, up to approximately 4500 per snapshot.191

This sample size, in combination with the broad range of resolved cloud sizes, make these192

simulations useful for studying spacing between clouds. The surface conditions are rel-193

atively homogeneous, so that any spatial organization in the cumulus cloud field will be194

mainly due to large-scale effects or domain-internal dynamics. A simple comparison by195

eye to the satellite image in Figure 1b suggests that at the later time point the simulated196

cloud field agrees better with the observed cloud field, lacking the large cloud decks present197

in the earlier snapshot that likely reflect model spin up effects.198

A thorough evaluation of LES results against measurements is of crucial importance199

for gaining confidence in the model and to justify its use for scientific research. This study200

will make simple comparisons of the simulated boundary layer clouds to the observational201

data discussed above. In addition, the ICON LES experiments performed for NARVAL-202

I have already been thoroughly confronted with available observational data in previ-203

ous studies (Stevens et al., 2019; Vial et al., 2019; Naumann & Kiemle, 2020). This study204

builds on the encouraging results coming out of these model evaluations concerning the205

basic state of the trade wind boundary layer. The main focus is then to gain insight into206

the two-dimensional spatial statistics of the simulated cloud population, thus using the207

simulation as a virtual laboratory. Comparisons of these characteristics will be made be-208

tween the LES and available satellite imagery. To this purpose a clustering algorithm209

is used, which is described next.210
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2.3 Clustering algorithm211

A clustering algorithm is used to compute the cloud sizes and locations from out-212

put on the model grid. To this purpose the GRIDCLUS algorithm is applied (Schikuta,213

1996), which has been used in many LES studies of cumulus cloud fields (Neggers et al.,214

2003, 2019; van Laar et al., 2019). The liquid water field is projected on the surface and215

a grid cell is considered cloudy if the integrated liquid water path is bigger than the model216

threshold of 1 ∗ 10−8 kg/kg. If two cloudy cells share a cell edge, they are considered217

part of the same cloud. Cloud size is defined as the radius of a circle that has the same218

area of the cloudy grid cells belonging to the cloud (Rieck et al., 2014). The center of219

mass of the cloud is taken as the center of the circle, the coordinates of this point are220

used for determining the spacing between the clouds.221

2.4 Nearest Neighbor Spacing222

The first spacing considered is the distance between a cloud and its closest neigh-223

bor, regardless the size of the latter. This distance, hereafter referred to as NNS, is de-224

picted in the schematic of Figure 5 together with the other spacings we study. NNS is225

calculated following the method adopted from Joseph and Cahalan (1990) and Tompkins226

and Semie (2017). In practice this means that for every cloud, the minimum distance227

is selected from the distances to all other clouds. Let K represent the total set of clouds,228

with n the total number of clouds: K =
{

1, 2, ..., n
}

. NNS between cloud k and its neigh-229

bors n is defined as:230

NNS(k) = min
{
d(n, k) | n ∈ K \ {k}

}
, (1)

with d(n, k) the great circle distance (Euclidian distance corrected for the curvature of231

the Earth) between the centers of cloud n and k. The second measure of cloud spacing232

that is considered is the distance between a cloud and the closest neighbor that has a233

similar size. This measure, referred to as the equal-size NNS (NNSσ), only considers clouds234

that have a similar size (l) and belong to the same bin (σ), as determined by the clus-235

tering algorithm. This makes our set of clouds dependent on l: Kσ =
{
k ∈ K | l(k) =236

σ
}

. NNSσ is then defined as:237
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NNSσ

NNSCE

NNSσ,CE

NNS

Figure 5. Example field with two cloud sizes showing the difference between NNS (distance

between one cloud and its’ nearest neighbor) and NNSσ (distance between one cloud and its’

nearest neighbor of a similar size).

NNSσ(k) = min
{
d(n, k) | n ∈ Kσ \ {k}

}
. (2)

In calculating NNS and NNSσ two different approaches were followed, yielding in238

total four measures of cloud spacing. First, the cloud center spacing is used, the distance239

from cloud center to cloud center. Second, the cloud edge spacing is the distance from240

cloud edge to cloud edge, computed by assuming that all clouds are perfect circles (Rieck241

et al., 2014; Dawe & Austin, 2013). In essence, it is the cloud center spacing minus the242

size (radius) of the two neighboring clouds: dCE = d(n, k)−rn−rk. Then the NNSCE243

for using cloud edge spacing is defined as:244

NNSCE(k) = min
{
dCE(n, k) | n ∈ K \ {k}

}
, (3)

and the equal-size NNS using cloud edge spacing (NNSσ,CE) as:245

NNSσ,CE(k) = min
{
dCE(n, k) | n ∈ Kσ \ {k}

}
. (4)
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Figure 6. Vertical structure of the simulated (orange) and observed (grey) Trade wind bound-

ary layer during RF08. Shown are a) potential temperature θ, b) water vapor specific humidity

qv, c) zonal wind speed u, d) meridional wind speed v, e) relative humidity RH, f) cloud fraction

ac, g) cloud liquid water qc and h) rain water qr. Sonde observations include the first two drop-

sondes and the Barbados radiosonde, the range indicating the minima and maxima encountered

within 100m height bins. The WALES data plotted in f) is identical to those shown in Figure 3c.

2.5 Reference NNS values246

Previous studies on spatial organization (Zhu et al., 1992; Nair et al., 1998) using247

cumulative distribution functions have yielded reference values of NNS that reflect purely248

randomly distributed populations. These reference values are based on a Poisson point249

process, which is a collection of points randomly distributed in space. The number of250

points can then be described by a Poisson distribution. When assuming clouds can be251

represented by points, the cumulative distribution of the nearest neighbor distances of252
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cumulus clouds can be directly compared to the cumulative distribution of distances of253

a Poisson point process. The comparison between our simulated field and a random field254

can be summarized with a single value, referred to as Iorg (Organization Index) (Tompkins255

& Semie, 2017). Iorg distinguishes three regimes: randomness (Iorg ≈ 0.5), clustering (Iorg256

> 0.5) and regularity (Iorg < 0.5).257

Based on a Poisson process and following the mathematical derivation, one can also258

define the mean NNS a random distribution would give (NNSran) (Weger et al., 1992):259

NNSran =

√
A

2
√
N
. (5)

Here A is the domain area and N the number of clouds. As opposed to a random260

distribution of clouds one could also think of a regular distribution. In that case the clouds261

form a grid-like pattern, thereby maximizing NNS for the given amount of clouds. This262

NNSreg could be determined as follows:263

NNSreg =

√(
A

N

)
. (6)

3 Results264

3.1 Vertical structure265

Figure 6 shows vertical profiles of variables expressing the vertical structure of the266

simulated Trade wind boundary layer. For each variable measurements are included when267

available, including the first two dropsondes of HALO RF08, the Barbados radiosonde268

and WALES cloud fraction profile as already shown in Figure 3. The simulation data269

is sampled at the output timepoint (17:20 UTC) closest to the two dropsondes, and av-270

eraged over the full domain in order to optimize comparability with the sounding data271

which covers a similar spatial domain. The results suggest that the thermodynamic ver-272

tical structure of the cloud layer is reproduced reasonably well by the simulation, with273

the subcloud mixed layer and convective cloud layer situated at the right heights and274

featuring a similar conditional instability and humidity gradient. Slight thermodynamic275

biases include an overestimation in the inversion height and a small cold and moist bias276

in the lower free troposphere. The wind structure is realistic, including a well-defined277

easterly throughout the lowest 4 km featuring a small northerly component.278
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Figure 7. Simulated vertical profiles of a) cloud fraction and b) cloud water averaged over the

domain at the two timepoints of the instantaneous cloud fields shown Figure 4. The line colors

corresponds to the coloured time points as shown in Figure 8, for reference.

Figure 6 (e-f) focuses on the simulated cloud structure. Defining and typical Trade279

wind cloud features that are reproduced include the two distinct maxima in relative hu-280

midity at approximately ∼ 700 m and ∼ 2500 m height, and a concave structure sit-281

uated in between. This structure and amplitude agrees well with the observations. A sim-282

ilar two-mode structure is evident in the cloud fraction profile, reproducing the WALES283

observations in this respect. The model slightly underestimates the magnitude of the pro-284

file at these two maxima, for which we speculate two reasons can exist; i) the threshold285

value range used to compute the observed profile from backscatter measurements, or ii)286

a lack of skill in LES to produce enough cloud mass. The latter would be consistent with287

results reported in recent studies comparing LES results to cloud observations (Y. Zhang288

et al., 2017). More research is required to gain insight into this question. For cloud liq-289

uid and rain water no observations are available; however, their vertical structure is sim-290

ilar to LES results for previous Caribbean cumulus cases (vanZanten et al., 2011).291

Despite slight biases, the overall assessment is that the key features of the Trade292

wind boundary layer observed in the region during RF08 are reproduced to a high enough293
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Figure 8. Timeseries of a) cloud cover, b) number of clouds, c) maximum cloud size and d)

Iorg. The blue and green dot correspond to the upper and lower panel of Figure 4 respectively.

degree to justify using this simulation for further investigation of cumulus cloud spac-294

ing.295

3.2 Time evolution296

While the good agreement with the observed vertical structure of the boundary layer297

during RF08 is encouraging, it is important to realize that this evaluation only applies298

to a brief time-window. In fact, Figure 4 already demonstrated that the spatial struc-299

ture of the simulated cloud field experiences a substantial transition in time. Figure 7300

further shows that the transition not only concerns the spatial structure but also the cloud301

vertical structure, here diagnosed at the exact two snapshots as shown in Figure 4. The302

first phase should be considered model spin-up, as it is still close to the initialization time303

of the simulation. This phase is characterized by high cloud covers and high cloud wa-304
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ter amounts at a height slightly above 2 km, formed by large cumulus outflow clouds.305

The large clouds are not numerous, but do have sizes up to approximately 25 km. In con-306

trast, later in the simulation the distribution is dominated by many more smaller clouds,307

and has far less large outflow cloud layers.308

The transition of the cloud field is perhaps best expressed by the timeseries of cloud309

cover, clouds number and maximum cloud size as shown in Figure 8a-c. During the first310

two hours of the simulation the number of clouds rapidly increases; subsequently the in-311

crease is much more gradual. The latter phase is accompanied by a drop in cloud cover312

and maximum cloud size. This combination indicates that the initial large structures are313

gradually being replaced by smaller clouds. The increase in cloud number mainly hap-314

pens at lower levels, as expressed by the cloud cover similarly increasing in that height315

range (Figure 7). Low-level clouds become more pronounced as time progresses, although316

their liquid water content is lower compared to the high-level clouds. The decrease of317

projected cloud cover over time (Figure 8a) is driven by the disappearance of the high-318

level clouds. During the second half of the simulation the maximum cloud size stays more319

or less constant at about 5 km, except for a modest peak around 18:00 UTC.320

Apart from the transition in cloud cover, number and maximum size, their spatial321

distribution changes as well. Figure 4 suggests that the large cloud clusters are gradu-322

ally replaced by smaller clouds that are either randomly distributed or form cloud streets.323

A quantification of the degree of organization is provided by Iorg, shown in Figure 8d.324

The black dashed line in the figure indicates pure randomness, therefore Iorg suggests325

strong organization at the beginning of the simulation. The degree of organization starts326

to decrease around 17:00 UTC, with values close to random at the end of the simula-327

tion.328

Based on this analysis of the temporal evolution of the cloud field and the obser-329

vational data showing a cloud field dominated by small-scale low level boundary layer330

cumulus, we decided to take the first six hours of the simulation not into account for the331

analysis. After this period the cloud cover, maximum size and number stay more or less332

constant. This behavior motivates using only the last six hours (24 time steps) for the333

analysis of the size distributions of cloud number and cloud spacing.334

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

100 1000 10000
average cluster size  [m]

10 9

10 8

10 7

10 6

10 5

10 4

10 3

pd
f

MODIS 50
MODIS 100
MODIS 150

100 1000 10000
average cluster size  [m]

10 8

10 7

10 6

10 5

10 4

10 3

pd
f

ICON 12:00-14:30
ICON 14:30-17:00
ICON 17:00-19:30
ICON 19:30-22:00
ICON 22:00-00:30

a) b)

Figure 9. Size distributions of the number of clusters as derived from observations and sim-

ulations. a) Based on MODIS satellite image as shown in Figure 1b, showing results for three

reflectance thresholds (50, 100 and 150) to define cloudy pixels. b) Distributions diagnosed from

the integrated liquid water path in ICON for five subsequent time-periods (indicated by the UTC

times in the legend). The vertical axis represents the normalized cluster number divided by the

binwidth, while the horizontal axis represents the average cluster size per bin. Log-linear binning

is used to calculate these histograms, as described in the text.

3.3 Size distributions335

Figure 9 shows size distributions of the observed and simulated number of clouds.336

These CSDs (cloud size distributions) have been generated using the clustering algorithms337

as described in Section 2.3. The CSDs for the MODIS image as shown in Figure 1b are338

derived using three thresholds for reflectance in the red channel. The clusters are size-339

sorted using the linear-logarithmic binning as described by Quinn and Neelin (2017), which340

ensures that the binwidth can not be smaller than the smallest possible cluster size. To341

this purpose minimum binwidths of 250m and 150 m are used, which are the effective342

resolutions of the MODIS product and the LES simulations, respectively.343

Both the simulated and observed size distributions exhibit a similar functional form344

in their dependence on cluster size. This shape, featuring two size-ranges with a distinctly345

different size-dependence, has often been reported in previous studies of cumulus con-346

vection (Neggers et al., 2003). In both the observations and the simulation the cluster347
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Table 1. Powerlaw exponents b resulting from least-square fits in log-log space of a single

powerlaw function alb to the size densities shown in Figure 9. Fits are applied in two ranges of

cluster sizes l, including a small (0-1 km) and a large (1-10 km) range.

dataset 0− 1 km 1− 10 km

MODIS 50 -1.29 -3.88

MODIS 100 -1.48 -3.90

MODIS 150 -2.05 -3.85

ICON 12:00-14:30 -1.24 -2.38

ICON 14:30-17:00 -1.05 -2.82

ICON 17:00-19:30 -0.99 -3.60

ICON 19:30-22:00 -0.89 -3.71

ICON 22:00-00:30 -0.85 -3.96

size at which the dependence changes is at about 1km. Applying a single powerlaw fit348

in both size ranges yields powerlaw exponents as listed in Table 1. The model reproduces349

the distinct difference in powerlaw exponents between the two size-ranges. Note that the350

observed CSD shifts to the left with a higher reflectance threshold, expressing that fewer351

clusters are then detected, as can be expected. However, the distribution shape is still352

preserved. Over time the simulated CSD becomes steeper in the large size range, express-353

ing that less and less big structures feature in the simulation.354

The range of observed cluster sizes spans about three orders of magnitude, with355

the largest cluster size being about 60 km. Note that this maximum size does show strong356

dependence on the reflectance threshold, reducing to 30 km for the highest value. Ac-357

cordingly, this aspect of the distribution is not very robust, also because the sample size358

is very small in this tail of the distribution. The simulated maximum cluster size is some-359

what lower, but still significantly larger than the scales of moist boundary layer updrafts.360

These results reflect that while some larger stratiform outflow clouds do appear in the361

simulation, their total number is underestimated. Note that our main goal is to study362

spacing among cumuliform clouds, which sit in the left and middle part of the distribu-363
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Figure 10. Cloud spacing as a function of cloud size. Shown are a) NNS, b) NNSCE , c)

NNSσ, and d) NNSσ,CE . The NNS is averaged over all analysed fields, the grey area shows the

mean ± the standard deviation. The green lines show the best fits through the data with their

R2 value in the upper left corner. The purple line (a) and circle (c) indicate the maximum NNS

and the Red dashed line shows the fit (Joseph & Cahalan, 1990) found.

tion. Accordingly, the underestimation of the number of large stratiform cloud decks does364

not harm the usefulness of the simulation.365

We conclude from this comparison that the simulated cloud populations are rep-366

resentative of subtropical marine conditions as typically occur in the Trade wind regions,367

and of the cumulus cloud population as observed on 20 December 2013 in particular. This368

motivates using the simulation output for further analysis of cloud spacing.369

3.4 Cloud spacing370

The four panels of Figure 10 show the size dependence for all four definitions of the371

Nearest Neighbor Spacing (NNS) as defined in Section 2.4 and as applied to the ICON372
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Figure 12. Number of clouds per cloud size, averaged over all snapshots used for analysis.

For the calculation of this histogram a constant bin-size is used. The horizontal dashed line refers

to the statistical analysis in Section 3.4.

LES fields. The results represent averages over the last six hours of the simulation. A373

least squares fit is made for the size dependence in each NNS definition, adopting a func-374

tional form that yielded the largest R2 value (proportion of total variance explained by375

the fit) for each definition. Unfortunately the limited availability of MODIS data for this376

day and area (only a single snapshot) yields a sample size too low to reliably carry out377

this cloud spacing analysis for the observational data. Accordingly, this is for now con-378

sidered a future research topic.379

Figure 10a shows the size dependence of NNS, which in the range < 600 m shows380

a linear relation, just like the fit reported by Joseph and Cahalan (1990). However, at381
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larger sizes the dependence is best captured by a logarithmic relation (y = 2.31+1.23 log10(x)),382

with an R2 value of 0.17. For the larger cloud sizes, the mean falls slightly below the fit.383

The limited amount of data for the statistical analysis might be a reason for this; cloud384

number decreases strongly with cloud size, so that the largest clouds only rarely occur.385

This is well visible in Figure 12 b, in which a dotted line at an average of 10 clouds per386

bin is added for reference. The cloud size associated with this sample size is about 2 km;387

note that this is also the size above which the NNS starts to deviate significantly from388

the proposed fit (see Figure 10a). This suggests that a number of 10 clouds is the min-389

imum sample size at which a clear functionality becomes apparent in the size dependence390

of the NNS.391

The spacing between clouds of a similar size, NNSσ (Eq. 2), is shown in Figure 10c.392

Again we find a monotonically increasing cloud spacing with cloud size; however, for this393

definition the relation is best captured by an exponential function (y = −2.66+5.90exp(x))394

with an R2 value of 0.51. Other differences with NNS include i) much larger spacing val-395

ues across the spectrum and ii) an increasing spread around the mean. The larger spac-396

ing of NNSσ in general, as compared to NNS, directly reflects that only a subset of all397

clouds in the population is considered when calculating the equal-size spacing; a lower398

density of clouds in an area is directly associated with a larger spacing. But the expo-399

nential increase with size of the NNSσ is not so trivial, and will be further interpreted400

in Section 4.3.401

It makes sense to compare the equal-size cloud spacing NNSσ to the theoretical lim-402

its NNSran and NNSreg, as defined in section 2.4. The results of this comparison are shown403

in Figure 11. NNSσ is very similar to NNSran; for all cloud sizes NNSran stays within404

the spread of NNSσ. At the same time NNSσ has significantly lower values than NNSreg.405

The spatial distribution of clouds of a given size is close to random, although some dif-406

ferences between small and big clouds can be distinguished. The equal-size spacing for407

small clouds is slightly smaller than what a random distribution (following a Poisson point408

process) would give, meaning that they are more clustered together. NNSσ for larger clouds,409

on the other hand, is larger than NNSran and resembles more a regular distribution.410

The impact of cloud edge spacing on the NNS is investigated in Figure 10b and d.411

When interpreting these results it is important to consider that the spacing for bigger412

clouds could be larger simply because their centers are spaced further apart, due to their413
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Figure 13. The averaged nearest neighbor size as a function of cloud size, using both the

cloud center spacing (solid) and the cloud edge spacing (dotted).

size. Spacing definitions NNSCE and NNSσ,CE , as defined by Equations 3 and 4, both414

reflect this effect. Using the cloud edge for the spacing leads to only minor differences415

for NNSσ, preserving its functional dependence but shifting it downwards somewhat (Fig-416

ure 10d). The exponential again yields the best fit (y = −2.60 + 5.33 exp(x)), albeit417

with a slightly lower R2 value of 0.46. In contrast, for NNSCE (Figure 10b), the spac-418

ing is not only smaller, the logarithmic dependence is also lost. After a first increase of419

NNSCE with cloud size, for clouds larger than about 400 meter a slight decrease of spac-420

ing with size is visible.421

4 Interpretation422

4.1 The impact of edge versus center spacing423

More insight into the strong impact of adopting cloud-edge spacing versus cloud-424

center spacing on the size dependence of NNS is provided by considering the size of the425

nearest neighbors, as shown in Figure 13. The size of the nearest neighbor can be de-426

termined using both definitions of spacing. For both methods, after a slight increase for427

the small cloud sizes, the size of the neighboring clouds weakly decreases with cloud size.428

However, while both definitions share this weak size-dependence, the feature that most429

catches the eye is that the averaged neighbor size is universally larger when using cloud430

edge spacing.431
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Figure 14. Normalized probability density of the size of the nearest neighbor cloud, for four

different size bins.

What explains this difference in neighbor size? When edge distancing is used to432

determine the nearest neighbor, the radius of the clouds starts to play a role. For big-433

ger clouds this matters more than for smaller clouds, because their edge is closer to an434

arbitrary cloud of interest compared to their center. As a result, the probability that a435

large cloud is closest is bigger when edge distancing is used. This differential impact for436

larger clouds also explains the strong impact of edge distancing on the functional depen-437

dence of NNS on size, as visible in Figure 10b. For larger clouds their radius makes up438

a larger fraction of the center-center distance; as a result, the neighbor spacing reduces439

more for larger clouds when switching from center-distancing (Figure 10a) to edge-distancing440

(Figure 10b). In effect, this counteracts the logarithmic increase in the center spacing.441

4.2 Logarithmic dependence: The role of small clouds442

At first glance Figure 13 seems to suggest that large clouds have smaller clouds as443

nearest neighbors, and vice versa. However, this dependence should be interpreted with444

some caution, because i) the averaging might obscure quite some spread, and ii) the de-445

pendence is weak to start with. To gain further insight the probability of having a neigh-446

bor of a certain size is investigated, as shown in Figure 14 for four different cloud sizes.447

For all cloud sizes considered, the probability of having a small cloud as nearest neigh-448

bor is by far the highest (note the logarithmic y-axis). Another interesting feature is that449
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the largest clouds do not even have large clouds as nearest neighbors; smaller clouds are450

always closer.451

In combination, these results go some way to explain why the NNS has a logarith-452

mic size-dependence, as shown in Figure 10a. Firstly, it is important to consider that453

the smallest clouds are by far the most abundant in the field (Figure 9), and are also more454

or less randomly distributed (Figure 11). This not only means that large clouds have pre-455

dominantly small clouds as nearest neighbors (Figure 14), but also that the cloud spac-456

ing that occurs most often in the domain is the equal-size distance of the smallest clouds.457

In this case this value is about 3.7 km, as marked by the purple circle in Figure 11. As458

a consequence of the abundance of this spacing, one expects that the NNS of the big-459

ger clouds can (on average) not be much larger than this value. If this reasoning holds,460

then the maximum NNS would on average also be 3.7 km, thus more or less acting as461

a limit value. The purple line shown in Figure 10a indeed seems to act as an upper bound-462

ary.463

With the equal-size spacing NNSσ increasing exponentially with size, the picture464

emerges that the large clusters are swimming in a sea of small clouds. This large spac-465

ing makes it more likely that smaller clouds (with smaller spacings) are present in be-466

tween the large clouds, hence the saturation for increasing cloud size. The spatial dis-467

tribution of the large clouds does not play a role in this, as long as their sample size is468

large enough and the small clouds indeed dictate the spacing. This argumentation is sum-469

marized schematically in Figure 15.470

The existence of an upper limit for the NNS would imply that the NNS will not471

increase anymore towards very large cloud sizes. Although the logarithmic function fits472

well to the data at hand, formally such saturation behaviour is not described by a log-473

arithmic function but an asymptotic one. However, determining in a statistically signif-474

icant way if the NNS actually saturates requires sampling many more large clouds, much475

larger than those present in these simulations. Accordingly, answering this question is476

for now considered future research. This could well be achieved by using an abundance477

of independent satellite snapshots at high resolutions covering large (ocean-covering) do-478

mains.479
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Figure 15. Schematic illustration of the difference in size dependence in the nearest neighnor

spacing between clouds of any size (NNS) and between clouds of equal size (NNSσ). In this ver-

tical cross-section the cloud outlines are indicated in black, while the mesoscale cell circulation

is shown as thick blue arrows. The two definitions of spacing that are shown apply to the largest

cloud size in the domain.

4.3 Exponential dependence: Mesoscale dynamics?480

The exponential dependence of the equal-size spacing NNSσ on cloud size is sta-481

tistically significant, and also robust for the various definitions of the spacing that are482

considered in this study. To our knowledge it has not been reported before, but it is rel-483

evant for the representation of convection in weather and climate models. As shown in484

Figure 10c, in this case the spacing between clouds increases from about 10km for clouds485

of 1km size via 50 km for 2 km-sized clouds to 100km for clouds of 3km. These spacings486

are similar to the grid spacings used in global circulation models. Accordingly, they should487

be taken into account in the parameterization of convection in the grey zone (Wyngaard,488

2004; Honnert et al., 2020), for example in the representation of stochastic effects due489

to subsampling (Neggers et al., 2019).490

The relevance of cloud spacing motivates gaining more insight into what processes491

might cause the exponential size-dependence. Convective clouds are the visible parts of492

a much larger convective cell, featuring a relatively narrow updraft area and a much wider493

area with compensating subsidence that can be either cloudy or cloud free (see Figure494

15). Such cells are typically observed in many moist convective regimes, not just fair-495

weather cumulus (Shao & Randall, 1996; de Roode et al., 2004). Our results suggest that,496

on average, bigger convective clouds need more space around them to form a convective497

cell, in a super-linear way. In the mesoscale, the dynamics of such cells markedly changes498
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due to the increasing occurrence of rain. For example, wider and deeper clouds are ob-499

served when cold pools occur driven by evaporation of rain (Schlemmer & Hohenegger,500

2014), while precipitation has also been reported to play a role in setting the spatial scale501

of stratiform convective cells (Zhou et al., 2018; Zhou & Bretherton, 2019). The “flower”502

type of cloud patterns in the Trades is also associated with such dynamics (Stevens et503

al., 2019). In general, the interaction of radiation with clouds and water vapor is also504

thought to play a key process in convective aggregation (Bretherton et al., 2005; Muller505

& Held, 2012). To summarize, these known impacts on mesoscale dynamics make pre-506

cipitation and radiative cooling prime candidate processes for controlling the exponen-507

tially increasing spacing with cloud size. Proving or disproving this hypothesis requires508

further research.509

5 Summary and Conclusions510

In this study Large-Eddy Simulations (LES) on super-large-domains are used to511

investigate how neighbor spacing in cumulus cloud populations depends on cloud size.512

To this purpose experiments with the ICON LES model of marine shallow cumulus cloud513

fields in the subtropical Atlantic as observed during the recent NARVAL South campaign514

were used. Cluster analyses were applied to derive size distributions of both cloud num-515

ber and cloud spacing. MODIS satellite imagery is first used to test the realism and rep-516

resentativity of the simulated cloud fields. Despite a slight underestimation of the max-517

imum cloud size, we find good agreement concerning the shape of the number distribu-518

tion. A multitude of instantaneous snapshots from the simulation are then used to di-519

agnose the cloud Nearest Neighbor Spacing (NNS), of which four possible definitions are520

considered. We find that in general the NNS increases with cloud size, a result which is521

in line with the findings of previous observational studies. However, the functional form522

of the size-dependence strongly depends on the exact definition of the NNS. Its classic523

definition, the spacing between clouds of any size, carries a well-defined logarithmic size-524

dependence. In contrast, only considering clouds of equal size yields cloud spacings that525

are larger but also carry a strong exponential size-dependence. Deeper investigation into526

this behavior reveals that the abundance of closely-spaced small clouds in the popula-527

tion is responsible for the logarithmic dependence. The exponential dependence is spec-528

ulated to express the role of mesoscale dynamics in controlling the width of the convec-529

tive cells of which the cumulus clouds are the visible parts.530
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The results obtained in this study are relevant for ongoing research into the spa-531

tial organization and aggregation of convection and its impact on climate (Wing, 2019).532

It has long been understood that cloud spacing is a key ingredient in this problem, as533

testified by the various metrics for the degree of spatial organization that have been pro-534

posed that are formulated in terms of the neighbor spacing (Weger et al., 1992; Tomp-535

kins & Semie, 2017). Most of these metrics depend on the spacing between clouds of any536

size. However, the equal-size spacing as investigated in this study could also be used to537

this purpose, yielding an alternative organizational metric that expresses different as-538

pects of this phenomenon. A recent example is the Borg metric as proposed by Neggers539

et al. (2019), which exclusively relies on equal-size cloud spacing (NNSσ) and expresses540

the degree of organization per cloud size. In the context of understanding cloud-climate541

feedbacks the exponential spacing might also be relevant, as it affects the impact of such542

cloud fields on radiation, in particular at low solar inclination angles.543

The results of this study also have a bearing on the parameterization of convec-544

tion in the grey zone (Wyngaard, 2004; Honnert et al., 2020). For example, the stochas-545

tic effects of subsampling on the cloud size distribution to be parameterized can be cap-546

tured by using the neighbor spacing (Neggers et al., 2019). The functional form in the547

size-dependence of the cloud spacing can thus inform the further development of con-548

vection schemes based on cloud size distributions (Neggers, 2015; Sakradzija et al., 2016;549

Hagos et al., 2018). Through metrics relying on the neighbor spacing, constants of pro-550

portionality in such schemes could be constrained against observed and simulated cloud551

fields, for example using machine learning techniques.552

This study has several limitations which could inspire future research efforts. Firstly,553

only relatively homogeneous conditions were considered, in order to focus on internal spa-554

tial organization in a cloud population. But heterogeneity in the larger-scale flow and555

surface can also affect the cloud spacing. Gaining insight into these impacts is needed556

to test the general applicability of the size dependence in cloud spacing as reported in557

this study. Secondly, the domain size could still artificially limit the maximum cloud size,558

which motivates considering even larger domain simulations. Another simplification in559

the experimental configuration is the use of 1D radiation in the simulation, which ignores560

three-dimensional effects that can change cloud alignment and spacing (Jakub & Mayer,561

2017). Finally, we only applied our spacing analysis to simulated cloud fields. To seek562

observational support for the obtained results, an obvious next step would be to derive563
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cloud spacing from multiple high-resolution satellite images. Such data is increasingly564

available, and is actively being used to investigate mesoscale spatial structures in low level565

cloud fields (Bony et al., 2020).566
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