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Abstract

There are different numerical models, such as the transmission-line matrix model or partially uniform knee model used to predict

Schumann radiation. This report introduces a new idea, and reasoning to the previously stated idea of locating Schumann

resonances on a single particle’s radiation pattern using a Golden ratio and their Octave, triad relationship. In addition, this

different prediction method for Schumann resonances derived from the first principle fundamental physics combining both

particle radiation patterns and the mathematical concept of the golden ratio spiral that expands at the rate of the golden ratio.

The idea of golden ratio spiral allows locating Schumann resonant frequencies on particle’s radiation patterns. The Octaves

allows us to predict the magnitude of other Schumann resonances on the radiation pattern of a single accelerated charged

particle conveniently by knowing the value of the initial Schumann resonant frequency. In addition, it also allows us to find and

match Schumann resonances that are on the same radiation lobe. Furthermore, it is important to find Schumann octaves as

they propagate in the same direction and have a higher likelihood of wave interference. Method of Triads together with Octaves

helps to predict magnitude and direction of Schumann resonant points without needing to refer to a radiation pattern plot.

As the golden ratio seems to be part of the Schumann resonances, it is helpful in understanding to know why this is the case.

The main method used in the reasoning of the existence of golden ratio in Schumann resonances is the eigenfrequency modes,

$ \sqrt{n(n+1)} $ in the spherical harmonic model. It has been found that eigenfrequency modes have two a start off points,

$ n 0 = 0 $ or $ n 0 = \frac{\sqrt{5}-1}{2} $ where the non-zero one is exactly the golden ratio. This allows to extend the

existing eigenfrequency modes to $ \sqrt{(n 0+n)ˆ2+(n o+n)} $ in order to explain why golden ratio exist within Schumann

resonances.
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Key Points:4

• There is a Golden ratio,
√
5−1
2 eigenfrequency offset, n0 describing ionospheric changes5

in the sequence of
√
n(n+ 1) eigenfrequency mode orders.6

• Complete eigenfrequency modes starts off at one of the two (0 and
√
5−1
2 intersec-7

tion points.8

• Complete eigenfrequency mode with the offset is
√

(n0 + n)2 + (no + n). Where,9

n0 = 0 or n0 =
√
5−1
2 .10
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Abstract11

There are different numerical models, such as the transmission-line matrix model or par-12

tially uniform knee model used to predict Schumann radiation. This report introduces13

a new idea, and reasoning to the previously stated idea of locating Schumann resonances14

on a single particle’s radiation pattern using a Golden ratio and their Octave, triad re-15

lationship. In addition, this different prediction method for Schumann resonances de-16

rived from the first principle fundamental physics combining both particle radiation pat-17

terns and the mathematical concept of the golden ratio spiral that expands at the rate18

of the golden ratio. The idea of golden ratio spiral allows locating Schumann resonant19

frequencies on particle’s radiation patterns. The Octaves allows us to predict the mag-20

nitude of other Schumann resonances on the radiation pattern of a single accelerated charged21

particle conveniently by knowing the value of the initial Schumann resonant frequency.22

In addition, it also allows us to find and match Schumann resonances that are on the same23

radiation lobe. Furthermore, it is important to find Schumann octaves as they propa-24

gate in the same direction and have a higher likelihood of wave interference. Method of25

Triads together with Octaves helps to predict magnitude and direction of Schumann res-26

onant points without needing to refer to a radiation pattern plot. As the golden ratio27

seems to be part of the Schumann resonances, it is helpful in understanding to know why28

this is the case. The main method used in the reasoning of the existence of golden ra-29

tio in Schumann resonances is the eigenfrequency modes,
√
n(n+ 1) in the spherical har-30

monic model. It has been found that eigenfrequency modes have two a start off points,31

n0 = 0 or n0 =
√
5−1
2 where the non-zero one is exactly the golden ratio. This allows32

to extend the existing eigenfrequency modes to
√

(n0 + n)2 + (no + n) in order to ex-33

plain why golden ratio exist within Schumann resonances.34

1 Introduction35

Schumann resonances are extremely low-frequency waves that bounce back and forth36

between the ground and the ionosphere of the earth. Schumann resonances originate mostly37

from lightning discharges. However, a contribution can also be from outer space. Schu-38

mann resonances were first predicted by Schumann in 1952 (Schumann, 01 Feb. 1952)39

and experimentally observed in 1960 (Balser & Wagner, 1960). In addition, Schumann40

resonances can be predicted, with numerical methods such as the partially uniform knee41

model (Pechony & Price, 2004) or with the Transmission Line Matrix model (Morente42

et al., 2003). Recently, Golden ratio, Golden ratio spiral, and rectangle all were combined43

and introduced to be capable of finding the magnitudes and locating Schumann resonances44

on a single particle radiation pattern (Yucemoz, 2020). The Golden ratio spiral is quite45

an important method, as it enables to know the location of Schumann resonant frequen-46

cies on a radiation pattern of a single charged particle that is consists of many frequen-47

cies from low to ionizing part of the spectrum. Furthermore, as an expansion to the idea48

of locating Schumann resonances using the Golden ratio spiral, the method of electro-49

magnetic octaves was introduced. Octaves exist in standing transverse waves and sound50

waves in the form of music discovered by the Pythagoras using the Pythagorean ratios51

(Crocker, 1964). One octave between the two waves is double frequency apart from each52

other, but they sound the same (Schellenberg & Trehub, 1994). In terms of an acceler-53

ated relativistic particle, radiation is emitted in the form of a forward-backward radi-54

ation pattern. This radiation pattern consists of lobes that are different from each other55

due to physical Bremsstrahlung and Doppler asymmetries (Yucemoz & Füllekrug, 2020).56

These lobes are closed loops, and they are bound to the charged particle. The standing57

transverse octave waves method predicts only the values of Schumann resonant frequen-58

cies that are located on the same radiation lobe as the input Schumann frequency point.59

These Schumann points are known as octaves of the input Schumann values. Triads are60

an extension of octaves. They help predict and understand Schumann resonant pairs and61

where they are located on a relativistic radiation pattern without having to calculate Oc-62
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tave values. As the golden ratio seems to be part of the Schumann resonances, it is help-63

ful in understanding to know why this is the case. The main method used in the rea-64

soning of the existence of golden ratio in Schumann resonances is the eigenfrequency modes,65 √
n(n+ 1) in the spherical harmonic model. The simple form spherical cavity model re-66

lates Schumann frequency to the eigenfrequency modes,
√
n(n+ 1) via fn = c

2πR

√
n(n+ 1).67

Where R is the radius of the planet, c is the speed of light, and n is the eigenfrequency68

mode order, n = 1, 2, 3, .... This definition, excludes the ionosphere conductivity and69

height (Simões et al., 2012, equation 1). A more comprehensive spherical cavity model70

including ionosphere conductivity and height is given in (Simões et al., 2012, equation71

2). In this contribution, it has been found that eigenfrequency modes have two a start72

off points, n0 = 0 or n0 =
√
5−1
2 where the non-zero one is exactly the golden ratio.73

This allows to extend the existing eigenfrequency modes to
√

(n0 + n)2 + (no + n) in74

order to explain why golden ratio exist within Schumann resonances. Hence, new spher-75

ical cavity model can be re-written and extended as, fn = c
2πR

√
(n0 + n)2 + (no + n).76

Where, n0 = 0 or n0 =
√
5−1
2 . The Golden ratio,

√
5−1
2 eigenfrequency offset, n0 de-77

scribes ionospheric changes.78

2 Analysis of Spherical Harmonics Model of Schumann Resonances79

for Golden Ratio80

Previously, the relationship between Schumann resonances and the golden ratio has81

been introduced. Schumann resonance notes from A to G on the radiation pattern are82

located using the Golden ratio spiral (Yucemoz, 2020).83

This section investigates and introduces new idea to why Schumann resonances might84

scale with the Golden ratio. In addition, existing eigenfrequency modes, n and
√
n(n+ 1)85

have been corrected by identifying, locating and incorporating two intersection points86

(0 and
√
5−1
2 ). These two intersection points are displayed in Figure 1. New complete87

definition for Eigenfrequency mode is
√

(n0 + n)2 + (no + n) Where, n0 = 0 or n0 =88 √
5−1
2 .89
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Figure 1. Two intersection points (0 and
√
5−1
2

. The new complete definition for Eigenfre-

quency mode is
√

(n0 + n)2 + (no + n) Where, n0 = 0 or n0 =
√

5−1
2

. Blue line defines the golden

ratio and multiples of golden ratio that increases with n. Red line defines the eigenfrequency

modes in spherical harmonics model of Schumann resonances. As can be seen, second, non-zero

intersection point of red and blue line is at exactly golden ratio,
√
5−1
2

. The n0 = 0 describes

Schumann resonant frequency excluding ionospheric changes. Whereas, n0 =
√

5−1
2

considers

ionospheric changes at the value of Golden ratio.

Value of the second intersection point shown in figure 1 is found to be
√
5−1
2 . This90

value is the definition of a golden ratio.91

The golden ratio, φ is written in quadratic form as φ2 − φ − 1 = 0. The roots92

of the quadratic equation can be found by taking, a = 1, b = −1, c = −1. Therefore,93

golden ratio have two values of φ = 1±
√
5

2 which are inverse of each other (as φ− 1 =94

1
φ ).95

3 Discussion & Conclusion96

The new complete definition for eigenfrequency mode,
√

(n0 + n)2 + (no + n) means97

that Schumann resonant frequencies can exist with the scale of golden ratio. Definition98

of eigenfrequency mode order, n remains the same and have values of n = 1, 2, 3, .... If99

the start off is at n0 = 0, the Schumann resonant frequency description exclude iono-100

spheric changes. However, if the start off is at n0 =
√
5−1
2 , ionospheric changes at the101

value of Golden ratio and Schumann resonant frequencies scale with a Golden ratio. This102

can be shown as,

√
(
√
5−1
2 + n)2 + (

√
5−1
2 + n). When n = 1, eigenfrequency mode is103

exactly equal to the value of golden ratio, φ. Hence,
√

(φ)2 + (φ) where, φ is the golden104

ratio. As value of n increases, eigenfrequency modes are the multiples of the golden ra-105

tio.106

Overall, ionospheric changes are approximately at a value of Golden ratio.107
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