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Abstract

Work in recent decades has demonstrated a robust relationship between tropical precipitation and the column relative humidity

(CRH). This study identifies a similar relationship between CRH and the atmospheric cloud radiative effect (ACRE) calculated

from satellite observations. Like precipitation, the ACRE begins to increase rapidly when CRH exceeds a critical value near

75\%. We show that the ACRE can be estimated from CRH, similar to the way that CRH has been used to estimate

precipitation. Our method reproduces the annual mean spatial structure of ACRE in the tropics, and skillfully estimates the

mean ACRE on monthly and daily time scales in six regions of the tropics. We propose that the exponential dependence of

precipitation on CRH is a result of cloud-longwave feedbacks, which facilitate a shift from convective to stratiform conditions.
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Key Points:5

• The atmospheric cloud radiative effect (ACRE) depends on the column relative6

humidity (CRH) in a way similar to precipitation7

• The CRH skillfully estimates ACRE on annual, monthly, and daily time scales in8

the tropics9

• ACRE-cloud feedback suggested to explain the CRH-precipitation relationship by10

facilitating a shift from convective to stratiform rainfall11
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Abstract12

Work in recent decades has demonstrated a robust relationship between tropical13

precipitation and the column relative humidity (CRH). This study identifies a similar14

relationship between CRH and the atmospheric cloud radiative effect (ACRE) calculated15

from satellite observations. Like precipitation, the ACRE begins to increase rapidly when16

CRH exceeds a critical value near 75%. We show that the ACRE can be estimated from17

CRH, similar to the way that CRH has been used to estimate precipitation. Our method18

reproduces the annual mean spatial structure of ACRE in the tropics, and skillfully es-19

timates the mean ACRE on monthly and daily time scales in six regions of the tropics.20

We propose that the exponential dependence of precipitation on CRH is a result of cloud-21

longwave feedbacks, which facilitate a shift from convective to stratiform conditions.22

Plain Language Summary23

The tropical precipitation rate can be estimated using a quantity called the col-24

umn relative humidity (CRH), which quantifies how close the atmosphere is to becom-25

ing saturated with water. We show that the CRH can also be used to estimate the lo-26

cal radiative heating of the atmosphere due to clouds. Our simple method can reproduce27

the average cloud radiative heating of the tropical atmosphere, and we use it to estimate28

the monthly average and daily average heating in six different tropical regions. We sug-29

gest that the relationship between precipitation and CRH is caused by cloud-radiative30

heating, which promotes precipitation in large-scale systems.31

1 Introduction32

The effects of clouds on the Earth’s radiation balance can be quantified using the33

cloud radiative effect (CRE), defined as the difference between full-sky and clear-sky ra-34

diative fluxes (Ramanathan, 1987). The CRE manifests at the top of the atmosphere,35

where clouds increase the reflection of solar radiation while they simultaneously enhance36

greenhouse warming; at the surface, where cloud shading prevents solar absorption at37

the ground at the same time as clouds emit infrared radiation downwards; or in the at-38

mosphere itself, where clouds warm or cool locally by absorbing or emitting radiation.39

A large body of work has investigated the impact of this atmospheric cloud radiative ef-40

fect (ACRE) on the Earth’s global circulation patterns (Slingo & Slingo, 1988; Randall41
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et al., 1989; Sherwood et al., 1994; Stevens et al., 2012; Li et al., 2015; Voigt & Albern,42

2019). For example, the ACRE has been found to widen the subsiding branches of the43

Hadley cells and to narrow the Intertropical Convergence Zone (ITCZ) in idealized nu-44

merical simulations (Harrop & Hartmann, 2016; Popp & Silvers, 2017; Albern et al., 2018;45

Dixit et al., 2018).46

The longwave ACRE has been identified as an important feedback mechanism in47

the context of the persistence of convective self-aggregation, the initial development of48

tropical cyclones, and the Madden–Julian Oscillation (Bretherton et al., 2005; Chikira,49

2014; Arnold & Randall, 2015; Wolding et al., 2016; Wing et al., 2017; Khairoutdinov50

& Emanuel, 2018; Emanuel, 2019; Ruppert et al., 2020; Benedict et al., 2020; Medeiros51

et al., 2021). The longwave ACRE can be a strong localized atmospheric heating which52

induces a thermally direct circulation connecting humid and dry regions. This circula-53

tion transports moisture against the gradient into humid regions, which allows for in-54

creased precipitation and cloudiness.55

Observational and modeling studies in recent decades have shown a strong link be-56

tween atmospheric humidity and tropical precipitation (Zeng, 1999; Raymond, 2000; Brether-57

ton et al., 2004; Raymond & Zeng, 2005; Raymond et al., 2009; Ahmed & Schumacher,58

2015; Rushley et al., 2018; Powell, 2019; Wolding et al., 2020). Bretherton et al. (2004)59

demonstrated that the mean precipitation rate derived from satellite observations was60

a strong function of the column relative humidity (CRH, defined as the ratio between61

the water vapor path and saturation water vapor path). They showed that tropical pre-62

cipitation could be modeled as an exponential function of CRH, and this relationship63

has been used in many applications including theoretical studies of the MJO (see Rushley64

et al. (2018), and references therein). More recently, Ahmed and Schumacher (2015) used65

observations from the DYNAMO field campaign (Yoneyama et al., 2013) and satellite66

estimates of precipitation to show that the rapid increase of precipitation in humid re-67

gions is due to stratiform rather than convective rainfall. Furthermore, they found that68

the area covered by stratiform precipitation accounted for much of the non-linearity in69

the precipitation-humidity relationship, while the area covered by convective precipita-70

tion was only weakly non-linear with CRH.71

Our goal in this study is to suggest a link between longwave-cloud feedbacks and72

the observed relationship between tropical precipitation and CRH, which will be further73
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examined in a companion paper. Section 2 provides a description of data. In section 3,74

the ACRE is shown to be a strong function of the CRH, which suggests that the CRH75

can be used to estimate the ACRE. This possibility is explored in section 4, where the76

estimate is evaluated on annual mean, monthly, and daily time scales. We also suggest77

that the exponential relationship between CRH and tropical precipitation is a necessary78

consequence of the longwave cloud feedback described in previous studies which facil-79

itate a shift from convective to stratiform precipitation. Conclusions are discussed in sec-80

tion 5.81

2 Data and Methods82

The analysis in this study utilizes two primary data sources. Top of atmosphere83

and surface fluxes of longwave and shortwave radiation come from the CERES SYN1deg84

Ed4a product (Doelling et al. (2013), hereafter CERES). CERES data were downloaded85

on a 1◦×1◦ grid at a daily mean temporal resolution. Radiative fluxes were used to cal-86

culate the CRE as the difference between full-sky and clear-sky fluxes. The CRE was87

evaluated at the top of atmosphere and at the surface, and the ACRE was calculated88

as the difference between the two.89

Reanalysis fields of temperature and specific humidity were downloaded from ERA590

(Hersbach et al., 2018, 2020) at a temporal resolution of 6 hours on the native 0.25◦×0.25◦91

grid. The CRH was calculated as92

CRH =

∫ ps

pt
qdp∫ ps

pt
q∗(T )dp

, (1)

where q∗ is the saturation vapor pressure. The ERA5 data were averaged to daily means93

and to the coarser 1◦×1◦ CERES grid.94

Both data sources span the same 19-year period from January 1, 2001 through De-95

cember 31, 2019. Analysis was restricted to the tropical belt ranging from 30◦S to 30◦N.96

In addition to the tropical belt, the analysis was repeated for six subset regions which97

represent the Indo-Pacific warm pool, the Pacific ITCZ, the south Pacific convergence98

zone (hereafter SPCZ), the Pacific cold tongue, the Atlantic ITCZ, and the Atlantic cold99

tongue.100
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In addition to these two sources, precipitation rates from the TRMM Multisatel-101

lite Precipitation Analysis 3B42 product (Huffman et al. (2016) hereafter TRMM) were102

used to show a climatology and to visualize the exponential pickup of precipitation with103

CRH described in the introduction. The TRMM data cover the same 19-year period and104

were averaged to align with the 1◦×1◦ CERES grid.105

3 ACRE binned by CRH106

The tropical band ranging from 30◦S to 30◦N contains regions with distinct dis-107

tributions of precipitation and humidity (Figs. 1.a and 1.b) These include regions of warm108

SSTs with enhanced convection (such as the Indo-Pacific warm pool, the SPCZ, and the109

Atlantic and Pacific portions of the ITCZ), and regions of cool SSTs with suppressed con-110

vection (such as the Atlantic and Pacific cold tongues). Land surface covers approximately111

25% of this belt which introduces additional complexity due to factors such as a stronger112

diurnal cycle and monsoons.113

To see how precipitation and ACRE vary with CRH over the tropical belt we per-114

form a binning analysis, following the method used in previous studies. The area-weighted115

average TRMM precipitation rate was found for each CRH bin of width 2% ranging from116

0% to 100%. The 25th and 75th percentiles were also found as a measure of the spread117

of precipitation in each bin. This procedure was repeated for the net, longwave, and short-118

wave ACRE over the entire tropical belt with results shown in Figs 1.c through 1.f.119

The net ACRE (Fig. 1.d) is negative or zero when the CRH is small, due to long-120

wave and shortwave contributions which mostly offset (Figs 1.e and 1.f). When the CRH121

becomes large the longwave component changes sign and begins to increase. The short-122

wave component increases as well, but at a slower rate. The combination of the two terms123

leads to a rapid increase of the net ACRE above a threshold of about 60% CRH. The124

rapid pickup in ACRE is evocative of the dependence of precipitation on CRH (Fig. 1.c).125

As will be discussed in section 4.3, this similarity is not a coincidence, but is likely the126

result of a longwave-cloud feedback in humid regions of the tropics that promotes a shift127

from convective to stratiform precipitation. While the precipitation appears to depend128

exponentially on the CRH, dependence of the ACRE more closely resembles a linear re-129

lationship above the threshold level.130
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Figure 1. (a): Annual mean precipitation rate from 2001 through 2019, calculated using the

TRMM 3b42 product (Huffman et al., 2016). Boxes 1 - 6 show the boundaries of six regions used

in section 4.2, with specific boundaries recorded in Tbl. S1. (b): Annual mean column relative

humidity calculated from ERA5 reanalysis. (c): TRMM Precipitation rate binned by CRH for

the belt ranging from 30◦S to 30◦N. The shaded area shows the region bounded by the 25th and

75th percentiles for each CRH bin. (d): Same as (c), but for the ACRE. (e) and (f): ACRE

from (d), decomposed into longwave and shortwave components.
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A comparison of Figs. 1.e and 1.f shows that the ACRE is largely determined by131

the absorption of longwave radiation, consistent with previous studies (Slingo & Slingo,132

1988; Allan, 2011). When this analysis is repeated for the six regions shown in Fig. 1.a,133

nearly identical curves are returned, even though the regions have markedly different dis-134

tributions of CRH (Fig. S1 and S2 of supporting information). The only obvious differ-135

ence in the regional curves is due to the influence of marine stratus clouds in the cold136

tongue regions (Klein & Hartmann, 1993), which have a large shortwave ACRE and tend137

to be found in regions with low CRH.138

4 Estimating ACRE from CRH139

The 25th and 75th percentiles of the ACRE in Fig. 1.d are close to the mean value,140

which suggests little spread in the distribution of ACRE at a particular CRH. This in-141

dicates that the CRH may be used to estimate the ACRE, similar to how it has been142

used to estimate tropical precipitation. To estimate the ACRE, the daily mean CRH at143

a grid cell at a particular timestep was mapped onto the curves in Figs. 1.e and 1.f to144

give an estimate of the longwave and shortwave components. These two fields were then145

added together to give the daily mean net ACRE at each grid cell.146

It is possible that a different method which uses an optimized rectifier or exponen-147

tial fit may give a better estimation of the ACRE. Additionally, a method that takes into148

account the total condensed liquid or ice water path to help separate low and high clouds149

may more accurately estimate the ACRE and help to remove regional biases. These pos-150

sibilities are left for future work because our purpose here is only to demonstrate that151

the CRH can plausibly estimate the ACRE.152

4.1 Time Mean Estimation of ACRE153

Fig. 2.a shows the annual mean ACRE calculated from the observed CERES fluxes.154

The ACRE is positive over the Indo-Pacific, SPCZ and ITCZ regions due to the absorp-155

tion of longwave radiation by convective clouds and organized systems. In the cold-tongue156

regions the reflection of sunlight by marine stratus clouds reduces the shortwave radi-157

ation that would otherwise been absorbed, which leads to a negative ACRE. The cool-158

ing albedo effect is smaller than the warming greenhouse effect so that the ACRE av-159

eraged over the 30◦S to 30◦N belt is 15.193 W m−2. In Fig. 2.b the time mean of the160
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Figure 2. (a): Annual mean ACRE calculated from CERES radiative fluxes. (b): Same as

(a), but estimated from ERA5 column relative humidity. (c): Difference calculated as panel (b)

minus panel (a).
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estimated ACRE is shown. The estimated ACRE largely reproduces the same spatial161

structure as the observed ACRE, which includes large positive values over the Indo-Pacific,162

SPCZ, and ITCZ regions, and negative values in the marine stratus regions. The annual163

mean ACRE estimated from CRH is 15.203 W m−2, which is an error of only about 0.01164

W m−2 compared to the ACRE calculated from satellite observations.165

The difference between the estimated and observed ACRE is shown in Fig. 2.c, which166

shows that the small error in the domain averaged ACRE is due to positive and nega-167

tive errors that largely cancel. The estimation method appears to have a positive bias168

in the east Pacific relative to the west Pacific. This is partially due to the longwave CRE169

at the top of the atmosphere (not shown), and is consistent with Kubar et al. (2007) who170

found that the temperature of high tropical clouds in the east Pacific was about 5 K warmer171

compared to similar clouds in the west Pacific. In addition, the estimation method gives172

negative errors over land compared to mostly positive errors over oceans. Although the173

errors discussed here are not negligible, we emphasize that this is merely the first attempt174

to estimate the ACRE from the CRH.175

4.2 Accuracy of the Estimation on Shorter Time Scales176

The estimation largely reproduces the annual mean spatial structure of the ACRE.177

How well does it perform on shorter time scales? To answer this, Fig. 3 compares the178

observed and estimated monthly mean ACRE anomaly for each of the six regions out-179

lined in Fig. 1.a. Anomalies were calculated as the monthly average ACRE over the re-180

gion minus the annual mean ACRE for that region for each month, which effectively re-181

moves the seasonal cycle. The agreement between the observed and estimated ACRE182

was evaluated using Pearson’s R2 correlation, which is shown in the lower left-hand cor-183

ner of each panel.184

The Indo-Pacific, SPCZ, and both ITCZ regions each show a high degree of cor-185

relation, with R2 greater than either 0.6 or 0.7. The estimation method is able to account186

for the large peaks in magnitude in the warm pool and pacific ITCZ regions in 2010 and187

2015 to 2016 which are likely associated with the strong El Niño events of those years188

(National Weather Service (2020), see Figs. S3 through S6 from supporting information).189

The correlation is slightly lower for the cold tongue regions, with R2 equal to 0.56 and190

0.515 in the Pacific and Atlantic, respectively. Together, this indicates that more than191

–9–
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Figure 3. (a) De-seasonalized time series of monthly mean ACRE anomaly averaged over the

Indo-Pacific warm pool. Black line shows the ACRE anomaly observed from CERES satellite

fluxes, while the red line shows the ACRE anomaly estimated from ERA5. (b)-(f): same as (a),

but averaged over, respectively, the pacific ITCZ, the SPCZ, the Pacific cold tongue, the Atlantic

ITCZ, and the Atlantic cold tongue. Outlines of the six regions are shown as boxes in Fig. 1

Each r leading to the calculation of an R2 is significant at the 0.05 level.
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50% of the variance of the ACRE on monthly time scales can be explained by the CRH192

in each of these regions.193

The R2 correlations for the monthly mean time series are recorded in Tbl. S1, along-194

side the R2 correlations for the daily mean time series, which were constructed in much195

the same way. On daily time scales the agreement is lower than monthly time scales, al-196

though the correlation is still greater than 0.6 in the warm pool, and greater than 0.4197

in all regions except for the Pacific cold tongue. From this, it appears that the CRH method198

is shows some skill at estimating the ACRE even on time scales shorter than a month.199

4.3 Discussion200

What accounts for this relationship between CRH and the ACRE? We believe that201

the explanation lies in the curves in Figs. 1.c and 1.d, which show that precipitation and202

ACRE depend on CRH in a similar way. Both are small when the CRH is small, and203

both increase rapidly when the CRH exceeds a critical threshold. We suggest that this204

similarity is more than just coincidence, and that the dependence of precipitation on CRH205

is linked to the ACRE because of cloud-longwave feedbacks which have been recently iden-206

tified in the context of organized tropical systems.207

In a companion paper, Needham and Randall (2021) discuss this type of feedback208

in the context of a set of idealized simulations. They find that the ACRE in extremely209

humid regions is powerful enough to change the sign of the net radiation tendency, which210

leads to an atmospheric energy convergence. The net heating drives stratiform ascent211

which lifts water vapor and moistens the troposphere (Chikira, 2014; Ahmed & Schu-212

macher, 2015; Jenney et al., 2020). Through mass continuity the ascent leads to low-level213

convergence which transports water vapor into regions that are already quite humid (Riehl214

& Malkus, 1958; Neelin & Held, 1987), which provides moisture to continue the feed-215

back.216

We argue that the exponential dependence of the precipitation rate on the CRH217

is a result of this cloud-longwave feedback. The ascent driven by ACRE favors a shift218

from isolated convection to more organized systems that are characterized by stratiform219

precipitation. As discussed by Ahmed and Schumacher (2015), the area covered by strat-220

iform precipitation increases exponentially at high CRH, and accounts for the charac-221

teristic pickup of the precipitation rate above the critical threshold.222
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5 Conclusions223

We have shown that the ACRE varies with the CRH in a way that is similar to the224

well-documented relationship between precipitation and CRH. When the ACRE from225

1◦×1◦ daily mean satellite observations is binned by the CRH, the net ACRE increases226

rapidly above a critical threshold, with very little spread in the distribution of ACRE227

at a particular CRH. This suggests that the ACRE can be estimated from the CRH, in228

the same way that CRH has been used to estimate precipitation. Our estimation method229

is able to reproduce the large-scale annual mean spatial distribution of ACRE in the trop-230

ics, which includes a well defined ITCZ and Indo-Pacific warm pool. The difference in231

the observed and estimated ACRE is 0.01 W m−2 averaged over the domain, due to pos-232

itive and negative errors which mostly cancel. Comparisons of the observed and estimated233

regional time series of ACRE show a high degree of agreement on monthly time scales,234

with slightly less agreement on daily time scales. The method is also able to reproduce235

large peaks in the magnitude of the ACRE in the ITCZ and warm pool regions associ-236

ated with ENSO variability. Generally the method works better in regions associated237

with deep convective clouds, compared to the cold tongue regions that are characterized238

by marine stratus clouds.239

An explanation for the exponential relationship between precipitation and CRH240

is proposed in the form of a moisture feedback driven by ACRE. Cloud-longwave heat-241

ing leads to stratiform rising motion and moisture convergence, which in turn lead to242

the formation of more clouds. The rising motion coincides with a shift from convective243

to stratiform precipitation, which has been identified as a key component of the non-linear244

relationship between precipitation and CRH. This and other aspects of tropical cloud-245

longwave feedbacks are discussed further in a companion paper.246
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Text S1: Regions of the Tropics and Distributions of CRH

The latitude and longitude boundaries for the six tropical regions used in the main text

are recorded in Tbl. S1. The regions were selected to give a range of underlying sea surface

temperature (SST) and column relative humidity (CRH) distributions (see Fig. S1). The

Indo-Pacific warm pool, south Pacific convergence zone, Pacific ITCZ and Atlantic ITCZ

regions are characterized by time-mean low-level moisture convergence which favors deep

convection. In contrast, the Atlantic and Pacific cold tongue regions are characterized by
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cold upwelling SSTs and are situated under the descending branch of the Hadley cells.

The cold SSTs and subsiding motion both tend to suppresses deep convection and favor

the formation of marine stratocumulus clouds.

Probability density functions (PDFs) of column relative humidity (CRH) are included

in the six panels of Fig. S1. The CRH appears to follow a bimodal distribution, with a

“humid peak” near 80% and a “dry peak” near 40%. The Indo-Pacific and ITCZ regions

have a single mode near the humid peak, while the cold tongue regions have a single

moad near the dry peak. Only the SPCZ region exhibits the bimodal behavior of the

wider tropical belt.

Text S2: ACRE Binned by CRH for Six Tropical Regions

Fig. S2 shows the net ACRE binned by the CRH for the six regions specified in the

main text and in Tbl. S1. Each panel shows a rapid increase in magnitude above a

threshold of about 60%. This is consistent with the curve of the ACRE vs. CRH over the

entire tropical belt from 30◦S to 30◦N (see Fig. 1.d in the main text).

As mentioned in the main text, the curves for the cold tongue regions (Fig. S2.e and

S2.f) each show the influence of marine stratus clouds. These clouds occur in relatively

dry conditions under the subsiding branches of the hadley cells. Because they are bright,

they reflect a large amount of solar radiation and have a large negative ACRE. This is

illustrated in Fig. S2.e and S2.f as the, negative extrema near 20$ CRH that is absent in

the other panels. This likely contributes to the error in the estimation method in these

regions (Fig. S2 of the main text).
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Text S3: Composite ENSO Analysis of Estimated ACRE

The time series analysis of the main text (Fig. 3) suggests that the estimation method

may be more biased in the Pacific ITCZ, Indo-Pacific Warm Pool or Pacific cold tongue

regions during different phases of ENSO variability.

To investigate this, we repeat the calculation of Pearson’s R2 correlation for each of the

six regions, composited by ENSO phase. We use the Oceanic Niño Index (ONI, National

Weather Service (2020)) as our metric for ENSO phase. An El Niño occurs when the ONI

exceeds 0.5 K for 5 consecutive months, while a La Niña occurs when the ONI is less than

-0.5 for 5 consecutive months. Fig. S3 shows a time series of the ONI aligned with the

19-year period used in the main texts. El Niño (La Niña) periods are colored red (blue).

For the sake of completeness the analysis is repeated for each of the six regions (Figs. S4

through S9), but we focus only on the Pacific ITCZ (Fig. S4) and Indo-Pacific warm pool

(Fig. S5), which show the most clear dependence on ENSO.

The top left panel of Fig. S4 shows the correlation between the estimated (y-axis)

and observed (x-axis) monthly ACRE anomalies in the Pacific ITCZ region, with data

points colored according to the ENSO phase. A first look shows a relationship between

ENSO phase as ACRE anomaly in this region: El Niño conditions (red) support enhanced

convection due to warmer SSTs in the eastern equatorial Pacific, leading to positive ACRE

anomalies, while La Niña conditions (blue) suppress convection due to cooler SSTs, leading

to negative anomalies. In the Indo-Pacific regions (Fig. S5), the opposite occurs. In

this region, El Niño is associated with cooler SSTs, while La Niña is associated with

warmer SSTs. The result is that El Niño (red) months in Fig. S5 are associated with

April 21, 2021, 10:24am
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negative ACRE anomalies, and La Niña (blue) months are associated with positive ACRE

anomalies.

The R2 correlation is 0.401 during La Niña in the Pacific ITCZ, while it is above

0.7 during the neutral and Niño phases in that region (bottom row of Fig. S4). This

suggests that the estimation method is less accurate in this region during La Niña due to

a lower frequency of organized convection at the expense of marine stratus clouds. The

R2 correlations do not seem to vary with ENSO in the Indo-Pacific region, or in any of

the other regions. There is a slight difference in the Atlantic Cold Tongue region, but this

is likely due to noise, as the anomalies all centered around zero during each ENSO phase

(Bottom row of Fig. S9)
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Figure S1. (a) Probability density functions of column relative humidity for the Indo-Pacific

warm pool (red line) and over the entire 30◦S-30◦N tropical belt. (b)-(f): same as (a), but for,

respectively, the pacific ITCZ, the SPCZ, the Pacific cold tongue, the Atlantic ITCZ, and the

Atlantic cold tongue.
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Figure S2. Net (longwave plus shortwave) ACRE binned by the CRH for the six tropical

regions specified in Fig. 1.a of the main text.

Table S1. Pearson’s R2 correlation between ACRE calculated from CERES observations and

ACRE estimated from ERA5 CRH at monthly and daily time-scales for each of the six tropical

sub regions. Also included are the latitude and longitude boundaries for each region.
Regional Extent Monthly R2 Daily R2

Indo-Pacific Warm Pool 70◦E-170◦W, 20◦S-20◦N 0.775 0.624
Pacific ITCZ 150◦E-100◦W, 0◦-15◦N 0.753 0.569
SPCZ 150◦E-130◦W, 30◦S-0◦ 0.616 0.486
Pacific Cold Tongue 130◦W-95◦W, 30◦S-0◦ 0.56 0.39
Atlantic ITCZ 55◦W-15◦E, 5◦S-15◦N 0.653 0.507
Atlantic Cold Tongue 40◦W-20◦E, 30◦S-5◦N 0.515 0.421
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Figure S3. Oceanic Niño index, showing centered, 3-month running average SST anomaly

over the Ni no 3.4 region of the eastern Pacific.

April 21, 2021, 10:24am



X - 8 NEEEDHAM AND RANDALL: ACRE AND PRECIPITATION

Figure S4. Correlation between ACRE observed from CERES fluxes (horizontal) with ACRE

estimated from ERA5 CRH for the Pacific ITCZ region, as described in the main text. The

color of the dots in each panel indicates the ONI phase (See Fig. S3) associated with each

data point: red indicates El Niño, white indicates neutral, and blue indicates La Niña. Top

Left: Correlation for all months. Top Center: Correlation for neutral and Niña. months only.

Top Right: Correlation for Niño and neutral months only. Bottom Left: Correlation for

Niña months only. Bottom Center: Correlation for neutral months only. Bottom Right:

Correlation for Niño months only. In each panel, the thick black line shows the line of best fit

(least-squares regression), and the dashed diagonal line shows a perfect one-to-one correlation.
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Figure S5. Same as Fig. S4, but for the Indo-Pacific Warm Pool
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Figure S6. Same as Fig. S4, but for the Pacific cold tongue
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Figure S7. Same as Fig. S4, but for the Atlantic ITCZ region
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Figure S8. Same as Fig. S4, but for the SPCZ region
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Figure S9. Same as Fig. S4, but for the Atlantic cold tongue region
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