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Abstract

The future uncertainty and complexity of alternative socioeconomic and climatic scenarios challenge the model-based analysis

of sustainable development. Obtaining robust insights requires a systematic processing of uncertainty and complexity not only

in input assumptions, but also in the diversity of model structures that simulates the multisectoral dynamics of human and

Earth system interactions. Here, we implement the global change scenarios, i.e., the Shared Socioeconomic Pathways and

the Representative Concentration Pathways, in a feedback-rich, integrated assessment model of system dynamics to explore

the impacts of model uncertainty and structural complexity on the projection of these scenarios for sustainable development.

Our modelling shows internally consistent scenario storylines across sectors, yet with quantitatively different realisations of

these scenarios compared to other models. It also demonstrates the sensitivity of sustainability trajectories related to food

and agriculture, well-being, education, energy, economy, sustainable consumption, climate, and biodiversity conservation to the

modelled scenarios, driven by the complex and uncertain multisectoral dynamics underlying the SDGs. The results highlight

the importance of enumerating global change scenarios and their uncertainty exploration with a diversity of models of different

input assumptions and structures to capture a wider variety of future possibilities and sustainability indicators.
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Non-Technical Summary 

Models are increasingly used to inform the transformation of human-Earth systems towards a 

sustainable future, aligned with the Sustainable Development Goals (SDGs). We argue that a greater 

diversity of models ought to be used for sustainability analysis to better address complexity and 

uncertainty. We articulate the steps to model global change socioeconomic and climatic scenarios with 

new models. Through these steps, we generate new scenario projections using a human-Earth system 

dynamics model. Our modelling brings new insights about the sensitivity of sustainability trends to 

future uncertainty and their alignment with or divergence from previous model-based scenario 

projections. 

Technical Summary  

The future uncertainty and complexity of alternative socioeconomic and climatic scenarios challenge 

the model-based analysis of sustainable development. Obtaining robust insights requires a systematic 

processing of uncertainty and complexity not only in input assumptions, but also in the diversity of 

model structures that simulates the multisectoral dynamics of human and Earth system interactions. 

Here, we implement the global change scenarios, i.e., the Shared Socioeconomic Pathways and the 

Representative Concentration Pathways, in a feedback-rich, integrated assessment model of human-

Earth system dynamics, called FeliX, to serve two aims: (1) to provide modellers with well-defined 

steps for the adoption of established scenarios in new integrated assessment models; (2) to explore the 

impacts of model uncertainty and its structural complexity on the projection of these scenarios for 

sustainable development. Our modelling shows internally consistent scenario storylines across sectors, 

yet with quantitatively different realisations of these scenarios compared to other integrated assessment 

models due to the new model’s structural complexity. The results highlight the importance of 

enumerating global change scenarios and their uncertainty exploration with a diversity of models of 

different input assumptions and structures to capture a wider variety of future possibilities and 

sustainability indicators. 

Social Media Summary 

New study highlights the importance of global change scenario analysis with new, SDG-focused 

integrated assessment models 

Keywords 

Scenario, Integrated assessment, System dynamics, SDGs, Sustainability, Uncertainty. 
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1 Introduction 

The 17 Sustainable Development Goals (SDGs) under the United Nations 2030 Agenda for 

Sustainable Development represent global ambitions for achieving economic development, social 

inclusion, and environmental stability (UN, 2015). Progressing towards the diverse and ambitious 

SDGs requires compromising between competing sustainability priorities and harnessing synergies 

over deeply uncertain, long-term futures (Bandari et al., 2021; Pradhan et al., 2017). To assist in 

reasoning and planning, computer models and simulations, referred to as integrated assessment models 

(IAMs) (van Beek et al., 2020), models of multisector dynamics (Jafino et al., 2021), or transitions 

models (Köhler et al., 2018; Moallemi & de Haan, 2019), have been effectively used to systematically 

analyse the interactions of conflicting, inter-connected sustainability priorities in integrated human-

Earth systems  (Calvin & Bond-Lamberty, 2018) and to navigate actionable compromises between 

competing agendas (Gold et al., 2019). These modelling efforts aim to advance the understanding and 

analysis of integrated human-Earth system co-evolution over time by bridging sectors, and support 

societal transformation planning through computational analysis. 

A diverse set of models has been used to inform sustainable development (Verburg et al., 

2016), including input-output models (Wiedmann, 2009), macro-economic and optimisation models 

(DeCarolis et al., 2017), computational general equilibrium models (Babatunde et al., 2017), system 

dynamics models (Moallemi et al., 2021; Pedercini et al., 2019), and bottom-up agent-based models 

(Hansen et al., 2019). Modelling applications have spanned different aspects of the SDGs such as food 

and diet (Bijl et al., 2017; Eker et al., 2019), climate adaptation (JGCRI, 2017; Mayer et al., 2017; 

Small & Xian, 2018), land-use (Doelman et al., 2018; Gao & Bryan, 2017), energy (Rogelj et al., 

2018a; Walsh et al., 2017), transportation (Moallemi & Köhler, 2019), and biodiversity conservation 

(Mace et al., 2018). Models have also assessed the nexus of (often limited) interacting SDGs (Randers 

et al., 2019) such as food-energy-water (Van Vuuren et al., 2019), land-food (Gao & Bryan, 2017; 

Obersteiner et al., 2016), and land-food-biodiversity (Leclère et al., 2020), amongst others. Model-

based analysis of sustainable development over long timescales is, however, challenged by the 

conjunction of deep uncertainty around future global socioeconomic and climatic conditions and the 

complexity of integrated human-Earth system response under these uncertain conditions.  

To address these challenges, past studies have often used scenarios to explore the plausible 

trajectories of system behaviour according to different sets of assumptions about the future (Guivarch 

et al., 2017; Moss et al., 2010; Trutnevyte et al., 2016). Within the context of climate change and 

sustainability science, the Shared Socioeconomic Pathways (SSPs) (O’Neill et al., 2017; Riahi et al., 

2017) and the Representative Concentration Pathways (RCPs) (Meinshausen et al., 2020; van Vuuren 

et al., 2011), have dominated scenario studies over the past decade (O’Neill et al., 2020). They project 

futures based on different challenges to mitigation and adaptation through five possible socioeconomic 

pathways (SSPs 1 to 5) and five different greenhouse gas emissions trajectories (RCPs 1.9, 2.6, 4.5, 

6.0, 7.0, 8.5) (see Subsection 2.3). The future developments of energy, land-use, and emissions sectors 

according to the SSPs and RCPs have been extensively characterised and expanded, using a set of five 

so-called marker integrated assessment models including IMAGE (Bouwman et al., 2006; van Vuuren 

et al., 2017), MESSAGE-GLOBIOM (Fricko et al., 2017), AIM (Fujimori et al., 2017), GCAM 

(Calvin et al., 2017), and REMIND-MAGPIE (Kriegler et al., 2017). The research community has 

frequently used the global SSP and RCP scenarios with these marker models in climate impact 

assessments (Rogelj et al., 2018a) and for analysing other Earth system processes (e.g., biodiversity 

(Leclère et al., 2020); see O’Neill et al. (2020) for a review).  

Despite past successful efforts, there are still important limitations to address for increasing the 

impact and usefulness of global change scenario frameworks. One major gap is that the application of 

the SSPs and RCPs to areas beyond climate change, such as sustainable development, has been so far 

limited. There are only few studies that have extended these scenario frameworks to the evaluation of 
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the SDGs (van Soest et al., 2019). Among these, The World in 2050 (TWI2050, 2018)  and the 

assessment of sustainable development pathways (Soergel et al., 2021) are the prominent examples, 

both mostly replying on the marker integrated assessment models as their simulation engine. The 

broader use of SSPs and RCPs for sustainable development is crucial for developing a more 

comprehensive account of possible integrated futures and more diverse response options across 

connected global challenges (O’Neill et al., 2020).  

Another noticeable gap is that most of the past SSP-RCP projections were based on the 

assumptions of five original marker models, and the use of new, non-marker integrated assessment 

models with different sets of input and structural assumptions has been rare. Among the few 

applications of non-marker models is Allen et al. (2019) who used four SSPs as benchmarks to guide 

the development of national-scale scenarios, based on inequality and resource-use intensity, to assess 

scenarios of progress towards the SDGs for Australia. The adoption of non-marker, emerging models, 

with different sectoral boundaries (e.g., water (Graham et al., 2018), diet change (Eker et al., 2019)) 

and levels of structural complexity (e.g., system dynamics models (Walsh et al., 2017)), is important 

to expand the scenario space around SSPs and RCPs with a wider set of futures and also to project a 

larger diversity of sustainability indicators aligned with the SDGs (O’Neill et al., 2020). 

These current limitations signify the need for a more diverse quantification of global reference 

scenarios (e.g., SSPs, RCPs) with new integrated assessment models (Jaxa-Rozen & Trutnevyte, 2021) 

and in new domains such as sustainable development. Addressing this need has become more 

important in recent years especially given the increasing demand for model-based SDG analysis (Allen 

et al., 2019; Pedercini et al., 2019; Soergel et al., 2021) and the emergence of new, open-source 

integrated assessment models (e.g., FeliX (Walsh et al., 2017), iSDGs (Pedercini et al., 2019), Earth3 

(Randers et al., 2019), see a review in Duan et al. (2019)) that are simpler yet have a broader scope 

compared to the marker models (Riahi et al., 2017), sufficient to address several SDGs.  

Here, we implement and explore global SSP and RCP scenario frameworks and their 

uncertainty with a feedback-rich system dynamics model for sustainable development, called the 

Functional Enviro-economic Linkages Integrated neXus (FeliX) (Eker et al., 2019; Walsh et al., 2017). 

This, first of all, provides modellers with well-defined steps for the adoption of established global 

change scenarios in their new modelling works with a clear demonstration of these steps’ 

implementation in FeliX (Section 2). Second, it provides a new analysis of global trajectories of the 

five plausible combinations of SSPs and RCPs under 50,000 different realisations (Section 3). These 

results show how socioeconomic and climate drivers could unfold in the future through the multi-

sectoral dynamics of demography, economy, energy, land, food, biodiversity, and climate systems 

(Subsection 3.1) and in what areas and to what extents they diverge from previous projections 

(Subsection 3.2). The results also show the impacts across 16 sustainability indicators representing 

eight SDGs related to agriculture and food security (SDG2), health and well-being (SDG3), quality 

education (SDG4), clean energy (SDG7), sustainable economic growth (SDG8), sustainable 

consumption and production (SDG12), climate action (SDG13), and biodiversity conservation 

(SDG15) (Subsection 3.3). Our results highlight the value added of exploring the implications of new 

models for global scenarios and provide insights into the global trajectories towards several SDGs 

under a larger scenario space (Section 4).  

2 Methods 

We used a non-marker integrated assessment model of sustainable development (Step 1). We 

identified the model’s influential parameters for the generation of global scenarios (Step 2). We 

elaborated our scenario assumptions and set up the model under these assumptions (Steps 3 and 4). 

We then explored the uncertainty space of implemented scenarios in the model using exploratory 

modelling (Step 5). We let the model, with its new structural complexity, generate the diversity of 
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output behaviours, explored various quantifications of global reference scenarios outside their standard 

projections, and analysed diversions from other models and implications for the SDG analysis (Step 

6). Each step is explained in detail as follows (Figure 1).  

 

Figure 1. Overview of methodological steps for implementing global scenario frameworks in a 

new integrated assessment model for sustainable development. 

2.1 Model multisectoral dynamics underlying SDGs 

We modelled anthropogenic processes of the multisectoral dynamics that drive SDG progress 

through an integrated assessment model of human and Earth system interactions called FeliX (Figure 

2). The human system sub-models capture socioeconomic dynamics and human decision-making (e.g., 

demography, education, economy, land-use change) and the Earth system sub-models capture 

biogeophysical processes (e.g., climate, carbon cycle, phosphorus and nitrogen cycles). FeliX 

simulates complex feedback interactions between these human and Earth systems sub-models. The 

integration of feedbacks in FeliX enhances the understanding of reasons for non-linearities and radical 

change that emerge in sustainability pathways from the co-development of human activities and 

environmental change. FeliX’s feedback-rich structure makes this model stand out among most global 

models that miss (or simplify) the important two-way feedback interactions between various sectors 

by primarily focusing on specific sectors (e.g., food (Willett et al., 2019), land-food (Obersteiner et 

al., 2016), food-energy-water (Van Vuuren et al., 2019)) or only a one-way information exchange 

from socioeconomic factors to climatic, biophysical processes (van Vuuren et al., 2012).  

FeliX is based on the system dynamics approach (Moallemi et al., 2021; Sterman, 2000) with 

a resolution set at a global scale and with annual timescale over a long-term period (1900-2100). The 
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model has been used as a policy assessment tool in exploring emissions pathways (Walsh et al., 2017), 

evaluating sustainable food and diet shift (Eker et al., 2019), and analysing socio-environmental 

impacts in Earth observation systems (Rydzak et al., 2010). The model outputs have been also tested 

and validated against historical data from 1900 to 2015 across all sub-models, available in the extended 

model documentation in Rydzak et al. (2013) as well as in Walsh et al. (2017) and Eker et al. (2019).  

           

 

Figure 2. The overview of the FeliX model. Adapted from and updated based on Rydzak et al. (2013). 

See Supplementary Methods for the description of each sub-model. 

Using FeliX, we modelled 16 indicators across eight societal and environmental SDGs (Table 

1). The selection of SDGs and their indicators was guided by the model scope with the aim of covering 

a wider diversity of sustainable development dimensions as in previous studies (Allen et al., 2019; 

Gao & Bryan, 2017; Obersteiner et al., 2016; Pedercini et al., 2019; Randers et al., 2019; van Vuuren 

et al., 2015). The SDGs and their indicators were implemented across the 11 FeliX’s sub-models of 

population, education, economy, energy, water, food and land, fertiliser use, diet change, carbon cycle, 

climate, and biodiversity (see each sub-model description in Supplementary Methods). Each sub-

model includes feedback interactions between several model components necessary to generate 

complex interactions underlying the SDGs.  
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This feedback-rich nature and flexibility of the FeliX model also enables exploring the impacts of 

tipping mechanisms on sustainability pathways. Climate tipping elements that can exacerbate warming 

(Lenton et al., 2008), such as permafrost melting and the loss of Amazon rainforest, can be explicitly 

included in the model to explore the safe pathways of human actions to avoid such tipping points. 

Similarly, social tipping dynamics (Otto et al., 2020) that accelerate mitigation actions can be explored 

using the FeliX model and the SDG framework. Several feedback mechanisms underlying possible 

social tipping dynamics, such as the change of norms, impact of education and learning effects in the 

energy system are already included in the model scope, hence in our analysis below. Future work can 

extend the FeliX model and investigate the compound dynamics of climate and social tipping elements. 

Table 1. The list of modelled SDG indicators. There are two modelled indicators under each SDG 

for consistency. Each indicator trajectory is simulated in the model based on the interaction of multiple 

sectors. This underlying sectoral dynamic for each indicator is specified in the last column.   

Indicator Description Desired progress Underlying sectoral 

dynamics  

 
SDG 2. End hunger, achieve food security, and promote sustainable agriculture 

Cereal Yield (tons year-1 

ha-1) 

The annual production rate per hectare of harvested 

croplands dedicated to grains production. 

Improve the productivity of the 

croplands for cereal yield production. 

Land, food/diet, water, 

climate, economy 

Animal Calories (kcal 

capita-1 day-1) 

The total annual production of pasture-based meat 

and crop-based meat - excluding seafoods - per 

person per day. 

Meet the increasing global demand for 

food with less meat consumption. 

Land, food/diet, water, 

population, education, 

economy, climate 

 
SDG 3. Ensure healthy lives and promote well-being for all at all ages 

Human Development 

Index (-) 

The UNDP average of three indices of income, 

health, and education that affect human capabilities 

to sustain well-being. 

Advance human wellbeing and 

richness of life. 

Education, economy, 

population, food/diet, 

climate, biodiversity 

Adolescent Fertility Rate 

(person year-1 

1000women-1) 

The number of births per 1,000 by women between 

the age of 15-19. This is a negative indicator, i.e., 

the lower, the better. 

Reduce childbirth by adolescent girls 

with improved sexual and 

reproductive healthcare. 

Education, economy, 

population 

 
SDG 4. Ensure inclusive and equitable quality education and promote lifelong learning opportunities 

Mean Years of 

Schooling (number of 

years) 

Average number of completed years of primary, 

secondary, and tertiary education (combined) of 

population. 

Increase educational attainments 

across population and in all levels. 

Education, population 

Population Age 25 to 34 

with Tertiary Education 

(%) 

The percentage of the population, aged between 25-

34 years old, who have completed tertiary 

education. 

Improve tertiary education coverage. Education, population 

 
SDG 7. Ensure access to affordable, reliable, sustainable and modern energy 

Share of Renewable 

Energy Supply (%) 

Percentage of renewable (solar, wind, biomass) 

energy supply share in total energy production. 

Increase the average global share of 

renewable energies in the final basket 

of total energy production. 

Energy, economy, 

population 

Energy Intensity of 

GWP (MJ $-1) 

An indication of how much energy is used to 

produce one unit of economic output. 

Reduce the energy intensity of 

services and industries per GDP. 

Energy, economy, 

population 

 
SDG 8. Promote sustained, inclusive and sustainable economic growth for all 

GWP per Capita ($1000 

person-1 year-1) 

Gross World Product, i.e., the global total GDP, 

divided by the global population. 

Improve economic prosperity of all 

countries in an inclusive and 

sustainable way. 

Economy, population, 

education, energy, 

climate, biodiversity 

CO2 Emissions per GWP 

(kg CO2 $-1) 

Human-originated CO2 emissions stemming from 

the burning of fossil fuels divided by the unit of 

GDP. 

Reduce carbon footprint of the 

growing economy. 

Economy, population, 

climate, biodiversity, 

carbon cycle energy 

 
SDG 12. Ensure sustainable consumption and production patterns 

Nitrogen Fertiliser Use 

in Agriculture (million 

tons N year-1) 

Commercial nitrogen fertiliser application in 

agriculture affected by land availability, income, 

and technology impact on fertiliser use. 

Manage a fertiliser application to 

balance between declining soil 

Land, food/diet, 

economy, population 
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Agri-Food Nitrogen 

Footprint (kg year-1 

person-1) 

Nitrogen (N) emissions to the atmosphere and 

leaching/runoff from commercial application in 

agriculture and with manure. 

fertility and the risk of polluting 

nutrient surplus. 

Land, food/diet, 

economy, population 

 
SDG 13. Take urgent action to combat climate change and its impacts 

Atmospheric 

Concentration CO2 

(ppm) 

Atmospheric CO2 concentration per parts per 

million. 

Significantly reduce global CO2 

emissions across sectors. 

Population, economy, 

land, food/diet, energy, 

carbon cycle 

Temperature Change 

from Preindustrial 

(degree °C) 

Global annual mean temperature change from the 

pre-industrial time calculated as atmosphere and 

upper ocean heat divided by their heat capacity. 

Limit global temperature change from 

preindustrial level. 

Population, economy, 

land, food/diet, energy, 

carbon cycle 

 
SDG 15. Protect, restore and promote sustainable use of terrestrial ecosystems and forests 

 

Forest to Total Land 

Area (%) 

Percentage of forest to total (agricultural, urban and 

industrial, others) land areas. 

Significantly reduce the current 

deforestation rates and restore 

degraded forest lands. 

Land, population, 

economy, energy, 

food/diet 

Mean Species 

Abundance (%) 

The compositional intactness of local communities 

across all species relative to their abundance in 

undisturbed ecosystems. 

Limit significantly the current rate of 

biodiversity extinction from 

anthropogenic activities. 

Energy, climate, 

food/diet, land 

2.2 Identify influential model parameters for scenario modelling 

Integrated assessment models often have many demographic, macro-economic, techno-

economic, and environmental parameters. However, among these parameters, some are more 

influential than others and some may have only trivial impacts on model behaviour. We identified 

influential parameters for scenario modelling from an initial list of 114 model parameters 

(Supplementary Table 2) and ranked them based on their impact (with non-linear interactions) on 20 

model outputs using Morris elementary effects (Campolongo et al., 2007; Morris, 1991). Morris 

elementary effects is a suitable global sensitivity analysis method for integrated assessment models 

with a large number of input parameters and a complex structure of nonlinear feedbacks where 

computational costs are very high. The method has proved to generate reliable sensitivity indices with 

a better computational efficiency compared to other techniques (Campolongo et al., 2007; Gao & 

Bryan, 2016) (see sensitivity analysis details in Supplementary Methods).  

Figure 3 shows the ranking and selection of influential model parameters to be used for scenario 

modelling of different sectors (e.g., population, GDP, energy demand, forest land cover) by 2030, 

2050, and 2100. The identified model parameters were diverse enough to capture influential global 

change in relation to demographic (e.g., fertility rate, life expectancy), education (e.g., enrolment and 

graduation rates), economic (e.g., capital elasticity of the economy), and lifestyle (i.e., energy demand 

and diet change). A substantial variation was observed in the influence of various parameters. The top 

influential parameters were related to socioeconomic factors (demography, education, economy) and 

diet change, indicating them as key parameters underpinning scenario modelling. We also observed 

that the influential parameters did not change significantly over time (Figure 3). Therefore, we used 

the influential parameters based on their long-term sensitivity (by 2100) as our reference set of model 

parameters to work with for scenario modelling.  
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Figure 3. The ranking of influential model parameters. Sensitivity is the normalised values of 

Morris index μ* between 0 and 1. For each output variable (y axis), the most influential input 

parameters (x axis) are annotated with their rank. Information on the unit and definition of each 

parameter is available in Supplementary Table 2. 

2.3 Specify scenario assumptions 

We identified and described the main driving forces of global change, with different degrees 

of challenges to mitigation and adaptation, based on existing scenario frameworks. We explored future 

socioeconomic and climate driving forces framed by two reference global change scenario frameworks 

(Moss et al., 2010), i.e., the SSPs (O’Neill et al., 2017; Riahi et al., 2017) and the RCPs (van Vuuren 
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et al., 2011), respectively. The SSPs chart future underlying socioeconomic development, including 

five pathways to 2100: SSP1 (sustainability), SSP2 (business-as-usual), SSP3 (regional rivalry), SSP4 

(inequality), and SSP5 (fossil-fuelled development) (O’Neill et al., 2017). The RCPs represent the 

climate forcing levels of different possible futures with long-term pathways to certain concentration 

levels of CO2 by 2100 and beyond (Meinshausen et al., 2020; van Vuuren et al., 2011), including 

(originally) four emissions trajectories to 2100 (and beyond) with different levels of global radiative 

forcing from 2.6, to 4.5, to 6.0, to 8.5 W m-2 (van Vuuren et al., 2011). The emissions trajectory of 1.9 

W m-2 was added later as a pathway to 1.5 °C to the end of the century (Rogelj et al., 2019).  

Although different forcing levels could be achieved under different socioeconomic scenarios, 

a specific RCP is often associated with each SSP (as also used in the sixth Climate Model 

Intercomparison Project (CMIP6)) considering consistency between their narratives and their 

plausibility (O'Neill et al., 2016). We selected our benchmark SSP-RCP scenarios for implementation 

in the same way. We considered the plausibility of selected combinations as well as their application 

frequency across 715 studies (published between 2014 and 2019) that used integrated scenarios, based 

on a recent review by O’Neill et al. (2020). For example, we assumed that a high and a low radiative 

forcing of 8.5 and 2.6 W m-2 can most likely occur under the societal development of SSP5 and SSP1 

which focus on highly polluting and sustainable futures (respectively). The radiative forcing of 8.5 and 

2.6 W m-2 are also the most frequent levels applied in previous studies to these two SSPs. In the same 

way, we associated the radiative forcing levels of 4.5, 7.0, and 6.0 W m-2 to SSPs 2, 3, and 4 

(respectively).  

We excluded RCP 1.9 W m-2 from our analysis given the highly ambitious carbon dioxide 

removal (CDR) deployment assumptions in this scenario (Rogelj et al., 2019) that is not explicitly 

represented in all integrated assessment models. Such high CDR deployment for achieving 1.9 W m-2 

emissions trajectory also has an increased complexity of side effects on other sectors that are beyond 

the scope of this paper (see discussion in Section 4). In relation to each scenario combination, we also 

assumed climate mitigation policy assumptions, such as adoption of carbon capture and storage and 

carbon price, as indication of the efforts to reach the specified forcing levels (see description in 

Supplementary Table 1). 

We elaborated how the future could unfold under each selected SSP-RCP combination in a set 

of coherent and internally consistent qualitative assumptions over the 21st century. The scenario 

assumptions represented the determinants of potential futures, both in socioeconomic (i.e., population, 

education, economy) and other sectoral domains (i.e., energy, climate, land, food and diet change). We 

adopted those scenario assumptions (related to socioeconomic conditions, energy, climate, land, and 

food and diet change) from the original SSPs (O’Neill et al., 2017). We only selected those original 

assumptions that could be characterised in the FeliX model. For example, we did not include the SSPs’ 

original assumption about ‘technology transfer’ given that technology collaborations between 

countries were not taken into account in our model. In another example, we used assumptions about 

‘improvement in investment in technology advancement’ and the ‘enhancement of energy technology 

efficiency’ as two proxies consistent with our model’s scope and structure to represent the SSPs’ 

original assumption on ‘energy technology change’.  

We described the evolution of scenario assumptions qualitatively by 2100 under five SSP-RCP 

combinations (Supplementary Table 1). The qualitative descriptions were informed by the SSP 

storylines (O’Neill et al., 2017) (which provided a descriptive account of different scenarios) and their 

sectoral extensions (which interpreted the storylines and provided a detailed account of energy (Bauer 

et al., 2017), emissions (Meinshausen et al., 2020), and land sectors (Popp et al., 2017)). The internal 

consistency of our input assumptions across sectors (e.g., low population, high economic growth, high 

sustainability in SSP1) was similar to the SSP narratives. This internal consistency was important to 
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relate the resulted scenario realisations to the exploration of a new model structure and its 

parametrisation rather than to having a totally differnet set of global change scenarios.  

The qualitative scenario assumptions informed the implementation of scenarios in the next step 

by guiding in what range the model inputs should be and by providing a context to better understand 

and interpret model projections. Similar to the original idea of the SSPs, our scenario assumptions 

represented different degrees of challenges to mitigation (of the emissions from energy and land-use) 

and adaptation and their impacts on the society (O’Neill et al., 2014; van Vuuren et al., 2014). Four 

of the scenarios (i.e., SSP1-2.6, SSP3-7.0, SSP4-6.0, SSP5-8.5) indicated a combination of high and 

low challenges to adaptation and mitigation while the fifth scenario (SSP2-4.5) was representative of 

moderate mitigation and adaptation challenges.  

2.4 Implement scenario assumptions in the model 

We translated our scenario assumptions (Subsection 2.3) into influential model parameters 

(Subsection 2.2) for FeliX (i.e., calibration). Different model structures and simulation period do not 

allow for a harmonisation of scenario assumptions across various models, and several equally valid 

quantifications of the scenario assumptions can be implemented in models (as was the case for the five 

marker models of the SSPs (Riahi et al., 2017)). The previously projected SSP scenarios (Riahi et al., 

2017) are also argued to be not exhaustive, and many plausible and important scenarios may be outside 

those standard ranges (Guivarch et al., 2016; Rozenberg et al., 2014), indicating the need for a more 

diverse translation of scenario assumptions. Accordingly, we implemented an internally consistent 

(across sectors) version of scenarios in the FeliX model, but with different values for model input 

parameters and uncertainty ranges that suited our model to enable the exploration of the implications 

of varying assumptions and hypotheses (see calibration details in Supplementary Methods). 

2.5 Project scenario realisations with the model 

We explored the uncertainty space of implemented scenario assumptions in the FeliX model 

and built a large number of model runs. Given the uncertainty in projection of model behaviour, we 

sampled deeply uncertain scenario assumptions that strongly influence the future (see the design of 

experiments details in Supplementary Methods). We simulated and evaluated scenarios against a 

diverse suite of socioeconomic and environmental outputs over time under a large ensemble of samples 

from the uncertainty space to understand the full scale of variation in scenario performance. Each 

sample from the uncertainty space is an internally consistent set of assumptions representing a possible 

scenario realisation, called a state of the world (SOW). 

In projecting scenarios, we assumed that there is an uncertainty inherent in the calibration of 

influential model parameters. We also assumed that there could be an uncertainty in the timing of 

change in the value of model parameters, i.e., from their BAU to calibrated values, to account for the 

delay in the emergence of scenario assumptions (e.g., diet change may not happen till 2025, and it may 

only gradually emerge from then). This delayed, gradual emergence of scenario assumptions through 

the model parameters was consistent with the implementations of the shared socioeconomic pathways 

in marker models (van Vuuren et al., 2017). Using the parameter setting of each scenario (Subsection 

2.4) and their uncertainty space, we simulated the global trajectories of socioeconomic, energy, 

climate, and land and food sectors from 2020 to 2100 with the FeliX model. We assessed whether our 

projections provide an internally consistent story across different sectors within each scenario, aligned 

with original SSP narratives (O’Neill et al., 2017). 

2.6 Compare the new projections with those of other models 

In the last step, we analysed the resulting database of model runs (Subsection 2.5) and 

compared our projections across socioeconomic, energy, climate, and land and food sectors with the 
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projections of marker integrated assessment models, including IMAGE (Bouwman et al., 2006; van 

Vuuren et al., 2017), MESSAGE-GLOBIOM (Fricko et al., 2017; Riahi et al., 2007), AIM (Fujimori 

et al., 2017), GCAM (Calvin et al., 2017), and REMIND-MAGPIE (Kriegler et al., 2017), for the 

same SSP-RCP combinations. This comparison did not aim for agreement with other models, and was 

rather focused on differences and the new insights we arrived at that would not have been possible 

without modelling of scenarios with a non-marker model of different structural complexity.   

3 Results and discussion 

3.1 Scenario realisations  

The quantification of scenarios across sectors with the FeliX model provided internally 

consistent outcomes across sectors (Figure 4). First, FeliX’s projected SOWs under SSP1-2.6 

represented an inclusive and environment-friendly future for sustainable development. The results 

showed a consistently high socioeconomic prosperity across education, population, and economy. 

Access to all levels of education (as a proportion of population size), especially higher education, 

increased (Figure 4d) with improvement in gender inequality. Global population peaked around mid-

century and came under control (i.e., declined) significantly by 2100 due to a declining fertility rate 

(Figure 4a). Economic growth boomed due to fast technological progress (Figure 4e). The 

socioeconomic prosperity paved the way for sustainability transitions across different sectors. This 

involved major transformations in the energy sector.  

While rapid economic growth would normally increase overall energy use, the input 

assumption of widespread energy-efficient technologies and a transition to low energy intensity 

services in SSP1-2.6 (Supplementary Table 1) attenuated the increase in energy demand (Figure 4h). 

The input assumptions of high investment and technological progress, high environmental 

consciousness, increasing production costs (e.g., carbon price costs) of using fossil energy, and the 

steep cost reduction of renewable technologies also made the model meet most of the energy demand 

through adoption of renewable (especially solar) energy (Figures 4l to 4n).  

Similar sustainability transitions were observed in the food and land sector under SSP1-2.6. 

Environmental consciousness from high educational attainment (especially at tertiary levels) along 

with low population growth promoted healthy diets with low animal-calorie shares (Figure 4q). This 

also coincided with land productivity growth and high crop and livestock yield (because of input 

assumptions on improvement in land managerial practices) resulting in less need for the expansion of 

cropland and pasture (Figures 4r, 4s, and 4u) and a sharp decline in deforestation (Figure 4t). Transition 

to renewable energies, sustainable land-use change, and lower meat consumption, together with a 

strong climate policy regime (e.g., carbon price, carbon capture and storage for fossil fuels; see 

Supplementary Table 1) created a high potential for mitigation with low-range emissions (Figure 4w) 

and low radiative forcing levels (Figure 4v) by 2100. 
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Figure 4. Scenario projections with the FeliX model (envelopes) and their comparison with 

other projections. This included the comparison with the projections of major demographic and 

economic models (Dellink et al., 2017; Samir & Lutz, 2017) and integrated assessment models 

(Bauer et al., 2017; Calvin et al., 2017; Fujimori et al., 2017; Kriegler et al., 2017; Popp et al., 2017; 

Riahi et al., 2017; van Vuuren et al., 2017) (thin lines). Projections cover the period 2020-2100 with 

an annual time step. See Supplementary Figure 2 for the detailed specification of projections with 

other IAMs. 

The SSP2-4.5 projections followed the continuation of past and current (business-as-usual) 

trajectories across all sectors. The results showed a moderate growth in all socioeconomic sectors 

(population, education, economy) (Figures 4a to 4e), a higher energy demand, and a slower transition 

to renewable energy compared to SSP1-2.6 (Figures 4f to 4n). There was also a moderate rate of 

agricultural land expansion and deforestation and a relatively higher animal caloric supply (Figures 4o 

to 4u) due to input assumptions on the continuation of current (high meat) diet regimes. Together, 

these trajectories resulted in a higher level of emissions and radiative forcing compared to SSP1-2.6, 

but still lower than other scenarios due to moderate climate change mitigation policies (Figures 4v and 

4w). 

The SSP3-7.0 projections represented a high population, consumption, and environmental 

footprints scenario. The results showed the low-achieving socioeconomic projections among all 
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scenarios (Figures 4a to 4e). A very slow economic growth led to an underdeveloped education system, 

especially at the tertiary level, which limited the training of a skilled labour force and created further 

challenges for economic development. Slow economic progress along with limited educational 

opportunities induced rapid population growth and declining wellbeing and life expectancy across the 

population. A relatively weak economy normally has a reduced demand for energy. However, input 

assumptions around low environmental standards and poorly performing public infrastructure in this 

scenario (Supplementary Table 1) increased energy demand compared to the business-as-usual 

trajectories (Figure 4h).  

Transition to renewable (i.e., wind and solar) energy was slower in SSP3-7.0 compared to the 

business-as-usual (Figures 4l to 4n) due to input assumptions around low energy technology 

improvement (i.e., efficiency), limited investment in expanding installed renewable energy capacity, 

and lower production cost of fossil energy (i.e., no limit on emissions and carbon price for fossil fuels). 

In the land and food sector, low crop and livestock yield (due to poor land management practices) and 

increasing demand for animal calories from the increasing population necessitated the rapid expansion 

of cropland and pasture to address food insecurity (Figures 4o to 4u). A combination of booming 

population with declining trends of other socioeconomic systems, high fossil energy dependency, high 

meat consumption with rapid agricultural land expansion, and a lack of strong global climate change 

mitigation policies for the energy and land sectors resulted in high emissions and high radiative forcing 

levels (Figures 4v and 4w), posing significant challenges to mitigation in SSP3-7.0. 

The SSP4-6.0 projections showed moderate trajectories in socioeconomic systems (i.e., 

population, education, economy) with trends better than business-as-usual and SSP3-7.0, but not at the 

same level of prosperity as in SSP1-2.6 and SSP5-8.5 (Figures 4a to 4e). Transition in the energy sector 

(from fossil to renewable sources) (Figures 4f to 4n) and food production and the expansion of 

agricultural lands (Figures 4o to 4u) also had relatively similar low and high trends (respectively) 

compared to business-as-usual. These socioeconomic, energy, and food and land trajectories together 

resulted in a moderate (compared to business-as-usual) emissions and radiative forcing (Figures 4v 

and 4w), leading to relatively low challenges to mitigation.  

The SSP5-8.5 was a promising socioeconomic future at the cost of an unsustainable 

environmental outlook driven by a highly polluting and high-consumption lifestyle. The projections 

showed a similar level of socioeconomic prosperity to SSP1-2.6, with equally low population and high 

educational attainment, and even higher economic growth (Figures 4a to 4e). However, socioeconomic 

development in this scenario resulted in high, resource-intensive consumption, with severe impacts for 

energy and climate. Rapid economic growth promoted a lifestyle with the highest energy demand 

among all scenarios (Figure 4h). However, contrary to SSP1-2.6, this high energy demand was not 

offset by a transition to low energy intensity, efficient renewable energy technologies, nor an 

environmental consciousness around consumption impacts (Supplementary Table 1).  

Despite rapid economic development and technological advances, the reliance on fossil fuels 

as a cheap source of energy remained much higher in SSP5-8.5 (compared to other scenarios) to meet 

the increasing energy demand (Figures 4i to 4k). In the food and land sector (Figures 4o to 4u), a lower 

population growth along with the effect of a relatively high crops and livestock yield (because of 

technological advances under SSP5) resulted in crop and livestock production and agricultural land 

area lower than the business-as-usual (but still higher than SSP1-2.6). This lower agricultural land area 

also resulted in a slightly improving trajectory for forest land indicator (Figure 4t). In FeliX’s model 

structure, decrease in one land-use type is directly linked and contributes to increase in another land-

use type (see model description in Supplementary Methods). The effects of all sectors together, mostly 

driven by a fossil-fuel-dependent energy system in the absence of universal climate polices, resulted 

in the highest emissions and radiative forcing in SSP5-8.5 among all scenarios, creating significant 

challenges to mitigation (Figures 4v and 4w).       
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3.2 Divergence from other projections 

The modelling of our scenario assumptions resulted in internally consistent storylines similar 

to the SSPs (O’Neill et al., 2017), but not necessarily with the same quantitative projections to those 

of other integrated assessment models (Riahi et al., 2017), due to the new model structural complexity 

(Subsection 2.1) and different parametrisation (Subsection 2.4). While the scenario projection of 

marker IAMs (Figure 4) can be interpreted as being representative of a specific SSP-RCP 

development, they are not to be considered as central, median, or most-likely future developments. 

This means that for each SSP-RCP combination, numerous alternative projections are possible, and 

they are equally valid—as long as they are internally harmonious. The projection of scenarios with the 

FeliX model presented some of these equally valid, yet divergent futures to other model projections. 

Among the FeliX’s divergences from the projections of other IAMs, three are more prominent.  

First, the FeliX’s projections of coal production in SSP5-8.5 were lower than projections from 

other marker IAMs from 2070 onwards (Figure 4i), showing more promising futures for renewable 

energies and a faster decline in fossil energies, even in the fossil-fuelled development pathway. This 

can be explained by the energy market share structure in FeliX where reduction in energy production 

from one source is compensated by energy from other (more price-competitive) sources. This model 

structure, along with assumptions about the declining cost of production from other energy sources 

over time, made coal less cost competitive compared to other fossil (i.e., gas, oil) as well as renewable 

(i.e., solar, wind) sources. This propagated a more rapid decline in coal production consistently across 

all scenarios (more noticeably in SSP5-8.5) in the FeliX model. The issue of conservative assumptions 

on renewable costs in the global climate (IPCC) scenarios (and hence less competition that can reduce 

fossil energy production) has been discussed in the literature (Eker, 2021; Jaxa-Rozen & Trutnevyte, 

2021). A lower coal projection in FeliX is also more consistent with the recent governments’ pledges 

for coal phase-out in the 2021 United Nations Climate Change Conference. Similar variations, 

resulting from differing model structural complexity and parameterisation, were observed among other 

integrated assessment models where some attributed greater priority to some energy technologies over 

others. For example, REMIND-MAGPIE and MESSAGE-GOLOBIOM had the highest solar and 

MESSAGE-GOLOBIOM had the lowest share of oil across all scenarios compared to other models. 

Despite this lower coal production compared to other models, coal production in SSP5-8.5 projected 

by FeliX still remained much higher than renewable energy production in the same scenario and was 

also higher than coal production in other FeliX’s SSP-RCP projections. This maintained an internal 

consistency with the ‘fossil-fuelled development’ narrative (O’Neill et al., 2017).  

Second, FeliX’s projections varied from those of other IAMs in food and land sector (most 

notably in SSP1-2.6 and SSP3-7.0), bringing new insights about the impacts of sustainable diet shift 

(from meat to vegetable) on food demand, food production, and land-use change. The observed 

variations in food and land are primarily linked to FeliX’s diet change structure, an additional sub-

model compared to other marker models. In FeliX, demand for agricultural land is driven by the size 

of food production, which itself is designed to meet food demand. This means that an increase or 

decrease in food consumption can directly impact food production and agricultural land expansion. 

The food demand and consumption of vegetables and meat in FeliX were modelled mainly through 

the diet change sub-model which formalised sustainable diet shift (i.e., reduction in meat consumption) 

in food systems based on behavioural factors (e.g., social norms and value driven actions) and 

educational attainments of the population per gender (Eker et al., 2019). This linked to the food 

demand from various food categories (animal-based and plant-based foods), and subsequently to food 

(livestock) production, to demand for arable land (pasture and cropland), and to land-use change (i.e., 

deforestation). Diet (as a lifestyle driver) was mentioned in the original storylines of shared 

socioeconomic pathways (O’Neill et al., 2017), but it was not explicitly modelled with its feedback 

interactions in most of the major integrated assessment models. However, modelling of diet change, 

as shifting social norms and changing patterns of human behaviour in food consumption, has become 
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increasingly important (Willett et al., 2019), with impacts on multiple SDGs (food, health, responsible 

consumption, biodiversity conservation) (Herrero et al., 2021). Given assumptions on low caloric food 

consumption per person per year and low animal calories diet share in SSP1-2.6 (and the opposite in 

SSP3-7.0), the FeliX projections resulted in low livestock production (Figure 4q), low pastures and 

croplands (Figures 4s and 4u), and more forest land (Figure 4t) in SSP1-2.6 (and vice versa in SSP3-

7.0).  

Third, the combination of a sharper decline in coal production as well as varied food 

consumption patterns in FeliX (as explained above) resulted in lower projections of CO2 emissions, 

most notably in SSP5-8.5, compared to the other models. This brings a new insight that the 

consideration of diet change impacts and more aggressive assumptions on fossil fuel reduction can 

make CO2 emissions less likely follow the projection of current high-emission scenarios (i.e., SSP5-

8.5). Such lower emission projections are aligned with the tracked emission developments over the 

past three decades which followed the middle of projected emission scenarios (Pedersen et al., 2020). 

It also echoes the recent critiques about the relevance of high-emission RCPs (Hausfather & Peters, 

2020), signifying the importance of considering a broader range of emission projections in 

sustainability analysis. 

3.3 Scenario implications for sustainable development  

The complex and deeply uncertain multisector dynamics that underlie the SDGs resulted in 

substantially varied outcomes for sustainable development across different scenarios and indicators 

(Figure 5). Among the generated SOWs, the accumulation of changes in SSP1-2.6 between 2050 and 

2100 created a promising long-term trajectory for sustainable development. However, this was not the 

case in generated SOWs under other scenarios, driven by counteracting interactions between future 

socioeconomic and environmental drivers. The trends in some of the major indicators are described 

here for illustration while the detailed projections of all indicators are available in Figure 5 and the 

online dataset.  

Among the socioeconomic indicators for sustainable development, Gross World Product 

(GWP) per capita (Figure 5e-i), adolescent fertility rate (Figure 5b-ii), and mean years of schooling 

(Figure 5c-i) were the three with the fastest improvement over the century in SSP5-8.5 and SSP1-2.6 

(across SOWs) by 2030 and beyond. This was due to input assumptions on investment in high-quality 

and well-functioning education (Figure 4d) and declining population growth (Figure 4a) under these 

two scenarios. Despite similar performance in socioeconomic indicators, the human prosperity and 

economic growth created two different pathways for environmental impacts and for achieving 

sustainable development under SSP1-2.6 and SSP5-8.5.  

In SSP1-2.6, the high level of socioeconomic prosperity led to improving trajectories in major 

energy and climate indicators by 2030. In a longer timeframe and by 2100, the increasing scale of 

positive socioeconomic change in this scenario achieved more than 85% (global average) share of 

renewable energy supply (Figure 5d-i), close to 430 ppm CO2 concentration (Figure 5g-i), and < 2 

degree °C global temperature change (Figure 5g-ii). The SSP1-2.6 scenario also resulted in a 

significant drop in total agricultural activities (Figures 4r), positively impacting several SDG indicators 

related to food and land-use change. Among these positive impacts was SSP1-2.6’s declining trend in 

(land-based) animal calorie supply (Figure 5a-ii) due to a decreasing population after 2050 (Figure 4a) 

and lower meat consumption. Reducing demand for food through responsible consumption and 

collective global action on food choices under this scenario could alleviate the pressure from the 

COVID-19 pandemic on the food system, helping those worst-affected by the distributional impacts 

on food supply chains. The SSP1-2.6 scenario also outperformed other scenarios in some of the major 

responsible production and biodiversity conservation indicators, such as yield improvement (Figure 
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5a-i), reduced pressure from agricultural land expansion and fertiliser use (Figures 5f-i, 5f-ii), and less 

deforestation and biodiversity loss (Figures 5h-i, 5h-ii).  

 

Figure 5. The implications of modelled scenarios for sustainable development across 50,000 

SOWs and in 16 indicators. In each subplot, the envelope plots show each indicator’s trajectory 

across five scenarios with descriptive statistics (mean and standard deviation) to represent the average 

projected value and the uncertainty range of each indicator’s projection. The box plots show the 

comparative of performance of each scenario compared to the business-as-usual’s trajectories (i.e., 

baseline SSP2-4.5). This shows what would happen (i.e., the scale of improvement or deterioration in 

each indicator) if we deviate (positively or negatively) from current trajectories (i.e., business-as-

usual). 

By contrast, socioeconomic prosperity in SSP5-8.5 resulted in the fastest growth in the share 

of fossil fuels in energy supply (Figure 5d-i) driven by increasing demand from high energy intensity 

of industry and services (Figure 4h). Reliance on fossil fuels in this scenario translated into severe 

climate impacts from (energy-related) high CO2 concentration (Figure 5g-i) with global temperature 

continuing to rise to almost 4.5 degree °C by 2100 in all simulated SOWs (Figure 5g-ii). This imposed 

a severe risk for achieving the IPCC climate targets (Rogelj et al., 2019). The SSP5-8.5 scenario also 

resulted in a high land-based animal calorie supply up to 50% (across all SOWs) higher than the 

business-as-usual trajectories driven by the economic welfare combined with high meat-based diets 
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(Figure 5a-ii). This led to the higher production of crops in this scenario as livestock feed (Figure 4q). 

However, high crop and livestock yields and effective land management practices fuelled by high 

GWP and rapid technology advances, as described in this scenario’s assumptions (Supplementary 

Table 1), enabled the achievement of high food demand and production with less agricultural land 

(Figure 4r). This resulted in improving trajectories in indicators related to forest land (Figure 5h-i) 

throughout the 21st century. 

Far less improvement occurred in SSP3-7.0 and SSP4-6.0 across all indicators and SOWs. The 

global trajectories under these two scenarios deteriorated in most of socioeconomic, energy, climate, 

and biodiversity indicators. This resulted from the combined effects of the medium to high population 

(Figure 4a), slow economic growth (Figure 4e), low investment in higher education (Figure 4d), high 

energy demand from inefficient and high energy intensity infrastructure (Figure 4h), low diffusion of 

renewable energy (Figure 4f), and extreme pressure on lands from agricultural activities and high 

animal calorie consumption (Figures 4r and 4q), as discussed in Subsections 3.1 and 3.2. For instance, 

trends over the century reached around 3-4 degree °C warming (compared to the pre-industrial level), 

significantly exceeding the 1.5-2 degree °C target from the Paris Agreement (Figure 5g-ii). Similar 

negative drivers across these two scenarios also resulted in extreme-range trajectories in indicators 

related to food production (Figure 5a-ii), fertiliser use (Figure 5f-i, 5f-ii), and biodiversity across all 

SOWs by 2030 and beyond (Figure 5h-i, 5h-ii). For example, high rates of fertiliser application in 

agriculture (up to 40% higher than business-as-usual; Figure 5f-i) and the steep decline in forest land 

and species abundance (up to 30% and 50% decline compared to business-as-usual respectively; 

Figure 5h-I, 5h-ii) under SSP3-7.0 were attributed in the model to the complex underlying dynamics 

of high population growth along with unhealthy diets with a high animal calorie diet that increases the 

demand for feed crops. As a result of this high feed demand, the pressure on natural and agricultural 

lands increased strongly (Figure 4r), resulting in further demand for fertiliser application and greater 

deforestation and biodiversity loss.   

4 Conclusions and future work  

Interacting systems, with multisectoral dynamics that occur at an unprecedented pace, can 

create complexity and uncertainty in understanding the impacts of future socioeconomic and 

environmental change on sustainable development. Despite the popularity of standard (marker) 

integrated assessment models as widely used tools to understand environmental and societal risks of 

climate change, the knowledge that is put into these models (e.g., conceptual framing, boundary 

conditions, model structure, parametrisation) is imperfect, limited, and uncertain (Walker et al., 2013). 

This uncertainty challenges the ideal of the marker models as the projection tools, which turn best 

available knowledge into best estimates.  One way of dealing with this combination of uncertainty and 

complexity is through scenario exploration with a greater diversity of models that have new modelling 

paradigms (e.g., system dynamics), different structural complexity (e.g., feedback-rich), and 

alternative assumptions, and can better simulate the underlying multisectoral dynamics for the 

assessment of sustainable development (Moallemi et al., 2020a). 

We implemented global scenarios in a non-marker, SDG-focused integrated assessment model 

to investigate the new uncertainty of future projections for sustainable development. First, it 

contributed to sustainability science by exploring broader implications of global scenarios beyond the 

original foci of climate change and in sustainable development across multiple SDGs. Second, the 

methodology used for the adoption of global scenarios was a generalisable contribution too. The 

methodology can be adopted beyond the SDGs and in the projections and quantifications of other 

sustainability frameworks (e.g., social and planetary boundaries (Leach et al., 2013; Steffen et al., 

2015), safe and just operating space (Raworth, 2012), doughnut economics (Raworth, 2017)) to bring 

new insights about social and biophysical indicators that are not directly measured in the SDGs. The 
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use of this methodology also allows a greater diversity of similar non-marker models to be adopted for 

global change and sustainability assessments; something important for expanding the current limits of 

benchmark scenarios and exploring a larger uncertainty space driven by new model structures (e.g., 

diet change impacts). 

While we evaluated the trajectories of a subset of SDG indicators to demonstrate the 

implications of global scenarios, measuring the actual progress in all SDGs or discovering the 

individual contribution of socioeconomic (SSP) versus climatic (RCP) drivers in making the progress 

was not our focus. An important next step is to focus on SDG progress analysis specifically and model 

a larger diversity of indicators under all SDGs (Allen et al., 2019; Soergel et al., 2021). One can also 

adopt post-processing techniques (e.g., scenario discovery cluster analysis (Guivarch et al., 2016; 

Rozenberg et al., 2014)) to identify the main socioeconomic and climate driving forces of each SDG 

indicator and to quantify the extent of their (positive or negative) contributions to the SDG progress.  

While we explored the prevalent uncertainty of several indicated model parameters, we 

acknowledge that we did not include all forms of uncertainties, and not specifically those severe forms 

of uncertainty (i.e., unknown unknown circumstances or state of total ignorance), which cannot be 

fully represented in models (Stirling, 2010). Future work is needed to incorporate other techniques and 

approaches (e.g., scenario discovery, robustness analysis, adaptive policy-making) to identify tipping 

points as warning signs, employ monitoring processes, and execute multiple pathways to be prepared 

for future contingencies. These can enable proactive and anticipatory responses to external shocks and 

help decision-makers in keeping human and environmental systems on-track towards sustainability 

targets in the face of severe uncertainties. A longer-term analysis of climatic and biophysical 

uncertainties (e.g., the carbon cycle change, atmospheric composition, nitrogen cycle) in a time 

horizon beyond 2100 (Meinshausen et al., 2020) may also reveal new insights about (de)stabilisation 

and multi-century dynamics of sustainability indicators, which cannot be properly understood in a 

century-long timeframe.  

Further enhancing the robustness of insights obtained about the SDGs requires the expansion 

of scenario space and its uncertainty exploration to include similar sustainability analyses over many 

other possible combinations of SSPs and RCPs (O’Neill et al., 2020). However, this comes at the 

expense of increasing the computational costs of simulations. Our model-based assessment of the 

SDGs was no exception. Our results and their interpretations in this article were based on the 

assumptions of only five specific SSP-RCP combinations, and there were other potential combinations 

that we did not investigate. For example, our most sustainable scenario was developed based on SSP1-

2.6. While SSP1-2.6 can substantially control environmental damages from energy and climate 

impacts relative to our other scenarios, the SSP1-2.6 scenario is not still aligned with IPCC mitigation 

pathways which limit global warming to 1.5 degree °C (Rogelj et al., 2018b). Future research can 

construct SSP1 in the FeliX model in line with the pathways of more aggressive actions (i.e., more 

ambitious Nationally Determined Contributions under the Paris Agreement) and more extreme 

mitigation pathways (e.g., aligned with 1.9 W m-2 radiative forcing level or with pathways proposed 

by the IPCC 1.5 (IPCC, 2018)). This could potentially improve the performance of the SSP1 scenario 

across energy and climate indicators (e.g., faster emissions reduction) compared to our results, driven 

by for example a greater reliance on atmospheric CO2 removal technologies and practices (Smith et 

al., 2016). However, it should be noted that more aggressive assumptions such as a very high level of 

CO2 removal have not been demonstrated in practice and may cause other sustainability issues such as 

competition with food and agricultural sectors for land and water (Rogelj et al., 2018b). Hence, policy 

cost and feasibility assessment become an important research direction in future studies with scenarios 

of more aggressive emissions reduction and with potential spillover effects on other sectors (Brutschin 

et al., 2021). 
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The further enhancement of the robustness of results also requires the expansion of feedback 

interactions included in models. Sustainable development is driven by dynamic interactions between 

human and natural systems (van Vuuren et al., 2012). For example, climate change (in the natural 

system) can increase heating and cooling energy demand (in the human system), and at the same time 

the resulted impacts on energy demand can interact with and deteriorate climate and air pollution. 

While FeliX integrated some of these destabilising (reinforcing) and stabilising (balancing) feedback 

interactions as an indivisible whole in a system dynamics model, it still did not model several of these 

interactions underlying different SDGs (e.g., the tipping point effects of climate change on wildfires, 

deforestation). Research is needed to further integrate the representation of socioeconomic factors in 

climate and carbon cycle dynamics and the inclusion of biogeophysical processes in energy 

production, land-use change, and emissions. Examples can include interactions between climate 

change and crop growth (e.g., carbon concentration reduces natural vegetation), land-use (e.g., 

prolonged precipitation influences land management decisions), energy use (e.g., rising temperature 

increases energy demand), and human behaviour (perceived climate extreme event risks alter human 

emissions) (see Calvin and Bond-Lamberty (2018) for a recent review). A further modelling of 

feedback interactions can enable a better identification of effective interventions to maximise synergies 

and minimise trade-offs across sectors. 

The discussion of scale and interactions between global, national, and local efforts in modelling 

the SDGs under uncertainty can also play a crucial role in future scenario modelling for the SDGs 

(Verburg et al., 2016). In this article, we characterised the future development of socioeconomic, food 

and land, energy, and climate systems at a global scale. Other studies have also mostly analysed these 

scenarios either at global (Randers et al., 2019), regional (Soergel et al., 2021), or national (Gao & 

Bryan, 2017) scales. However, large scale and global scenarios in reality translate into local changes 

in human interactions with the environment (Moallemi et al., 2020b). Grassroots solutions led by local 

communities, cities, and businesses can also make synergies with the aspirations of the higher scales 

and significantly impact the unfolding of higher-level sustainability scenarios (Bandari et al., 2021; 

Bennett et al., 2021; Szetey et al., 2021a, 2021b). This brings new challenges for modelling the cross-

scale dynamics of scenarios that can account for both higher spatial and temporal resolutions where 

policy-making (e.g., carbon pricing) and biophysical processes (e.g., greenhouse gas emissions) 

operate, as well as for locally-specific and place-based dynamics, such as the representation of 

heterogeneous actors (Ilkka et al., 2021) and their inequalities (Emmerling & Tavoni, 2021). Future 

work on integrated assessment modelling, therefore, requires capturing and better incorporating the 

societal dynamics of lower scales (beyond the currently global, regional, or national assumptions) in 

scenario exploration and projections for sustainability (Liu et al., 2013). This can lead to more reliable 

insights for sustainable development that can account for the diversity of local preferences and 

priorities and the heterogeneities in the availability of resources across regions. Such insights enable a 

more just and inclusive sustainable development by tailoring the plans to the unique socio-ecological 

characteristics of each context (Moallemi et al., 2019). 
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Supplementary Methods 

Model description 

• Population, as the core sub-model, captures the dynamics of male and female population growth and ageing, and is 

directly linked to all SDGs through other sub-models that compute energy demand, food consumption, and water 

use, amongst others.  

• Education computes the size of male and female population with primary, secondary, and tertiary education through 

feedback loops between enrolment and graduation rate, directly interacting with: SDG2 via the impact of education 

level on diet change and reduced meat consumption; SDG3 and SDG4 via improving wellbeing and educational 

attainment with higher number of graduates at all levels, and; SDG8 via providing the labour force necessary to 

power the economy.  

• Economy computes economic outputs through a Cobb-Douglas production function where economic output is 

computed based on labour input, capital input from energy and non-energy sectors, new technology productivity 

factor, and ecosystems and climate change impacts. Economy interacts with all SDGs except for SDG4 (as 

educational attainment is not modelled in FeliX as a function of economic outputs).  

• Energy computes (a total end-use) energy demand as a function of GDP per capita and population, the energy 

consumption and market share of three fossil (i.e., coal, oil, gas) and three renewable (i.e., solar, wind, biomass) 

sources, and the production of different (six) energy sources based on a detailed modelling of installed capability 

and their ageing process, energy technology advancement (e.g., learning curves), investments, and availability of 

resources (e.g., average sun radiation, exploration and discovery of new fossil resources). Energy interacts with 

most of the SDGs such as SDG7 through renewable energy production, SDG13 through reducing emissions from 

fossil fuels, and SDG15 by decreasing the demand for land-use change for deforestation for biomass generation.  

• Water simulates water supply and demand across agriculture, industrial, and domestic sectors as a function of 

available water resources, drought out rate, the impact of climate change, water withdrawal, and the recovery of 

used water. Water interacts mostly with SDG2 through supplying water for agricultural activities and SDG3 by 

providing quality water for domestic use.  

• Land, Food, Fertiliser, Diet Change, and Biodiversity are extensively described in the FeliX model documentation 

(Eker et al., 2019; Walsh et al., 2017). They simulate the change of four different land-uses, the demand and 

production of food (i.e., crop-based meat, pasture-based meat, dairy and eggs, plant-based products), feed, and 

energy crops, diet shift reflecting the proportion and type of meat consumption in the human food (five diet 

compositions), (nitrogen and prosperous) fertiliser uses and their footprints, and the restoration and extinction of 

species. The food consumption is primarily determined through the impacts of diet change (towards less meat diets) 

across different population segments (e.g., male and female, level of education), modelled based on two feedback 

mechanisms from psychological theories: diet change due to social norms and diet change due to a threat and coping 

appraisal (e.g., in response to climate change) (Eker et al., 2019). The demand for agricultural land is balanced by 

increasing crop yields with fertilisation. The impacts of these sub-models are diverse across most of the SDGs. For 

example, the limitation of agricultural activities through diet change in SDG2 can substantially reduce pressure on 

deforestation in SDG15, and the impact of biodiversity conservation can subsequently impact general public health 

in SDG3.  

• Carbon Cycle and Climate compute CO2 emissions from the land and energy sectors, as well as the atmospheric 

radiative forcing and temperature change of the emitted CO2 and their cycle and absorption through terrestrial 

reservoirs and oceans based on the C-ROADS model (Sterman et al., 2012). They also model the effect of 

improvement in carbon capture and storage on controlling emissions. The radiative forcing of other gases (CH4, 

N2O, HFC) are read externally in the model via links to the RCP scenario database (van Vuuren et al., 2011). See 

Walsh et al.(Walsh et al., 2017) for the detailed equations of carbon cycle and climate modelling. These sub-models 

interact with most of the SDGs, and primarily with SDG13 through climate change impacts. FeliX models the 

effects of feedback interactions between climate change (i.e., increasing temperature or carbon concentration) and 

several other sectors, including biodiversity loss (e.g., species extinction rate), agricultural (crop and livestock) 

yield, life expectancy, economic growth, and water supply availability. However, the model still does not include 

some of other related biogeophysical feedbacks (e.g., the effects of wildfires on land-use change) (Calvin & Bond-

Lamberty, 2018). 

  



Model sensitivity analysis 

With Morris elementary effects, we computed the sensitivity index, μ*, from a total evaluation of 𝑟 × (𝑝 + 1) experiments, 

where 𝑟 is the number of sampling trajectories over the number of parameters 𝑝 + 1 points. The μ*, which shows the overall 

effect of a parameter on an output, can be sufficient on its own in providing reliable ranking of model parameters (Campolongo 

et al., 2007). We generated experiments by systematically sampling random values (Morris sampling) using the Exploratory 

Modelling Workbench (Kwakkel, 2017) across 114 model parameters and computed μ* using the SALib Library (Herman & 

Usher, 2017) implementation of this technique, both in the Python environment. To ensure that the ranking obtained from the 

μ* elementary effects converges, we computed the sensitivity index of different samples of increasing size from 250 to 5,000 

samples (equivalent to 28,750 - 575,000 experiments) and used the μ* of the sample size of 2,000 (230,000 experiments), where 

the parameter ranking was stabilised (Supplementary Figure 1), as the reference. We also computed μ* over time (i.e., 2030, 

2050, 2100) to understand how the sensitivity of parameters can change in response to non-linear model behaviour throughout 

time (Figure 3).  

While this can help in ranking model parameters, it does not still specify how many of the ranked parameters should be included 

in the modelling of scenarios. We systematically explored the impact of inclusion or exclusion across top-ranked parameters. 

This was a more reliable approach compared to setting a priori, subjective cut-off value for μ* where a high cut-off value can 

lead to the inclusion of many parameters (some of which with negligible effects) and a low cut-off value can cause the exclusion 

of some important parameters that could potentially have significant effects, both of which with biased impacts on the 

identification of key model parameters. 

To select influential parameters from the ranking results, we assumed that the n top-ranked parameters, where n can vary from 

1 to all parameters, are those that are the most influential. We then systematically tested for what number of n, the metrics of 

sampling across the n top-ranked parameters have high correlations with the metrics of sampling across all parameters (i.e. 

maximum range of behaviour) (Hadjimichael, 2020). We tested the degree of correlation between the Latin Hypercube 

sampling across all parameters (Set 1), across the n top-ranked parameters (Set 2), and across all parameters except the n top-

ranked parameters (Set 3). Ideally, if the n top-ranked parameters are the most influential, they should have the same impacts 

on outputs as when we sampled across all parameters (i.e., Set 1-Set 2 and Set 1-Set 3 correlations converge to 1 and 0 

respectively). We started from 𝑛 = 1 and increased 𝑛 = 𝑛 + 1 until sampling across the n top-ranked parameters (Set 2) 

generated at least 99% correlation with sampling across all parameters (Set 1). The generation and evaluation of the three sets 

for different number of 𝑛 values resulted in 2,400,000 computational experiments. This approach in identifying influential 

parameters is more reliable compared to a priori cut-off value in the ranking results where the inclusion or exclusion of 

parameters can be biased to our subjective thresholds. A priori cut-off value in selecting the number of influential parameters 

can lead to either the inclusion of a large set of parameters (some of which with negligible effects) or the exclusion of some 

important parameters that could potentially have significant effects, both of which will make the identification of key 

parameters biased (Hadjimichael, 2020). 

  



Model calibration 

Among various influential parameters, those related to the demographic and macro-economic input assumptions were the only 

ones harmonised with other integrated assessment models as they form the fundamental underlying logic for each SSP, and 

their harmonisation is important for generating internally consistent scenarios. The original quantifications of these 

socioeconomic assumptions are also based on country-level, multi-dimensional (e.g., age, gender, level of education) 

mathematical modelling of demography and economy growth (Dellink et al., 2017; Samir & Lutz, 2017), and therefore their 

estimates were considered as reference for FeliX (as well as across all other marker integrated assessment models). We used 

Vensim’s built-in optimisation algorithm (i.e., Powell) to find the value of FeliX’s (socioeconomic) parameters (Section 2.2) 

aligned with the reference demographic and economic model (Dellink et al., 2017; Samir & Lutz, 2017). The objective function 

(also called payoff function) was defined as the weighted difference between FeliX’s socioeconomic output variables and the 

quantification of the same outputs by formal demographic and economic models at each time step under each SSP-RCP 

scenario. The optimisation search under each scenario involved 1000 iterations from 5 different starting point (i.e., 5000 

evaluation per scenarios) for different initialisation to avoid local minimum. 

The quantification of non-socioeconomic parameters (related to energy demand, food consumption, etc.) was not harmonised 

with other integrated assessment models to allow the generation of other plausible futures. Their quantification was based on 

FeliX’s initial parameterisation (previously calibrated by Eker et al. (2019), Walsh et al. (2017), and Rydzak et al. (2013)) and 

its variation across scenarios aligned with the scenario assumptions (Section 2.3). To illustrate, the influential FeliX’s parameter 

related the diet composition was calibrated based on five groups of diet (Eker et al., 2019). Diet composition 1 (sustainable) 

was when meat-eaters become flexitarian (limited animal-based foods) and vegetarians eat vegan (high plant-based foods). 

Diet composition 2 (relatively sustainable) was when meat-eaters adopt a healthy diet (moderate animal-based foods and high 

plant-based foods) and vegetarians eat reference vegetarian diet. Diet composition 3 (relatively sustainable) was when meat-

eaters eat healthy diet and vegetarians eat a vegan diet. Diet composition 4 (slightly better than status quo) was when everyone 

(meat-eaters and vegetarians) is flexitarian (a mix of animal-based and plant-based foods), and therefore there is only a slight 

improvement from the current situation, but still on the same trends. Diet composition 5 (status quo) was when everyone follows 

the current reference meat and vegetarian diets (high meat and moderate vegetable consumption). Each of these diet 

compositions was assigned to a scenario consistent with our qualitative assumptions (Section 2.3) about environmental impacts 

of food consumptions. Other influential parameters were calibrated in the same way. Supplementary Table 3 includes the 

detailed quantified assumptions for uncertain model parameters under each scenario as well as information on the unit of each 

parameter. 

  



Design of experiments 

We considered three aspects in designing the computational experiments. The first two aspects were sampling method and 

sample size, that together specified how to randomly collect assumptions from the uncertainty space of scenarios (e.g., 

population growth, GDP, technology advancement) to create an ensemble of SOWs. Complex, highly dynamic models such as 

FeliX can create non-linear and unpredictable model behaviour, and sampling uniformly may not be able to explore a sufficient 

range of model behaviour. We used Latin Hypercube Sampling (McKay et al., 2000) to generate SOWs with the highest 

possible coverage of the uncertainty space and level of randomness, generating 50,000 SOWs across five scenarios (10,000 

SOWs per each). We chose Latin Hypercube Sampling as it creates evenly spaced and distributed grid boxes in the uncertainty 

space and (quasi) randomly selects a sample from each grid box. This results in a sampling strategy that is more evenly 

distributed across the space compared to, e.g., uniform random sampling (Saltelli et al., 2000). Latin Hypercube Sampling has 

been also suggested as suitable technique for the design of experiments in previous exploratory modelling studies (Bryant & 

Lempert, 2010). Sample size (i.e., the number of experiments to run) was selected based on the stability of performance 

indicators with increasing number of experiments.  

The third aspect in the design of experiments was the delineation of the uncertainty range to sample from. Previous studies 

suggested alternative ways to delineate a multi-dimensional uncertainty space based on learning and feedback from the 

influence of uncertainties on model behaviour (Islam & Pruyt, 2016; Moallemi et al., 2018). We specified the uncertainty range 

of 10-30% around the calibrated value of parameters, with the range’s length varying between parameters depending on the 

meaningfulness of range’s bounds for the model parameter and the interpretability of model response. For example, a highly 

sensitive parameter such as fertility rate, whose variation could impact various parts of the model, had a narrow uncertainty 

range for having reasonable projection of population size. Supplementary Table 3 includes the quantified uncertainty range of 

key scenario parameters under five selected scenarios (SSP1-2.6 to SSP5-8.5).  

 

 

  



 

 
Supplementary Figure 1. The convergence of parameter ranking and sensitivity index in the projection of model’s 

control variables in year 2100, for the increasing number of sample size. The figure only shows the convergence of top 10 

most sensitive parameters which for better visibility. 
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Supplementary Figure 2. Scenario projections with the FeliX model and their comparison with the projections of 

major demographic and economic models (Dellink et al., 2017; Samir & Lutz, 2017) and integrated assessment models 

(Bauer et al., 2017; Calvin et al., 2017; Fujimori et al., 2017; Kriegler et al., 2017; Popp et al., 2017; Riahi et al., 2017; 

van Vuuren et al., 2017). Projections cover the period 2020-2100 with an annual time step. 

  



Supplementary Table 1. Qualitative assumptions of scenarios 

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-6.0 SSP5-8.5 

Socioeconomic 

Population growth (Samir & Lutz, 2017) 

Low population growth Moderate population growth High population growth Moderate population growth Low population growth 

Educational attainment (Samir & Lutz, 2017) 

Low number of primary and 

secondary graduates by the end 

of century (due to declining 

population) but high number of 

tertiary graduates 

Moderate number of 

primary, secondary, and 

tertiary graduates 

High number of primary and 

secondary graduates but low 

number of tertiary graduates 

High number of primary and 

secondary graduates but 

relatively low number of 

tertiary graduates 

Low number of primary and 

secondary graduates by the 

end of century (due to 

declining population) but 

high number of tertiary 

graduates 

Economic growth (Cuaresma, 2017; Dellink et al., 2017) 

Relatively high economic 

growth which is tempered over 

time to balance with well-

being, equity, and 

sustainability 

Moderate economic growth 

following historical patterns 

Low economic growth due 

to limited international 

cooperation, low 

investments in education 

Relatively low economic 

growth globally due to unequal 

progress between high- and 

low-income countries. 

High economic growth that 

is much focused on 

consumerism and resource-

intensive consumption 

Energy 

Energy demand and market share of renewable and fossil fuels (Bauer et al., 2017; O’Neill et al., 2017) 

Low energy demand; high, 

relatively high, and moderate 

market share for solar, 

biomass, and wind; low market 

share for all fossil energies 

Relatively high energy 

demand; relatively high, 

low, and high market share 

for solar, biomass, and wind; 

moderate, moderate, and 

high market share for coal, 

gas, and oil 

Moderate energy demand; 

low, high, and low market 

share for solar, biomass, and 

wind; relatively high, 

relatively low, and moderate 

market share for coal, gas, 

and oil 

Moderate energy demand; 

moderate market share for solar, 

biomass, and wind; relatively 

low, low, and moderate market 

share for coal, gas, and oil 

High energy demand; 

relatively high, low, and 

relatively high market 

share for solar, biomass, 

and wind; relatively high, 

high, and high market 

share for coal, gas, and oil 

Energy technology advances (fossil fuels recovery and exploration technology and renewable technology investment and efficiency) (Bauer et al., 2017; 

O’Neill et al., 2017) 

Fast renewable energy 

technology improvement, and 

limited fossil energy 

technology improvement (both 

efficiency and investment) 

Moderate renewable and 

fossil energy technology 

improvement (both 

efficiency and investment) 

Slow renewable and fossil 

energy technology 

improvement (both 

efficiency and investment) 

Relatively slow renewable and 

fossil energy technology 

improvement (both efficiency 

and investment) 

Moderate renewable 

energy technology 

improvement and fast 

fossil technology 

improvement (both 

efficiency and investment) 

Investment in fossil fuels and their resource availability, renewable production cost reduction, limit on emissions from fossil fuels (Bauer et al., 2017; 

O’Neill et al., 2017) 

High, relatively high, and 

moderate solar, biomass, and 

wind energy production; low 

energy production for all fossil 

fuels; low emissions and 

radiative forcing 

Relatively high, low, and 

high solar, biomass, and 

wind energy production; 

moderate, moderate, and 

high coal, gas, and oil 

energy production; relatively 

high emissions and radiative 

forcing 

Low, high, and low solar, 

biomass, and wind energy 

production; relatively high, 

relatively low, and moderate 

coal, gas, and oil energy 

production; relatively high 

emissions and radiative 

forcing 

Moderate solar, biomass, and 

wind energy production; 

relatively low, low, and moderate 

coal, gas, and oil energy 

production; moderate emissions 

and relatively high radiative 

forcing 

Relatively high, low, and 

relatively high solar, 

biomass, and wind energy 

production; relatively 

high, high, and high coal, 

gas, and oil energy 

production; high 

emissions and radiative 

forcing 

Continued. 

  



Land 

Land-use change (Jiang & O'Neill, 2017; O’Neill et al., 2017; Popp et al., 2017)  

Low land cover built-up area; 

deforestation at a slow rate and 

the expansion of cropland and 

pasture land at a slow rate 

Relatively low land cover 

built-up area; deforestation 

at a moderate rate and the 

expansion of cropland and 

pasture land at a moderate 

rate too 

Low land cover built-up 

area; deforestation at a high 

rate and the expansion of 

cropland and pasture land at 

a high rate too 

Relatively low land cover built-

up area; deforestation at a 

moderate rate and the expansion 

of cropland and pasture land at a 

moderate rate too 

High land cover built-up 

area; deforestation at a 

relatively slow rate and 

the expansion of cropland 

and pasture land at a 

relatively slow rate too 

Land productivity growth (O’Neill et al., 2017; Popp et al., 2017) 

High crops and livestock yield Moderate crops and 

livestock yield 

Low crops and livestock 

yield 

Relatively low crops and 

livestock yield 

Relatively high crops and 

livestock yield 

Food and diet change 

Food waste, food consumption, diet change (Eker et al., 2019) 

Low waste, low plant foods 

consumption, low animal 

foods consumption, more 

sustainable diets 

Waste at the current level, 

moderate plant and animal 

foods consumption, the 

global diet follows the status 

quo (more meat, less 

vegetables) 

Relatively high waste, 

moderate plant and animal 

foods consumption, the 

global diet follows the status 

quo (more meat, less 

vegetables) 

Relatively low waste, moderate 

plant and animal foods 

consumption, the global diet 

follows may slightly to towards 

the less meat, more vegetables 

High waste, high plant and 

animal foods 

consumption, the global 

diet follows the status quo 

(more meat, less 

vegetables) 

Climate 

Climate mitigation policy assumptions 

As an indicative scenario for 

low-range emissions with the 

highest potential for mitigation 

facilitated by technology 

advances and high level of 

global cooperation, we 

assumed carbon pricing for 

fossil fuel unit cost of 

production with a linearly 

increasing (global average) 

trajectory (reaching ~$450 per 

tCO2 by 2100), high land-

based mitigations; high 

adoption of carbon capture and 

storage for reducing emissions 

from fossil fuels and from 

bioenergy (BECCS). To model 

high global cooperation in 

adopting climate policies as 

early as possible, we activated 

all implemented measures by 

2025. For other greenhouse 

gases that were not modelled 

endogenously in FeliX, we 

calibrated the model under the 

green recovery consistent with 

the lowest forcing level of 2.6 

W m-2, with data from the 

IASA Scenario Database. 

With medium mitigation 

challenges, we assumed 

slightly lower carbon price 

(reaching ~$300 per tCO2 by 

2100) compared to SSP1-

2.6, lower adoption of  

carbon capture and storage 

for reducing emissions from 

fossil fuels and also from 

bioenergy (BECCS), and 

also lower land-based 

mitigations. To indicate less 

global cooperation in 

adopting climate policies, all 

measures were implemented 

by 2040, later than SSP1-

2.6. For other gases, we 

calibrated the model 

consistent with 4.5 W m-2 

forcing level, with data from 

the IASA Scenario 

Database. 

With significant challenges 

to mitigation (and also with 

little global cooperation in 

the former), we assumed no 

effective climate policy 

regime for carbon emissions 

in FeliX. For other gases, we 

calibrated the model 

consistent with 7.0 W m-2 

forcing level, with data from 

the IASA Scenario 

Database. 

Similar to SSP2.4.5, with 

medium mitigation challenges, 

we assumed slightly lower 

carbon price (reaching ~$300 per 

tCO2 by 2100) compared to 

Green Recovery, lower adoption 

of  carbon capture and storage 

for reducing emissions from 

fossil fuels and also from 

bioenergy (BECCS), and also 

lower land-based mitigations. 

For other gases, we calibrated the 

model consistent with 6.0 W m-2 

forcing level, with data from the 

IASA Scenario Database. 

With significant 

challenges to mitigation 

(and also with little global 

cooperation in the former), 

we assumed no effective 

climate policy regime for 

carbon emissions in FeliX. 

For other gases, we 

calibrated the model 

consistent with 8.5 W m-2 

forcing level, with data 

from the IASA Scenario 

Database. 

 

 

  



Supplementary Table 2. The list of candidate uncertain model parameters used for sensitivity analysis.  

See the Supplementary Table 2 in the Excel spreadsheet with this article. 

  



Supplementary Table 3. Key scenario parameters and their quantification in the FeliX model. 

See the Supplementary Table 3 in the Excel spreadsheet with this article. 
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