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Abstract

The Pacific-Arctic Ocean is characterized by seasonal sea-ice, the spatial extent and duration of which varies considerably. In

this region, diatoms are the dominant phytoplankton group during spring and summer. To facilitate survival during periods

that are less favorable for growth, many diatom species produce resting stages that settle to the seafloor and can serve as a

potential inoculum for subsequent blooms. Since diatom assemblage composition is closely related to sea-ice dynamics, detailed

studies of biophysical interactions are fundamental to understanding the lower trophic levels of ecosystems in the Pacific-Arctic

Ocean. One way to explore this relationship is by comparing the distribution and abundance of diatom resting stages with

patterns of sea-ice coverage. In this study, we quantified viable diatom resting stages in sediments in 2018 and explored their

relationship to sea-ice extent during the previous winter. Diatom assemblages were clearly dependent on the variable timing

of the sea-ice retreat and accompanying light conditions. In areas where sea-ice retreated earlier, open-water species such as

Chaetoceros spp. and Thalassiosira spp. were abundant. In contrast, proportional abundances of Attheya spp. and pennate

diatom species that are commonly observed in sea-ice were higher in areas where diatoms experienced higher light levels and

longer day length in/under the sea-ice due to the late seasonal ice retreat. This study demonstrates that sea-ice dynamics are

an important determinant of diatom species composition in the Pacific-Arctic.
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   21 

Key Points: 22 

 Diatom resting stage assemblages were quantified and their relationship to the sea-ice 23 

dynamics in the Pacific Arctic region was explored. 24 

 Diatom composition follows spatial patterns that depend upon the variable timing of sea-25 

ice retreat and accompanying light conditions. 26 

 Abundance of resting stage diatom cells in sediments varied by several orders of 27 

magnitude across the study region. 28 

  29 
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Abstract (229 words / up to 250 words) 30 

 The Pacific Arctic region is characterized by seasonal sea-ice, the spatial extent and 31 

duration of which varies considerably. In this region, diatoms are the dominant phytoplankton 32 

group during spring and summer. To facilitate survival during periods that are less favorable for 33 

growth, many diatom species produce resting stages that settle to the seafloor and can serve as a 34 

potential inoculum for subsequent blooms. Since diatom assemblage composition is closely 35 

related to sea-ice dynamics, detailed studies of biophysical interactions are fundamental to 36 

understanding the lower trophic levels of ecosystems in the Pacific Arctic. One way to explore 37 

this relationship is by comparing the distribution and abundance of diatom resting stages with 38 

patterns of sea-ice coverage. In this study, we quantified viable diatom resting stages in 39 

sediments collected during summer and autumn 2018 and explored their relationship to sea-ice 40 

extent during the previous winter and spring. Diatom assemblages were clearly dependent on the 41 

variable timing of the sea-ice retreat and accompanying light conditions. In areas where sea-ice 42 

retreated earlier, open-water species such as Chaetoceros spp. and Thalassiosira spp. were 43 

abundant. In contrast, proportional abundances of Attheya spp. and pennate diatom species that 44 

are commonly observed in sea-ice were higher in areas where diatoms experienced higher light 45 

levels and longer day length in/under the sea-ice. This study demonstrates that sea-ice dynamics 46 

are an important determinant of diatom species composition and distribution in the Pacific Arctic 47 

region. 48 

 49 

Plain Language Summary (197 words / up to 200 words) 50 

The Pacific Arctic region is characterized by seasonal sea-ice, and there is considerable 51 

interannual variation in the timing and quality of ice presence. In this region, diatoms are the 52 

dominant phytoplankton group during spring and summer. Under conditions unfavorable for 53 

growth, such as low light or limiting nutrients, many diatom species produce resting stages that 54 

are similar to “seeds” of plants. These resting stages settle to the seafloor and can reflect the 55 

diatom assemblages in the overlying water column. Since diatom species distribution is closely 56 

related to sea-ice dynamics, detailed studies of this relationship are fundamental to understanding 57 

the basis of marine ecosystems in the Pacific Arctic region. In this study, we explored the 58 

relationship by comparing the distribution of diatom resting stage assemblages with patterns of 59 

sea-ice coverage. Diatom assemblages detected in sediments were dependent on the variable 60 

timing of the sea-ice retreat and accompanying light conditions. In areas where sea-ice retreated 61 

earlier, open-water species were abundant, while proportional abundances of ice-associated 62 

diatoms were higher in areas where diatoms experience favorable light conditions in/under the 63 

sea-ice. This study demonstrates that sea-ice dynamics are an important determinant of diatom 64 

composition in the Pacific Arctic region. 65 

  66 
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1 Introduction 67 

 The Pacific Arctic region extends from the northern Bering Sea to the Chukchi and 68 

Beaufort Seas. Within this region, the northern Bering and Chukchi Seas display among the 69 

highest daily rates of productivity in the world (Springer et al., 1996). Phytoplankton are 70 

responsible for high primary productivity in the euphotic layer and delivery of particlulate 71 

organic carbon (POC) to the benthos. The sinking POC flux measured in 2018 in the northern 72 

Bering and Chukchi Seas was the among highest ever documented across global oceans (O’Daly 73 

et al., 2020). This POC supports patchy distributions of high benthic biomass known as “benthic 74 

hotspots” (Grebmeier et al., 1988, 2006). In contrast, primary productivity in the southwestern 75 

Beaufort Sea is low (Frost & Lowry, 1984). 76 

 In the Arctic Ocean, ice algae production occurs in and under the sea ice, and is followed 77 

by phytoplankton blooms during the summer retreat of sea-ice (Horner, 1984; Horner & 78 

Schrader, 1982). Mean daily water column integrated primary productivity in the southwestern 79 

Beaufort Sea is about half of that of the Chukchi Sea, even during peak periods in June and July 80 

(Hill et al., 2018). Overall, annual primary production is much higher in the Chukchi shelf than 81 

on the Beaufort shelf (Grebmeier et al., 2006). 82 

 The Pacific Arctic region is characterized by the presence of seasonal sea-ice, which 83 

varies considerably in extent and duration from year to year. The extent of sea-ice has been 84 

shown to influence regional phytoplankton assemblages (Neeley et al., 2018), but this 85 

relationship is not fully understood. Sea-ice decline has been reported in the region (Frey et al., 86 

2018; Grebmeier et al., 2015; Markus et al., 2009), and Arrigo et al. (2008) used satellite 87 

observations to show that this decline was associated with increasing annual primary production. 88 

However, changes in phytoplankton assemblages and particularly in ice-associated assemblages, 89 

cannot be evaluated by satellite observations only, necessitating field-based studies to examine 90 

the structure of these communities in more detail.  91 

 Phytoplankton assemblages during spring and summer blooms in the Pacific Arctic 92 

region are dominated by diatoms (von Quillfeldt, 2000; Sergeeva et al., 2010), which drive 93 

sinking POC flux (Lalande et al., 2020). Some diatom genera, Chaetoceros spp. and 94 

Thalassiosira spp., are known to form dense blooms in this region (von Quillfeldt, 2000; 95 

Sergeeva et al., 2010). In particular, C. socialis s.l. can constitute more than 90% of 96 

phytoplankton assemblages during blooms in the northern Bering and Chukchi Seas (Sergeeva et 97 
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al., 2010). The centric diatoms Attheya spp. are reported to be present in the sea-ice of the Arctic 98 

(Campbell et al., 2018; Melnikov et al., 2002; von Quillfeldt et al., 2003; Szymanski & 99 

Gradinger, 2016; Werner et al., 2007) and can comprise over 60% of diatom abundance in the 100 

sea-ice during spring (Campbell et al., 2018). Pennate diatoms are also known to constitute a 101 

large proportion of the sea-ice algal community (von Quillfeldt et al., 2003; Szymanski & 102 

Gradinger, 2016). 103 

 Many diatom species form resting stages under unfavorable growth conditions such as 104 

nutrient limitation (Durbin, 1978; Garrison, 1984; McQuoid & Hobson, 1996; Smetacek, 1985), 105 

Fe limitation (Sugie & Kuma, 2008) and low light conditions (McQuoid & Hobson, 1996). High 106 

cell concentrations in water column assemblages can also induce formation of resting stages 107 

(Pelusi et al., 2020). Resting stages that sink to and accumulate in bottom sediments can 108 

germinate and resume growth in response to favorable light levels (Hollibaugh et al., 1981). The 109 

ability to form resting stages is thus an important life cycle strategy for survival under low 110 

temperature and light conditions during winter in seasonal sea-ice areas (Tsukazaki et al., 2013, 111 

2018).  112 

The distribution of diatom resting stage assemblages in sediments is thought to reflect 113 

the extent and magnitude of past blooms (Itakura et al., 1997; Pitcher, 1990) and can be used to 114 

investigate determinants of community structure and bloom dynamics. For example, in the 115 

northern Bering Sea, analysis of the diatom resting stages in sediments showed that diatom 116 

assemblages in early spring were dependent upon the timing of the sea-ice retreat (TSR): ice-117 

associated diatoms were abundant in 2017 when the sea-ice remained until early April, but open-118 

water diatoms dominated in 2018 when the TSR was approximately two weeks earlier than the 119 

previous year (Fukai et al., 2019). 120 

 In this study, we enumerated viable diatom resting stages in sediments collected in a 121 

broad area across the Pacific Arctic region, from the northern Bering Sea to the Chukchi Sea and 122 

the southwestern Beaufort Sea. We describe the features of diatom resting stage assemblages 123 

over these regions, and discuss two hypotheses: 1) the concentrations of diatom resting stage 124 

assemblages are correlated with primary production in the water column, and 2) the extent and 125 

duration of sea-ice during the previous winter and spring determines community structure of 126 

diatom resting stage assemblages. In addition, we discuss how observed variations in diatom 127 
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assemblages may impact organisms at higher trophic levels that rely on diatoms as an important 128 

food source.  129 

 130 

2 Materials and Methods 131 

2.1 Sea-ice, primary production and daylight hours 132 

 To evaluate the sea-ice extent in each region, the Advanced Microwave Scanning 133 

Radiometer 2 (AMSR2) standard sea-ice concentration (SIC) product was obtained from the 134 

Japan Aerospace Exploration Agency (JAXA) web portal (https :// gport al.jaxa.jp/gpr/) at a 10-135 

km resolution. The TSR was defined as the last day when the SIC fell below 20% prior to the 136 

observed annual sea-ice minimum across the study region during summer. Here, we used the SIC 137 

data after calculating a 5-day moving average. 138 

 To obtain a continuous primary production time-series, we used Level-3 standard mapped 139 

image (9-km resolution) of Aqua-MODIS data downloaded as spectral remote sensing 140 

reflectance (Rrs) and daily photosynthetically available radiation (PAR) from the Goddard Space 141 

Flight Centre/Distributed Active Archive Centre, NASA. The absorption coefficient for 443 nm 142 

(aph(443)) and euphotic zone depth (Zeu) were computed from Rrs(λ) using Quasi-Analytical 143 

Algorithm (QAA) version 5 (Lee et al., 2007, 2009) and daylength (DL) for the study area 144 

calculated according to Brock (1981). We then computed the daily euphotic-depth-integrated 145 

primary production (PPeu) using aph(443), Zeu, PAR, and DL as inputs to an absorption-based 146 

productivity model (ABPM, (Hirawake et al., 2012)). Missing values in aph(443) and Zeu due to 147 

cloud cover were interpolated using their annual medians and hence PPeu was derived for the 148 

cloud-covered pixels. From these values we calculated cumulative PPeu (IPeu) from TSR to the 149 

date of the in situ sediment sampling was conducted for each shipboard observation site.  150 

2.2 Sampling 151 

 Sediment sampling was conducted in the shallow Pacific Arctic region at stations ranging 152 

from 24–194 m bottom depths (the northern Bering Sea, Chukchi Sea and the southwestern 153 

Beaufort Sea; Fig. 1, Table 1) from 2–12 July 2018 aboard T/S Oshoro-Maru of Hokkaido 154 

University, and from 9–23 August 2018 and 30 October to 15 November 2018 aboard the U.S. 155 

Coast Guard icebreaker Healy (HLY 1801 and HLY 1803, respectively) (Fig. 2 (a)). Sediment 156 

samples were collected using a multiple corer (Oshoro-Maru cruise), a Van Veen Grab sampler, 157 
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or a HAPS core sampler (Healy cruises) at each station. A portion of the 0–1 cm of each 158 

sediment core was extruded and stored in darkness at 5˚C for Oshoro-Maru samples, and for 159 

Healy samples, a portion of the 0–3 cm layer was collected from the grab or the core and stored 160 

in air-tight amber jars at 1–4˚C. The sediment samples were stored for more than one month in 161 

order to eliminate vegetative cells. Since the main driver of diatom resting stage formation is 162 

considered to be nitrogen depletion (McQuoid & Hobson, 1996), most resting stages are thought 163 

to form in the water column rather than near the benthos, as nutrient concentrations are higher 164 

near the seafloor. 165 

2.3 Quantification of diatom resting stages 166 

 The abundance of viable resting stages of diatoms in the sediment samples was analyzed 167 

using the most probable number (MPN) method (Imai et al., 1984, 1990). Homogenized wet 168 

sediment samples were suspended in Whatman GF/F filtered sterile seawater at a concentration 169 

of 0.1 g mL
-1

 (=10
0
 dilution), and the subsequent serial tenfold dilutions (10

-1 
to 10

-6
) were made 170 

with modified SWM-3 medium (Table 2) (Chen et al., 1969; Itoh & Imai, 1987). Then 1 mL 171 

aliquots of diluted suspensions were inoculated into five replicate wells of disposable tissue 172 

culture plates (48 wells). Incubation was carried out at a temperature of 5°C and under white 173 

fluorescent light of 50 or 116 µmol photons m
-2

 s
-1

 with a 14 h light:10 h dark photocycle for 10 174 

days. The appearance of vegetative cells of planktonic diatoms in each well was examined using 175 

an inverted optical microscope. The most probable number (MPN for a series of 5 tenfold 176 

dilutions) of diatoms of each species in the sediment sample (MPN cells g
-1

 wet sediment) was 177 

then calculated according to the statistical table by Throndsen (1978). Since we observed wells 178 

with 10
-2

–10
-6

 dilutions, the detectable cell numbers by the MPN method were from 1.8 × 10
2
 to 179 

2.4 × 10
7
 MPN cells g

-1
 for each species. Note that we used the dataset of Fukai et al. (2019) for 180 

the Oshoro-Maru expedition. 181 

2.4 Statistical analyses 182 

 The diatom resting stage communities were distinguished by cluster analysis. To 183 

reduce the bias for abundant species, the cell concentration data (X: MPN cells g
-1

 wet sediment) 184 

for each species were transformed to ∜𝑋 prior to cluster analysis (Quinn & Keough, 2002). 185 

Dissimilarities between samples were examined using the Bray-Curtis index based on the 186 

differences in the species composition. To group the samples, the dissimilarity indices were 187 
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coupled using hierarchical agglomerative clustering with a complete linkage method (an 188 

unweighted pair group method using the arithmetic mean). A Mann-Whitney U-test was 189 

conducted to evaluate environmental factors (the TSR, IPeu, and the growth period of ice-190 

associated assemblages (GP)) between the distinguished groups. The GP was defined as the 191 

integrated daylength during the periods with SIC > 20% after the daylight exceeded 10 hours, as 192 

Gilstad and Sakshaug (1990) indicated that ice-associated assemblages could increase their 193 

growth rate when daylight hours exceeded 10 h.  194 

 We defined the open-water assemblages as the community with centric diatoms, 195 

excluding Attheya spp., and the ice-associated assemblages as the community with pennate 196 

diatoms and Attheya spp., as Attheya spp. and pennate diatoms are often reported to be present in 197 

the sea-ice (e.g. Campbell et al., 2018; Melnikov et al., 2002; von Quillfeldt et al., 2003; 198 

Szymanski & Gradinger, 2016; Werner et al., 2007). Based on this definition, we analyzed the 199 

relationships of ice-associated assemblages with the TSR and the GP using Spearman's rank 200 

correlation coefficient. 201 

 All statistical analyses were conducted using R software (version 3.6.1, R Development 202 

Core Team, 2019). 203 

 204 

3 Results 205 

3.1 Sea-ice and primary production 206 

 The TSR was different among regions (Table 1). The sea-ice retreated from south to 207 

north in the northern Bering and the Chukchi Seas, and from west to east in the southwestern 208 

Beaufort Sea (Fig. 1). 209 

 The IPeu had a regional feature in which high values were observed in the 210 

southern Chukchi Sea and low values in the southwestern Beaufort Sea (Table 1, Fig. 2 (b)). 211 

3.2 Diatom concentrations and species composition 212 

 The viable diatom resting stages determined by the MPN method ranged over four orders 213 

of magnitude, from 1.2 × 10
3
 to 6.1 × 10

7
 MPN cells g

-1
 wet sediment (Fig. 3). Highest 214 

concentrations were found to the south of St. Lawrence Island (3.4 × 10
6
–6.1 × 10

7
 MPN cells g

-
215 

1
 wet sediment). In the Chirikov Basin, which extends northwards from St. Lawrence Island to 216 

the Bering Strait (DBO2-1, DBO2-4, OS14, OS19, OS20, OS22), diatom concentrations were 217 
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relatively high (2.8 × 10
5
–3.0 × 10

6
 MPN cells g

-1
 wet sediments). Diatom concentrations near 218 

Utqiagvik (DBO5-10) were also relatively high (1.2 × 10
6 
MPN cells g

-1
 wet sediments). In 219 

contrast, cell concentrations were lower in samples from the coastal region of the southwestern 220 

Beaufort Sea (DBO6-5, PRW-7, PRB-4, PRB-7, KTO-5, MCK-1, MCK-2, MCK-3, MCK-4) 221 

(1.2 × 10
3
–7.8 × 10

3
 MPN cells g

-1
 wet sediments). Nineteen genera and twenty species were 222 

observed over the study region - 12 genera and 14 species of centric diatoms and 7 genera and 6 223 

species of pennate diatoms. Centric diatoms were dominant at almost all stations, although 224 

dominant species varied geographically; proportional abundance of Chaetoceros spp. and 225 

Thalassiosira spp. were found in samples collected from the northern Bering Sea and Chukchi 226 

Sea, whereas Attheya spp. were highest in the southwestern Beaufort Sea (Fig. 4). Pennate 227 

diatoms comprised over 50% of the diatom assemblages at some stations (DBO4-4, MCK-1，228 

MCK-2, MCK-3), with highest proportional abundance found in samples from the southwestern 229 

Beaufort coastal region (Fig. 4). Total cell concentration in sediments were positively correlated 230 

with the cell concentrations of Chaetoceros spp. and Thalassiosira spp. (Spearman, ρ = 0.97, p < 231 

0.05) (Fig. 5). 232 

 In order to test for seasonal effects, diatom assemblages were compared over time in 233 

stations in the northern Bering Sea and Southern Chukchi Sea, which included locations from 234 

each sampling period (OS14, 19, 20, 22, 30 by Oshoro-Maru, DBO2-1, 2-4, 3-6, 3-8 in HLY 235 

1801, and DBO 3-1, 3-5, 3-7 in HLY 1803). There were no significant differences in species or 236 

genera among these samples (one-way ANOVA, p > 0.05), with the exception of Attheya spp. 237 

and C. debilis (one-way ANOVA, p < 0.05). 238 

 239 

3.3 Diatom assemblages by cluster analysis 240 

 Cluster analysis based on concentrations of diatom resting stages classified the diatom 241 

assemblages into two groups (A, B) and four outgroups at 52% and 64% dissimilarity levels. 242 

Group A was distributed from the northern Bering Sea to the Chukchi Sea near Utqiagvik (Fig. 6 243 

(a)). Cell concentrations in group A were very high (7.9 × 10
4
–1.1 × 10

7
 MPN cells g

-1
 wet 244 

sediments, avg = 1.2 × 10
6
 MPN cells g

-1
 wet sediment), and samples in this group with 245 

dominated by Chaetoceros spp. and Thalassiosira spp. (35% and 51%, respectively) (Fig. 6 (b)). 246 

Group B included stations from the southwestern Beaufort Sea, where cell concentrations ranged 247 
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from 3.2 × 10
3
 to 2.1 × 10

5
 MPN cells g

-1
 wet sediment (avg = 5.8 × 10

4
 MPN cells g

-1
 wet 248 

sediment) and Attheya spp. were dominant (47%) (Fig. 6 (b)). All stations from the easternmost 249 

transect in the study region (MCK) were classified as outgroups (Fig. 6 (a)).  250 

3.4 Relationships with environmental factors 251 

 Environmental factors differed between samples comprising diatom groups A and B. The 252 

TSR was significantly later at the group B locations compared to group A (U-test, p < 0.05) (Fig. 253 

7 (a)), and the GP was significantly longer at group B locations than group A (U-test, p < 0.05) 254 

(Fig. 7 (b)). The switching between the two diatom groups occurred around 200 Julian day of the 255 

TSR and approximately 2500 hours of the GP (Fig. 7 (a), (b), Fig. 8). By contrast, the IPeu and 256 

the sampling depth were not significantly different between groups (U-test, p > 0.05) (Fig. 7 (c), 257 

(d)). 258 

In addition, the TSR and the GP were significantly positively correlated with the 259 

proportion of pennate diatoms and Attheya spp., which are defined as the ice-associated 260 

assemblages (ρ = 0.63 and 0.29, respectively, p < 0.05) (Fig. 8).  261 

 262 

 4 Discussion 263 

 Examination of the distribution and abundance of diatom resting stages in Pacific Arctic 264 

sediments demonstrated a strong correlation with the timing of sea ice retreat and the growth 265 

period of ice-associated assemblages. Details regarding spatial community dynamics and 266 

relationships between diatom assemblages and TSR, GP, and environmental parameters are 267 

discussed below. 268 

4.1 Distribution of diatom resting stages and the relationships with primary production in 269 

the Pacific Arctic Region 270 

 Cell concentrations of diatom resting stages exhibited geographic variability that roughly 271 

corresponded with levels of primary production previously reported in the region. However, 272 

primary production values estimated by satellite remote sensing in this study did not have any 273 

statistically significant relationships with diatom resting stage assemblages.  274 

 This study found high concentrations of diatom resting stages in the northern Bering Sea 275 

and the Chukchi Sea (avg = 3.1 × 10
6
 MPN cells g

-1
 wet sediments), but low concentrations (avg 276 

= 6.2 × 10
4
 MPN cells g

-1
 wet sediments) in the southwestern Beaufort Sea. This is consistent 277 
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with prior studies of primary productivity that documented high annual water-column integrated 278 

primary production in the northern Bering and Chukchi Seas and low productivity in the western 279 

Beaufort Sea (Grebmeier et al., 2006; Hill et al., 2018). However, we did not find a significant 280 

relationship between diatom resting stage assemblages and primary production values estimated 281 

by satellite. O’Daly et al. (2020) presented similar findings; that higher rates of primary 282 

productivity were correlated with higher rates of POC flux, including viable diatoms, but that 283 

there is variability in the export efficiency. Thus, while the hypothesis that diatom resting stage 284 

concentrations reflect primary productivity in the water column (Imai et al., 1990; Itakura et al., 285 

1997; Pitcher, 1990) holds up over broad features of the Pacific Arctic region, additional data are 286 

needed to justify this using resting stage assemblages as a strict proxy for productivity.  287 

Another cause of high concentrations of resting stages observed in the northern Bering 288 

and Chukchi Seas is related to the high sinking flux in this region (O’Daly et al., 2020). Lalande 289 

et al. (2020) used a time series of sediment trap observations at single station in the Chukchi Sea 290 

to show that diatoms make up a high proportion of POC flux. The characteristically high sinking 291 

flux in the northern Bering and Chukchi Seas could drive high concentrations of sediment diatom 292 

assemblages reported here, though diatom losses by zooplankton grazing also need to be 293 

considered (Campbell et al., 2009; Sherr et al., 2009). 294 

 We considered the impact that variable sampling times may have had upon the 295 

assemblages observed in this study. The sediments were obtained over several different time 296 

periods (2–12 July 2018, 9–23 August 2018, and 30 October to 15 November 2018), and it is 297 

possible that the community structure changed from summer to fall. However, there were no 298 

significant differences in species or genera except for Attheya spp. and C. debilis between 299 

samples at replicated stations in the northern Bering Sea and Southern Chukchi Sea, where 300 

sampling was conducted over multiple time periods. Dissimilarity among almost all the samples 301 

was less than 40%, and they were also grouped in the cluster analysis. Water temperature is 302 

known to influence resting stage survival time, with colder water increasing survival time length 303 

(McQuoid & Hobson, 1996). Hargraves and French (1983) reported that Chaetoceros diadema, 304 

Detonula confervacea, Leptocylindrus danicus and Thalassiosira nordenskioeldii, which 305 

sometimes appear in the Pacific Arctic sediments, survived for 291, 220, 400, and 220 days, 306 

respectively, at temperatures between 5−6°C. These periods are sufficiently longer than the 307 

difference in sampling periods (the longest difference is 136 days). Given that temperatures at 308 
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the seafloor of the Pacific Arctic are lower than 5−6°C, we do not believe that the survival time 309 

of resting stages impacted our results. For these reasons, differences over sampling periods 310 

appeared to be almost negligible in this study. 311 

4.2 The relationship of diatom resting stage assemblages with the TSR and the GP 312 

 Prior investigators have shown that the magnitude and composition of diatom 313 

assemblages in the Arctic spring bloom are influenced by the presence of the sea-ice and the 314 

timing of the sea-ice retreat (Fujiwara et al., 2016; Fukai et al., 2019; Neeley et al., 2018). In this 315 

study, the distribution of diatom resting stage assemblages were clearly related to spatial 316 

differences in the TSR. In locations where the ice retreat was early, such as the northern Bering 317 

and the Chukchi Seas, Chaetoceros spp. including C. socialis s.l. and Thalassiosira spp. were 318 

dominant in sediments (C. socialis s.l.: 0.36–93.1%, Chaetoceros spp.: 0.76–93.6%, 319 

Thalassiosira spp.: 2.0–96.4%). Because they are known to form dense spring blooms in these 320 

regions (von Quillfeldt, 2000; Sergeeva et al., 2010), these data suggest that diatom resting 321 

stages were formed and settled to the seafloor after spring blooms of Chaetoceros spp. and 322 

Thalassiosira spp. in the northern Bering Sea and the Chukchi Sea. In addition, the positive 323 

correlation between Chaetoceros spp. and Thalassiosira spp. cell concentrations with total cell 324 

concentrations indicates that where the TSR was early and the open-water period was long, large 325 

diatom blooms of Chaetoceros spp. and Thalassiosira spp. produced high quantities of resting 326 

stage cells (Fukai et al., 2019).  327 

 The TSR had also an effect on the diatom community composition, especially the 328 

proportion of ice-associated diatoms in diatom assemblages. In the southwestern Beaufort Sea, 329 

where the TSR was late, diatom assemblages were dominated by ice-associated species (Groups 330 

B and outgroups in the transect MCK), again demonstrating that sea-ice is a driver of benthic 331 

community structure among the exported diatoms. In addition, the prevalence of ice-associated 332 

species was positively correlated with the TSR, suggesting that the proportion of ice algae in 333 

diatom assemblages is higher when sea-ice persists. This is likely due in part to their ability to 334 

sustain growth under low light levels (< 1 µmol photon s
-1

 m
-2

) (Cota & Smith, 1991; Mock & 335 

Gradinger, 1999); notably, Tsukazaki et al. (2018) demonstrated that the centric genus Attheya 336 

spp. could survive in dark for more than six months, and thus can withstand low light conditions 337 

in the Arctic. It is possible that this study underestimated the concentrations of pennate diatoms 338 
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in sediments compared with Attheya spp. and other centric diatoms, as few marine pennate 339 

diatoms are known to form resting stages, while many centric diatoms do (McQuoid & Hobson, 340 

1996), and the fate of the pennate diatoms in sediment is largely unknown. Despite this potential 341 

bias, these data indicate that the proportion of ice-associated species was higher where the TSR 342 

occurred later. Interestingly, a spatial change from the assemblage dominated by open-water 343 

species to that with high proportion of ice-associated diatoms occurred at stations where the TSR 344 

was around the 200th Julian day (mid-July). This indicates a potential threshold between 345 

dominant diatom groups based on the TSR parameter. 346 

 For ice-associated assemblages in the surface sediments, the length of the growth period 347 

during which algae receive sufficient light before the TSR is important (Fukai et al., 2019). The 348 

proportional abundance of ice-associated diatoms was significantly higher when GP was longer, 349 

suggesting that photoperiod during sea-ice presence is another important driver of diatom 350 

community structure (Cota & Home, 1989; Gosselin et al., 1990; Smith et al., 1988). In addition, 351 

a GP boundary of 2500 hours may be an important parameter for the distribution of ice-352 

associated assemblages due to corresponding changes that were observed. Future efforts to 353 

evaluate and predict diatom assemblages should consider both the TSR and the GP. 354 

4.3 Connecting diatom distribution to higher trophic levels 355 

 The diatom assemblages had clear relationships with the TSR and the GP. In the northern 356 

Bering Sea, the early timing of the sea-ice retreat and subsequent changes in diatom assemblages 357 

in the water column and the sediment was reported in 2018 (Fukai et al., 2019, 2020). This 358 

indicates that the recent drastic reduction of sea-ice in the Pacific Arctic region may induce a 359 

shift in diatom assemblages from relative dominance of ice-associated species to open-water 360 

species.  361 

 The distribution and composition of diatom species in this study were associated with the 362 

zooplankton feeding environment in the Pacific Arctic region. As diatoms comprise the largest 363 

portion of the mesozooplankton diet, especially in spring (Campbell et al., 2016), changes in 364 

diatom species composition will perturb prey environments of higher trophic-level organisms. 365 

The spatial trend of diatom resting stage concentrations exhibited a similar gradient to 366 

zooplankton δ
13

C values showed by Pomerleau et al. (2014), which reported values that were 367 

more enriched in the western Bering Strait and less enriched on the Beaufort shelf. Nakatsuka et 368 

al. (1992) reported an increase in δ
13

C of POC during a diatom bloom in a mesocosm experiment 369 
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in Saanich Inlet, Canada. Additionally, they showed that the main factor influencing the variation 370 

of  δ
13

C of POC during a phytoplankton bloom in a mesocosm experiment was the specific 371 

production rate of POC, which can be proportional to the specific growth rate of phytoplankton, 372 

rather than carbon dioxide system or community composition (Nakatsuka et al., 1992). 373 

Typically, fast-growing diatoms (e.g. Chaetoceros spp. and Thalassiosira spp.) and zooplankton 374 

that feed on these diatoms are enriched with 
13

C (Fry & Wainright, 1991). The inflow of nutrient 375 

rich Anadyr waters from the western Bering Strait is known to fuel huge blooms of Chaetoceros 376 

spp. and Thalassiosira spp. (Danielson et al., 2017; Sergeeva et al., 2010), explaining the high 377 

concentrations of these species in sediments of the northern Bering and the Chukchi Seas 378 

reported here. In addition, regions of high diatom resting stage concentrations roughly 379 

corresponded to benthic hotspots, which include waters to the south of St. Lawrence Island, the 380 

Chirikov Basin, the southeastern Chukchi Sea and the northeastern Chukchi Sea (Grebmeier et 381 

al., 2015). In these regions with mean depths from 43 to 65 m, benthic primary production can be 382 

lower than pelagic production due to light limitation, and accumulation of microalgae in 383 

sediments are the main food source for benthic communities (Grebmeier et al., 2015). In 384 

particular, diatoms are valuable taxa because they are rich in polyunsaturated fatty acids 385 

(PUFAs) (Brown et al., 1997). Furthermore, Wang et al. (2016) analyzed the blubber fatty acid 386 

composition and stable carbon isotope ratios of ice seals, who feed on pelagic and benthic fishes, 387 

in the northern Bering and the southern Chukchi Seas to show that ice algae production 388 

contributed up to 80% of ice seal diets through trophic transfer. Therefore, changes in diatom 389 

assemblages caused by sea-ice dynamics will directly influence zooplankton and benthos 390 

production, with indirect effects upon higher trophic levels. 391 

 392 

5 Conclusions 393 

 This study demonstrated that the distribution and community composition of diatom 394 

resting stages in the Pacific Arctic region were significantly influenced by the presence of sea-ice 395 

and the light environment. Diatom resting stages appear to follow broad spatial patterns of 396 

primary productivity across the region, suggesting the potential use of diatom resting stages as 397 

one of the proxies for productivity, despite the fact that there was not a significant relationship 398 

between diatom assemblages and primary productivity estimated by satellite observations. The 399 

TSR and the GP were important drivers of diatom assemblages, and significantly influenced the 400 
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composition of diatoms in sediments. In particular, diatom assemblages changed spatially from 401 

composition dominated by open-water species to a high proportion of ice-associated diatoms in 402 

the region where the TSR occurred after mid-July (around the 200th Julian day) and the GP was 403 

over 2500 hours. This result may indicate that a shift to earlier TSR under future climate 404 

conditions could induce not only delayed bloom timing (Hirawake & Hunt, 2020; Kikuchi et al., 405 

2020) but also a change in the composition of diatom assemblages forming the spring bloom. 406 

The distribution of diatom resting stages is a valuable approach for investigating the diatom 407 

community, particularly on the Arctic shelves where it is logistically challenging to characterize 408 

the rapid seasonal succession in community composition that occurs across this remote and 409 

dynamic geographic region. Moreover, this approach provides species-level resolution lacking in 410 

satellite observations, providing a more robust assessment of the ecosystem implications of 411 

community changes. On the ecosystem level, it is interesting that the distribution of diatom 412 

resting stages corresponded spatially with benthic hot spots and the feeding environment of 413 

zooplankton. Based on this research, it is clear that future changes in sea-ice extent and duration 414 

will impact diatom communities, and that resulting fluctuations in primary productivity and 415 

community structure will affect other components of Arctic marine ecosystems. 416 
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Figure and Table legends 645 

Figure 1. Sediment sampling locations in the northern Bering Sea, Chukchi Sea, and Beaufort 646 

Sea in 2018. Color contours indicate the timing of the sea-ice retreat (rainbow contour) and the 647 

bottom depth (blue contour). Abbreviations indicate the transect names during Healy cruises 648 

1801 and 1803. SLI: St. Lawrence Island 649 

Figure 2. Horizontal values of the observation date (a) and the daily cumulative euphotic-depth-650 

integrated primary production from the TSR to the observation date (IPeu) (b). 651 

Figure 3. Horizontal distribution of diatom resting stages in the north Bering, Chukchi and 652 

Beaufort Seas in 2018. Squares indicate benthic hot spots indicated by Grebmeier et al. (2015). 653 

Figure 4. Cell concentrations and species composition of diatom resting stages in the northern 654 

Bering, Chukchi and Beaufort Seas in 2018. 655 

Figure 5. The relationship between the abundances of Chaetoceros spp. and Thalassiosira spp. 656 

and total cell concentrations in MPN. 657 

Figure 6. (a) Spatial distribution of diatom resting stage communities by group. (b) Species 658 

composition and cell concentrations in each group. 659 

Figure 7. Comparison of environmental factors between diatom resting stage groups. (a) the 660 

timing of the sea-ice retreat (TSR). (b) the growth period of ice-associated assemblages (GP). (c) 661 

the daily cumulative euphotic-depth-integrated primary production from the TSR to the 662 

observation date (IPeu). (d) the bottom depth of sampling station. 663 

Figure 8. Relationships between the proportion of the ice-associated species (Attheya spp. and 664 

pennate diatoms) in MPN and the TSR (a), and the GP (b). Each color indicate the diatom groups 665 

(pink: group A, green: group B, and gray: out groups). 666 

Table1. Locations of sediment sampling stations in the Bering, Chukchi, and Beaufort Seas from 667 

July to November in 2018. In sample type column, “core” and “Van Veen” indicate that the 668 

samples were collected by multiple corer and Van Veen grab sampler, respectively. The timing 669 

of sea ice retreat (TSR) indicates the last date when the sea ice concentration falls below 20%, 670 

prior to observed annual sea ice minimum across the study region during summer. IPeu indicates 671 

daily integrated values of primary production from TSR to the date of the in situ sediment 672 

sampling was conducted. The growth period of the ice-associated assemblages (GP) indicates the 673 

integrated daylength during the periods with SIC > 20% after the daylight hours exceed 10 hours. 674 

Table 2. Components of the modified SWM-3 medium. Solvent is natural filtered sea water. 675 

Medium pH is 7.7−7.8. 676 
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Table 1. Locations of sediment sampling stations in the Bering, Chukchi, and Beaufort Seas from July to November in 2018. In sample type column, 

“core” and “Van Veen” indicate that the samples were collected by multiple corer and Van Veen grab sampler, respectively. The timing of sea ice 

retreat (TSR) indicates the last day when the SIC fell below 20% prior to the observed annual sea-ice minimum across the study region during 

summer. IPeu indicates daily integrated values of primary production from TSR to the date of the in situ sediment sampling was conducted. The 

growth period of the ice-associated assemblages (GP) indicates the integrated daylength during the periods with SIC > 20% after the daylight hours 

exceed 10 hours. 

Cruise Station Date (Julian day) 
Latitude 

(°N) 

Longitude 

(°W) 

Bottom 

depth (m) 

Sample 

Type 
TSR (Julian day) 

IPeu 

(mg C m-2) 

GP 

(hours) 

Oshoro-maru  OS4 2018/7/2 (183) 63.15 173.83  75 Core 2018/3/22 (81) 80253.9 103.2 

 
OS6 2018/7/3 (184) 62.88 172.16  55 Core 2018/3/23 (82) 56305.7 158.4 

 
OS8 2018/7/3 (184) 62.49 170.00  37 Core 2018/3/25 (84) 77752.8 234.2 

 
OS14 2018/7/5 (186) 64.51 170.87  46 Core 2018/4/17 (107) 66311.6 414.7 

 
OS19 2018/7/6 (187) 64.51 166.51  28 Core 2018/5/1 (121) 39181.0 755.1 

 
OS20 2018/7/6 (187) 65.08 168.00  46 Core 2018/4/20 (110) 32002.1 581.4 

 
OS22 2018/7/7 (188) 65.07 169.70  51 Core 2018/4/17 (107) 106377.2 469.0 

 
OS30 2018/7/11 (192) 66.73 168.96  42 Core 2018/5/17 (137) 59460.1 1033.1 

HLY 1801 DBO2-1 2018/8/9 (221) 64.67 169.93  48 Van Veen 2018/4/16 (106) 104868.8 427.2 

 DBO2-4 2018/8/9 (221) 64.96 169.90  49 Van Veen 2018/4/17 (107) 143193.9 469.0 

 
DBO3-6 2018/8/10 (222) 67.90 168.25  59 Core 2018/5/20 (140) 95858.0 935.9 

 
DBO3-7 2018/8/11 (223) 67.79 168.60  51 Core 2018/5/20 (140) 104109.1 935.1 

 
IC-3 2018/8/13 (225) 71.60 165.30  43 Van Veen 2018/6/26 (177) 32304.9 1829.9 

 
IC-8 2018/8/14 (226) 70.97 163.56  46 Van Veen 2018/6/30 (181) 48394.7 1391.3 

 
DBO4-2 2018/8/15 (227) 71.22 161.29  50 Core 2018/7/14 (195) 17824.0 1891.3 

 
DBO4-4 2018/8/15 (227) 71.48 161.50  49 Core 2018/7/15 (196) 15406.3 2377.8 

 
DBO4-5 2018/8/15 (227) 71.61 161.62  47 Core 2018/7/14 (195) 19747.3 2477.9 

 
DBO5-9 2018/8/17 (229) 71.58 157.82  66 Van Veen 2018/7/22 (203) 2915.4 2667.8 

 
DBO5-10 2018/8/17 (229) 71.63 157.90  64 Core 2018/7/22 (203) 2813.1 2669.9 

 
LB-11 2018/8/22 (234) 70.06 167.66  50 Van Veen 2018/5/13 (133) 95614.2 973.8 

 
LB-9 2018/8/23 (235) 69.88 166.82  47 Van Veen 2018/5/12 (132) 105276.1 877.1 

 
LB-7 2018/8/23 (235) 69.68 166.09  42 Van Veen 2018/5/11 (131) 96511.2 800.6 



HLY 1803 DBO6-1 2018/10/30 (303) 71.16 152.26  32 Van Veen 2018/7/29 (210) 42213.8 2824.9 

 
DBO6-3 2018/10/30 (303) 71.25 152.17  48 Van Veen 2018/7/29 (210) 55326.5 2829.3 

 
DBO6-5 2018/10/30 (303) 71.34 152.10  71 Van Veen 2018/8/5 (217) 63070.1 2899.2 

 
DBO6-7 2018/10/31 (304) 71.42 152.04  194 Van Veen 2018/8/5 (217) 52153.7 2902.0 

 
PRB-1 2018/11/2 (306) 70.69 148.44  26 Van Veen 2018/8/26 (238) ― 3347.2 

 
PRB-2 2018/11/2 (306) 70.77 148.33  35 Van Veen 2018/9/3 (246) 17622.4 3465.0 

 
PRB-4 2018/11/2 (306) 70.90 148.14  45 Van Veen 2018/9/4 (247) 16083.4 3405.6 

 
PRB-7 2018/11/2 (306) 71.02 147.98  58 Van Veen 2018/9/6 (249) 19897.2 3490.4 

 
MCK-1 2018/11/4 (308) 69.82 139.61  38 Van Veen 2018/8/3 (215) 40557.1 2240.4 

 
MCK-2 2018/11/4 (308) 69.90 139.49  44 Van Veen 2018/8/3 (215) 47209.6 2111.3 

 
MCK-3 2018/11/4 (308) 69.94 139.39  55 Van Veen 2018/8/3 (215) 47343.2 2113.9 

 
MCK-4 2018/11/4 (308) 69.97 139.30  60 Van Veen 2018/8/3 (215) 46782.5 2113.9 

 
KTO-2 2018/11/5 (309) 70.28 143.93  38 Van Veen 2018/8/18 (230) 30870.8 3191.8 

 
KTO-3 2018/11/5 (309) 70.37 143.79  48 Van Veen 2018/8/21 (233) 14101.3 3247.5 

 
KTO-5 2018/11/5 (309) 70.56 143.61  110 Van Veen 2018/8/19 (231) 13958.0 3221.7 

 
PRW-1 2018/11/7 (311) 70.68 148.91  24 Van Veen 2018/8/28 (240) 115525.9 3369.1 

 
PRW-4 2018/11/7 (311) 70.82 148.84  33 Van Veen 2018/8/28 (240) 76570.9 3373.2 

 
PRW-7 2018/11/7 (311) 70.95 148.78  38 Van Veen 2018/9/3 (246) 26140.8 3474.0 

 
DBO5-1 2018/11/14 (318) 71.25 157.13  47 Van Veen 2018/7/22 (203) 79117.8 2661.3 

 
DBO5-3 2018/11/14 (318) 71.33 157.31  91 Van Veen 2018/7/21 (202) 59407.8 2637.3 

 
DBO5-5 2018/11/14 (318) 71.41 157.49  128 Van Veen 2018/7/21 (202) 44093.7 2639.4 

 
DBO5-7 2018/11/14 (318) 71.50 157.66  85 Van Veen 2018/7/22 (203) 35765.2 2667.8 

 
DBO5-9 2018/11/14 (318) 71.58 157.83  66 Van Veen 2018/7/22 (203) 35857.3 2667.8 

 
DBO3-1 2018/11/15 (319) 68.31 166.92  35 Van Veen 2018/5/5 (125) 196800.9 812.4 

 
DBO3-5 2018/11/15 (319) 68.01 167.88  54 Van Veen 2018/5/6 (126) 212878.6 828.9 

 
DBO3-8 2018/11/15 (319) 67.67 168.95  50 Van Veen 2018/5/21 (141) 179194.6 1124.6 

 



Table 2. Components of the modified SWM-3 medium (left column) and detail components of P1-metals and S-3 Vitamin (right 

column). Solvent of the medium is natural filtered sea water. Medium pH is 7.8. 

Component 
Concentrations in final medium 

/ Amounts per litter 
Component 

Concentrations 

/ Amounts 

NaNO3 2.0 mM P-1 metal in10 mL 
 

NaH2PO4・2H2O 0.1 mM 
 

H3BO3 1.0 mM 

Na2SiO3・9H2O 0.2 mM 
 

MnCl2・4H2O 3.5×10
-2

 mM 

Na2EDTA 30.0 mM 
 

ZnCl2 4.0×10
-3

 mM 

Fe-EDTA 2.0 µM 
 

CoCl2・6H2O 1.0×10
-4

 mM 

Na2SeO3 2.0 µM 
 

CuCl2・2H2O 1.0×10
-6

 mM 

Na2MoO4・2H2O 100 µM S-3 Vitamin in 2mL 
 

TRIS 500 mg 
 

B1-HCl 0.5 mg 

P1-metals 10.0 mL  
 

Ca-Pantothenate 0.1 mg 

S-3 Vitamins 2.0 mL 
 

Nicotinic acid 0.1 mg 

    
P-Aminobenzoic acid 10.0 µg  

    
Biotin 1.0 µg  

    
Inositol 5.0 mg 

    
Folic acid 2.0 µg  

    
Thymine 3.0 mg 

   
 

Vitamin B12 1.0 µg  
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