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Abstract

Surface wave methods are non-invasive, low-cost, and robust approaches to image near-surface S-wave velocity (Vs) structure.

In terms of the energy source types, they can be classified in two groups: active-source surface wave methods and passive-source

surface wave methods. A clean and high-resolution dispersion image is critical for the subsequent dispersion curve picking as

well as Vs inversion for either the active-source surface wave methods or the passive-source surface wave methods. However,

aliasing or other artifacts are almost inevitable in surface wave dispersion measurements in practice, and they can seriously

pollute the measured dispersion spectra. It is significant to figure out how they are generated, how they affect the dispersion

measurement, and how they can be attenuated. We provide the first comprehensive review on artifacts that are frequently

observed in surface wave dispersion measurements, and summary them into three general types, including artifacts from spare

spatial sampling, artifacts from array response, and artifacts from weak coherent signals. Both numerical and field examples, as

well as mathematic derivations, are presented to help reader understand the generations of the various types artifacts and the

way to attenuate them. This work will help us understand the complex components on the measured surface wave dispersion

spectra, and lead to potential improvements on dispersion measurements.
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Article Highlights14

• Passive source surface wave methods, including data processing workflow and15

dispersion image scheme, are reviewed;16

• Two general groups of artifacts, that were frequently observed in dispersion17

imaging but poorly understand in the past, are summarized;18

• Solutions and guidelines are provided to avoid and/or attenuate the artifacts19

before and after field observations.20

Abstract21

Passive surface wave methods are non-invasive, low-cost, and robust ap-22

proaches to image near-surface shear-wave velocity (Vs) structure using pas-23

sive seismic sources, like traffic noises. A clean and high-resolution dispersion24

image is critical for surface wave analysis. In practice, however, artifacts25

or aliasing are almost inevitable in passive surface wave dispersion measure-26

ments, and seriously pollute the measured dispersion spectra. It is significant27

to clarify how they are generated, how they affect the dispersion measurement,28

and how they can be attenuated. We provide the first comprehensive review29

on artifacts that are frequently observed in high-frequency (>1 Hz) passive30

surface wave dispersion measurements, and summarize them into two general31

groups: geometry-related artifacts and source-related artifacts. Mathematical32

derivations and numerical as well as field examples are presented to explain33

underlying physics of various artifacts and explore potential solutions and34

guidelines to attenuate them before and after field observations. This work35

will help the reader understand the complexity of the measured dispersion36

spectra, and lead to improvements on rapidly advancing passive surface wave37

methods.38

Keywords: High frequency, Surface wave analysis, Passive source, Dis-39

persion measurement, Artifacts, Geometry, Noise source distribution40
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1 Introduction41

Surface waves are guided and dispersive. Shear-wave velocity (Vs) structure can be42

determined by inverting the dispersive phase velocity of surface waves (Dorman and43

Ewing, 1962), due to the high sensitivity of dispersion curves to S-wave velocity (Xia44

et al., 1999). With advantages of cost, acquisition time, and robustness, surface wave45

methods, particularly techniques based on analysis of Rayleigh waves, have been46

widely utilized at multiple scales in both engineering and geological studies (Miller47

et al., 1999; Xia et al., 1999, 2009; Socco et al., 2010; Nakata et al., 2011; Foti et al.,48

2014, 2018). They can be classified into two groups associated with the energy source49

type: active-source surface wave methods and passive-source surface wave methods.50

Active-source surface wave methods usually use sledgehammers (Park et al., 1998),51

weight drops (Xia et al., 2000), or vibrators (Miller et al., 1999) as seismic sources.52

The passive-source surface wave methods use ambient seismic energy from natural or53

anthropogenic sources (e.g., small earthquakes (Poupinet et al., 1984), ocean-seafloor54

interaction (Lepore and Grad, 2020), traffic (Nakata et al., 2011), and industrial55

activities (Pan et al., 2016)).56

Passive-source surface wave methods have flourished over the past two decades57

in the geophysical and civil engineering communities because of the logistical chal-58

lenges and costs from traditional seismic surveys, particularly in highly populated59

urban areas. The first passive-source surface wave study originated over 60 years60

ago in pioneering works by Aki (1957, 1965), which is known as the spatial auto-61

correlation (SPAC) method. Okada and Suto (2003) offers a comprehensive review62

of the SPAC method and further extended the SPAC method using microtremor63

array measurement (MAM) to improve the flexibility of the receiver configuration64

and the investigation depth of the objective structure. Under the considering of 2D65

array, for example dense nodal array, SPAC method is flexible for various geometry66

configurations (Asten and Hayashi, 2018; Cho and Iwata, 2021) and can be extended67

to multicomponent recordings (Haney et al., 2012). Studies and applications also68

prove that SPAC method works for the linear array (Chávez-Garćıa et al., 2006;69

Margaryan et al., 2009; Kita et al., 2011), rather than the traditional SPAC (Aki,70

1957) using a circle array or the two-station SPAC (Ekström et al., 2009; Hayashi71

et al., 2013), although they all share the same mathematical base of fitting the Bessel72

function (the function itself or the zero-crossing of the function) with the spatial au-73

tocorrelation coefficient. Recently, a similar technique, the frequency-Bessel (F-J)74

transform, attracts broad attentions from seismology and engineering communities75

due to the ability to improve higher modes with an appropriate spectral decompo-76

sition on the frequency-Bessel spectrogram (Forbriger, 2003; Wang et al., 2019; Hu77

et al., 2020; Wu et al., 2020; Xi et al., 2021).78

Aki’s work has been revisited in light of advances of ambient noise interferometry79

technique following the groundbreaking work of Campillo and Paul (2003). Ambient80
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noise interferometry estimates Green’s functions between cross-correlation of two re-81

ceivers from the ambient seismic field (Shapiro and Campillo, 2004; Snieder, 2004;82

Wapenaar, 2004; Bensen et al., 2007; Snieder et al., 2009; Nakata et al., 2015; Paitz83

et al., 2019; Tsai and Sager, 2022). This approach has been applied to characterize84

multiple scales of earth structure: from global or continental scale deep-structure85

imaging in seismology (e.g., Yang et al., 2007; Lin et al., 2008; Yao and van der Hilst,86

2009; Lin et al., 2009; Strobbia and Cassiani, 2011; Tibuleac and von Seggern, 2012;87

Becker and Knapmeyer-Endrun, 2018; Chen et al., 2021; Xu et al., 2022) to local88

scale exploration (e.g., Bakulin and Calvert, 2006; Wapenaar et al., 2008; Draganov89

et al., 2009; Nakata et al., 2011; Ali et al., 2013; Behm et al., 2014; Nakata et al.,90

2016; Behm et al., 2016; Castellanos et al., 2020; Cheng et al., 2021b). During the91

last decade, ambient noise interferometry has also found a variety of applications92

in the near-surface characterization domain (e.g., Foti et al., 2011; O’Connell and93

Turner, 2011; Xu et al., 2013; Cheng et al., 2015; Shirzad et al., 2015; Foti et al.,94

2018; Dou et al., 2017; Cheng et al., 2018a; Cárdenas-Soto et al., 2021; Fu et al.,95

2022). Considering ambient noise interferometry technique turns the physical re-96

ceivers into virtual sources, it offers the potential to apply active-source seismic97

methods on passive-source seismic data. Cheng et al. (2016) provide a method by98

combining ambient noise interferometry and multichannel analysis of surface wave99

for passive-source surface wave dispersion imaging, called multichannel analysis of100

passive surface waves (MAPS). Recent applications have proven the rationality and101

effectivity of the MAPS method on near-surface structure investigations (Zhou et al.,102

2018; Pang et al., 2019; Liu et al., 2020; Dai et al., 2021; Mi et al., 2022; Chen et al.,103

2022).104

Apart from the interferometry-based methods, several passive-source surface105

wave approaches have already existed and been popular in the seismic engineering106

communities in the early 2000s. Louie (2001) presented the refraction microtremor107

(ReMi) method as a fast and effective passive-source surface wave imaging method108

based on the τ−p transformation, or slant-stacking (Thorson and Claerbout, 1985).109

Park et al. (2004) introduced a similar strategy for dispersion imaging of passive-110

source surface waves using the phase-shift method, called passive multichannel anal-111

ysis of surface wave (PMASW). Besides, two-dimensional (2D) array based method,112

frequency-wavenumber (f-k) analysis (Capon, 1969; Lacoss et al., 1969), has also113

been revisited and extended for 1D linear array application (Liu et al., 2020). Due114

to their simplicity and effectiveness, these linear array based passive surface wave115

methods have been widely utilized for basin-scale shear-velocity structure mapping,116

earthquake hazard class assessment as well as infrastructure seismic site classifica-117

tion (Stephenson et al., 2005; Pancha et al., 2008; Louie et al., 2011; Pancha et al.,118

2017; Bajaj and Anbazhagan, 2019; Louie et al., 2021; Asten et al., 2022; Hayashi119

et al., 2022).120

Based on the data processing schemes, the above mentioned passive-source sur-121
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face wave methods can be roughly divided into two groups: non-interferometric122

methods (e.g., ReMi and PMASW) and interferometric methods (e.g., MAPS and123

SPAC). Non-interferometric methods directly extract dispersion measurements from124

ambient seismic records (Louie, 2001; Park et al., 2004), while interferometric meth-125

ods calculate interferograms before dispersion measurements is applied, where inter-126

ferograms are either empirical Green’s function (Cheng et al., 2016) or spatial au-127

tocorrelation coefficients (also known as spatially averaged coherency (Asten, 2006;128

Chávez-Garćıa et al., 2006)). Several studies have explicitly provided the equiv-129

alent relationship between Green’s functions (or cross-correlation functions) and130

spatial autocorrelation functions (Asten, 2006; Nakahara, 2006; Tsai and Moschetti,131

2010; Haney et al., 2012). However, recent works have argued that interferomet-132

ric methods are superior to non-interferometric methods (Cheng et al., 2016; Xu133

et al., 2017). Cheng et al. (2020) provided comprehensive comparisons between non-134

interferometric and interferometric passive-source surface wave imaging methods,135

and concluded that the interferometric methods usually offer more accurate disper-136

sion imaging in terms of the linear acquisition system, while the non-interferometric137

methods have the potential advantage to highlight the trend of the fundamental138

mode dispersion energy.139

Regardless of the source types, a clean and high-resolution dispersion image140

without artifacts is critical for surface wave analysis including dispersion curve pick-141

ing and the subsequent V s inversion. Lots of studies have attempted to improve142

active-source surface wave dispersion measurements, for example, attenuating the143

near-field and far-field effects (Zywicki and Rix, 2005; Park and Carnevale, 2010;144

Roy and Jakka, 2017; Foti et al., 2018), enhancing dispersion imaging resolution145

(Luo et al., 2008; Mikesell et al., 2017), deblurring of surface wave dispersion spec-146

tra (Picozzi et al., 2010; Cheng et al., 2021c), analyzing and filtering surface wave147

energy (Park et al., 2002; Ivanov et al., 2005). In spite of the truth that passive-148

source surface wave methods usually provides much worse dispersion measurements149

and artifacts are almost inevitable, however, few literatures were devoted to inves-150

tigate why artifacts exist on passive surface wave dispersion spectra, and how to151

attenuate them. Turner (1990) presented the aliasing problems in the τ − p trans-152

form due to the insufficient spatial sampling. Cheng et al. (2018b) first discussed a153

kind of “crossed” artifacts for high-frequency passive-source surface wave surveys,154

explaining the underlying physics and proposed an effective way to attenuate them155

by using FK-based data selection. Dai et al. (2018) discussed the effects of aliasing156

on wavefield decomposition.157

In this work, we seek to provide a comprehensive review on artifacts that are158

frequently observed in surface wave dispersion measurements, and explore how they159

are generated and how to eliminate them. The current paper is organized as follows.160

We first briefly review the frequently-used passive surface wave methods, including161

their data processing workflow and the mathematical derivations of the dispersion162
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imaging scheme. Next, we summarize two groups of artifacts resulted from inap-163

propriate geometry configuration and non-uniform noise source distribution, respec-164

tively. Both numerical and field examples, as well as mathematical derivations, are165

presented to help the reader understand sources of various types artifacts and so-166

lutions to attenuate them. We also discuss artifacts from the non-interferometric167

methods which usually produce biased dispersion information. Finally, we present168

a brief conclusion, as well as some guidelines, for passive-source surface wave survey169

and dispersion imaging.170

In this paper, we use terminology “high-frequency surface wave” to limit the171

scope of this work to near surface scale including passive-source surface wave surveys172

with frequency band above 1 Hz as well as active-source surface wave surveys with173

frequency band above 10 Hz. The frequency band (> 1 Hz) is relatively higher174

compared to the long period ( > 30 s) for teleseismic surface waves used in global175

scale ambient noise applications. We focus on high-frequency surface waves because176

they contribute significantly to urban seismic noise in a broad frequency range from177

1 Hz to more than 45 Hz with maximum amplitudes between 1 and 10 Hz (Groos and178

Ritter, 2009). Besides, it is worth noting that this work focuses on the linear receiver179

array, which is often deployed for both passive-source and active-source surface wave180

investigations because of its high efficiency and convenience. In populated urban181

areas, it is challenging to construct dense 2-D arrays due to the spatial restrictions182

imposed by existing infrastructures. Linear receiver arrays are a natural geometry183

for road-side investigations utilizing receivers deployed on shoulders or median strip184

areas. Linear array techniques are also useful when processing distributed acoustic185

sensing (DAS) data, a recently developed technique which utilizes subsurface fiber-186

optic cables to capture earth vibrations for seismic imaging (Dou et al., 2017; Ajo-187

Franklin et al., 2019; Zhan, 2020; Cheng et al., 2021a, 2022).188

2 Passive surface wave methods189

2.1 Passive surface waves data processing190

The key difference between the active-source and passive-source surface wave meth-191

ods is that the latter requires sufficient temporal and/or spectral ensemble aver-192

aging/stacking to enhance the coherent signals as well as cancel the incoherent193

noises from the inhomogeneous noise source distribution. Figure 1 presents the ba-194

sic data processing schemes for two types of passive-source surface wave methods:195

the non-interferometric methods (e.g., ReMi (Louie, 2001) and PMASW (Park et al.,196

2004)), and the interferometric methods (e.g., MAPS (Cheng et al., 2016) and SPAC197

(Chávez-Garćıa et al., 2006)).198

The data processing workflow before dispersion curve picking and inversion is199

made up of four steps.200
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(1) Observing the continuous and long-duration ambient noise records. In general,201

several tens of minutes duration is sufficient for urban passive-source surface wave202

survey (Cheng et al., 2018b; Foti et al., 2018; Vantassel and Cox, 2022).203

(2) Splitting the continuous time series into short overlapped time segments. Ac-204

cording to our experiences, a 10s window with a 75% overlap is a good trade-off205

between efficiency and signal quality (Cheng et al., 2018b; Foti et al., 2018).206

(3) Preprocessing short time segments to remove potential near-field interferences207

and extend frequency bandwidth. The basic data preprocessing workflow includes208

tapering two ends, removing the mean, the linear trend, the dead traces, as well as209

the instrument response as necessary, temporal normalization, and spectral whiten-210

ing, for each individual time segment (Bensen et al., 2007; Cheng et al., 2018b).211

(4) Estimating dispersion spectra with an appropriate approach. Dispersion mea-212

surement or imaging is the vital step for surface wave analysis. Slant-stacking algo-213

rithm has been primarily used as an array-based data processing approach to extract214

phase velocity dispersion information for both land seismic survey (e.g., Xia et al.,215

2009) and marine seismic survey (e.g., Bohlen et al., 2004).216

As shown on Figure 1, differences exist between non-interferometric and interfer-217

ometric methods for dispersion imaging. For example, non-interferometric methods218

(e.g., PMASW and ReMi) directly measure individual dispersion spectra from each219

preprocessed short time segments and spectrally stack all dispersion spectra together220

to obtain the final enhanced dispersion spectra; while interferometric methods (e.g.,221

MAPS and SPAC) implement a single dispersion measurement on the final tempo-222

rally stacked interferograms. Here we provide a brief introduction on the dispersion223

image scheme for both methods.224

2.2 Passive surface wave dispersion analysis225

Several recent studies have presented reviews between non-interferometric methods226

and interferometric methods and indicated the similarity as well as the uniqueness227

of their dispersion imaging schemes (Xu et al., 2017; Cheng et al., 2018b, 2020; Ning228

et al., 2022). For simplicity, we only focus on the PMASW and MAPS method to229

introduce the mathematical background of passive surface wave dispersion imaging.230

2.2.1 The non-interferometric method, PMASW231

The PMASW method employs a slant-stacking algorithm to transfers the wavefield232

from the offset-time (x− t) domain to the frequency-velocity (f − v) domain (Park233

et al., 1998, 2004) domain. In order to account for the universally bidirectional234

characteristic of the observed passive surface waves, both the forward propagating235

waves with positive velocity (+v) and the backward propagating waves with negative236

velocities (−v) are scanned in the slant-stacking procedure.237
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Under the in-line source distribution environment, we follow Cheng et al. (2018b)
to present the obtain dispersion spectra in frequency-wavenumber (f − k) domain
as

E(f, k) = |eϕ0| ∗

(∣∣∣∣∣
N∑
j=1

ei2π[k(f)−k0(f)]xj

∣∣∣∣∣+
∣∣∣∣∣

N∑
j=1

e−i2π[k(f)+k0(f)]xj

∣∣∣∣∣
)

(1)

where, E(f, k) is the measured dispersion spectra; ϕ0 is the initial phase term; k0 is238

wavenumber which is associated with the target dispersion curve by the relationship239

of k = f/v; xj denotes the offset; j ∈ (1..N). Eq.1 explains how the PMASW240

method estimates the dispersion information. Note that this equation only holds241

under the perfect in-line source distribution assumption, and the biased artifacts in242

non-interferometric dispersion measurements will be further discussed later.243

2.2.2 The interferometric method, MAPS244

To enhance the coherent signals among the ambient noise, Cheng et al. (2016)245

proposed a hybrid method, MAPS, that applies cross-correlations, rather than raw246

noise records, to PMASW. Under the in-line source distribution environment, we247

follow conventions in Cheng et al. (2020) to present the cross-correlation spectrum248

Cx1,x2 as249

Cx1,x2 = u(x1, ω)u
∗(x2, ω)

=
Ns∑
j=1

[e−i2πk0(w)x1ei2πk0(w)x2 ] + Cx1,x2 ,
(2)250

where, Cx1,x2 is the cross term; ω is the angle frequency; Ns is the total source251

number; u(x1, ω) and u(x2, ω) indicate the ambient noise spectral wavefield following252

the representation u(x, ω) =
∑Ns

j=1 e
i(ωtsi−2πk0rsi−2πk0x) (eq.2 in Cheng et al. (2020))253

considering an in-line source distribution case.254

Because noise sources are assumed to be uncorrelated in time and space, and the255

contribution of each source to the cross-correlation function could be determined256

independently (Tromp et al., 2010; Lawrence et al., 2013), the cross term Cx1,x2257

is negligible given a sufficiently time-averaged ensemble. Applying the ensemble258

averaging along the time direction yields the ensemble averaged cross-correlation259

spectrum ⟨Cx1,x2⟩ under the in-line source distribution260

⟨Cx1,x2⟩ = ⟨
Ns∑
j=1

[e−i2πk0(w)x1ei2πk0(w)x2 ] + Cx1,x2⟩

≊ e−i2πk0(w)x1,2 ,

(3)261
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where, ⟨...⟩ indicates the ensemble averaging. To obtain the MAPS representation,262

we employ the slant-stacking algorithm on the phase term of the ensemble averaged263

cross-correlation spectrum264

E(f, k) = |
N−1∑
m=1

N∑
n=m+1

ei2πk(f)xm,n
⟨Cxm,xn⟩
|⟨Cxm,xn⟩|

|

= |
N−1∑
m=1

N∑
n=m+1

ei2π[k(f)−k0(f)]xm,n|,

(4)265

where,
∑N−1

m=1

∑N
n=m+1 denotes the C2

N inter-station cross-correlation pairs summa-266

tion of MAPS, comparing to the C1
N channel number summation of MASW. The267

energy peaks of E(f, k) will occur where the scanning wavenumber (k) approaches268

the true wavenumber (k0) of the coherent signal. Eq.4 demonstrates the ability of269

interferometric methods to produce the accurate dispersion curve once we are con-270

fident of the retrieved signals from virtual sources (e.g., empirical Green’s function271

or spatially averaged coherency).272

3 Artifacts in passive surface wave dispersion imag-273

ing274

Compared with the active-source methods, the passive-source surface wave methods275

have the advantage of extending the dispersion measurement to lower frequencies,276

but suffer from incoherent noise, particularly at higher frequencies, due to the un-277

known distribution of ambient noise sources (Cheng et al., 2018b, 2019). In this278

study, we summarize these frequently observed imaging artifacts into two groups:279

the geometry-related artifacts and the source-related artifacts, and explore their280

underlying physics according to above numerical derivations. Details about their281

characteristics as well as solutions to attenuate them will be expanded.282

3.1 The geometry-related artifacts283

Array geometry configuration is vital for seismic acquisitions. Given an array with284

limited receiver numbers, people have to enlarge spatial interval (dx) to increase285

spatial coverage for observation of signals with longer wavelengths which are re-286

quired for deeper depth exploration. In addition, people also have to trade off the287

exploration depth and the lateral resolution in terms of array length (L) design,288

because the deeper exploration depth prefers longer array length while the finer289

lateral resolution expects shorter array length to limit spatial average. Therefore,290
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array geometry affects the passive surface wave dispersion measurements, and might291

produce various of artifacts in case of the sparse spatial sampling or the insufficient292

array coverage.293

3.1.1 Artifacts from spare spatial sampling, large dx294

Based on the derivations for the surface wave dispersion measurement (eq.1 for the295

PMASW method and eq.4 for the MAPS method), the energy peaks of E(f, k)296

will occur when the scanning wavenumber k approaches the true dispersion curve297

k0 of the coherent signal. However, previous studies (Cheng et al., 2018b; Dai298

et al., 2018) imply that k = k0 might not be the unique solution. Considering the299

similarity between eq.1 and eq.4, here, we focus on the latter to explore solutions of300

the dispersion spectra equation.301

Given an evenly sampled acquisition system, which is commonly used in shallow-302

structure surface wave survey, we define xm,n = (m − n) ∗ dx for simplicity. Based303

on Euler formula, we expand eq.4 as304

E(f, k) =

∣∣∣∣∣
N−1∑
m=1

N∑
n=m+1

ei2π[k(f)−k0(f)]xm,n

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
m=1

N∑
n=m+1

cos{2π[k(f)− k0(f)]xm,n}+ i ∗ sin{2π[k(f)− k0(f)]xm,n}

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
m=1

N∑
n=m+1

cos{2π[m− n][k(f)− k0(f)]dx}+ i ∗ sin{2π[m− n][k(f)− k0(f)]dx}

∣∣∣∣∣ .
(5)

According to the periodicity of the trigonometric function, k0 is indeed not the305

unique solution of eq.5 or eq.4. We list four generalized solutions as follows:306

k(f) = k0(f)−
j

dx
, (k0(f) > 0) (6a)

k(f) = k0(f) +
j

dx
, (k0(f) > 0) (6b)

k(f) = −k0(f) +
j

dx
, (k0(f) < 0) (6c)

k(f) =
j

dx
, (k0(f) ≪ dx) (6d)

where, j denotes an non-negative integer. Given a sufficient large dx, the aliasing307

solutions of k in eq.6 would possess a high possibility to be visible at measured308
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dispersion energy window with wavenumber around the real k0. Eq.6 presents the309

underlying physics of four types of spatial aliasing dispersion energy that could be310

observed on passive surface wave measurements, considering their relatively sparse311

geometry in real-world applications.312

Spatial aliasing is artifact due to undersampling, and is usually related to the313

higher frequencies considering their shorter wavelengths. Several studies have been314

carried out to understand spatial aliasing (Turner, 1990; Li et al., 1991; Rafaely315

et al., 2007; Yan et al., 2016; Dai et al., 2018). Note that, the spatial aliasing is not316

a serious issue for active-source surface wave surveys due to their dense sampling317

acquisitions; but possibilities still exist depending on the measured frequency range318

and the sampling distance. Figure 2 illustrates the different characteristics of four319

types of spatial aliasing, A, B C and D, in terms of two spatial intervals, dx = 2m320

(Fig.2a) and dx = 10m (Fig.2b).321

Spatial aliasing artifacts: type A and type B322

According to eq.6a, the type A spatial aliasing is less likely to be visible on the323

low velocity surface wave target window, because its smaller wavenumber value,324

compared to k0, indicates the higher velocity value at a specific frequency. However,325

cautions still should be paid since it might be recognized as higher modes of surface326

waves and cause mode misidentification in surface wave inversion (Dai et al., 2018).327

In contrast, the type B spatial aliasing (eq.6b) is quite common in passive surface328

wave dispersion measurements (Foti et al., 2018). It appears as a series of lower329

velocities energy as predicted by the blue triangles in Figure 2, and will not interfere330

the true dispersion energy trend since it usually lies below the dispersion energy331

trend in the f − v domain. It is seldom to observe both types of spatial aliasing on332

the same passive surface wave dispersion image. Figure3 presents a typical oil-field333

example with both type of artifacts existing on the dispersion spectra.334

Spatial aliasing artifacts: type C335

According to eq.6c, the type C spatial aliasing will occur when k0 < 0. It in-336

dicates the slant-stacking algorithm is scanning a reverse (backward) propagating337

surface wave train instead of the expected forward propagating one (k0 > 0). Also,338

eq.6c is consistent with the finding of Cheng et al. (2018b), which demonstrated339

the existence of a type of “crossed” artifacts due to the bidirectional velocity scan-340

ning scheme in non-interferometric passive-source surface wave methods. It usually341

occurs on the dispersion measurements of non-interferometric passive surface wave342

methods, which technically sum the dispersion spectra from both the forward and343

the reverse directions to account for the possible bidirectional nature of the recorded344

passive surface waves (Louie, 2001; Park et al., 2004; Xu et al., 2017; Cheng et al.,345

2018b). Whereas, the ambiguity of the propagation direction of the incoming sur-346

face waves produces the “crossed” artifacts in non-interferometric dispersion mea-347

surement, which is exactly the type C spatial aliasing artifacts discussed in this348

work.349
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We present a field example of passive-source surface wave survey to show the350

type C spatial aliasing (Fig.4). The data contain 10-min traffic noise records with a351

24 vertical-component receiver array. The spatial interval is 10 m. The dataset was352

first reported by Cheng et al. (2018b). We observe clear “crossed” artifacts on the353

PMASW dispersion spectra (Fig.4a1) due to its bidirectional slant-stacking scheme;354

while the MAPS method produces a clean dispersion image (Fig.4b1) because the355

direction of the scanning velocity has been defined as from virtual sources to virtual356

receivers. Besides, we can also observe “crossed” artifacts on the raw SPAC mea-357

surement (Fig.4c1), which is a special case since the slant-stacking scheme does not358

apply here. Instead, it is associated with the systematic bias of SPAC and directional359

aliasing (Cho et al., 2008). Based on eq.6c, we are also able to predict these spa-360

tial aliasing artifacts by using the picked multi-mode dispersion curves from MAPS361

measurement. The predicated type C spatial aliasing generally fits the “crossed”362

artifacts (the black dots on Figs.4a1 and c1), although distortions exist due to the363

picking biases. Besides, the predicted type B spatial aliasing (the blue triangles on364

Fig.4) also matches the linear artifacts at the bottom right of the spectra window.365

It is obvious that the “crossed” artifacts seriously smear the dispersion energy,366

particularly at the higher frequency band and the higher overtones. To attenuate this367

type of aliasing, we follow Cheng et al. (2018b) to automatically detect the dominant368

propagating direction of the ambient noise wavefield in f−k domain for each segment369

to avoid the summation of the opposite dispersion energy. Figure 4a2 shows the370

improved PMASW measurement with “crossed” artifacts significantly attenuated.371

Considering the periodicity and symmetry characteristic of Bessel function or Hankel372

function (Forbriger, 2003; Cho et al., 2008), we also successfully attenuate these373

artifacts on SPAC measurement (Fig.4c2 ) by replacing the Bessel function used in374

SPAC fitting with the adaptive Hankel functions (Xi et al., 2021).375

Spatial aliasing artifacts: type D376

According to eq.6d, the type D spatial aliasing is independent of the true disper-377

sion energy (no k0 involved in the equation), and presents as a series of linear strips378

on the f − v domain (or a series of paralleled horizontal lines on the f − k domain).379

We provide a dataset with large spatial distance (1 km) as an example of the type380

D spatial aliasing. The dataset consists of 16 days ambient noise data recorded by381

35 broadband seismometers (Trillium 120 P/PA), which has been reported by Xu382

et al. (2016) and Pan et al. (2016). We apply ambient noise interferometry (cross-383

coherence) to retrieve the coherent Rayleigh waves from the vertical component. We384

stack over all the inter-station pairs of empirical Green’s functions into discrete 1385

km offset bins (Fig.5a) to further enhance the retrieved coherent signals. The linear386

artifacts that cross the fundamental dispersion energy are distinct on Figure5b), and387

they can be distinguished as the type D spatial aliasing using the predicted aliasing388

(the green dashed line) based on eq.6d.389

Since the type D spatial aliasing presents as linear artifacts with constant wavenum-390
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ber, it can be easily attenuated in f −k domain using filter techniques, for example,391

the median filter (Duncan and Beresford, 1995) and the FK filter (Zhou, 2014). Fig-392

ure 5c displays an example of aliasing attenuation using the FK filter. The filtered393

dispersion spectra has been improved with extended frequency bandwidth and at-394

tenuated distortions at low frequencies, although some weak linear aliasing artifacts395

still exist at high frequency due to the leakage of the FK filter.396

3.1.2 Artifacts from insufficient array coverage, short L397

The spatial interval (dx) controls the maximum wavenumber (kmax) sampled with398

the array, whereas, the length of the array (L) determines the minimum resolvable399

wavenumber (kmin = 1/L). kmin can be taken as the absolute wavenumber reso-400

lution according to the Fourier analysis theory (Stein and Shakarchi, 2011) or the401

imaging resolution of the surface wave dispersion spectra (Johnson and Dudgeon,402

1993). Besides, kmin also controls the bottom frequency boundary of the dispersion403

measurement since the minimum wavenumber is linearly associated with the lowest404

frequency.405

We carry out two similar numerical tests based on linear arrays with different406

array lengths, 100 m and 20 m, to generate 15-min ambient noise records with the407

same random distributed source configuration as indicated in Figure 6. We then408

apply the MAPS method for dispersion imaging. Note that no data preprocessing409

operator is included prior to noise cross-correlation to avoid potential influences410

from the preprocessing operators, like spectra whitening, on the frequency band-411

width of the measured dispersion spectra. We observe that the measured dispersion412

spectra fits the theoretical dispersion curve well for both array when the scanning413

wavenumber k is above the minimum resolvable wavenumber kmin (the blue dashed414

line). However, when the scanning wavenumber goes beyond the absolution resolu-415

tion of wavenumber k < kmin, the dispersion energy turns to be biased. Therefore,416

we usually employ kmin as an approximate quality control indicator to avoid arti-417

facts at low frequency due to array aperture. It is worth noticing that kmin is not a418

strict limitation, because in practice the retrieved minimum scanning wavenumber419

is possible to go beyond kmin, particularly for the passive-source surface wave sur-420

veys, which might be relevant to the specific data processing algorithms (Park and421

Carnevale, 2010; Foti et al., 2018; Behm et al., 2019).422

Besides, we also notice that the dispersion spectra with shorter array length423

shows lower imaging resolution compared to that with longer one. Here we employ424

the array response function (ARF) concept to explain the influence of the array425

geometry on dispersion measurement (Capon, 1969; Rost and Thomas, 2002; Picozzi426

et al., 2010; Liu et al., 2020). The array response function is also called the array427

smoothing function (ASF) or the spectral estimator in some literatures (Johnson428

and Dudgeon, 1993; Boiero and Socco, 2011; Bergamo et al., 2012), and is usually429

13



Artifacts in passive surface wave imaging Cheng et al.

defined as430

ARF (k) = |
N∑
j=1

ei2π(k−k0)xj |. (7)431

The green lines on Figure 6b and d indicate the normalized ARFs at 17 Hz. As432

opposed to a delta function Dirac (1981), the ARF always contains side lobes. The433

main lobe of the ARF determines the imaging resolution for the slantstacking based434

dispersion imaging methods (Boiero and Socco, 2011; Cheng et al., 2020). Whereas,435

the side lobes of the ARF will present as weak wiggles around the dominant disper-436

sion energy, which might be misidentified as weak higher modes or other coherent437

signals. Moreover, these wiggles (or side lobes) could emphasize interferences from438

the incoherent noise and smear the dispersion spectra. Cheng et al. (2020) indicates439

that the phase-weighted slantstacking algorithm is able to attenuate these side lobes440

effects of ARF on surface wave dispersion images.441

3.2 The source-related artifacts442

The noise source distributions, in both the time-space domain and the time-frequency443

domain, have significant influences on passive surface wave dispersion measurements.444

The complex noise source characteristics make the passive surface wave surveys more445

challenging compared to the active-source surface wave surveys, especially for the446

high-frequency ambient noise data in the urban area. It is well known the observed447

seismic frequency band is finite, and usually depends on the source spectrum distri-448

bution. For example, the dominant frequency bands for the traffic-induced passive449

surface waves are usually from 2 Hz to 20 Hz in an urban area. If we force the450

mathematical algorithms to measure surface wave dispersion spectra beyond the451

recorded frequency band, artifacts will be introduced. Moreover, most mathemat-452

ical algorithms of frequently-used passive surface wave methods only hold under453

specific noise source distribution assumptions. If the assumption break, for exam-454

ple under the directional noise source distribution, artifacts will be introduced into455

the linear-array based dispersion measurements. We admit that situations could456

be complex, so, to keep the consistency of this study we only report two types of457

most frequently-observed source-related artifacts: artifacts from incoherent noises458

and artifacts from directional noises.459

3.2.1 Artifacts from incoherent noises460

According to Bergamo et al. (2012), the computed surface wave dispersion spectra461

E(f, k) can be taken as a combination of the theoretical dispersion spectrum and the462

array response function (ARF), which presents as a series of frequency-independent463

horizontal lines in the f−k domain. When the energy of the measured surface wave464

is negligible, the computed dispersion spectra will be dominated by contributions465
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from ARF. Here, we present one active-source numerical example to illustrate the466

dispersion characteristics under this case.467

An active-source surface wave shot gather from a two-layer earth model (Ta-468

ble.2) was generated using a finite-difference solver, SOFI2D (Bohlen, 2002), with469

a 25 Hz ricker wavelet and 30 m nearest offset. The synthetic Rayleigh wave was470

observed with a 60-channel linear array and 1-m spatial interval (Fig.7a), and the471

corresponding averaged spectrum shows dominated energy between 5 Hz and 65 Hz472

as indicated by the blue dash lines. The obtained dispersion spectra in the f − k473

domain presents great correlation between the spectrum energy (Fig.7b) and the474

dispersion energy (Fig.7c); a series of horizontal artifacts (indicated by the black475

arrow), which are co-located with the nearly zero spectrum at two ends in frequency476

axis, indicate contributions from ARF. In fact, these artifacts are frequently ob-477

served on the f − v domain dispersion image but with a different form as a series478

of radial pattern energy, especially for the passive-source dispersion spectra after479

the frequency normalization (Fig.7d). Therefore, we call this type of artifacts as480

radial pattern artifacts. Note that, the type D spatial aliasing is also one special481

case of radial pattern artifacts. Considering that these artifacts are very common482

and could seriously pollute the measured dispersion images, we present two field483

examples to carefully discuss performances of different data processing procedures484

on attenuation of this type of artifacts .485

Field example #1486

We provide a passive-source field example to explain the characteristics and the487

attenuation of the radial pattern artifacts. 5-min ambient noise data were recorded488

by a linear array of 38 Zland nodes (5 Hz) with 2 ms sampling rate and 1 m spatial-489

interval. The dataset was first reported by Liu et al. (2020). Although whitening490

procedure is not included in this noise data preprocessing workflow, clean surface491

waves are visible on the bin-stacked virtual source gather (Fig.8a). The obtained492

dispersion spectra using MAPS (Fig.8c) presents two distinct radial pattern artifacts493

as highlighted by the black dashed line.494

In order to figure out the influence of whitening on radial pattern artifacts at-495

tenuation, we reprocess the noise data by including the whitening preprocessing496

procedure prior to cross-correlation. The spectrum of the updated coherent signals497

(Fig.9b) has been significantly extended at lower frequency band (< 5 Hz), and bal-498

anced at higher frequency band (> 15 Hz). We also observe that the radial pattern499

artifacts have been significantly eliminated with more higher frequency components500

emerging in both x− t domain (Fig.9a) and the f − v domain (Fig.9c). It indicates501

spectral whitening makes contributions to attenuation of the radial pattern artifacts502

for passive-source surface wave dispersion imaging.503

According to Prieto et al. (2009), performing cross-correlation Cx1,x2 with spec-504

tral whitening is equivalent to calculating the cross-coherence Hx1,x2 ,505
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Hx1,x2 =
u(x1, ω)u

∗(x2, ω)

|u(x1, ω)||u(x2, ω)|
. (8)506

In terms of attenuation of the radial pattern artifacts, our work implies the cross-507

coherence algorithm is superior to the cross-correlation in passive-source surface508

wave imaging (Nakata et al., 2011). Cautions should also be paid because pseudo509

arrivals generated by spectral whitening or cross-coherence with scattered waves can510

occur, particularly for at low frequencies (Nakata, 2020). Besides, it is interesting511

that some spikes on the spectrum (e.g., 22 Hz, 31 Hz, 39 Hz on the pink curves512

of Fig.9b) seem to be enhanced after whitening, which are also co-located with the513

spikes (or gaps) on the dispersion spectra (Fig.9c). Unfortunately, we find it is514

challenging to fully remove these spikes on dispersion spectra, since they are likely515

associated with some persistent noise sources around the site. Similar phenomenon516

has been reported in the literatures (e.g., Zeng and Ni, 2010; Gaudot et al., 2016;517

Cheng et al., 2021b).518

Field example #2519

According to eq.4, MAPS includes the whole C2
N inter-station cross-correlation520

pairs for dispersion imaging. However, many interferometric passive-source surface521

wave applications only utilize one virtual-source gather including totally C1
N inter-522

station cross-correlation pairs (e.g., Zhang et al., 2020; Li et al., 2020), because523

the interpreters usually follow the conventional active-source surface wave (e.g.,524

MASW) acquisition strategy by using single shot gather for dispersion analysis. In525

this case, lots of useful information might be wasted. Figure 10 shows a comparison526

of measured ARFs between one virtual-source gather (C1
N inter-station pairs) and527

multiple virtual-sources gather (C2
N inter-station pairs). With more inter-station528

pairs included, the latter one (the black curve on Fig.10) shows smoother side lobes529

which might decrease the possibility of the interference between the array response530

artifacts and the incoherent noise (Wu et al., 2017).531

We present an example to show performances of the interferometric method532

(i.e. MAPS) with different virtual-source gathers on attenuation of the radial pat-533

tern artifacts. The dataset was first reported by Cheng et al. (2019), which was534

collected along a busy railway over 30-min using a 24-channel linear array. The535

spatial interval is 10 m. Ambient noise interferometry is applied to retrieve em-536

pirical Green’s functions. MAPS is then performed with only one virtual-source537

gather (C1
N inter-station cross-correlation pairs, highlighted on Fig.11a) and with538

the whole multiple virtual-sources gather (C2
N inter-station cross-correlation pairs,539

Fig.11b), respectively. Compared with the dispersion measurement from one virtual-540

source gather (Fig.12a), the dispersion measurement from multiple virtual-sources541

gather (Fig.12b) is more continuous and much cleaner with less distortions and ra-542

dial pattern artifacts. With more information included as well as spatial averaging,543

the multiple virtual-sources (C2
N) gather presents its advantage in coherent signal544
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emergence which contributes to attenuate the radial pattern artifacts.545

Nevertheless, we observe that artifacts are not completely attenuated on Figure546

12b. To some extent, the leaky artifacts still distort the dispersion energy trend,547

especially for the high overtones. It is worth noting that spectral whitening has548

been included during data preprocessing for both Figure 12a and Figure 12b. It549

implies spectral whitening is not universally applicable for radial pattern artifacts550

attenuation, either. Data selection is an effective tool for data quality control, and551

might be an alternative. Studies have successfully applied various data selection552

strategies on passive-source surface wave imaging for dispersion spectra enhancement553

(e.g., Cheng et al., 2018b; Zhou et al., 2018; Cheng et al., 2019; Pang et al., 2019; Xi554

et al., 2020; Liu et al., 2021). We follow Cheng et al. (2019) to present a successful555

application of radial pattern artifacts attenuation by data selection of train noise in556

τ − p domain. We formulate a criterion to detect high signal-to-noise ratio (SNR)557

data segments under a desired surface velocity range from 200 m/s to 400 m/s,558

and found an interesting phenomenon (Fig.13a) that time windows, when trains559

are arriving or departing the observation array, usually show higher SNR than time560

windows when trains are closely passing the array or far away from the array. It561

indicates that the data selection strategy provides a chance to carefully analyze noise562

source characteristics. Next we selectively stack the high quality data segments for563

dispersion measurement. The dispersion spectra after selective stacking (Fig.13b)564

has been much improved with the radial pattern artifacts significantly attenuated.565

The reader is referred to Cheng et al. (2019) for more details about this data selection566

technique.567

3.2.2 Artifacts from directional noises568

It is well known that the empirical Green’s function can be extracted by cross-569

correlating two receivers under the randomly distributed noise sources. In practice,570

the noise source distribution is rarely random. Cheng et al. (2016) indicated that the571

directional noise sources could produce biased cross-correlations, as well as biased572

dispersion measurements, particularly for linear receiver arrays. In order to attenu-573

ate the azimuthal effect on dispersion measurements, Cheng et al. (2016) proposed574

to apply azimuthal adjustment to the slant-stacking algorithm. However, it remains575

a real challenge for azimuth detection using linear array. To address the problem576

associated with the linear array, Liu et al. (2020) adapted a linear receiver array577

into a pseudo-linear array by adding two more off-line receivers to increase the array578

response to off-line signals.579

Here, we apply the 2D ARF concept to explain the advantage of the pseudo-580

linear array on azimuthal effect attention. For consistency, we simply adapt the581

ARF on eq.7 from 1D to 2D as,582
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ARF (k, θ) = |
N∑
j=1

ei2πk(xjcosθ+yjsinθ)−ik0(xjcosθ0+yjsinθ0)|, (9)583

where, xi and yi indicate the receiver location in Cartesian coordinates. Since 2D584

ARF can illustrate the array response or beamforming resolution to a plane wave,585

we take a plane wave at frequency 15 Hz and velocity 0.3 km/s as example. Figure586

14 presents a comparison of ARFs between the linear array (the left panel) and587

the pseudo-linear array (the right panel). The ARF of the linear array provides588

multiple beamer peaks which can not focus on the target azimuth and velocity589

(the pink circle); while the ARF of the adapted pseudo-linear array shows a high590

resolution response to the input plane wave. It implies the linear array can not591

solve the 2D beamforming problems that need simultaneously seek azimuth and592

velocity solutions. Thus, Cheng et al. (2016) suggested defining an average velocity593

for azimuth detection, while Liu et al. (2020) provided a solution cleverly by using594

the pseudo-linear array geometry.595

4 Discussion596

As the first review work on the artifacts in passive surface wave dispersion imaging,597

we admit that we might not be able to include all the existing artifacts but the sum-598

marized artifacts in this work are definitely significant to understand the complexity599

of surface wave dispersion imaging and will lay a foundation for the further work.600

All previously mentioned artifacts, including spatial aliasing, array response ar-601

tifacts, and radial pattern artifacts, present as individual energy overlying around602

the true dispersion energy and smearing the energy peaks. Nevertheless, there also603

exist some artifacts that directly affect the true dispersion energy and produce bi-604

ased dispersion information, for example, artifacts from the directional noise sources605

which is summarized as source-related artifacts.606

Here, we discuss another type of similar artifacts: artifacts from non-interferometric607

passive-source methods. Cheng et al. (2020) presents a comprehensive comparison608

between the non-interferometric methods and the interferometric methods. Numer-609

ical tests and field examples demonstrate that non-interferometric methods are less610

accurate than the interferometric methods when sources are out of line. Compared611

with the accurate dispersion spectra obtained from the interferometric methods,612

these biased dispersion energy measured by non-interferometric methods can be613

taken as artifacts. It is a kind of systematic bias of non-interferometric methods614

considering the required in-line noise source distribution is rarely achievable.615

We present a field example of the artifacts from the non-interferometric meth-616

ods. The dataset was first reported by Cheng et al. (2020). A linear array of 48617

RefTek 125A digitizers was deployed parallel to a busy road with an off-line distance618
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20∼30m. All digitizers were connected to 2.5 Hz vertical-component geophones.619

Figure 15 presents a comparison of the obtained dispersion spectra between the620

non-interferometric methods (PMASW and ReMi) and the interferometric methods621

(SPAC and MAPS). The little off between the picked dispersion curves from MAPS622

(the black crosses) and the energy peaks of the non-interferometric methods indi-623

cates the biases produced by the non-interferometric methods. To address biases,624

Louie (2001) indicated that an interpreter must pick the lower edge of energy peaks625

of phase velocities on the ReMi measurements, rather than the dispersion energy626

peaks, and hypothesized that the off-line triggered sources caused the higher appar-627

ent velocities. However, this bias phenomenon is not unique to the ReMi method628

but is common to all linear-array-based non-interferometric passive-source surface629

wave methods. Cheng et al. (2020) provided an alternative to estimate the bi-630

ases in non-interferometric measurements by using half of the ASF (or ARF) peak631

(kh) to quantify the imaging resolution, and assumed the measured biases of non-632

interferometric methods should be within the imaging resolution range. Therefore,633

kh could be taken as a bias indicator during the interpretation of non-interferometric634

passive surface wave methods.635

5 Conclusions636

We summarize two groups of artifacts that are frequently observed on passive surface637

wave dispersion measurements but poorly understand in the past; they include the638

geometry-related artifacts because of the sparse spatial sampling or the insufficient639

array coverage, and the source-related artifacts, for example, artifacts from inco-640

herent noises and artifacts from directional noises. Numerical and field examples641

present how these artifacts are generated and how they can be attenuated. This642

work might help the reader understand the complexity of the measured dispersion643

spectra and lead to further improvement on surface wave dispersion analysis. It also644

suggests:645

(1) the shorter spatial interval dx will extend the maximum wavenumber kmax,646

and result in higher maximum frequency limitation that can be observed on disper-647

sion spectra;648

(2) the longer array length L will increase the dispersion imaging resolution with649

the smaller minimum wavenumber kmin, and result into lower minimum frequency650

limitation that can be observed on dispersion spectra;651

(3) the spectral whitening is critical to broadening frequency bandwidth for sur-652

face wave dispersion imaging, particularly for the passive-source surface wave imag-653

ing;654

(4) the cross-coherence algorithm is recommended for the applications of the655

interferometric surface wave methods, since it has the advantage of including spectral656
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whitening when cross-correlating;657

(5) the multiple virtual-sources gather (C2
N) is prior to the one virtual-source658

gather (C1
N) for the interferometric surface wave imaging, which will increase the659

data utilization and enhance the coherent dispersion energy;660

(6) the data selection strategy is effective to attenuate the source-related arti-661

facts, and provides a chance to analyze noise source characteristics.662

In general, the limitation of the expense budget usually leads to a dilemma663

between spatial sampling and spatial coverage. We have to make a trade-off between664

the higher spatial resolution with the denser array and the deeper depth exploration665

with the longer array. Nevertheless, a rapidly advancing technique, distributed666

acoustic sensing (DAS), might provide promising routes to solve these problems,667

considering DAS in particular allows for acquisition over tens of kilometers while668

providing spatial sampling in the meter range, thus enabling local surface wave669

analysis with high fidelity.670
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Layer number Vp(m/s) Vs(m/s) ρ(g/cm3) h(m)

1 400 800 2.0 10

2 200 400 2.0 10

3 600 1200 2.0 10

Half-space 800 1600 2.0 Infinite

Table 1: Parameters of a four-layer model.

Layer number Vp(m/s) Vs(m/s) ρ(g/cm3) h(m)

1 200 800 2.0 10

Half-space 400 1200 2.0 Infinite

Table 2: Parameters of a two-layer model.
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Figure 1: Flowchart for the passive-source surface wave methods, including non-
interferometric and interferometric techniques.
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Figure 2: Comparison of the characteristics of the predicted spatial aliasing between
different spatial sampling, dx = 2m (a) and dx = 10m (b). The black dashed
curves show the theoretical dispersion curves calculated from a four-layer earth
model (Tab.1) by Knopoff’s method (Schwab and Knopoff, 1972); four colored curves
represent four types of predicted spatial aliasing, A (red diamonds, eq.6a), B (blue
triangles, eq.6b), C (black dots, eq.6c), D (green dashed line, eq.6d), respectively.

39



Artifacts in passive surface wave imaging Cheng et al.

Figure 3: A field example of the type A and B spatial aliasing (modified from Dai
et al. (2018)). (a). a 145-channel common-shot-point (CSP) gather with 10 m
spatial interval and 29.5 m nearest offset; (b). the obtained dispersion measurement
by using the phase-shift method. The red dotted line indicates the weak air wave
energy; the red diamond curves represent the predicted type A spatial aliasing from
air wave; the blue dotted line indicates the non-dispersive body wave energy; the
blue dash-dot curves represent the predicted type B spatial aliasing. The good
match between the predicted aliasing and the observed artifacts convinces us of the
derivation of spatial aliasing (eq.6). Note that, the predicted aliasing artifacts of
surface waves are beyond the current spectra window range with velocities lower
than 0.1 km/s at a frequency band 1∼9 Hz.
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Figure 4: A field example of the type C spatial aliasing (modified from (Cheng et al.,
2018b)). (a1-c1) present the obtained dispersion spectra using different passive-
source surface wave imaging methods, PMASW, MAPS, and SPAC, respectively.
(a2) and (c2) present the PMASW and SPAC measurements after artifacts attenu-
ated. The black dotted curves represent the predicted type C spatial aliasing based
on the picked dispersion curve from MAPS in b1; the blue triangles indicate the
predicted type B spatial aliasing.
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Figure 5: A field example of the type D spatial aliasing (modified from Cheng et al.
(2015)). (a). the bin-stacked virtual source gather retrieved from ambient noise
interferometry; (b) and (c). the obtained dispersion measurements using MAPS
before and after aliasing attenuated. The green dashed line indicates the predicted
spatial aliasing.
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Figure 6: Effects of array lengths, 100 m (the upper panels) and 20 m (the bottom
panels), on MAPS measurements. (a) and (c) show the same source configurations
for two different receiver arrays, 100 m and 20 m, respectively; (b) and (d) display
the corresponding MAPS measurements in f − k domain. The blue dotted lines
indicate the minimum wavenumber (or the maximum wavelength) inferred from the
array length; the black dashed lines represent the theoretical dispersion curves; the
green curves indicate the normalized ARF curve at 17 Hz. The receiver intervals of
both arrays are consistent with dx = 1. Note that no data preprocessing procedures,
except for the segment splitting, are included prior to cross-correlation during MAPS
measurements.
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Figure 7: A numerical example of the radial pattern artifacts due to incoherent
noises. (a). A synthetic active-source surface wave shot gather; (b) presents the
averaged spectrum; (c) and (d) show the obtained dispersion spectra using the
phase-shift method in f − k domain and f − v domain. The black dashed line on d
represents the theoretical dispersion curve; the blue dash lines on c and d indicate
the end frequencies, 5 Hz and 65 Hz, where the spectrum amplitudes are approaching
zero. The black dashed arrows on c indicate the artifacts with constant wavenumber;
the black dashed arrows on d indicate the corresponding radial pattern artifacts.
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Figure 8: A field example of the radial pattern artifacts (modified from Liu et al.
(2020)). (a). The bin-stacked virtual source gather retrieved from ambient noise
interferometry without noise data preprocessing. The bin-size is 1 m. (b) The
averaged spectrum of a; (c). Dispersion measurement with distinct artifacts. The
black dashed lines highlight the radial pattern artifacts.

Figure 9: Same as Fig.8 but with spectral whitening included prior to cross-
correlation.
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Figure 10: A comparison of ARFs between one virtual-source gather (C1
N , the black

solid line) and multiple virtual-sources gather (C2
N , the red dashed line). Here we

take an array of 24 sensors with 10 m spatial interval as an example.
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Figure 11: An example of C2
N inter-station cross-correlation for field example #2.

(a). Virtual source and virtual receiver configuration for C2
N inter-station cross-

correlation pairs. (b). The extracted C2
N inter-station cross-correlation pairs using

ambient noise interferometry. The yellow boxes highlight the source and receiver
configuration (a) and cross-correlation pairs (b) for one virtual-source gather with
the first trace as the virtual source.
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Figure 12: A field example of radial pattern artifacts and their attenuation (modified
from Cheng et al. (2019)). (a). Dispersion spectra of MAPS by using the one virtual-
source gather. (b). Dispersion spectra of MAPS by using the multiple virtual-
sources gather. The black dashed lines indicate the radial pattern artifacts.
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Figure 13: Attenuation of the radial pattern artifacts in Fig.12 using the data-
selection technique (modified from Cheng et al. (2019)). (a) displays the estimated
SNR indicators using p energy for each time segment during the 30-min observa-
tion. The red dotts indicate the selected time segments with p SNR greater than
the defined threshold value, 2. (b) shows the enhanced MAPS measurement with
radial pattern artifacts significantly attenuated. The blue dotted line indicates the
minimum wavenumber reference, and the blue dashed line indicates the maximum
wavenumber reference.
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Figure 14: Array responses for the linear array (a) and the pseudo-linear array (b).
The black dots denote the receivers; the black arrows indicate the plane wave; the
pink circles indicate the target azimuth and velocity solution.
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Figure 15: A field example of the artifacts from the non-interferometric methods
(modified from Cheng et al. (2020)). (a)-(d) present the obtained dispersion spec-
tra using different passive-source surface wave imaging methods, PMASW, ReMi,
SPAC, and MAPS, respectively.
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