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Abstract

A primary source of error for predictions of solar irradiance in clear-sky conditions is the total aerosol optical depth (AOD).

Dust aerosol loading can also be significant in arid regions such as the Middle East, thus considerably decreasing the solar

resource while increasing the detrimental effects of soiling on collectors at solar power plants, particularly during dust storms.

Many photovoltaic (PV) and concentrated solar power (CSP) plants have been or will be constructed in the Middle East,

making AOD forecasting a pressing issue for plant and grid operators. In this study we present a climatological analysis of 1–

3-day AOD forecasts from a two-year period (2018–2019) from three operational models: the NASA Goddard Earth Observing

System Model, Version 5 (GEOS-5), the NEMS GFS Aerosol Component (NGAC) model, and the Copernicus Atmosphere

Monitoring Service (CAMS) Near-Real-Time (NRT) model. AOD predictions from these models are validated against daily-

average observations from 20 Aerosol Robotic Network (AERONET) stations across the Middle East. It is found that GEOS-5

is the best model on average, with the smallest fractional gross error and near-zero modified normalized mean bias. CAMS

NRT is the next-best model, while NGAC, which has the coarsest grid spacing of the three models examined here, generally

performs poorly. In addition to standard error metrics to characterize the overall performance of the models, a multi-site time

series analysis is performed to assess how well these models represent significant dust storm events in the UAE in July 2018

and in Kuwait in April 2018.
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Abstract 22 

 A primary source of error for predictions of solar irradiance in clear-sky conditions is the 23 

total aerosol optical depth (AOD). Dust aerosol loading can also be significant in arid regions 24 

such as the Middle East, thus considerably decreasing the solar resource while increasing the 25 

detrimental effects of soiling on collectors at solar power plants, particularly during dust 26 

storms. Many photovoltaic (PV) and concentrated solar power (CSP) plants have been or will be 27 

constructed in the Middle East, making AOD forecasting a pressing issue for plant and grid 28 

operators. In this study we present a climatological analysis of 1–3-day AOD forecasts from a 29 

two-year period (2018–2019) from three operational models: the NASA Goddard Earth 30 

Observing System Model, Version 5 (GEOS-5), the NEMS GFS Aerosol Component (NGAC) 31 

model, and the Copernicus Atmosphere Monitoring Service (CAMS) Near-Real-Time (NRT) 32 

model. AOD predictions from these models are validated against daily-average observations 33 

from 20 Aerosol Robotic Network (AERONET) stations across the Middle East. It is found that 34 

GEOS-5 is the best model on average, with the smallest fractional gross error and near-zero 35 

modified normalized mean bias. CAMS NRT is the next-best model, while NGAC, which has the 36 

coarsest grid spacing of the three models examined here, generally performs poorly. In addition 37 

to standard error metrics to characterize the overall performance of the models, a multi-site 38 

time series analysis is performed to assess how well these models represent significant dust 39 

storm events in the UAE in July 2018 and in Kuwait in April 2018. 40 

  41 
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Plain Language Summary 42 

 Dust, soot, sea salt, and other particles (aerosols) in the atmosphere absorb, reflect, and 43 

scatter solar radiation. During clear, sunny conditions, the total amount of atmospheric 44 

aerosols controls how much solar irradiance reaches the surface, and therefore the energy 45 

generation at solar power plants. Therefore, accurate forecasts of aerosols are important, 46 

especially in dusty, desert regions like the Middle East, where solar power is expected to see 47 

major growth in the coming years. 48 

 In this study we compared total aerosol forecasts in the Middle East from three publicly 49 

available models, from NASA and NOAA in the U.S. and from CAMS in Europe. We used 50 

forecasts issued twice daily during all of 2018–2019. From each model run we validated the 51 

total aerosol forecasts against observations made from 20 ground-based stations across the 52 

region. We found that the NASA model performed the best overall in the Middle East, the 53 

CAMS model was second-best, and the NOAA model generally performed poorly. Because dust 54 

storms are a relatively common phenomenon in the Middle East and bring significant 55 

disruptions both to solar power generation and to society in general, we also examined how 56 

well the three forecast models performed during two dust storm events. 57 

58 
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1. Introduction 59 

 Aerosols are important and very active constituents of the Earth’s atmosphere. Both 60 

their direct and indirect effects impact the planetary climate at regional and global scales 61 

through radiative forcing (RF). The Fourth Assessment Report of the Intergovernmental Panel 62 

on Climate Change (IPCC, 2013) indicates that the net global aerosol RF is estimated at –0.27 W 63 

m-2. Some aerosol species, such as black carbon, have a positive RF, whereas sulphates and 64 

mineral dust have a negative RF. The overall dust RF is estimated at –0.77 W m-2, which 65 

indicates a global cooling effect. Stronger radiative effects (by two orders of magnitude or more 66 

at the surface) are typically evaluated locally during powerful dust storms (Alam et al., 2014; 67 

Arkian, 2017; Basha et al., 2015; Haywood et al., 2003; Huang et al., 2014; Rémy et al., 2015; 68 

Saeed et al., 2014; Sharma et al., 2012). However, it is still difficult to assess the total mass of 69 

each aerosol species. According to (IPCC, 2013), mineral dust (1000–4000 Tg y-1) is globally the 70 

second largest contributor to the total aerosol load after sea spray (1400–6800 Tg y-1). 71 

Nevertheless, over some regions, such as large deserts in the sun belt, dust is by far the 72 

dominant natural aerosol species. 73 

 Dust affects the regional or global climate in various ways, particularly by interacting 74 

with the Earth’s energy balance (in terms of both shortwave and longwave radiation), providing 75 

cloud condensation nuclei, modifying the radiative properties of clouds, changing precipitation 76 

patterns, and altering the wind field (Bangalath & Stenchikov, 2016; Choobari et al., 2014; 77 

Huang et al., 2014; Jin et al., 2014; Levin et al., 2005; Osipov & Stenchikov, 2018; Ou et al., 78 

2009; Zhao et al., 2011). Dust storms can affect areas far away from the source regions through 79 

long-range transport (Husar et al., 2001; Kaufman et al., 2005; Kim et al., 2014; Kuciauskas et 80 
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al., 2018; Middleton, 2017; Prospero et al., 2010; Uno et al., 2009; H. Yu et al., 2012), which 81 

makes their precise forecasting important at regional and global scales, and also makes the 82 

evaluation of their associated hazards more critical (Middleton, 2017). There is observational 83 

evidence that the dust load follows a positive trend in aerosol optical depth (AOD) in various 84 

regions, including the Middle East (Alizadeh‐Choobari et al., 2016; Hsu et al., 2012; Klingmüller 85 

et al., 2016; de Meij et al., 2012; Yoon et al., 2012b, 2012a), although (for this region at least) 86 

local downward trends in dust loading can be observed, too (Kokkalis et al., 2018; Modarres & 87 

Sadeghi, 2018). For all the considerations summarized above, the overall dust cycle is now 88 

considered an important topic in Earth system science (Shao et al., 2011). 89 

 This contribution’s specific interest for dust aerosols is motivated by three main 90 

reasons: (i) their mass and optical properties are highly variable in both space and time, which 91 

makes their forecasting challenging; (ii) over arid and desert regions, the incidence of dust 92 

storms may have considerable impacts on weather, society, air quality, populations’ health, as 93 

well as terrestrial and air traffic, etc., which makes such events important to forecast so as to 94 

provide the necessary warnings; (iii) in recent years, many countries of the sun belt, most 95 

particularly in the Middle East, have begun implementing aggressive energy policies that favor 96 

solar technologies to decrease their dependence on oil (Alnaser & Alnaser, 2019; Alsayegh et 97 

al., 2018; Lude et al., 2015; Mas’ud et al., 2018; Munawwar & Ghedira, 2014; Poudineh et al., 98 

2018; Salam & Khan, 2017; Seznec, 2018). In this context of rapid transformation of the energy 99 

sector, electric utilities now require good production forecasts for all variable sources of 100 

renewable energy, particularly solar.  101 
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 Dust aerosols impact the production of solar power in two different ways: (i) they tend 102 

to decrease the solar resource in comparison with temperate areas; and (ii) they tend to 103 

deposit on the active surface of solar generators, thus decreasing their output and creating the 104 

need for regular cleaning. Because such impacts have serious consequences, the possibility of 105 

forecasting them carries important societal and economic value. Over those regions, the 106 

aerosol-induced variability in surface irradiance is the primary cause of temporal variability of 107 

solar radiation because clouds are relatively infrequent there. Fluctuating cloudiness is 108 

prevalent elsewhere and has prompted the development of specialized numerical weather 109 

prediction (NWP) models aimed at forecasting the solar irradiance components at the 110 

mesoscale (e.g., (Jiménez, Hacker, et al., 2016). Such NWP models are mostly used in temperate 111 

climates to forecast the occurrence and intensity of cloudy periods over a relatively small 112 

domain. They are now progressively being updated and improved to also take the variability of 113 

the aerosol regime into account (Eissa et al., 2018; Thompson & Eidhammer, 2014). In parallel, 114 

global weather or climate models need to incorporate detailed modeling of aerosol chemistry 115 

and transport, since these modify the solar radiation field, and provide cloud condensation 116 

nuclei that ultimately allow the formation of clouds. In recent years, specialized forecast models 117 

have been developed and tailored to uniquely evaluate the quantitative evolution of dust 118 

aerosols. For instance, (Huneeus et al., 2011) describes the efforts of the AeroCom consortium 119 

(https://aerocom.met.no) to improve global dust models. Moreover, the World Meteorological 120 

Organization (WMO) has recognized the importance and societal implications of dust storms, 121 

which led to the creation of the WMO Sand and Dust Storm Project in 2004 and its Sand and 122 

https://aerocom.met.no/
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Dust Storm Warning Advisory and Assessment System (SDS-WAS) in 2007. Three SDS-WAS 123 

regional centers now exist to provide dust aerosol forecasts over different continents.  124 

 The main objective here is to validate various aerosol forecasts over the Middle East and 125 

better understand the causes for their differences. AOD is the essential variable considered 126 

here because it can be directly used to predict the components of surface solar irradiance, 127 

which in turn are needed to forecast the power production of any solar power plant. In general, 128 

AOD is also viewed as useful to evaluate air quality at the surface through the determination of 129 

customary indices (PM1, PM2.5, and PM10), but their correlation with AOD (a columnar quantity) 130 

is typically not strong (Filip & Stefan, 2011). In the case of dust storms, however, all dust 131 

particles are of large dimension and concentrated in the bottom layers of the atmosphere, 132 

making the AOD and PM10 better correlated over space (Beegum et al., 2018). Air quality 133 

implications of dust storms are extremely important (Ahmady-Birgani et al., 2018; Al-Hemoud 134 

et al., 2018, 2019; Middleton, 2017; Querol et al., 2019), but beyond the scope of the present 135 

study. AOD can be uniquely determined at each visible wavelength, but is most commonly 136 

reported at 550 nm, which is near the peak of the solar visible emission spectrum, and is 137 

abbreviated as AOD550 in what follows. 138 

 The current literature indicates a growing interest for the observation and prediction of 139 

AOD over the Middle East. Most observations are made through remote sensing either from 140 

ground-based sun photometers of, e.g., NASA’s federated Aerosol Robotic Network (AERONET) 141 

(Holben et al., 1998) or from spaceborne radiometers such as MODIS or MISR (Klingmüller et 142 

al., 2016; K. R. Kumar et al., 2018; Y. Yu et al., 2016). Ground-based observations have the 143 

lowest uncertainty and are used to validate other products, such as spaceborne observations or 144 
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modeled values. A number of models now exist to forecast the life cycle and abundance of dust 145 

aerosols (Basart et al., 2012; Beegum et al., 2018; Benedetti et al., 2014; Eissa et al., 2018; 146 

Ginoux et al., 2001; Huneeus et al., 2011; Lu et al., 2016; Pérez et al., 2011). In the literature, 147 

such chemistry transport models are typically used to retrospectively simulate the occurrence 148 

of known dust storm and compare results (of AOD, PM10, etc.) to observations (Basha et al., 149 

2015; Beegum et al., 2018; Calastrini et al., 2012; Hamidi et al., 2017; Haustein et al., 2012; 150 

Huneeus et al., 2016; Karagulian et al., 2019; R. Kumar et al., 2014; Liu et al., 2003; Najafpour et 151 

al., 2018; Pérez et al., 2006; Xu, 2018; Zhang et al., 2015). In contrast, the literature is relatively 152 

limited with respect to the experimental or operational forecasting of AOD or PM10 over dust-153 

impacted regions (Basart et al., 2012; Benedetti, Giuseppe, et al., 2019; Eissa et al., 2018; Li et 154 

al., 2011; Lu et al., 2016; Mangold et al., 2011; Menut et al., 2015). For that reason, the present 155 

contribution focuses on comparing and evaluating the AOD forecasting skill of a number of 156 

models over the Middle East. 157 

 This paper is organized as follows. Section 2 describes the aerosol forecast models that 158 

are analyzed here. Section 3 describes the AERONET observations and stations that are used to 159 

verify the model forecasts, as well as the evaluation metrics that are used. Results are 160 

presented and discussed in Section 4, and Section 5 gives conclusions. 161 

 162 

2. Aerosol forecasting models 163 

 In this study we analyze and compare AOD forecasts from three global models over the 164 

Middle East: the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5); the NOAA 165 

Environmental Modeling System (NEMS) Global Forecasting System (GFS) Aerosol Component 166 
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(NGAC); and the Copernicus Atmosphere Monitoring Service (CAMS) Near-real time global 167 

analysis and forecast model. These models are briefly described below. Preliminary analysis 168 

shows that they produce wildly different spatial patterns in the AOD550 forecasts, which is 169 

concerning and justifies further analysis. These differences are investigated in detail below 170 

(Section 4). 171 

 For each of the three forecast models, all available 0000 and 1200 UTC cycles initialized 172 

from 1 January 2018–31 December 2019 are used to provide a full two years of forecasts for 173 

analysis. Gridded AOD550 values are bilinearly interpolated to the AERONET forecast sites in the 174 

Middle East that were active at any point during that time period (see Section 3). Daytime 175 

AOD550 values are then averaged into day-1, day-2, and day-3 periods, defined as a 24-h period 176 

centered at 1200 UTC (i.e., a full calendar day). By this averaging convention, day-1 forecasts 177 

are deemed valid at 1200 UTC on the day the forecast was initialized, and day-2 forecasts are 178 

valid at 1200 UTC on the day after the forecast was initialized, and so on for day-3. Thus, for 179 

0000 UTC forecast cycles, day-1 forecasts are averaged from 0–24-h lead times (daylight only), 180 

while day-2 forecasts are averaged from 24–48-h lead times and day-3 from 48–72-h lead 181 

times. For 1200 UTC cycles, only day-2 and day-3 forecasts are defined by this averaging 182 

convention, with forecasts averaged from 12–36-h lead times for day-2 and 36–60 h for day-3. 183 

 184 

2.1 GEOS-5 185 

 GEOS-5 is a full Earth system model with multiple components, including atmospheric 186 

chemistry, that is used for both weather and climate applications (Rienecker et al., 2008). The 187 

current GEOS-5 atmospheric general circulation model (AGCM) is described in (Molod et al., 188 
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2015). Operationally, GEOS-5 is issued four times per day (0000, 0600, 1200, and 1800 UTC), 189 

with AOD550 output available hourly on a global 0.3125° x 0.25° grid. The 0000 UTC cycle 190 

extends to 10 days, the 1200 UTC cycle to 5 days, and both the 0600 and 1800 UTC cycles 191 

extend only to lead time 30 h. Because the 0600 and 1800 UTC cycles are so short, and because 192 

GEOS-5 is the only model examined with cycles at those times, those two cycles are excluded 193 

here. Considering that the assimilation of ground-based or spaceborne aerosol observations 194 

has been shown to significantly help the skill of AOD forecasts (Rubin et al., 2017), GEOS-5, 195 

which relies on such assimilations (Buchard et al., 2015), is used here as a benchmark. Most 196 

relevant for this study, GEOS-5 assimilates AOD observations from the MODIS/Aqua and 197 

MODIS/Terra satellite instruments, bias-corrected and calibrated against AERONET 198 

observations (Buchard et al., 2015). 199 

 The NASA Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model (Chin 200 

et al., 2002) is implemented online in GEOS-5 (Colarco et al., 2010, 2014). GOCART simulates a 201 

suite of five types of atmospheric aerosols: dust, sea salt, sulfates, black carbon, and organic 202 

carbon. Because it is online, the aerosols are fully coupled with the atmospheric model 203 

dynamics and thermodynamics. The dust sources and emissions in GEOS-5 are based on the 204 

(Ginoux et al., 2001) topographic-based map activated by surface winds, with some 205 

modifications based on land use changes and for various scaling constants (Colarco et al., 2010). 206 

Eight size bins are used, and dust is removed by several processes, including sedimentation, dry 207 

deposition, wet removal, and convective scavenging. The reader is referred to (Colarco et al., 208 

2010) for additional details about the dust optical properties in GEOS-5. 209 

 210 
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2.2 NGAC 211 

 NGAC version 2 (Wang et al., 2018) has been the operational aerosol model at the U.S. 212 

National Centers for Environmental Prediction (NCEP) since 7 Mar 2017. NGACv2 forecasts are 213 

issued twice daily at 0000 UTC and 1200 UTC out to 5 days, with output on a 1.0° x 1.0° global 214 

grid at 3-hourly frequency. The underlying meteorological model is the GFS model that was 215 

operational at NCEP in spring 2016, but with a different convection scheme. The meteorological 216 

initial conditions are provided by the downscaled Global Data Assimilation System (GDAS) 217 

analysis, while the dust and aerosol initial conditions are provided by the previous NGACv2 218 

cycle’s 12-h forecast. Except for biomass burning, NGACv2 also uses the GOCART aerosol 219 

emissions, including following (Ginoux et al., 2001) for dust emissions, regridded to the NGAC 220 

1.0° grid. The aerosol model in NGACv2 is the same GOCART aerosol module as in GEOS-5 221 

(Colarco et al., 2010, 2014). Additional details about NGACv2 can be found in (Wang et al., 222 

2018). 223 

 224 

2.3 CAMS NRT 225 

 The CAMS Near-real-time (NRT) global analysis and forecast system for concentrations 226 

of aerosols and trace gases dates back to May 2012 (Copernicus, 2020), and is driven by the 227 

European Centre for Medium-range Weather Forecasting (ECMWF) Integrated Forecast System 228 

(IFS) atmospheric model (ECMWF, 2019). CAMS NRT is run twice daily (0000 UTC and 1200 UTC) 229 

with 1-hourly output out to 5 days. (Real-time CAMS NRT data is available in 1-h output, but 230 

archived CAMS NRT data is available only in 3-h output. In this study we linearly interpolate the 231 

AOD550 field from the 3-hourly archived files to 1-hourly frequency.) Since June 2016 the CAMS 232 
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NRT grid spacing has been ~40 km, and in July 2019 the number of vertical levels increased 233 

from 60 to 137 levels with the upgrade to CAMS IFS cycle 46R1 (Copernicus, 2020; Engelen, 234 

2019; Inness et al., 2019). 235 

 For reactive chemistry transport modeling, CAMS NRT employs the IFS(CB05) module 236 

(Flemming et al., 2015), which is a modified form of the Carbon Bond 2005 chemistry scheme 237 

(CB05) (Huijnen et al., 2010). Whereas the aerosol transport model in GEOS-5 and NGAC both 238 

use GOCART, prior to 9 July 2019 tropospheric aerosol modeling in CAMS NRT followed 239 

(Morcrette et al., 2009) for forecasts with aerosol data assimilation as described in (Benedetti 240 

et al., 2009). This model also has prognostic mass mixing ratio variables for dust, sea salt, 241 

sulfates, organic carbon, and black carbon species, and includes aerosol removal processes 242 

including sedimentation, wet deposition, and dry deposition for all species. Sea salt and dust 243 

aerosols represented by three size bins, and their source functions are driven by 10-m wind. As 244 

in GEOS-5 and NGAC, the dust source production in CAMS NRT is based on (Ginoux et al., 2001) 245 

modified to fit the three dust size bins in CAMS NRT, and accounts for soil type, soil moisture, 246 

vegetation cover, snow cover, and surface wind, with source regions limited to areas with a 247 

MODIS-derived climatological background albedo of 0.09–0.52 in a given month (Morcrette et 248 

al., 2009; Rémy et al., 2019). 249 

 New with the CAMS NRT cycle 46R1 implementation on 9 July 2019 is an online dust 250 

emission scheme that follows (Nabat et al., 2012), as well as new nitrate and ammonium 251 

aerosol species and several other changes (Engelen, 2019). This dust emission scheme increases 252 

total dust emissions and shifts them into larger-diameter bins than in the prior CAMS NRT 253 

version. (Engelen, 2019) reports that this change slightly increases dust AOD globally, and more 254 
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so in North Africa. Note that the last few months of our evaluation period come after this 255 

change in CAMS NRT. 256 

 257 

3. Observations 258 

3.1 AERONET Sites 259 

 AERONET is a globally federated network of solar irradiance and aerosol observing sites 260 

operated by NASA (Holben et al., 1998) (https://aeronet.gsfc.nasa.gov/). Stations are irregularly 261 

spaced and provide long-term observation records of water vapor and optical, microphysical, 262 

and radiative properties of aerosols for the atmospheric science research and modeling 263 

communities, to serve as validation for both models and satellite retrieval algorithms. In the 264 

domain of interest for this study, there are 20 AERONET stations that had valid reports during 265 

at least portions of the two-year evaluation period. A list of those stations is provided in Table 266 

1, and a photo of the AERONET sun photometer instrument at the Shagaya Park station in 267 

Kuwait is shown in Figure 1. 268 

 269 

Table 1. Metadata for the AERONET stations used in this study. 270 

Station Country Latitude 
(°N) 

Longitude 
(°E) 

Data Levels and Date Ranges Total 
Daily Obs 

Tuz_Golu_3 Turkey 38.79247 33.46468 L2: 24 Jul 2018–13 Sep 2018 17 

IMS-METU-ERDEMLI Turkey 36.56500 34.25500 L2: 1 Jan 2018–10 Apr 2019 

L1.5: 29 Apr 2019–09 May 2019 

234 

Nicosia Cyprus 35.14063 33.38135 L2: 03 Feb 2019–1 Jan 2020 271 

AgiaMarina_Xyliatou Cyprus 35.03800 33.05770 L2: 1 Jan 2018–13 Jun 2019 

L1.5: 3 Jul 2019–1 Jan 2020 

438 

CUT-TEPAK Cyprus 34.67481 33.04275 L2: 1 Jan 2018–27 Jun 2019 

L1.5: 7 Oct 2019–2 Jan 2020 

485 

https://aeronet.gsfc.nasa.gov/
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Migal Israel 33.23639 35.57828 L2: 17 Jun 2018–3 Oct 2019 

L1.5: 4 Oct 2019–30 Dec 2019 

476 

Technion_Haifa_IL Israel 32.77587 35.02490 L2: 6 Jan 2018–12 May 2019 157 

Weizmann_Institute Israel 31.90724 34.81053 L2: 4 Jan 2018–23 Jun 2019 

L1.5: 24 Jun 2019–2 Jan 2020 

502 

SEDE_BOKER Israel 30.85500 34.78222 L2: 2 Jan 2018–5 Apr 2019 

L1.5: 29 Apr 2019–2 Jan 2020 

592 

Eilat Israel 29.50250 34.91750 L2: 2 Jan 2018–14 Jul 2019 

L1.5: 14 Nov 2019–2 Jan 2020 

311 

Cairo_EMA_2 Egypt 30.08077 31.29007 L2: 2 Jan 2018–30 Jul 2019 481 

El_Farafra Egypt 27.05800 27.99017 L2: 1 Jan 2018–30 Aug 2018 143 

Qena_SVU Egypt 26.19992 32.74703 L2: 21 Dec 2018–24 Oct 2019 270 

KAUST_Campus Saudi 
Arabia 

22.30483 39.10283 L2: 2 Jun 2018–19 Oct 2019 

L1.5: 22 Oct 2019–19 Dec 2019 

173 

IASBS Iran 36.70500 48.50700 L2: 1 Jan 2018–3 May 2018 

L1.5: 15 Mar 2019–2 Jan 2020 

218 

Shagaya_Park Kuwait 29.20907 47.06053 L1.5: 1 Jan 2018–29 Oct 2019 519 

Kuwait_University Kuwait 29.32500 47.97100 L1.5: 1 Jan 2018–1 Jan 2020 365 

Mezaira UAE 23.10452 53.75466 L2: 1 Jan 2018–8 May 2018 

L1.5: 9 May 2018–20 Apr 2019 

427 

Masdar_Institute UAE 24.44160 54.61660 L2: 1 Jan 2018–11 Mar 2019 210 

DEWA_ResearchCentre UAE 24.76685 55.36912 L1.5: 29 Sep 2018–2 Jan 2020 371 

 271 

 272 

Figure 1. AERONET sun photometer at Shagaya Renewable Energy Park in western Kuwait. 273 
Photo © 2018 by Jared A. Lee. 274 
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 275 

3.2 AOD550 measurements and quality control 276 

 AERONET stations are equipped with a sun photometer that senses the direct solar 277 

spectrum through a set of interference filters, whose central wavelengths are appropriately 278 

selected to retrieve aerosol and water vapor information. Typically, the spectral AOD is derived 279 

at seven or eight wavelengths between 340 and 1640 nm. The retrieval algorithm has been 280 

recently updated to version 3, and allows AOD to be retrieved with an accuracy of 0.01–0.02, 281 

depending on wavelength (Giles et al., 2019). No AOD measurement is made at 550 nm, 282 

however, so that AOD550 needs to be retrieved indirectly. This is conventionally done by fitting 283 

the spectral AOD retrievals to a linearized version of the empirical Ångström relationship, which 284 

can be expressed as:  285 

ln(𝐴𝑂𝐷550) = ln(𝐴𝑂𝐷𝜆) + 𝛼 ln (
𝜆

550
)                                           (1) 

where  is wavelength (nm), AOD represents all spectral AOD values between 440 and 870 nm, 286 

and  is the corresponding Ångström exponent, as provided by AERONET. 287 

 Ideally, these observations occur every few minutes, but can be spaced hours apart in 288 

case of cloud interference. AERONET products at both Level 1.5 (cloud screened) and Level 2 289 

(cloud screened and quality assured) are considered here. Although Level-2 products may be of 290 

slightly better quality than Level-1.5 products, they are typically not available at all stations or 291 

until many months after the observation time. Relying only on the Level-2 product is desirable, 292 

but doing this would have considerably reduced the number of stations and/or shortened the 293 

validation period at each of them. Including Level-1.5 data is justified because their accuracy is 294 
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much better than that of any AOD forecast. This study focuses on daily-mean AOD550 295 

measurements because forecasts are not done at high frequency. 296 

 297 

3.3 Evaluation metrics 298 

 To evaluate the 𝑁 AOD550 forecasts 𝑓𝑖 from the GEOS-5, NGAC, and CAMS models 299 

against daily-mean AERONET observations 𝑜𝑖, we use standard metrics like mean bias error 300 

(MBE), mean absolute error (MAE), root mean squared error (RMSE), and correlation 301 

coefficient (R2). R2 is simply the square of the Pearson-r correlation coefficient, which is also 302 

reported in some figure headings. 303 
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                                           (2) 

 We primarily use two additional metrics, the modified normalized mean bias (MNMB) 304 

and fractional gross error (FGE), which are commonly used in air quality and aerosol model 305 

validation (Benedetti, Di Giuseppe, et al., 2019; Rémy et al., 2019; Wagner et al., 2015; S. Yu et 306 

al., 2006). MNMB and FGE are employed to better capture model performance at low AOD 307 

values, and are essentially normalized versions of MBE and MAE, respectively. Both measures 308 

are bounded, symmetric with respect to overestimation and underestimation, and limit the 309 

impact of outliers, unlike RMSE. MNMB varies between –2 and +2 with 0 being best, while FGE 310 

is bounded by 0 (best) and +2 (worst). 311 

𝑀𝑁𝑀𝐵 =
2

𝑁
∑
𝑓𝑖 − 𝑜𝑖
𝑓𝑖 + 𝑜𝑖

𝑁
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                                                        (3) 
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|

𝑁
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                                                         (4) 

 For all these statistics, they are calculated as a function of AERONET station, model start 312 

date/time, forecast lead time, and model start time of day. For brevity, MBE, MAE, and RMSE 313 

results are not presented in this article. 314 

 315 

4. Results and discussion 316 

4.1 Domain average results 317 

 First, we examine the domain-average results of daily-average AOD550 forecasts by 318 

calculating statistics for each forecast cycle, as a sort of time series. For 00 UTC cycles, these 319 

statistics combine the day-1 and day-2 lead times, while the other cycles only have valid day-2 320 

forecasts, due to our averaging convention. 321 

 The domain-average FGE for each forecast cycle is shown in Figure 2a. For most forecast 322 

cycles, the FGE is lowest for GEOS-5, and highest for NGAC, with CAMS NRT forecasts in 323 

between. Domain-average FGE values range from 0.13–0.64 (median 0.31) for GEOS-5, 0.14–324 

0.76 (median 0.40) for CAMS NRT, and 0.17–1.30 (median 0.53) for NGAC. In general, the 325 

forecast errors are lower in summer and higher in winter. One notable exception is in late June 326 

2018, when all three forecast models had a concurrent jump in forecast errors, with NGAC 327 

performing worst. This episode is discussed further below. 328 

 Domain-average MNMB values are shown in Figure 2b for each forecast cycle. The best 329 

scores overall are for GEOS-5 (range -0.44–0.52), which had a near-zero median MNMB of 0.03. 330 

CAMS NRT (range -0.25–0.72) exhibits a generally positive MNMB, with a median of 0.28, 331 
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indicating that AOD, and thus aerosol concentrations, were generally higher than observed 332 

during the two-year period. In contrast, the NGAC results are highly variable with large biases in 333 

both directions at times (range -0.98–1.15), but with a generally negative MNMB, with a 334 

median of -0.09. The negative MNMB values indicate that NGAC generally underpredicts AOD 335 

compared to observations. 336 
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 337 

Figure 2. a) Fractional gross error, and b) modified normalized mean bias of daily average 338 
AOD550 forecasts for each forecast cycle from 1 Jan 2018–31 Dec 2019 for the GEOS-5 (blue 339 
circles), NGAC (orange squares), and CAMS NRT (green triangles) models. 340 

a

b
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 The late June 2018 period mentioned above can be seen in Figure 2b with a 341 

substantially positive MNMB of around 1.0 during that time for NGAC, and smaller positive 342 

MNMB values for GEOS-5 and CAMS NRT, indicating that all the models over-predicted aerosol 343 

loading on average during that time period. Additional analysis of the AERONET AOD time 344 

series revealed that stations in the eastern Mediterranean (Cyprus, Egypt, and Israel) were 345 

primarily responsible for the large positive MNMB overall for NGAC (see Figure 3a for an 346 

example), while model-predicted AOD550 generally agreed well with AERONET observations in 347 

the United Arab Emirates (UAE; e.g., Figure 3b). Moderate positive biases for all models during 348 

this time period were observed at AERONET stations in Kuwait (Figure 3c). The substantial 349 

differences in AOD550 predictions between the three models on 21 June 2018 are displayed in 350 

Figure 4, with NGAC predicting a large plume of moderate AOD in the eastern Mediterranean 351 

and much of the Fertile Crescent that is completely absent from both GEOS-5 and CAMS NRT, 352 

as well as the AERONET observations (Figure 3). 353 

 354 

Figure 3. Time series of day-1 daily average AOD550 forecasts started at 00 UTC during June 2018 355 
from the GEOS-5 (blue circles), NGAC (orange squares), and CAMS NRT (green triangles) models 356 
and observations (red diamonds) from the AERONET stations at a) AgiaMarina_Xyliatou in 357 
Cyprus, b) Mezaira in the UAE, and c) Kuwait_University in Kuwait. Pearson-r correlation 358 
coefficients for each model are given in the figure title for each panel. 359 

a b c
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 360 

Figure 4. Snapshot of AOD550 forecasts issued at 0000 UTC on 21 Jun 2018 and valid at 1200 UTC 361 
on 21 Jun 2018 for a) GEOS-5, b) NGAC, and c) CAMS NRT. Blue stars denote AERONET stations. 362 

 363 

 When aggregating the statistics by forecast lead time through the entire analysis period, 364 

GEOS-5 once again stands out as the best model of the three examined in this study, with the 365 

lowest FGE, ranging from 0.29–0.34 (Figure 5a) and near-zero MNMB of 0.01–0.05 (Figure 5b). 366 

CAMS was the next-best performing model, with an FGE of 0.40–0.42 and a clear positive bias 367 

(MNMB of 0.26–0.30). NGAC had the highest (worst) FGE of 0.55–0.56 for all five lead times, 368 

and a clear negative bias, with an MNMB ranging from -0.10 to -0.03 across the lead times. The 369 

general over-prediction of AOD550 by CAMS NRT and under-prediction by NGAC, paired with a 370 

neutral bias by GEOS-5, is consistent with results above. These results are also consistent with 371 

the statistics aggregated by model start hour, including for the 0600 and 1800 UTC cycles of 372 

GEOS-5 (not shown). 373 

a b c
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 374 

Figure 5. a) Fractional gross error and b) modified normalized mean bias of daily average 375 
AOD550 forecasts issued between 1 Jan 2018 and 31 Dec 2019 by the GEOS-5 (blue circles), NGAC 376 
(orange squares), and CAMS NRT (green triangles) models, as a function of forecast lead time. 377 

 378 

 In addition to the domain-average statistics examined so far, it is also useful to examine 379 

model performance on a station-by-station basis. The correlation coefficients (R2), for 00 UTC 380 

day-1 forecasts (Figure 6a), day-2 forecasts (Figure 6b), and day-3 forecasts (Figure 6c) are 381 

examined first. For all five start/lead time combinations (including the 1200 UTC day-2 and day-382 

a

b
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3 lead times that are not shown), GEOS-5 has the highest R2 value for most sites, with CAMS 383 

having the highest R2 for a few stations. NGAC has quite low R2 values for all stations (all 0.26 or 384 

lower), and is nearly uncorrelated with AERONET AOD550 observations at many stations. As 385 

expected, correlations either stay constant or decline with increasing lead time. The median R2 386 

for GEOS-5 declines from 0.67 for 0000 UTC day-1 forecasts to 0.47 for day-3 forecasts. For 387 

CAMS NRT the median R2 declines from 0.53 to 0.47, while the NGAC median R2 declines from 388 

0.10 to 0.09 over the lead times examined here. From these plots and plots of FGE and MNMB 389 

as a function of lead time, it can also be observed that the performance advantage for GEOS-5 390 

over CAMS generally decreases somewhat with increasing lead time. It is also worth noting that 391 

the very low R2 values for the Tuz_Golu3 AERONET station at all lead times is largely due to the 392 

small sample size of only 17 observations. 393 
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 394 

Figure 6. Correlations of a) day-1, b) day-2, and c) day-3 daily-average AOD550 forecasts started 395 
at 0000 UTC daily from 1 Jan 2018–31 Dec 2019 for the GEOS-5 (blue circles), NGAC (orange 396 
squares), and CAMS NRT (green triangles) models against observations from the listed AERONET 397 
stations. 398 

a

b

c



 25 

 Looking at FGE and MNMB for each station individually in Figure 7a,b, once again, GEOS-399 

5 performs the best at nearly all stations, with a median FGE of 0.30 and median MNMB of 400 

0.03. There are two stations (Cairo_EMA_2 in Egypt and Migal in Israel) where CAMS NRT 401 

outperforms GEOS-5, but otherwise CAMS NRT is generally the second-best model, with a 402 

median FGE of 0.38 and median MNMB of 0.27. NGAC is the worst-performing model at most 403 

stations, with a median FGE of 0.57 and a median MNMB of -0.09. Once again, it is clear that 404 

CAMS NRT has substantial over-prediction of AOD550 in this region, while NGAC has consistent 405 

under-prediction of AOD and the largest absolute errors. 406 
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 407 

Figure 7. a) Fractional gross error and b) modified normalized mean bias for daily-average 408 
AOD550 forecasts issued from 1 Jan 2018–31 Dec 2019 for the GEOS-5 (blue circles), NGAC 409 
(orange squares), and CAMS NRT (green triangles) models against observations from the listed 410 
AERONET stations. 411 

 412 
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4.2 Dust storm prediction: Intensity and accuracy 413 

 Having looked at bulk model performance over the two-year period, now we briefly 414 

examine model forecasts of AOD550 during two dust storm events in 2018 for which there are at 415 

least partial AERONET observations. 416 

 417 

4.2.1 UAE’s July 2018 dust storm 418 

 During 28–31 July 2018 a severe, multi-day dust storm enveloped the southeastern 419 

Arabian Peninsula, including the UAE, Oman, and portions of Saudi Arabia. The intense dust 420 

storm, which was caused by cyclogenesis in the Empty Quarter Desert (also called Rub’ al Khali, 421 

in southeastern Saudi Arabia, bordering UAE and Oman), significantly impaired air quality 422 

across the region, sharply curtailed solar irradiance, lofted dust to an altitude of 5 km, and 423 

caused substantially warmer surface temperatures at night due to longwave emission of the 424 

dust particles (Francis et al., 2021). Visible imagery from the MODIS instruments on NASA’s 425 

Terra and Aqua satellites from near mid-morning on 29 Jul 2018 and midday on 30 Jul 2018 in 426 

Figure 8a,b, respectively, shows the large extent of the dust plume at the peak of the event, 427 

with the center of circulation visible in the southeastern corner of Saudi Arabia, just south of 428 

the UAE border. 429 
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 430 

Figure 8. a) MODIS/Terra visible imagery on 29 Jul 2018 at 0725 UTC. The thin orange line is the 431 
Terra satellite overpass path (descending). b) MODIS/Aqua visible imagery on 30 Jul 2018 at 432 
0938 UTC. The thin cyan line is the Aqua satellite overpass path (ascending). Images courtesy 433 
NASA Worldview. 434 

 435 

 Snapshots of the day-1 model forecasts of AOD550 for the three models are shown in 436 

Figure 9 and Figure 10, for the times closest to the MODIS images in Figure 8. Both GEOS-5 and 437 

CAMS indicate a significant dust storm event in the southeastern Arabian Peninsula, with total 438 

AOD550 values in the 3–5 range. The dust plume wrapped around the extratropical cyclone that 439 

is apparent in the MODIS imagery is present in the GEOS-5 and CAMS day-1 forecasts for 29 July 440 

2018, and somewhat less so for forecasts on 30 July 2018, though the plume is still thick and 441 

expansive. Meanwhile, NGAC completely missed the event, even when initialized with the 442 

event already underway, with regional AOD550 values mostly under 0.5. This finding underlines 443 

the important benefit brought by the assimilation of spaceborne AOD observations in GEOS-5 444 

and CAMS. 445 
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 446 

Figure 9. Snapshot of AOD550 forecasts issued at 0000 UTC on 29 Jul 2018 and valid at 0700 UTC 447 
on 29 Jun 2018 for a) GEOS-5, b) NGAC (valid time 0600 UTC), and c) CAMS NRT. Blue stars 448 
denote AERONET stations. Compare with MODIS image in Figure 8a. 449 

 450 

Figure 10. Snapshot of AOD550 forecasts issued at 0000 UTC on 30 Jul 2018 and valid at 1000 451 
UTC on 30 Jun 2018 for a) GEOS-5, b) NGAC (valid time 0900 UTC), and c) CAMS NRT. Blue stars 452 
denote AERONET stations. Compare with MODIS image in Figure 8b. 453 

 454 

 Corresponding time series of day-1, day-2, and day-3 daily average and hourly average 455 

forecasts and observations at the Mezaira AERONET site in south-central UAE are presented in 456 

Figure 11. (Neither of the other two AERONET stations in the UAE reported valid observations 457 

during this event.) The Mezaira station did not report any valid observations on 30 July 2018 in 458 

the L1.5 data, but did report for the other days during and surrounding this event. It is possible 459 

that the AERONET cloud screening process (Giles et al., 2019; Smirnov et al., 2000) tends to 460 

a b c

a b c
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eliminate valid observations under dust-storm situations because their AOD is so high and 461 

temporarily variable that they appear similar to a cloud signature. In fact, (Giles et al., 2019) 462 

explicitly highlights potential problems with AERONET observations during dust storms: “The 463 

Version 3 smoothness procedure could be affected by extreme changes in AOD due to 464 

anomalous aerosol plumes (e.g., biomass burning or desert dust plumes).” Analysis of the Level 465 

1 (raw, non-cloud filtered) data at Mezaira shows AOD550 values near or above 5.0 around 1000 466 

and 1100 UTC on 29 July 2018, and then peaked at a remarkable 7.31 on 30 July 2018 at 0819 467 

UTC (the lone observation that day); the L1.5 data are screened out during these times of 468 

highest AOD in the L1 data (Table 2). If there were no clouds during this time period—and 469 

visible satellite imagery on 29–30 July 2018 in Figure 8 indicates largely cloud-free skies across 470 

the region—then the L1 AOD550 observations are presumptively accurate and were improperly 471 

screened out. In any case, the proceeding analysis is with L1.5 data. Before and after the event, 472 

the total AOD550 at Mezaira was typically in the 0.3–0.6 range. Through the day on 27 July, the 473 

observed AOD rose to about 1.25; day-1 forecasts from GEOS-5 and NGAC tracked this increase 474 

quite well. On both 28 and 29 July, all hourly-average observed AOD550 measurements were 475 

above 3.0, and as high as 4.1. Over these two days, day-1 forecasts for GEOS-5 and CAMS were 476 

both too low at most hours, though with predicted AOD550 ranging from 1.7–3.7 for GEOS-5 and 477 

from 1.2–2.4 for CAMS NRT on these days. Overall, these two models successfully predicted the 478 

existence of a severe dust storm, even if they underpredicted the severity. Unsurprisingly, day-479 

1 forecasts had the highest magnitudes and smallest biases, while day-2 and day-3 predicted 480 

AOD550 was lower, but still suggestive of a potential dust storm at Mezaira. The NGAC day-1 481 

predicted AOD550 consistently remained below 0.5 during 28–29 July, and below 0.6 on 30–31 482 
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July, totally missing the event at all lead times examined here. Such a severe forecast bust, 483 

which is not an uncommon event with NGAC in the Middle East, could be due partially to the 484 

coarse resolution of that model (1.0°x1.0°), or deficiencies in data assimilation or dust 485 

emission/source models, though a thorough analysis of the reasons is beyond the scope of this 486 

study. 487 
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 488 

Figure 11. Time series of AOD550 for forecasts started at 0000 UTC daily from 24 Jul–2 Aug 2018 489 
from the GEOS-5 (blue circles), NGAC (orange squares), and CAMS NRT (green triangles) models, 490 
and from L1.5 observations (red diamonds) at the Mezaira AERONET site in southern UAE. a) 491 
Day-1 daily average AOD; b) Day-1 hourly average AOD; c) Day-2 daily average AOD; d) Day-2 492 
hourly average AOD; e) Day-3 daily average AOD; f) Day-3 hourly average AOD. 493 
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 494 

Table 2. Time-centered hourly-average AOD550 observed values from the Mezaira AERONET 495 
station during the middle three days (28–30 Jul 2018) of the dust storm in the UAE. Level 1 (raw) 496 
and Level 1.5 (cloud-filtered) AOD550 values and numbers of observations in the hour are 497 
included. 498 

Date/Time (UTC) L1 AOD550 L1.5 AOD550 L1 nobs L1.5 nobs 

28 Jul 2018/0500 4.28 4.05 9 1 

28 Jul 2018/0600 3.97 4.01 17 7 

28 Jul 2018/0700 3.68 3.61 17 5 

28 Jul 2018/0800 3.45 3.38 16 3 

28 Jul 2018/0900 3.41 3.43 16 1 

28 Jul 2018/1000 3.34 — 17 — 

28 Jul 2018/1100 3.61 — 17 — 

28 Jul 2018/1200 3.35 3.27 14 6 

28 Jul 2018/1300 3.18 3.09 5 1 

29 Jul 2018/0500 3.41 3.40 11 9 

29 Jul 2018/0600 3.50 3.46 16 4 

29 Jul 2018/0700 3.62 3.49 17 3 

29 Jul 2018/0800 3.93 3.89 17 7 

29 Jul 2018/0900 4.27 4.07 16 4 

29 Jul 2018/1000 4.96 — 16 — 

29 Jul 2018/1100 5.39 — 11 — 

30 Jul 2018/0800 7.31 — 1 — 
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 499 

4.2.2 Shagaya April 2018 dust storm 500 

 On the afternoon of 26 April 2018, a dust storm was observed to move over the Shagaya 501 

Renewable Energy Park (Al-Rasheedi et al., 2020) in western Kuwait. The haboob was 502 

photographed moving over the Shagaya 50-MW concentrated solar power (CSP) plant at about 503 

1130 UTC (1430 LST) that day (Figure 12). As the photograph shows, all the CSP collection 504 

arrays were moved to a stowed position to protect the mirrors during the dust storm (the CSP 505 

plant was also not yet operational at this time). 506 

 507 

Figure 12. Haboob moving over the Shagaya Renewable Energy Park in western Kuwait on 26 508 
Apr 2018 at approximately 1130 UTC. Photo courtesy of EPC Company TSK. From Fig. 16 in (Al-509 
Rasheedi et al., 2020). 510 

 511 

 Satellite imagery from MODIS/Aqua in Figure 13 indicates convection along a cold 512 

frontal boundary attendant to a mature extratropical cyclone, with the line of convection still 513 
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about 100 km west of Kuwait at 1022 UTC, about four hours before the dust storm. The high 514 

wind associated with this convective frontal boundary is likely the direct cause of the haboob 515 

observed at Shagaya. Further evidence of a broad area of dust associated with frontal 516 

boundaries moving through the entire Fertile Crescent south into central Saudi Arabia is seen in 517 

the GEOS-5 and CAMS forecast AOD550 valid at 1400 UTC (Figure 14a,c), with AOD550 values 518 

generally in the 1.0–2.0 range in the area near and just west of Shagaya. As with the 28–31 July 519 

2018 dust storm described in the previous subsection, the NGAC model completely missed the 520 

presence of the large-scale dust storm on this day, with AOD550 values only around 0.6 in the 521 

vicinity of western Kuwait (Figure 14b). 522 

 523 

Figure 13. MODIS/Aqua visible imagery on 26 Apr 2018 at 1022 UTC. The thin cyan line is the 524 
Aqua satellite overpass path (ascending). Image courtesy NASA Worldview. 525 
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 526 

Figure 14. Snapshot of AOD550 forecasts issued at 0000 UTC on 26 Apr 2018 and valid at 1200 527 
UTC on 26 Apr 2018 for a) GEOS-5, b) NGAC, and c) CAMS NRT. Blue stars denote AERONET 528 
stations. Compare with MODIS image in Figure 13. 529 

 530 

 Examining time series of day-1 and day-2 AOD550 forecasts and observations for the 531 

Shagaya_Park AERONET station (Figure 15), which is located just over 1 km away from the 532 

location of the photograph in Figure 12, both GEOS-5 and CAMS NRT predict a dust storm that 533 

day. Observed AOD550 increased from just below 0.4 in the morning to 0.6 at 1100 UTC, while 534 

GEOS-5 remained about 0.4 higher during that time, as did CAMS NRT. Unfortunately, there are 535 

no L1.5 AERONET hourly-average observations from Shagaya_Park after 1100 UTC this day. L1 536 

(raw) AOD550 observations jumped from 0.84 to 3.29 to 3.82 from 1100 to 1200 to 1300 UTC, 537 

respectively (Table 3), which is consistent with an expected sudden increase with the passage of 538 

the haboob at about 1130 UTC. As mentioned above, it is possible that the observations that 539 

afternoon during the dust storm were incorrectly screened out by the cloud filtering algorithm 540 

of AERONET. (The Kuwait_University AERONET site in Kuwait City, about 100 km east of 541 

Shagaya, did not report any valid L1.5 observations on this day, either.) While the AERONET 542 

station did not record L1.5 measurements during the peak of the dust storm, we do see 543 

a b c
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evidence of the passage of the haboob from observations of global horizontal irradiance (GHI) 544 

at Shagaya initially dropping somewhat at 1055 UTC (coincident with L1 AOD550 observations 545 

jumping from about 0.59 at 1050 UTC to 0.90 at 1102 UTC), and then sharply dropping at about 546 

1130 UTC in Figure 16 (coincident with L1 AOD550 observations markedly increasing from 1.13 547 

at 1129 UTC to 1.75 at 1132 UTC, and then to 3.11 at 1141 UTC, before peaking at 4.36 at 1217 548 

UTC). From both the 1200 UTC map and the forecast model time series of AOD550, GEOS-5 549 

predicted AOD somewhat too slow and too weak for this event, with AOD550 rising only from 550 

1.0 to 1.3 from 1200–1500 UTC. CAMS NRT brought two waves of dust through Shagaya before 551 

the photographed event, one in the morning (0500 UTC) and a second wave in early afternoon, 552 

around 1100 UTC, increasing AOD550 to about 1.1 by 1500 UTC. Hence, it was still too weak 553 

compared to L1 observations at Shagaya, though the forecast map at 1200 UTC (Figure 14) 554 

indicates good timing for the event, but with a small displacement error, with the peak of the 555 

dust storm being just over the border into Saudi Arabia. Day-2 and day-3 forecasts valid on 26 556 

April 2018 (Figure 15c-f) did show AOD550 values near and above 1.0 for both GEOS-5 and CAMS 557 

NRT, with CAMS NRT indicating a potentially significant dust storm on day-2 and day-3, though 558 

still an underestimate of the L1 AOD550 observations at the Shagaya_Park AERONET station. 559 
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 560 

Figure 15. Time series of AOD550 for forecasts started at 0000 UTC daily from 24–28 Apr 2018 561 
from the GEOS-5 (blue circles), NGAC (orange squares), and CAMS NRT (green triangles) models, 562 
and from observations (red diamonds) at the Shagaya_Park AERONET site in western Kuwait. a) 563 
Day-1 daily average AOD; b) Day-1 hourly average AOD; c) Day-2 daily average AOD; d) Day-2 564 
hourly average AOD; e) Day-3 daily average AOD; and f) Day-3 hourly average AOD. 565 

a b

c d

e f



 39 

 566 

Table 3. Time-centered hourly-average AOD550 observed values from the Shagaya_Park 567 
AERONET station on 26 Apr 2018, the day of the dust storm at Shagaya. Level 1 (raw) and Level 568 
1.5 (cloud-filtered) AOD550 values and numbers of observations in the hour are included. 569 

Date/Time (UTC) L1 AOD550 L1.5 AOD550 L1 nobs L1.5 nobs 

26 Apr 2018/0400 0.49 — 3 — 

26 Apr 2018/0500 0.46 0.38 5 1 

26 Apr 2018/0600 0.41 0.40 14 10 

26 Apr 2018/0700 0.40 0.40 17 16 

26 Apr 2018/0800 0.43 0.43 17 16 

26 Apr 2018/0900 0.52 0.51 16 12 

26 Apr 2018/1000 0.57 0.57 17 17 

26 Apr 2018/1100 0.84 0.59 16 6 

26 Apr 2018/1200 3.29 — 10 — 

26 Apr 2018/1300 3.82 — 1 — 

 570 
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 571 

Figure 16. Time series of GHI observations on 26 Apr 2018 from a pyranometer located at the 572 
Shagaya Renewable Energy Park, about 1 km from the Shagaya_Park AERONET station. The 573 
haboob was photographed moving over Shagaya at approximately 1130 UTC, coinciding with a 574 
steep drop in GHI. Plot courtesy of Julia Pearson (NCAR). 575 

 576 

4.3 Potential impacts on solar energy production 577 

 High-AOD events such as the two dust storms discussed above cause a substantial 578 

reduction in solar energy generation, by reducing the solar irradiance that reaches the 579 

collectors or panels and by creating intense soiling (Al-Rasheedi et al., 2020). This effect is much 580 

sharper for CSP plants, such as the one pictured at Shagaya in Figure 12, as they convert direct 581 
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normal irradiance (DNI) to power. Any scattering or absorption of radiation by dust particles, 582 

other aerosols, or clouds, will noticeably or completely attenuate DNI at the surface. Dust 583 

storms can also cause problems for CSP installations because their mirrors must be secured 584 

ahead of time in a stowed position. Unfortunately, there were no DNI observations at Shagaya 585 

during this event, as the CSP plant was still under construction and not yet operational. 586 

Photovoltaic (PV) solar plants convert GHI to power. Because GHI includes contributions from 587 

diffuse radiation, GHI is attenuated less than DNI is by the presence of aerosols, but PV power 588 

production can still be noticeably reduced by heavy aerosol loading and soiling. 589 

 Accurate forecasting of GHI and DNI in cloudless conditions requires accurate 590 

forecasting of total AOD550 and dust storms. Particularly in desert or other arid regions where 591 

clear skies predominate, such as the Middle East, good irradiance forecasts are a crucial 592 

component for accurate solar power forecasts, which are necessary for effective grid 593 

management and to optimize the cleaning cycle of collectors or mirrors (especially considering 594 

the lack of water in the area).  595 

 The results presented in this paper, with GEOS-5 AOD550 forecasts performing better 596 

than those from CAMS NRT or NGAC in the Middle East over a two-year period, indicates that 597 

coupling GEOS-5 AOD550 forecasts with high-resolution forecast models, such as the Weather 598 

Research and Forecasting (WRF) model (Powers et al., 2017) configured for solar forecasting 599 

applications (WRF-Solar®) (Jiménez, Alessandrini, et al., 2016; Jiménez, Hacker, et al., 2016), 600 

could yield improved GHI and DNI forecasts. This is an area of active ongoing research, including 601 

for solar power forecasting in Kuwait (Haupt et al., 2020), and irradiance forecasting in Arizona, 602 

where (Bunn et al., 2020) found that GEOS-5 AOD550 forecasts coupled with WRF provided 603 
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significantly improved GHI forecasts compared to other methods. This finding builds off of 604 

(Jiménez, Hacker, et al., 2016), which found that WRF-Solar with GEOS-5 AOD550 forecasts 605 

imposed results in reduced GHI and DNI errors during clear-sky conditions for a network of 606 

high-quality irradiance sensors in the U.S., compared to either imposing no aerosol information 607 

or imposing AOD from various aerosol climatologies. Furthermore, recent analysis of the 10-608 

MW wind plant at Shagaya also demonstrates the detrimental effects of dust accumulation on 609 

wind power production in the summer (Al-Rasheedi et al. 2021a,b, manuscripts submitted to 610 

Sustainable Energy Technologies and Assessments), indicating that good dust forecasting in this 611 

region would be beneficial to wind plant operators in desert environments as well, not just 612 

solar plant operators. 613 

 614 

5. Conclusion 615 

 In this study we examined model forecasts of aerosol optical depth at 550 nm (AOD550) 616 

in the Middle East issued over a two-year time period, 2018–2019. The forecasts we compared 617 

here are 1–3-day forecasts from 0000 and 1200 UTC cycles of operational models from three 618 

major forecasting centers: GEOS-5 from NASA, NGAC from NOAA, and CAMS NRT from ECMWF. 619 

We processed the AOD550 forecasts to daily averages to match the standard AOD550 620 

observations produced by a network of 20 AERONET stations across the Middle East. 621 

 We validated forecasts using a suite of standard metrics, focusing on fractional gross 622 

error (FGE), modified normalized mean bias (MNMB), and correlation (R2). We stratified our 623 

results by AERONET station, by forecast lead time, and by model start date/time. A few 624 

consistent conclusions emerged: 625 
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 626 

1) GEOS-5 forecasts generally had the lowest (best) FGE and near-zero MNMB (an MNMB 627 

of 0 is perfect), and the highest R2 through most forecast start dates/times, lead times, 628 

and for all but two of the 20 AERONET stations; 629 

2) CAMS NRT forecasts had the second-best FGE and a generally positive MNMB, indicating 630 

a general over-prediction of total AOD550 (much of which in this region comes from 631 

dust), and R2 values only slightly lower than GEOS-5; at the two AERONET sites where 632 

GEOS-5 was not the best-performing model, CAMS NRT was the best-performing model 633 

on average; 634 

3) NGAC forecasts had the worst FGE, and a generally negative MNMB, indicating a general 635 

under-prediction of total AOD550 throughout 2018–2019 in the Middle East, along with 636 

very low R2 values, indicating a general lack of forecast skill for even trends in AOD550; 637 

4) Forecast accuracy generally declined with increasing lead time, as expected. 638 

 639 

 It should perhaps not be surprising that GEOS-5 was found to be the best performing 640 

model in this region, given that NASA assimilates aerosol measurements from satellites and 641 

calibrates that data against AERONET stations globally. Similarly, it was not unexpected that 642 

NGAC would perform worse than GEOS-5 or CAMS NRT, as NGAC runs on a significantly coarser 643 

model grid. Furthermore, NGAC v2, while it uses the same aerosol module and emissions as 644 

GEOS-5, does not assimilate satellite AOD retrievals or calibrate its AOD predictions against 645 

AERONET, unlike GEOS-5. It can be concluded that such processes are likely essential to obtain 646 

good AOD forecasts. 647 
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 We also examined model forecast performance during two dust storm events—a four-648 

day severe dust storm in the UAE and Empty Quarter Desert during 28–31 July 2018, and a dust 649 

storm in Kuwait on 26 April 2018. For these two events, we examined hourly-average forecasts 650 

and L1.5 (cloud-screened) AERONET observations, and found similar conclusions to those 651 

mentioned above, with GEOS-5 and CAMS NRT qualitatively performing reasonably well on 652 

timing and magnitude, and NGAC completely missing these large-scale dust storms. 653 

Unfortunately, the AERONET stations did not report L1.5 data during the peak of these dust 654 

storm events, thus limiting the ability to fully validate the three forecast models. Fortunately, L1 655 

(raw) AERONET data was available for some additional hours during these two events, 656 

indicating peak instantaneous AOD550 values of 7.31 in the UAE dust storm and 4.36 in the 657 

Kuwait dust storm. Visible satellite imagery from MODIS indicates there was likely no cloud 658 

cover obscuring the AERONET stations at these times, which strongly suggests that these raw 659 

data were incorrectly filtered out by the current cloud-screening algorithms applied to process 660 

AERONET data from L1 to L1.5. Additional research should be conducted to attempt to 661 

ameliorate this complex issue of cloud filtering in AERONET observational data. 662 

 Forecasts of dust storms and overall aerosol loading are relevant for several fields, most 663 

notably air quality forecasting, solar energy forecasting, and cloud microphysics. Future 664 

research will seek to further refine and improve AOD550 forecasting for these applications using 665 

high-resolution modeling, such as with the WRF model. 666 

 667 
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