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Abstract

Recently, a new data-driven technique, i.e., deep learning (DL), has attracted significantly increasing attention in the geophysical

community. The collision of DL and traditional methods has brought opportunities as well as challenges. DL was proven to

have the potential to predict complex system states accurately and relieve the “curse of dimensionality” in large temporal and

spatial geophysical applications. We address the basic concepts, state-of-the-art literature, and future trends by reviewing DL

approaches in various geosciences scenarios. Exploration geophysics, earthquakes, and remote sensing are the main focuses. More

applications, including Earth structure, water resources, atmospheric science, and space science, are also reviewed. Additionally,

the difficulties of applying DL in the geophysical community are stressed. The trends of DL in geophysics in recent years are

analyzed. Several promising directions are provided for future research involving DL in geophysics, such as unsupervised

learning, transfer learning, multimodal DL, federated learning, uncertainty estimation, and active learning. A coding tutorial

and a summary of tips for rapidly exploring DL are presented for beginners and interested readers of geophysics.
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Abstract 14 

Recently, a new data-driven technique, i.e., deep learning (DL), has attracted significantly 15 

increasing attention in the geophysical community. The collision of DL and traditional methods 16 

has brought opportunities as well as challenges. DL was proven to have the potential to predict 17 

complex system states accurately and relieve the “curse of dimensionality” in large temporal and 18 

spatial geophysical applications. We address the basic concepts, state-of-the-art literature, and 19 

future trends by reviewing DL approaches in various geosciences scenarios. Exploration 20 

geophysics, earthquakes, and remote sensing are the main focuses. More applications, including 21 

Earth structure, water resources, atmospheric science, and space science, are also reviewed. 22 

Additionally, the difficulties of applying DL in the geophysical community are stressed. The 23 

trends of DL in geophysics in recent years are analyzed. Several promising directions are 24 

provided for future research involving DL in geophysics, such as unsupervised learning, transfer 25 

learning, multimodal DL, federated learning, uncertainty estimation, and active learning. A 26 

coding tutorial and a summary of tips for rapidly exploring DL are presented for beginners and 27 

interested readers of geophysics. 28 

Plain Language Summary 29 

With the rapid development of artificial intelligence (AI), students and researchers in the 30 

geophysical community would like to know what AI can bring to geophysical discoveries. We 31 

present a review of deep learning, a popular AI technique, for geophysical readers to understand 32 

recent advances, open problems, and future trends. This review aims to pave the way for more 33 

geophysical researchers, students, and teachers to understand and use deep learning techniques.  34 

1 Introduction 35 

Geophysics is a discipline that uses physical principles and methods to investigate and 36 

characterize the Earth, from the Earth’s core to the Earth’s surface. Modern geophysics extends 37 

to outer space, from the outer layers of the Earth’s atmosphere to other planets. The general 38 

methods of geophysics consist of data observation, processing, modeling, and prediction. 39 

Observation is an essential means by which humans come to understand unknown geophysical 40 

phenomena. Data observation uses mainly noninvasive techniques such as seismic waves, 41 
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gravity fields, and remote sensing. Processing the recovery of clean data from raw observations 42 

includes denoising, reconstruction, etc. Modeling uses mathematical and physical knowledge to 43 

characterize geophysical phenomena and laws. Predictions provide the unknown based on the 44 

known data and models. Spatial predictions are used to uncover the Earth’s interior, such as in 45 

exploration geophysics, which images the physical properties of the subsurface. Temporal 46 

predictions provide the historical or future states of the Earth, such as in weather forecasting.  47 

With the development of observation equipment, the amount of observed data is 48 

increasing at an impressive speed. Processing, modeling and prediction with such a large amount 49 

of observed data and solving bottlenecks in geophysics are significant problems. Taking 50 

modeling as an example, one of the most challenging tasks in modeling is to characterize the 51 

Earth with a high resolution. However, there is an unfortunate contradiction in traditional 52 

methods that prevents the simultaneous achievement of both a high resolution and a wide range 53 

of data observation due to hardware limitations. Therefore, it is nearly impossible to obtain a 54 

high resolution model of the Earth, either spatially or temporally, since the Earth has an 55 

extremely large spatial and temporal scale. An Earth system numerical simulation facility in 56 

China, called EarthLab, can at most provide a resolution of 25 km for the atmosphere and 10 km 57 

for oceans based on a high-performance computation device with 15 P FLOPs (floating-point 58 

operations per second). Several specific difficult tasks in geophysics are listed in Table 1. 59 

To illustrate the bottlenecks in processing and prediction, we use exploration geophysics 60 

as an example. Exploration geophysics aims to observe Earth's subsurface or other planets with 61 

data collected at the surface, such as seismic fields and gravity fields. The main process of 62 

exploration geophysics includes pre-processing and imaging, where imaging means predict the 63 

subsurface structures. In the geophysical signal pre-processing stage, the simplest assumption 64 

regarding the shape of underground layers is that the reflective seismic records are linear in small 65 

windows (Spitz 1991). Further assumptions include that the data are sparse under certain 66 

transforms (Donoho and Johnstone 1995), such as the curvelet domain (Herrmann and 67 

Hennenfent 2008) or the time-frequency domain (Mousavi and Langston 2016, Mousavi et al. 68 

2016, Mousavi and Langston 2017), and that the data are low-rank after the Hankel transform 69 

(Oropeza and Sacchi 2011), among others. However, the predesigned linear assumption or sparse 70 
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transform assumption is not adaptive to different types of seismic data and may lead to low 71 

denoising or interpolation quality for data with complex structures. In the geophysical imaging 72 

stage, wave equations are fundamental tools to govern the kinematics and dynamics of seismic 73 

wave propagation. Acoustic, elastic, or viscoelastic wave equations introduce an increasing 74 

number of factors into the wave equations, and the generated wave field records can precisely 75 

estimate real scenarios. However, as the wave equation becomes increasingly complex, the 76 

numerical implementation of the equation becomes nontrivial, and the computational cost 77 

increases considerably for large-scale scenarios. 78 

Different from traditional model-driven methods, machine learning (ML) is a type of 79 

data-driven approach that trains a regression or classification model through a complex nonlinear 80 

mapping with adjustable parameters based on a training dataset. The comparison of model-81 

driven and data-driven approaches is summarized in Figure 1. For decades, ML methods have 82 

been widely adopted in various geophysical applications, such as exploration geophysics 83 

(Poulton 2002, Lim 2005, Huang et al. 2006, Helmy et al. 2010, Zhang et al. 2014, Jia and Ma 84 

2017), earthquake localization (Mousavi et al. 2016),  aftershock pattern analysis (DeVries et al. 85 

2018), and Earth system analysis (Reichstein et al. 2019). A review article about ML in solid 86 

Earth geoscience was recently published in Science (Bergen et al. 2019). The topic includes a 87 

variety of ML techniques, from traditional methods, such as logistic regression, support vector 88 

machines, random forests and neural networks, to modern methods, such as deep neural network 89 

and deep generative models. The article stresses that ML will play a key role in accelerating the 90 

understanding of the complex, interacting and multiscale processes of Earth’s behavior.  91 

In the ML community, an artificial neural network (ANN) is one such regression or 92 

classification model that is analogous to the human brain and consists of layers of neurons. An 93 

ANN with more than one layer, i.e., a deep neural network (DNN), is the core of a recently 94 

developed ML method, named deep learning (DL) (LeCun et al. 2015). DL mainly encompasses 95 

supervised and unsupervised approaches depending on whether labels are available or not, 96 

respectively. Supervised approaches train a DNN by matching the input and labels and are 97 

usually used for classification and regression tasks. Unsupervised approaches update the 98 

parameters by building a compact internal representation and then are used for clustering or 99 
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pattern recognition. In addition, DL also contains semi-supervised learning where partial labels 100 

are available and reinforcement learning where a human-designed environment provides 101 

feedback for the DNN. Figure 2 summarizes the relationship from artificial intelligence to DL 102 

and the classification of DL approaches. DL has shown potential in overcoming the limitations 103 

of traditional approaches in various areas. The performance of DL is even superior to the 104 

performance of the human brain in specific tasks, such as image classification (5.1% versus 105 

3.57% with respect to the top-5 classification errors, He et al. 2016) and the game Go.  106 

The geophysical community has shown a great interest in DL in recent years. Figure 3 107 

show the published papers related to artificial intelligence in two major geophysical unions, i.e., 108 

society of exploration geophysics (SEG) and American geophysical union (AGU). A clear 109 

exponential growth is observed in both libraries due to the use of DL techniques. Moreover, DL 110 

has also provided several astonishing results to the geophysical community. For instance, on the 111 

STanford EArthquake Dataset (STEAD), the earthquake detection accuracy is improved to 100% 112 

compared to 91% accuracy of the traditional STA/LTA (short time average over long time 113 

average) method (Mousavi et al. 2019, Mousavi et al. 2020). DL makes characterizing the earth 114 

with high resolution on a large scale possible (Chattopadhyay et al. 2020, Chen et al. 2019, 115 

Zhang et al. 2020). DL can even be used for discovering physical concepts (Iten et al. 2020).  116 

Our review introduces DL-related literature covering a variety of geophysical 117 

applications, from deep to the Earth’s core to distant outer space, and mainly focuses on 118 

exploration geophysics, earthquake science and a geophysical data observation method for 119 

remote sensing. This review intends to first provide a glance at the most recent DL research 120 

related to geophysics, along with an analysis of the changes and challenges DL brings to the 121 

geophysical community, and then discuss the and future trends. Figure 4 gives a glance at the 122 

topics included in this review. In addition, we provide a cookbook for beginners who are 123 

interested in DL, from geophysical students to researchers. 124 

The review part consists of three sections. The second section contains concepts, and we 125 

introduce the basic idea of DL (S2). The third section review DL applications in geophysical 126 
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areas (S3). A discussion of future trends directions (S4) are given as extensions of this review. 127 

S5 summarizes this review. A tutorial section for beginners is given in the appendix. 128 

2 The theory of deep learning 129 

Readers who are already familiar with general theory in DL may skip to Section 3. We 130 

denote scalars by italic letters, vectors by bold lowercase letters and matrices by bold uppercase 131 

letters. In geophysics, a large number of regression or classification tasks can be reduced to, 132 

 y=Lx, (1) 

where x stands for unknown parameters, y stands for observation which we partially know, and 133 

L is a forward or degraded operator in geophysical data observation, such as noise contamination, 134 

subsampling, or physical response. However, L is usually ill-conditioned or not invertible, or 135 

even not known. The inverse of L is mainly approximately achieved by two routines. First, an 136 

optimization objective loss function is established with an additional constraint, such as sparsity 137 

constraint in dictionary learning. Second, given an extensive training set, a mapping between x 138 

and y is established by training, as done in DL, which is especially suitable for situations where 139 

L is not precisely known. 140 

To bring the reader into DL gradually, this paper first introduces another approach, i.e., 141 

dictionary learning (Aharon et al. 2006), since the theoretical frameworks of dictionary learning 142 

and DL are similar. In dictionary learning, an adaptive dictionary is learned as a representation of 143 

the target data. The key features of dictionary learning are single-level decomposition, 144 

unsupervised learning, and linearity. Single-level decomposition means that one dictionary is 145 

used to represent a signal. Unsupervised learning means no labels are provided during dictionary 146 

learning. Besides, only the target data are used without an extensive training set. Linearity 147 

implies that the data decomposition on the dictionary is linear. The above features make the 148 

theory of dictionary learning simple. This review will help readers transfer existing knowledge 149 

on dictionary learning to DL. 150 
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2.1 Dictionary learning 151 

To solve Equation (1), an optimization function E(x;y) with a regularization term R is 152 

constructed: 153 

 E(x;y) = D(Lx,y) + R(x) (2) 

where D is a similarity measurement function. Typically, the L2-norm 
2

Lx y  is used under 154 

the assumption of Gaussian distribution for the error. Tikhonov regularization (R(x)=‖x‖2
2) and 155 

sparsity are two popular regularization terms. In sparsity regularization,  
1

R x Wx , where W 156 

is a sparse transform with several vectorized bases. W is also termed as the dictionary. The goal 157 

of dictionary learning is to train an optimized sparse transform W, which is used for the sparse 158 

representation of x. The objective function of dictionary learning involves learning W via matrix 159 

decomposition with constraints Rw and Rv on the dictionary W and coefficient v, 160 

 E(W,v) = D(WTv,x)+ Rw(W) + Rv(v) (3) 

where W and v are optimized alternatively, i.e., dictionary updating and sparse coding. Here we 161 

introduce two dictionary learning approaches: K-SVD and data-driven tight frame (DDTF). 162 

 K-SVD (where SVD is singular value decomposition) (Aharon et al. 2006) regularizes 163 

the sparsity of v and normalizes the energy of W.  K-SVD uses orthogonal matching pursuit for 164 

sparse coding and several tricks in dictionary updating. First, one component of the dictionary is 165 

updated at a given time, and the remaining terms are fixed. Second, a rank-1 approximation SVD 166 

algorithm is used to obtain the updated dictionary and coefficients simultaneously, thereby 167 

accelerating convergence and reducing computational memory. K-SVD is applied in geophysics 168 

with extensions to improve efficiency (Nazari Siahsar et al. 2017). 169 

Despite the success of K-SVD in signal enhancement and compression, dictionary 170 

updating is still time-consuming regarding high-dimensional and large-scale datasets, such as 3D 171 

prestack data in seismic exploration. K-SVD includes one SVD step to update one dictionary 172 

term. Can the entire dictionary be updated by one SVD for efficient improvement? A data-driven 173 

tight frame (DDTF) (Cai et al. 2014, Liang et al. 2014,) was proposed by enforcing a tight frame 174 

constraint on the dictionary W. The tight frame condition is a slightly weaker condition than 175 
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orthogonality, for which the perfect reconstruction property holds. With the tight frame property, 176 

dictionary updating in DDTF is achieved with one SVD, which is hundreds of times faster than 177 

K-SVD. DDTF has been applied in high dimensional seismic data reconstruction (Yu et al. 2015, 178 

Yu et al. 2016). An example of a learned dictionary with 3D DDTF for a seismic volume is 179 

shown in Figure 5. 180 

2.2 Deep learning 181 

Unlike dictionary learning, DL treats geophysical problems as classification or regression 182 

problems. A DNN F is used to approximate x from y, 183 

 x = F(y; Θ) (4) 

where Θ is the parameter set of the DNN. In classification tasks, x is a one-hot encoded vector 184 

representing the categories. Θ is obtained by building a high-dimension approximation between 185 

two sets  , 1i i N X x  and  , 1i i N Y y , i.e., the labels and inputs. The 186 

approximation is achieved by minimizing the following loss function to obtain an optimized Θ: 187 

  
2

2
1

( ; , ) ;
N

i i

i

E F


 Θ X Y x y Θ

 

(5) 

If F is differentiable, a gradient-based method can be used to optimize Θ. However, a 188 

large Jacobi matrix is involved when calculating E
Θ , making it infeasible for large-scale 189 

datasets. A back-propagation method (Rumelhart et al. 1986) is proposed to compute E
Θ  and 190 

avoid calculating the Jacobi matrix. In unsupervised learning, the label x is not known, such that 191 

additional constraints are required, such as making x identical to y. 192 

The relations of DL and dictionary learning are as follows: the depth of decomposition, 193 

the amount of training data, and the nonlinear operators. Dictionary learning is usually a single-194 

level matrix decomposition problem. A double sparsity (DS) dictionary learning was proposed  195 

to explore deep decomposition (Rubinstein et al. 2010). The motivation of DS is that the learned 196 

dictionary atoms still share several underlying sparse pattern for a generic dictionary. In other 197 

words, the dictionary is represented with a sparse coefficient matrix multiplied by a fixed 198 
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dictionary, as in discrete cosine transform. Inspired by DS dictionary learning, can we propose 199 

triple, quadruple or even centuple dictionary learning? We know cascading linear operators are 200 

equivalent to a single linear operator. Therefore, using more than one fixed dictionary does not 201 

improve the signal representation ability compared to that ability of one fixed dictionary if no 202 

additional constraints are provided. In DL, nonlinear operators are combined in such a deep 203 

structure. An ANN with one hidden layer and nonlinear operators can represent any complex 204 

function with a sufficient number of hidden neurons. To fit ANN with many hidden neurons, we 205 

need an extensive training set, while dictionary learning involves only one target data. To 206 

compare the learned features of dictionary learning in  Figure 5,  the  hierarchical structures of 207 

filters in DL are shown in Figure 6. 208 

The theory of DL can be penetrated from different angles except for dictionary learning 209 

(Figure 7). DL can be treated as an ultra-high dimensional nonlinear mapping from data space to 210 

the feature space or the target space, where the nonlinear mapping is represented by a DNN. 211 

Therefore, DL is basically a high-dimensional nonlinear optimization problem. Recurrent neural 212 

networks (RNNs) are basically a solution of the ordinary differential equation with the Euler 213 

method (Chen et al. 2018). A generative adversarial network (Goodfellow et al. 2014, Creswell 214 

et al. 2018) (GAN) can be interpreted by the theory of optimal transportation, since the targets of 215 

GAN are mainly manifold learning and probability distribution transformation, i.e., 216 

transformation between the given white noise and the data distribution (Lei et al. 2020). RNNs 217 

and GANs are two specific DNNs and will be introduced in the next subsection. 218 

2.3 Deep neural network architectures 219 

The key components of DL are the training set, network architectures and parameter 220 

optimization. The architectures of DNNs vary in different applications; here, we introduce 221 

several commonly used architectures.  222 

A fully connected neural network (FCNN) (Figure 8a) is an ANN composed of fully 223 

connected layers where the inputs of one layer are connected to every unit in the next layer. The 224 

weighted summation of the inputs passes through a nonlinear activation function f in one unit. 225 

The typical f in DL are rectified linear unit (ReLU), sigmoid and tanh functions, as shown in 226 
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Figure 9a. The number of layers in a FCNN has a significant effect on the fitting and 227 

generalization abilities of the model. However, FCNNs were restricted to a few layers due to the 228 

computational capacity of the available hardware, the vanishing and explosion gradient problem 229 

during optimization, etc. With the development of hardware and optimization algorithms, ANNs 230 

tend to become deeper. On the other hand, if a raw dataset is the input directly into the FCNN, 231 

massive parameters are required since each pixel corresponding to one feature, especially for 232 

high dimensional inputs. FCNN requires preselected features as inputs into the neural network 233 

with full reliance on experience and ignores the structure of the input entirely. Automated feature 234 

selection algorithms are proposed (Qi et al. 2020), but require high computational resources. To 235 

reduce the number of parameters in an FCNN and consider local coherency in an image, 236 

convolutional neural networks (CNN) (Figure 8b) were proposed to share network parameters 237 

with convolutional filters. 238 

CNNs have developed rapidly since 2010 for image classification and segmentation, and 239 

several popular CNNs include VGGNet (Simonyan and Zisserman 2015) and AlexNet 240 

(Krizhevsky et al. 2017). CNNs are also used in image denoising (Zhang et al. 2017) and super-241 

resolution tasks (Dong et al. 2014). A CNN uses original data rather than selected features as an 242 

input set and use convolutional filters to restrict the inputs of a neural network to within a local 243 

range. The convolutional filters are shared by different neurons in the same layer. As shown in 244 

Figure 9b, one typical block in CNN consist of one convolutional layer, one nonlinear layer, one 245 

batch normalization and one pooling layer. Convolutional layers and nonlinear layers provide the 246 

basis components of CNN. Batch normalization layers prevent gradient explosion and make 247 

stabilize the training. Pooling layers subsamples the input to extract key features. The simplest 248 

CNNs are named as vanilla CNNs, which are CNNs with simple sequential structures (the same 249 

for vanilla FCNN). Vanilla CNNs are reliable for most applications in geophysics, such as 250 

denoising, interpolation, velocity modeling, and data interpretation, if many training samples and 251 

labels are available.  252 

More DL network architectures have been proposed for specific tasks based on vanilla 253 

FCNNs or CNNs. A deep convolutional autoencoder (CAE, Figure 8c) is a type of CNN 254 

consisting of an encoder and a decoder. The encoder uses convolutional layers and pooling 255 
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layers to extract critical features in a latent space from the inputs, resulting in a contracting path. 256 

The decoder uses deconvolutional layers and unpooling layers to decode the features into the 257 

original data space, resulting in an expanding path. Here deconvolution and unpooling are 258 

transpose operators corresponding to convolution and pooling. In a generalized CAE, the middle 259 

of the network can also have larger dimension than the two ends. If the outputs are the same as 260 

the inputs, a CAE works in an unsupervised way, and the latent features are used for other tasks, 261 

such as clustering. The learned latent features can also be used for dimension reduction in large-262 

scale tasks. If labels are provided as outputs, the network architecture of CAE can also work in a 263 

supervised way. 264 

U-Nets (Ronneberger et al. 2015) (Figure 8d) have U-shaped structures and skip 265 

connections. The skip connections bring low-level features to high levels. U-Net was first 266 

proposed for image segmentation and has been applied in seismic data processing, inversion, and 267 

interpretation. The U-shape structure with a contracting path and expanding path makes every 268 

data point in the output contain all information from the input, such that the approach is suitable 269 

for mapping data in different domains, such as inverting velocity from seismic records. The input 270 

size of the test set must be the same as that in the training set for a trained U-Net. The data need 271 

processed patch-wisely if the size is not identical to the requirement of U-Net. 272 

A GAN (Figure 5e) can be applied in adversarial training with one generator to produce a 273 

fake image or any other type of data and one discriminator to distinguish the produced one from 274 

the real ones. When training the discriminator, the real dataset and generated dataset correspond 275 

to labels one and zero, respectively. Additionally, when the generator is trained, all datasets 276 

correspond to the label one. Such a game will finally allow the generative network to produce 277 

fake images that the discriminative network cannot distinguish from real images. A GAN is used 278 

to generate samples with similar distributions as the training set. The generated samples are used 279 

for simulating realistic scenarios or expanding the training set. An extended GAN, named 280 

CycleGAN, was proposed with two generators and two discriminators for signal processing (Zhu 281 

et al. 2017). In CycleGAN, a two-way mapping is trained for mapping two datasets from one to 282 

the other. The training set of CycleGAN is not necessarily paired as in a vanilla CNN, which 283 

makes it relatively easy to construct training sets in geophysical applications. 284 
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RNNs (Figure 8f) are commonly used for tasks related to sequential data, where the 285 

current state depends on the history of inputs fed into the neural network. Long short-term 286 

memory (LSTM) (Hochreiter and Schmidhuber 1997) is a widely used RNN that considers how 287 

much historical information is forgotten or remembered. LSTM can reduce the vanishing 288 

gradient problem, such that training on longer sequences is possible. Therefore, the inference 289 

accuracy of LSTM increases with the amount of historical information considered. In 290 

geophysical applications, RNNs are mainly used for predicting the next sample of a temporally 291 

or spatially sequenced dataset. RNNs are also used for seismic wavefield or earthquake signal 292 

modeling by simulating the time-dependent discrete partial differential equation. 293 

3 DL geophysical applications 294 

 The most direct method for applying DL in geophysics is transferring geophysical tasks 295 

to computer vision tasks, such as denoising or classification. However, in certain geophysics 296 

applications, the characteristics of geophysical tasks or data are quite different from those of 297 

computer vision. For example, in geophysics, we have large-scale and high-dimensional data but 298 

fewer annotated labels. In this section, we introduce how DL approaches relieve the bottlenecks 299 

of traditional methods, what difficulties we encounter and how to solve them. The development 300 

of DL applications in exploration geophysics is first reviewed, followed by applications in 301 

earthquake science, remote sensing and other areas. 302 

3.1 Exploration geophysics  303 

Exploration geophysics images the Earth’s subsurface by inverting collocated physical 304 

fields at the surface, among which seismic wavefields are the most commonly used. Seismic 305 

exploration uses reflective seismic waves to predict subsurface structures. The main processes of 306 

seismic exploration consist of seismic data sampling and processing (denoising, interpolation, 307 

etc.), inversion (migration, imaging, etc.), and interpretation (fault detection, facies classification, 308 

etc.). Figure 10 summarizes the procedure of exploration geophysics. Figure 11 compares 309 

traditional and DL-based methods in exploration geophysics.  310 
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3.1.1 Seismic data processing 311 

Seismic data are contaminated by different types of noise, such as random noise from the 312 

background, ground rolls that travel along the surface with high energy and mask useful signals, 313 

and multiple that reflected multi-times between the interfaces. One of the long-standing 314 

problems in exploration geophysics is to remove noise and improve the signal-to-noise ratio 315 

(SNR) of signals. Traditional methods use handcrafted filters or regularization for denoising 316 

certain kinds of noise by analyzing the corresponding features (Herrmann and Hennenfent 2008). 317 

However, handcrafted filters fail when the signal and noise share a common feature space. DL 318 

methods avoid feature selection when used for seismic denoising. For example, U-Net-based 319 

DeepDenoiser can separate signals and noise by learning a nonlinear regression (Zhu et al. 2019). 320 

Moreover, with DnCNN (Zhang et al. 2017), a CNN for denoising, the same architecture can be 321 

used for three kinds of seismic noise while achieving a high SNR (Yu et al. 2019) as long as a 322 

corresponding training set is constructed. However, there is still a long way to go. A DNN 323 

trained on synthetic datasets does not have a good generalization ability to field data. To make 324 

the network reusable, transfer learning (Donahue et al. 2014) can be used for field data denoising. 325 

Sometimes the labels of clean data are difficult to obtain, and one solution is to use multiple 326 

trials involving user-generated white noise to simulate real white noise (Wu et al. 2019). 327 

An example of scattered ground-roll attenuation is shown in Figure 12 (Yu et al. 2019). 328 

Scattered ground roll is mainly observed in the desert area, and is caused by the scattering of 329 

ground roll when the near surface is laterally heterogeneous. The scattered ground roll is difficult 330 

to remove because it occupies the same frequency domain as the reflected signals. DnCNN was 331 

used to remove scattered ground roll successfully. 332 

 Due to environmental or economic limitations, seismic geophones are usually located 333 

irregularly or not densely enough under the principle of Nyquist sampling. The reconstruction or 334 

regularization of seismic data to a dense and regular grid is essential to improve inversion 335 

resolution. In the beginning, end-to-end DNNs were proposed for the reconstruction of regularly 336 

missing data (Wang et al. 2019) and randomly missing data (Wang et al. 2020, Mandelli et al. 337 

2018). However, the training sets are numerically synthetic, and do not generalize well to field 338 
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data. We can borrow training data from a natural image dataset to train DnCNN and then embed 339 

it in the traditional project onto a convex set (POCS, Abma and Kabir 2006) framework (Zhang 340 

et al. 2020). The resulting interpolation algorithm generalized well to seismic data. Moreover, no 341 

new networks were required for the interpolation of other datasets. Figure 13 gives the training 342 

set and a simple interpolation result (Zhang et al. 2020). 343 

First arrival picking is used to select the first jumps of useful signals and has been 344 

automated but needs intense human intervention to check pickings with significant static 345 

corrections, weak energy, low signal-to-noise ratios, and dramatic phase changes. DL helps 346 

improve the automation and accuracy of first arrival picking on realistic seismic data. It is natural 347 

to transform first arrival picking into a classification problem by setting the first arrival as ones 348 

and other locations as zeros when DL is used (Hu et al. 2019). However, such a setting can cause 349 

imbalanced labels. An interesting approach treats first arrival picking as an image classification 350 

problem, where anything before the first arrival is set to zero, and all instances after the first 351 

arrival are set to one (Wu et al. 2019). This method works well for noisy situations and field 352 

datasets. After the segmentation image is obtained, a more advanced picking algorithm, such as 353 

an RNN, can be applied to take advantage of the global information (Yuan et al. 2020).  354 

Figure 14 shows the results of the first arrival picking based on U-Net. We used 8000 355 

synthetic seismological samples. A gradient constraint was added to the loss function to enhance 356 

the continuity of the selected positions. For the output, three classifications were set: zeros before 357 

the first arrival, ones after the first arrival, and twos for the first arrival. The training dataset was 358 

contaminated with strong noise and had missing traces. The predicted picking results were close 359 

to the labels.  360 

More DL-based seismic signal processing literature that does not belong to the mentioned 361 

scope is summarized in this paragraph. Signal compression is essential for the storage and 362 

transmission of seismic data. Traditional seismic data are stored in 32 bits per sample. With an 363 

RNN to estimate the relationships among samples in a seismic trace and compress seismic data, 364 

only 16 bits are needed for lossless representations, such that half storage is saved (Payani et al. 365 

2019). Seismic registration aligns seismic images for tasks such as time-lapse studies. However, 366 
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when large shifts and rapid changes exist, this task is extremely difficult. A CNN is trained with 367 

two seismic images as inputs and the shift as output by learning from the concept of optical flow. 368 

The method outperforms traditional methods but is dependent on the training dataset (Dhara and 369 

Bagaini 2020). 370 

3.1.2 Seismic data imaging 371 

 Seismic imaging is a challenging problem since traditional methods such as tomography 372 

and full waveform imaging (FWI) suffer from several bottlenecks. 1. Imaging is time-consuming 373 

due to the curse of dimensionality. 2. Imaging relies heavily on human interactions to select 374 

proper velocities. 3. Nonlinear optimization needs a good initialization or low frequency 375 

information, however there is a lack of low frequency energy in recorded data. DL methods help 376 

relief the bottlenecks from several angles. 377 

First, end-to-end DL-based imaging methods use recorded data as inputs and velocity 378 

models as outputs, which provides a totally different imaging approach. DL methods avoid the 379 

mentioned bottlenecks, providing a next-generation imaging method. The first attempts at DL in 380 

staking (Park and Sacchi 2019), tomography (Araya-Polo et al. 2018) and FWI (Yang and Ma 381 

2019) show promising results on synthetic 2D data. One important issue is that the input is in the 382 

data space and the output is in the model space, both with high dimensional parameters. U-Net is 383 

used to transfer from different spaces with different dimensions, and downsampling is used to 384 

reduce the parameters while training the DNN (Yang and Ma 2019). Figure 15 shows the 385 

velocity inversion results from (Yang and Ma 2019).  386 

However, end-to-end DL imaging also has disadvantages, such as a lack of training 387 

samples and restricted input sizes due to memory limitations. An interesting work used smoothed 388 

natural images as velocity models, thus producing a large number of models to construct the 389 

training set  (Wang and Ma 2020). Figure 16 shows how  (Wang and Ma 2020)  convert a three-390 

channel color image to a velocity model. 391 

To make DL-based imaging applicable to large scale inputs, more works aim to 392 

collaborate with traditional methods and aim to solve one of the mentioned bottlenecks, such as 393 

extrapolating the frequency range of seismic data from high to low frequencies for FWI 394 
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(Ovcharenko et al. 2019, Fang et al. 2020), and adding constraints to FWI (Zhang and Alkhalifah 395 

2019). To mitigate the “curse of dimensionality” problem of global optimization in FWI, CAE is 396 

used to reduce the dimension of FWI by optimizing in the latent space (Gao et al. 2019). Another 397 

work aims at the high computational cost of forward modeling when the high-order finite 398 

difference method is used. A GAN is used to produce a high-quality wavefield from a low-399 

quality wavefield with a lower-order finite difference in the context of surface-related multiples, 400 

ghosts, and dispersion (Siahkoohi et al. 2019). U-Net can be used for velocity picking in stacking 401 

(Figure 17). The inputs are seismological data, and the outputs have values of one where the 402 

picks are located and values of zero elsewhere. 403 

An alternative is to replace the FWI object with an RNN loss function. The structure of 404 

an RNN is similar to that of finite different time evolution, and the network parameters 405 

correspond to the selected velocity model. Therefore, optimizing an RNN is equivalent to 406 

optimizing FWI (Sun et al. 2020). Such a strategy is extended to the simultaneous inversion of 407 

velocity and density (Liu 2020). Figure 18 shows the structure of a modified RNN-based on the 408 

acoustic wave equation used in (Liu 2020). The diagram represents the discretized wave equation 409 

implemented in an RNN with a flow chart. The optimized method in FWI can also be learned by 410 

a DNN rather than with a gradient-descent-based approach (Sun and Alkhalifah 2020).  An ML-411 

descent method is proposed to consider the historical information of the gradient based on an 412 

RNN rather than handcrafted features. 413 

3.1.3 Seismic data interpretation and attributes analysis 414 

Seismic interpretation (faults, layers, dips, etc.) or attribute analysis (impedance, 415 

frequency, facies, etc.) can be used to help the extraction of subsurface geologic information and 416 

locate underground sweet points. However, both tasks are time-consuming since interventions by 417 

experts are required. Preliminary works show that DL has the potential to improve the efficiency 418 

and accuracy in seismic interpretation or attribute analysis. 419 

The localization of faults, layers, and dips in seismic interpretation is similar to object 420 

detection in computer vision. Therefore, DNNs for image detection can be directly applied in 421 

seismic interpretation. However, unlike the computer vision industry, it is difficult to obtain a 422 
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public training set or to manually construct a training set for field datasets. Building realistic 423 

synthetic datasets rather than handcrafted field datasets is more efficient and can produce similar 424 

results. Therefore, synthetic samples are used for training. To build an approximately realistic 3D 425 

training dataset, randomly choosing folding and faulting parameters in a reasonable range is 426 

required (Wu et al. 2020). Then, the dataset is used to train a 3D U-Net for the seismic structural 427 

interpretation of features, such as faults, layers, and dips, in field datasets. If the detected objects 428 

are of a small proportion, a class-balanced binary cross-entropy loss function is used to adjust the 429 

data imbalance so that the network is not trained to predict only zeros (Wu et al. 2019). An 430 

alternative to a synthetic training set is a semi-automated approach that annotates the targets on a 431 

coarse scale and predicts them on a fine scale (Wu et al. 2019). An example of synthetic post-432 

stack image and field data fault analysis is shown in Figure 19 (Wu et al. 2020). 433 

Attribute analysis is similar to image classification, where seismic images are inputs and 434 

areas with labels as different attributes are output. Therefore, DNNs for image classification can 435 

be directly applied in seismic attribute analysis (Das et al. 2019, You et al. 2020, Feng et al. 436 

2020). If the attributes cannot be directly computed from the seismic data, a DNN can work in a 437 

cascaded way (Das and Mukerji 2020). If labels are not available, CAE is used for feature 438 

extraction, and then a clustering method, such as K-means, is used for unsupervised clustering 439 

(Duan et al. 2019, He et al. 2018, Qian et al. 2018). Clustering refers to grouping similar 440 

attributes in an unsupervised manner. For example, we can use clustering to decide whether a 441 

region contains fluvial facies or faults based on stacked sections. CAE and K-means can further 442 

be optimized simultaneously for better feature extraction (Mousavi et al. 2019). To mitigate the 443 

dependence of vanilla CNNs on the amount of labeled seismic data available, a 1D CycleGAN-444 

based algorithm was proposed for impedance inversion (Wang et al. 2019). The CycleGAN did 445 

not require training set pairing. Only two sets with and without high fidelity are needed. To 446 

consider the spatial continuity and similarity of adjacent traces, an RNN is used in facies analysis 447 

(Li et al. 2019). 448 
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3.2 Earthquake science 449 

The goal of earthquake data processing is quite different from that of exploration 450 

geophysics; therefore, this section focuses on DL-based earthquake signal processing. The 451 

preliminary processing of earthquake signals includes classification to distinguish real 452 

earthquakes from noise and arrival picking to identify the arrival times of primary (P) and 453 

secondary (S) waves. Further applications involve earthquake location and Earth tomography. 454 

DL has shown promising results in these applications. 455 

3.2.1 Earthquake and noise classification 456 

 Earthquake signal and noise classification is the most fundamental and difficult task in 457 

earthquake early warning (EEW). Traditional EEW systems surfer from false and missed alerts. 458 

DNN can be directly applied in signal and noise discrimination since it is a classification task. 459 

With a sufficient training set, DNN can achieve up to 99.2% (Li et al. 2018) and 99.5% precision 460 

(Meier et al. 2019) in different regions. To detect small and weak earthquake signals robust to 461 

strong noise and non-earthquake signals, a residual network with convolutional and recurrent 462 

units is developed (Mousavi et al. 2019). RNN and CNN are also used in a more challenging task 463 

to distinguish between anthropogenic sources, such as mining or quarry blasts, and tectonic 464 

seismicity (Linville et al. 2019). More categories of signals are required to identify in specific 465 

tasks, such as in volcano seismic detection. Seismic signals can be used to detect six classes: 466 

long-period events, volcanic tremors, volcano-tectonic events, explosions, hybrid events, and 467 

tornados (Malfante et al. 2018). Uncertainty is also considered in volcano-seismic monitoring 468 

(Bueno et al. 2019). 469 

 We provide an example of using the wavelet scattering transform (WST) (Mallat 2012) 470 

and a support vector machine for earthquake classification with a limited number of training 471 

samples. The WST involves a cascade of wavelet transforms, a module operator, and an 472 

averaging operator, corresponding to convolutional filters, a nonlinear operator, and a pooling 473 

operator in a CNN, respectively. The critical difference between the WST and a CNN is that the 474 

filters are predesigned with the wavelet transform in the WST. In our case, only 100 records 475 

were used for training, and 2000 records were used for testing. We obtained a classification 476 
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accuracy as high as 93% with the WST method. Figure 20 shows the architecture of the WST 477 

algorithm. 478 

3.2.2 Arrival picking 479 

Arrival picking for earthquakes identifies the arrival time of P and S waves. Traditional 480 

automated arrival picking algorithms, such as short-term average/long-term average method 481 

(STA/LTA), are less precise than human experts and rely on thresholding setting. DL-based 482 

arrival picking overcomes these shortcomings and helps illuminate the Earth structure clearly 483 

(Wang et al. 2019). With a sufficiently large training set, one can achieve remarkably high 484 

picking and classification accuracies higher than STA/LTA (Zhao et al. 2019, Zhou et al. 2019), 485 

even close to or better than human experts (Ross et al. 2018, 19.4 million seismograms training 486 

set). If labels are not sufficient, a GAN-based model EarthquakeGen can be used to artificially 487 

expand labeled data sets (Wang et al. 2019). The detection accuracy was greatly improved by 488 

performing artificial sampling for the training set. Simultaneous earthquake detection and phase 489 

picking can further improve the accuracy of both tasks (Zhou et al. 2019, Mousavi et al. 2020).  490 

3.2.3 Earthquake location and other applications 491 

 Earthquake location and magnitudes estimation are important in EEW and subsurface 492 

imaging. Conventional earthquake location significantly relies on a velocity model and suffer 493 

from inaccurate phase picking. CNN is used for earthquake location by using received 494 

waveforms at several stations as input and location map as output (Zhang et al. 2020).  This 495 

method worked well for earthquakes (ML<3.0) with low SNRs, for which traditional methods 496 

fail. The prediction results and errors of earthquake source locations are indicated in Figure 21. 497 

DL also help estimate earthquake locations and magnitudes based on signals from a single 498 

station (Mousavi and Beroza 2020, Mousavi and Beroza 2020). Further applications involving 499 

associating seismic phases, which involves grouping the phase picks on multiple stations 500 

associated with an individual event (Ross et al. 2019) and relationship analysis between a strong 501 

earthquake and postseismic deformation (Yamaga and Mitsui 2019). 502 
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3.3 Remote sensing – a geophysical data observation means 503 

Remote sensing is an important means to collect geophysical data and images by using 504 

sensors in satellites or aerial crafts. Remote sensing imagery mainly includes optical images, 505 

hyperspectral images, and synthetic aperture radar (SAR) images. Large-scale and high-506 

resolution satellite optical color imagery can be used for precision agriculture and urban 507 

planning. To address the issue of objection rotation variations, a rotation-invariant CNN for 508 

object detection in very high-resolution optical remote sensing images was proposed, where a 509 

rotation-invariant layer was introduced by enforcing the training samples before and after 510 

rotation to share the same features (Cheng et al. 2016). If the labels are not accurate, a two-step 511 

training approach was used where first the CNN was initialized by numerous inaccurate 512 

reference data and then refined on a small amount of correctly labeled data   (Maggiori et al. 513 

2017). To further improve the image resolution, the image contours were extracted with an edge-514 

enhancement GAN to remove the artifacts and noise in super resolution (Jiang et al. 2019). 515 

Images obtained by hyperspectral sensors have rich spectral information, such that 516 

different land cover categories can potentially be precisely differentiated. In recent years, 517 

numerous works have explored DL methods for hyperspectral image classification  (Li et al. 518 

2019). To consider the spectral-spatial structure simultaneously, a 3D CNN rather than a 2D one 519 

should be used to extract the effective features of hyperspectral imagery (Chen et al. 2016). The 520 

extracted features are useful for image classification and target detection and open a new window 521 

for future research. An alternative means to explore the relationships among different spectrum 522 

channels is to use RNN, which regards hyperspectral pixels as sequential data input (Mou et al. 523 

2017). 524 

SAR systems artificially enlarge the aperture of radar to produce high-resolution images. 525 

SAR can operate in all-weather and day-and-night conditions. CNN is used for target 526 

classification in SAR images, which avoided handcrafted features and provided higher accuracy 527 

(Chen et al. 2016). To consider both the amplitude and phase information of complex SAR 528 

imagery, a complex-valued CNN for SAR image classification was proposed to process 529 

complex-valued inputs (Zhang et al. 2017).  530 
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3.4 Other AI geophysical applications 531 

We investigate more AI geophysical applications in this section. The topics are roughly 532 

arranged by the order from the Earth to outer space. 533 

3.4.1 The Earth’s structure 534 

Understanding the structure of the Earth is a challenging task since observations are 535 

mainly limited on the earth’s surface. The earth is roughly divided into the surface, crustal layers, 536 

mantle and core and from the surface to inside; however, the detailed structures and properties of 537 

the earth are not clear. An important soil attribute, moisture, is predicted historically with high 538 

fidelity from two recent years of satellite data, showing LSTM’s potential for hindcasting, data 539 

assimilation, and weather forecasting (Fang et al. 2017, Fang et al. 2020). The high-resolution 540 

3D CT data of rocks is required to determine the rock’s property but results in a small field of 541 

view. A CycleGAN was proposed to obtain super resolution images from low resolution one by 542 

training on an unpaired dataset (Niu et al. 2020). Volcanic deformation was detected by using a 543 

CNN to classify interferometric fringes in wrapped interferograms (Anantrasirichai et al. 2018). 544 

The crustal thickness in eastern Tibet and the western Yangtze craton are estimated by Rayleigh 545 

surface wave velocities based on DNN (Cheng et al. 2019). The mantle thermal state of 546 

simplified model planets was predicted based on DL with an accuracy of 99% for both the mean 547 

mantle temperature and the mean surface heat flux compared to the calculated values (Shahnas 548 

and Pysklywec 2020). 549 

3.4.2 Water resources 550 

Water on Earth has a great impact on ecosystems and natural disasters. DL can help 551 

address several major challenges in water sciences (Shen 2018). DL can predict the loop current 552 

in the ocean by learning the pattern in sea surface height (SSH). An LSTM was proposed to 553 

predict SSH and current loop in the Gulf of Mexico within 40 kilometers nine weeks in advance 554 

(Wang et al. 2019). Due to the limit of memory, the region of interest is split into different sub-555 

regions. Further works directly reconstruct SSH on a large and spatial and temporal space based 556 

on sparsely sampled data with CNN (Manucharyan et al. 2021). By using observation from 557 
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satellite and coastal stations simultaneously, GAN can be used to reconstruct the SSH of the 558 

whole North-Sea (Zhang et al. 2020). DL also help estimate the iceberg in the pan-Antarctic 559 

near-coastal zone that covers the whole Antarctic continent for monitoring ice melt and sea level 560 

increasing (Barbat et al. 2019), and coastal inundation for a better understanding of the 561 

geospatial and temporal characteristics of coastal flooding (Liu et al. 2019).  562 

In addition to oceans, water is stored in different forms, such as rivers, lakes, rain, and 563 

snow. DL has found its roles in estimating groundwater storage (Sun et al. 2019), global water 564 

storage in the US (Sun et al. 2020), measuring accurate river widths by super resolution (Ling et 565 

al. 2019), predicting the temperature of lake water (Read et al. 2019), predicting rainfall and 566 

runoff (Akbari Asanjan et al. 2018), and prediction water vapor retrieval from remote sensing 567 

data (Acito et al. 2020).  568 

3.4.3 Atmospheric science 569 

Atmospheric science observes and predicts climate, weather and atmospheric 570 

phenomena. Global observation of global atmospheric parameters is difficult since the earth is 571 

extremely large and sensor locations are limited. Researchers chose a CNN-based inpainting 572 

algorithm to reconstruct missing values in global climate datasets such as HadCRUT4 (Kadow et 573 

al. 2020, Figure 22). Air pollution is damaging both the earth’s environment and human health. 574 

Researchers used DL to estimate ground-level PM2.5 or PM10 levels by using satellite 575 

observations and station measurements (Li et al. 2017, Shen et al. 2018, Tang et al. 2018). DL 576 

also helps improve the accuracy of weather forecasting, which is a long-standing challenge in 577 

atmospheric science (Scher and Messori , Bonavita and Laloyaux 2020). The tracks of typhoons 578 

were predicted with a GAN based on satellite images (Rüttgers et al. 2019). A six-hour-advance 579 

track with an average error of 95.6 km was produced. Flow-dependent typhoon-induced sea 580 

surface temperature cooling was estimated by a DNN and used for improving typhoon 581 

predictions (Jiang et al. 2018).   582 
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3.4.4 Space science 583 

 Global space parameter estimation and prediction are long-standing tasks in space 584 

science. Researchers used a DNN to predict short-term and long-term 3D dynamic electron 585 

densities in the inner magnetosphere (Chu et al. 2017). This network can obtain the 586 

magnetospheric plasma density at any time and for any location. A regularized GAN is used to 587 

reconstruct dynamic total electron content (TEC) maps (Chen et al. 2019). Several existing maps 588 

were used as references to interpolate missing values in some regions, such as the oceans. The 589 

TEC maps can also be predicted two hours in advance with an LSTM (Liu et al. 2020) or one 590 

day in advance with a GAN (Lee et al. 2021). Further, a DNN is used to estimate the relationship 591 

between electron temperature and electron density in small regions (Hu et al. 2020). Therefore, 592 

the global electron density is easily measured and used to predict the global electron temperature. 593 

The geomagnetic storm can be predicted with LSTM with uncertainty estimation (Tasistro‐Hart 594 

et al. 2020), providing confidence in the output. 595 

An aurora is an astronomical phenomenon commonly observed in polar areas. Auroras 596 

are caused by disturbances in the magnetosphere caused by the solar wind. Auroral classification 597 

is important for polar and solar wind research. Researchers used DNN to classify auroral images 598 

(Clausen and Nickisch 2018, Figure 23). The classification results can further be used to produce 599 

an auroral occurrence distribution (Zhong et al. 2020). To handle the situation where limited 600 

images were annotated,  a CycleGAN model was used to extract key local structures from all-sky 601 

auroral images (Yang et al. 2019).   602 

4 Future trends directions for deep learning in geophysics 603 

4.1 The development trends of DL in geophysics 604 

The landmark achievements of DL appeared after 2015, such as VGGNet (Simonyan and 605 

Zisserman 2015), ResNet (He et al. 2016), AlexNet (Krizhevsky et al. 2017) and AlphaGo in 606 

2016. The first attempts to apply DL in subjects related to geophysics focused on remote sensing 607 

in 2016 and 2017 (Chen et al. 2016, Chen et al. 2016, Maggiori et al. 2017, Li et al. 2017), since 608 

remote sensing is a common technique widely used in many areas. In 2018 and 2019, more 609 
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geophysical areas, such as exploration geophysics (Araya-Polo et al. 2018) and earthquake 610 

studies (Mousavi, Zhu et al. 2019), started to employ DL. 611 

The first attempts started with simple FCNN methods followed by complex networks, 612 

such as CNN, RNN, and GAN models. With respect to the training set, early works used end-to-613 

end training borrowed from the computer vision area, which requires a large number of 614 

annotated labels, while recent works have started to consider unsupervised learning (He et al. 615 

2018) and the combination of DL with a physical model (Wu and McMechan 2019, 616 

Chattopadhyay et al. 2020). In 2020, more works are focused on the uncertainty of DL methods 617 

(Grana et al. 2020, Cao et al. 2020, Mousavi and Beroza 2020). More examples are listed in 618 

Table 2. From these trends, we can conclude that an increasing number of researchers are trying 619 

to develop DL methods that are specifically designed for geophysical tasks to make DL methods 620 

more practical. In the next subsection, we introduce these future trends in detail. 621 

4.2 Future directions for deep learning in geophysics 622 

DL, as an efficient artificial intelligence technique, is expected to discover geophysical 623 

concepts and inherit expert knowledge through machine-assisted mathematical algorithms. 624 

Despite the success of DL in some geophysical applications such as earthquake detectors or 625 

pickers, their use as a tool for most practical geophysics is still in its infancy. The main problems 626 

include a shortage of training samples, low signal-to-noise ratios, and strong nonlinearity. 627 

Among these issues, the critical challenge is the lack of training samples in geophysical 628 

applications compared to those in other industries. Several advanced DL methods have been 629 

proposed related to this challenge, such as semi-supervised and unsupervised learning, transfer 630 

learning, multimodal DL, federated learning, and active learning. We suggest that a focused be 631 

placed on the subjects below for future research in the coming decade. 632 

4.2.1 Semi-supervised and unsupervised learning 633 

In practical geophysical applications, obtaining labels for a large dataset is time-634 

consuming and can even be infeasible. Therefore, semi-supervised or unsupervised learning is 635 

required to relieve the dependence on labels. Dunham et al. 2019 focused on the application of 636 
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semi-supervised learning in a situation in which the available labels were scarce. A self-training-637 

based label propagation method was proposed, and it outperformed supervised learning methods 638 

in which unlabeled samples were neglected. Semi-supervised learning takes advantage of both 639 

labeled and unlabeled datasets. The combination of AE and K-means is an efficient unsupervised 640 

learning method (He et al. 2018, Qian et al. 2018). An autoencoder is used to learn low-641 

dimensional latent features in an unsupervised way, and then K-means is used to cluster the 642 

latent features. 643 

4.2.2 Transfer learning 644 

Usually, we must train one DNN for a specific dataset and a specific task. For example, a 645 

DNN may effectively process land data but not marine data, or a DNN may be effective in fault 646 

detection but not in facies classification. Transfer learning (Donahue et al. 2014) is suggested to 647 

increase the reusability of a trained network for different datasets or different tasks. 648 

In transfer learning with different datasets, the optimized parameters for one dataset can 649 

be used as initialization values for learning a new network with another dataset; this process is 650 

called fine-tuning. Fine-tuning is typically much faster and easier than training a network with 651 

randomly initialized weights from scratch. In transfer learning involving different tasks, we 652 

assume that the extracted features should be the same in different tasks. Therefore, the first 653 

layers in a model trained for one task are copied to the new model for another task to reduce the 654 

training time. Another benefit of transfer learning is that with a small number of training samples, 655 

we can promptly transfer the learned features to a new task or a new dataset. Diagrams of these 656 

two transfer learning methods are shown in Figure 24. Further topics in transfer learning include 657 

the relationship between the transferability of features (Yosinski et al. 2014) and the distance 658 

between different tasks and different data sets (Oquab et al. 2014). 659 

4.2.3 Combination of DL and traditional methods 660 

Can we combine traditional and DL approaches to combine geophysical mechanics and 661 

DL? Intuitively, such a combination can produce a more precise result than traditional methods 662 

and a more reliable result than DL methods. 663 
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How can DL be incorporated into traditional methods? In a traditional iteration 664 

optimization algorithm, the thresholding-based denoiser can be replaced by a DL denoiser 665 

(Zhang et al. 2017) such that the reconstructed results are improved. On the other hand, different 666 

tasks use the same denoiser without training a new denoiser. Another technique, DIP, uses a 667 

DNN architecture as a constraint on the data and ensembles traditional physical models for 668 

different tasks (Lempitsky et al. 2018). Similar to the idea of DIP, Wu and McMechan 2019 669 

showed that a DNN generator can be added to an FWI framework. First, a U-Net-based 670 

generator F(v;Θ) with random input v was used to approximate a velocity model m with high 671 

accuracy. Then, m = F(v;Θ) was inserted into the FWI objective function, 672 

 2

FWI 2
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where dr is the seismic record and P is the forward wavefield propagator. The gradient of EFWI 673 

with respect to network parameters Θ is calculated with the chain rule. U-Net is only used for 674 

regularizing the velocity model. After training, one forward propagation of the network will 675 

produce a regularized result. 676 

Traditional optimization methods also benefit from the autodifference mechanism in DL, 677 

which makes optimization more efficient by replacing conjugate gradient descent or LBGFS 678 

with DL optimization methods, such as SGD and Adam (Sun et al. 2020, Wang et al. 2020).  DL 679 

also inspired new directions in the study of traditional nonlinear optimization algorithms, such as 680 

ML-descent (Sun and Alkhalifah 2020) and DL-based adjoint state methods (Xiao et al. ). 681 

How can traditional methods be incorporated into DL? With an additional physical 682 

constraint on DL methods, fewer training samples are required to obtain a more generalized 683 

inference than those of traditional methods. Raissi et al. 2019 proposed a physically informed 684 

neural network (PINN) that combines training data and physical equation constraints for training. 685 

Taking wave modeling as an example, the wavefield was represented with a DNN,686 

 ( , ) , ;u x t F x t Θ , such that the acoustic wave equation was: 687 
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 How can DL and traditional methods cooperate? Another benefit of combining data-688 

driven and model-driven approaches is that we can obtain high-resolution solutions on a large 689 

scale. The process on a large scale was numerically solved with a low-resolution grid based on 690 

physical equations. On a small scale, the process was solved by data-driven DL methods 691 

(Chattopadhyay et al. 2020). Therefore, the high computational demand on a fine scale is 692 

avoided. DL can also be used for discovering physical concepts (Iten et al. 2020). 693 

It is more common to hear someone ask, “Does machine learning have a real role in 694 

hydrological modeling?” rather than, “What role will hydrological science play in the age of 695 

machine learning?” (Nearing et al. 2020). As the authors claim, DL has uncovered the principles 696 

in large-scale rainfall-runoff simulations, which cannot be explained by physical models. DL has 697 

a great impact on traditional methods, causing a collision between new and old ideas. We believe 698 

that DL and physical-based methods will be used together to move science forward for a long 699 

time. 700 

4.2.4 Multimodal deep learning 701 

To improve the resolution of inversion, the joint inversion of data from different sources 702 

has been a popular topic in recent years (Garofalo et al. 2015). One of the advantages of DNNs is 703 

that they can fuse information from multiple inputs. In multimodal DL (Ngiam et al. 2011, 704 

Ramachandram and Taylor 2017), inputs are from different sources, such as seismic data and 705 

gravity data. Collecting data from different sources can help relieve the bottleneck of a limited 706 

number of training samples. Besides, using multimodal datasets can increase the quality and 707 

reliability of DL methods (Zhang et al. 2020). Feng et al. 2020 used data integration to forecast 708 

streamflow where 23 variables were used integrated, such as precipitation, solar radiation, and 709 

temperature. Figure 25 shows an illustration of multimodal DL.  710 

4.2.5 Federated learning 711 

To provide a practical training set in DL for geophysical applications, collecting available 712 

datasets from different institutes or corporations might be a possible solution. However, data 713 

transfer via the internet is time-consuming and expensive for large-scale geophysical datasets. 714 
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Besides, most datasets are protected and cannot be shared. Federated learning was first proposed 715 

by Google (Mcmahan et al. 2017, Li et al. 2020) to train a DNN with user data from millions of 716 

cellphones without privacy or security issues. The encrypted gradients from different clients are 717 

assembled in a central server, thus avoiding data transfer. The server updates the model and 718 

distributes information to all clients (Figure 26). In a simple federated learning setting, the clients 719 

and the server share the same network architecture. We give a possible example of federated 720 

learning in geophysics based on the concept that some corporations do not share the annotations 721 

of first arrivals; however, they can benefit from federated learning by training a DNN together 722 

for first arrival picking. 723 

4.2.6 Uncertainty estimation 724 

One of the remaining questions associated with applying DL in geophysics is related to 725 

whether the results of DL-based model-driven methods with a solid theoretical foundation can be 726 

trusted. DL-based uncertainty analysis methods include Monte Carlo dropout (Gal and 727 

Ghahramani 2016), Markov chain Monte Carlo (MCMC) (de Figueiredo et al. 2019), variational 728 

inference (Subedar et al. 2019), etc. For example, in Monte Carlo dropout, dropout layers are 729 

added to each original layer to simulate a Bernoulli distribution. With multiple realizations of 730 

dropout, the results are collected, and the variance is computed as the uncertainty. DL with 731 

uncertainty estimation in inference is reported in areas such as volcano-seismic monitoring 732 

(Bueno et al. 2019), geomagnetic storm forecasting (Tasistro‐Hart et al. 2020), weather 733 

forecasting (Scher and Messori , Bonavita and Laloyaux 2020), soil moisture predictions (Fang 734 

et al. 2020) and earthquake locations estimation (Mousavi and Beroza 2020). 735 

4.2.7 Active learning 736 

To train a high-precision model using a small amount of labeled data, active learning is 737 

proposed to imitate the self-learning ability of human beings (Yoo and Kweon 2019). An active 738 

learning model selects the most useful data based on a sampling strategy for manual annotation 739 

and adds this data to the training set; then, the updated dataset is used for the next round of 740 

training (Figure 27). One of the sampling strategies is based on the uncertainty principle, i.e., the 741 

samples with high uncertainty are selected. Taking fault detection as an example, if a trained 742 
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network is not sure whether a fault exists at a given location, we can annotate the fault manually 743 

and add the sample to the training set. 744 

5 Summary 745 

DL methods have created both opportunities and challenges in geophysical fields. 746 

Pioneering researchers have provided a basis for DL in geophysics with promising results; more 747 

advanced DL technologies and more practical problems must now be explored. To close this 748 

paper, we summarize a roadmap for applying DL in different geophysical tasks based on a three-749 

level approach. 750 

 Traditional methods are time-consuming and require intensive human labor and 751 

expert knowledge, such as in first-arrival selection and velocity selection in 752 

exploration geophysics. 753 

 Traditional methods have difficulties and bottlenecks. For example, geophysical 754 

inversion requires good initial values and high accuracy modeling and suffers from 755 

local minimization. 756 

 Traditional methods cannot handle some cases, such as multimodal data fusion and 757 

inversion. 758 

With the development of new artificial intelligence models beyond DL and advances in 759 

research into the infinite possibilities of applying DL in geophysics, we can expect intelligent 760 

and automatic discoveries of unknown geophysical principles soon. 761 

6 Appendix: a deep learning tutorial for beginners 762 

6.1 A coding example of a DnCNN 763 

The implementation of DL algorithms in geophysical data processing is quite simple 764 

based on existing frameworks, such as Caffe, Pytorch, Keras, and TensorFlow. Here, we provide 765 

an example of how to use Python and Keras to construct a DnCNN for seismic denoising. The 766 

code requires 12 lines for dataset loading, model construction, training, and testing. The dataset 767 
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is preconstructed and includes a clean subset and a noisy subset; the overall dataset includes 768 

12800 samples with a size of 64 × 64 (available at https://bit.ly/33SyXPO). 769 

1. import h5py   770 

2. from tensorflow.keras.layers import  Input,Conv2D,BatchNormalization,ReLU,Subtract   771 

3. from tensorflow.keras.models import Model   772 

4. ftrain = h5py.File('noise_dataset.h5','r')   773 

5. X, Y = ftrain['/X'][()] , ftrain['/Y'][()]   774 

6. input = Input(shape=(None,None,1))   775 

7. x = Conv2D(64, 3, padding='same',activation='relu')(input)   776 

8. for i in range(15):   777 

9.     x = Conv2D(64, 3, padding='same',use_bias = False)(x)   778 

10.     x = ReLU()(BatchNormalization(axis=3, momentum=0.0,epsilon=0.0001)(x))   779 

11. x = Conv2D(1, 3, padding='same',use_bias = False)(x)   780 

12. model = Model(inputs=input, outputs=Subtract()([input, x]))   781 

13. model.compile(optimizer="rmsprop", loss="mean_squared_error")   782 

14. model.fit(X[:-1000], Y[:-1000], batch_size=32, epochs=50, shuffle=True)   783 

15. Y_ = model.predict(X[-1000:]) 784 

Any appropriate plotting tool can be used for data visualization. The training takes less 785 

than one hour on an NVidia 2080Ti graphics processing unit. The readers can try this code in 786 

their own areas as long as a training set is compatibly constructed. 787 

6.2 Tips for beginners 788 

We introduce several practical tips for beginners who want to explore DL in geophysics 789 

from the perspective of the three most critical steps in DL: data generation, network construction 790 

and training. Though exploration geophysics is used as example, the tips for data generation and 791 

network training are generally applicable to most areas. Network construction generally depends 792 

on the task. 793 

6.2.1 Data generation 794 

As noted by Poulton 2002, “training a feed-forward neural network is approximately 10% 795 

of the effort involved in an application; deciding on the input and output data coding and creating 796 

good training and testing sets is 90% of the work”. In DL, we advise that the percentages of the 797 



manuscript submitted to Reviews of Geophysics 

 31 

effort for network construction and dataset preparation should be approximately 40% and 60%. 798 

First, most DL approaches use an original data set as the input, thus reducing coding decision 799 

efforts. Second, a wider variety of network architectures and parameters can be used in DL 800 

compared to those in traditional neural networks. Overall, constructing a proper training set plays 801 

a more prominent role in DL. 802 

Synthetic datasets can be used effectively in DL, which is advantageous since labeled real 803 

datasets are sometimes difficult to obtain. First, to assess the applicability of DL in a specific 804 

geophysical application, using synthetic datasets is the most convenient method. Second, if a 805 

satisfactory result is obtained with synthetic datasets, a few annotated real datasets can be used 806 

for transfer learning via parameter tuning. Third, if the synthetic datasets are sufficiently 807 

complicated, i.e., if the most important factors are considered when generating the datasets, the 808 

trained network may be able to process realistic datasets directly (Wu et al. 2020 and Wu et al. 809 

2019). 810 

A synthetic training set should be diverse. First, we suggest using an existing synthetic 811 

dataset with an open license, instead of generating a dataset. For specific tasks, such as FWI, a 812 

dataset may need to be generated based on a wave equation. Second, data augmentation methods, 813 

such as rotation, reflection, scaling, translation, and adding noise, missing traces, or faults to 814 

clean datasets, can be used to expand the training set. The goal is to generate extremely large 815 

synthetic datasets that are as close to realistic datasets as possible. 816 

To generate realistic datasets, we suggest using existing methods to generate labels that 817 

should then be checked by a human. For example, in first-arrival picking, an automatic picking 818 

algorithm is used to preprocess the datasets, and the results are then provided to an expert who 819 

identifies the outliers. We also suggest using active learning (Yoo and Kweon 2019) to provide a 820 

semiautomated labeling procedure. First, all datasets with machine annotation are used to train a 821 

DNN, and the samples with high predicted uncertainty are required to be manually annotated.   822 

6.2.2 Network construction for different tasks 823 

Beginners are suggested to use a DnCNN or U-Net for testing. DnCNNs are available for 824 

most tasks in which the input and output share the same domain, such as denoising, interpolation, 825 
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and attribute analysis. The input size of a DnCNN can vary since there are no pooling layers 826 

involved. However, each output data point is determined by a local field from the input rather 827 

than from the entire input set. Additionally, U-Net contains pooling layers, and all input points 828 

are used to determine an output point. U-Nets are available for tasks even when the inputs and 829 

outputs are in different domains, such as in FWI. However, the input size of U-Net is fixed once 830 

trained and the data need processed patch-wisely. 831 

Combining a CAE and K-means is suggested for unsupervised clustering tasks, such as 832 

attribute classification. We do not suggest CycleGAN for geophysical tasks since the training 833 

process is extremely time-consuming and the results are not stable. An RNN provides a high-834 

performance framework for time-dependent tasks, such as forward wave modeling and FWI. 835 

RNNs are also used for regression and classification tasks involving temporal or spatial 836 

sequential datasets, such as in the denoising of a single trace. 837 

To adjust the hyperparameters of a DNN and optimization algorithms, we suggest using 838 

an autoML toolbox, such as Autokeras, instead of manually adjusting the values. The basic 839 

objective is to search for the best parameter combination within a given sampling range. Such a 840 

search is exceptionally time-consuming, and a random search strategy may accelerate the tuning 841 

process. Moreover, for most applications, the default architecture gives reasonable results. 842 

6.2.3 Training, validation, and testing 843 

The available dataset should be split into three subsets: one training set, one validation set, 844 

and one test set to optimize the network parameters. The proportions of the subsets depend on 845 

the overall size of a dataset. For datasets with 10K-50K samples, the proportions are suggested to 846 

be 60%, 20%, and 20%, respectively. For larger datasets (for instance, those larger than 1M), 847 

much smaller portions are often used for validation and test (approximately 1% to 5%) since the 848 

alternative can result in using unnecessarily large test/validation sets and wasting the data that 849 

can be used for training and building a better model. In a classification task, we suggest using 850 

one-hot coding in training. The validation set is used to test the network during training. Then, 851 

the model with the best validation accuracy is selected rather than the final trained model. If the 852 

validation accuracy does not improve or decrease after some saturation during training, an early 853 
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stopping strategy is suggested to avoid overfitting. Network hyperparameters should be tuned 854 

according to the validation accuracy. The validation set is used to guide training, and the test set 855 

is used to test the model based on unseen datasets; however, this set should not be used for 856 

hyperparameter tuning. 857 

Two commonly seen issues during training are as follows: the validation loss is less than 858 

the training loss, and the loss is not a number. Intuitively, the training loss should be less than the 859 

validation loss since the model is trained with a training dataset. Several potential reasons for this 860 

issue are as follows: 1. regularization occurs during training but is ignored during validation, 861 

such as in the dropout layer; 2. the training loss is obtained by averaging the loss of each batch 862 

during an iteration, and the validation loss is obtained based on the loss after one iteration; and 3. 863 

the validation set may be less complicated than the training set, especially when only the training 864 

set has been augmented. The potential reasons for NaN loss are as follows: 1. the learning rate is 865 

too high; 2. in an RNN, one should clip the gradient to avoid gradient explosion and 3. zero is 866 

used as a divisor, negative values are used in logarithm, or an exponent is assigned too large of a 867 

value. 868 

Glossary 869 

AE: Autoencoder; an ANN with the same inputs and outputs. 870 

AI: Artificial Intelligence; Machines are taught to think like humans. 871 

ANN: Artificial neural network; a computing system inspired by biological neural networks 872 

that constitute animal brains. 873 

Aurora: A natural light display in the earth's sky; disturbances in the magnetosphere caused 874 

by the solar wind. 875 

BNN: Bayesian neural network; the network parameters are random variables instead of 876 

regular variables. 877 

CAE: Convolutional autoencoder; an AE with shared weights. 878 

CNN: Convolutional neural network; a DNN with shared weights. 879 

DDTF: Data-driven tight frame; A dictionary learning method using a tight frame constraint 880 

for the dictionary. 881 
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Deblending: In seismic exploration, several explosion sources are shot very close in time to 882 

improve efficiency. Then, the seismic waves from different sources are blended. The 883 

recorded dataset first needs to be deblended before further processing. 884 

Dictionary: A set of vectors used to represent signals as a linear combination. 885 

DIP: Deep image prior; the architecture of a DNN is used as a prior constraint for an image. 886 

DL: Deep learning; a machine learning technology based on a deep neural network. 887 

DnCNN: Denoised convolutional neural network. 888 

DNN: Deep neural network; an ANN with many layers between the input and output layers. 889 

DS: Double sparsity; the data are represented with a sparse coefficient matrix multiplied by 890 

an adaptive dictionary. The adaptive dictionary is represented by a sparse coefficient matrix 891 

multiplied by a fixed dictionary. 892 

Event: In exploration geophysics, a seismic event means reflected waves with the same 893 

phase. In seismology, an event means a happened earthquake. 894 

Facies: A seismic facies unit is a mapped, three-dimensional seismic unit composed of 895 

groups of reflections whose parameters differ from adjacent facies units. 896 

Fault: a discontinuity in a volume of rock across which there has been significant 897 

displacement as a result of rock-mass movement. 898 

FCN: Fully convolutional network; an FCN is a network that contains no fully connected 899 

layers. Fully connected layers do not share weights. 900 

FCNN: Fully connected neural network; an FCNN is a network composed of fully connected 901 

layers.  902 

FWI: Full waveform inversion; full waveform information is used to obtain subsurface 903 

parameters. FWI is achieved based on the wave equation and inversion theory. 904 

GAN: Generative adversarial network; GANs are used to generate fake images. A GAN 905 

contains a generative network and a discriminative network. The generative network tries to 906 

produce a nearly real image. The discriminative network tries to distinguish whether the 907 

input image is real or generated. Therefore, such a game will eventually allow the generative 908 

network to produce fake images that the discriminative network cannot distinguish from real 909 

images. 910 

Graphics processing unit (GPU): A parallel computing device. GPUs are widely used for 911 

training neural works in deep learning. 912 

HadCRUT4: Temperature records from Hadley Centre (sea surface temperature) and the 913 

Climatic Research Unit (land surface air temperature). 914 
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K-means: A classical clustering algorithm, where K is the number of clusters. 915 

K-SVD: A dictionary learning method using SVD for dictionary updating. 916 

LSTM: long short-term memory; LSTM considers how much historical information is 917 

forgotten or remembered with adaptive switches. 918 

Magnetosphere: Range of the magnetic field surrounding an astronomical object where 919 

charged particles are affected. 920 

ML: Earthquake local magnitude; a method for measuring earthquake scale. 921 

Patch: In dictionary learning, an image is divided into many patches (blocks) that are the 922 

same size as the atoms in a dictionary. 923 

PINN: Physical informed neural network; A physical equation is used to constrain the neural 924 

network. 925 

PM: Particulate matter. PM10 are coarse particles with a diameter of 10 micrometers or less; 926 

PM2.5 are fine particles with a diameter of 2.5 micrometers or less. 927 

ResNet: Residual neural network; ResNets contain skip connections to jump over several 928 

layers. The output of a residual block is the residual between the input and the direct output. 929 

RNN: Recurrent neural network; in time-sequenced data processing applications, RNNs use 930 

the output of a network as the input of the subsequent process to consider the historical 931 

context. 932 

SAR: Synthetic aperture radar; the motion of a radar antenna over a target is treated as an 933 

antenna with a large aperture. The larger the aperture is, the higher the image resolution will 934 

be. 935 

Solar wind: A stream of charged particles released from the upper atmosphere of the Sun. 936 

Sparse coding: Input data are represented in the form of a linear combination of a dictionary 937 

where the coefficients are sparse. 938 

Sparsity: The number of nonzero values in a vector. 939 

SVD: Singular value decomposition; a matrix factorization method. A=USV, where U and V 940 

are two orthogonal matrices, S is a diagonal matrix whose elements are the singular values of 941 

A. SVD is used for dimension reduction by removing the smaller singular values. SVD is 942 

also used for recommendation systems and natural language processing. 943 

Tight frame: A frame provides a redundant, stable way of representing a signal, similar to 944 

dictionary. A tight frame is a frame with the perfect reconstruction property; i.e., WTW=I. 945 

Tomography: Inversion of the subsurface velocity based on travel time information. 946 
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U-Net: U-shaped network; U-Nets have U-shaped structures and skip connections. The skip 947 

connections bring low-level features to high levels. 948 

Wave equation: A partial differential equation that controls wave propagation. 949 

WST: Wavelet scattering transform; a transform involves a cascade of wavelet transforms, a 950 

module operator, and an averaging operator. 951 
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Tables 

Table 1 Examples of data-driven tasks in Geophysics 

  
 

  1318 



manuscript submitted to Reviews of Geophysics 

 45 

Table 2 Examples of literature that use different network architectures for tasks beyond end-to-end training. Here 1319 

optimization oriented means using DNNs to optimize the traditional model-driven objective functions. 1320 

 
CNN CAE U-Net GAN RNN 

Supervised  

(End-to-end) 

Yu et al. 2019 

Dhara and 

Bagaini 2020 

Wang et al. 

2020 

Yang and Ma 

2019 
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2019 
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Linville et al. 

2019 

Semi/ 

unsupervised  

Mousavi et al. 

2019 

Duan et al. 

2019 

 
Niu et al. 2020 

 

Optimization 
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Sun et al. 2020 

Wang et al. 
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Physical 
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Uncertainty 

estimation 

Mousavi and 
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et al. 2020 

Grana et al. 
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Figure 1 An illustration of model-driven and data-driven methods. On the left are the research topics in geophysics 

ranging from the Earth’s core to the outer space. One the right is the observation means used at present. In the 

middle are examples of model-driven and data-driven methods. In model-driven methods, the principles of 

geophysical phenomena are induced from a large amount of observed data based on physical causality, then the 

models are used to deduct the geophysical phenomena in the future or in the past. In data-driven methods, the 

computer first inducts a regression or classification model without considering physical causality. Then, this model 

will perform tasks such as classification on incoming datasets. 
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Figure 2 The containment relationship among artificial intelligence, machine learning, neural network and deep 

learning, and the classification of deep learning approaches. 
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(a) 

 

(b) 

Figure 3 (a) and (b) are statics of AI-related papers in SEG Library and AGU Library. In (a), Geophysics means the 

flagship journal of SEG. SEG Expanded Abstracts means the Expanded Abstracts from SEG annual meeting. SEG 

Library papers mean the papers founded in the SEG digital library. In (b), the first three captions in the legend are 

the names of top journals in AGU. The fourth caption in the legend represents the papers founded in the AGU 

digital library.  
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(a) 

 

(b) 

Figure 4 The topics included in this review. (a) DL-based geophysical applications. (b) The future trends of 

applying DL in geophysics.  
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Figure 5. An illustration of dictionary learning: data-driven tight frame. The dictionary is initialized with a spline 

framelet. After training based on a post-stack seismic dataset, the trained dictionary exhibits apparent structures. 
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(a) 

 

(b) 

Figure 6. The learned features in deep learning. (a) Training samples. (b) In each layer, nine of the learned filters are 

shown. A great number of hierarchical structures are observed in different layers. Layer 1 exhibits edge structures, 

layer 2 shows small structures of seismic events, and layer 3 shows small portions of seismic sections.  The filters in 

layer 2 and 3 are blank near edges, which may be caused by the boundary effect of the convolutional filter. Layer 4 

gives larger seismic portions, which are approximations to the training data. The filters in layer 4 look more similar 

to each other than training datasets because DNN tries to learn the similar and hierarchical patterns which compose 

the data. 
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Figure 7. Understanding DL from different perspectives. Optimization: DL is basically a nonlinear optimization 

problem which solves for the optimized parameters to minimize the loss function of the outputs and labels. 

Dictionary learning: The filter training in DL is similar to that in dictionary learning. High dimensional mapping: 

DNN in DL is basically a high-dimensional mapping from the input to the labels. Optimal transport: a generative 

adversarial network can be interpreted by the theory of optimal transportation, which involves transformation 

between the given white noise and the data distribution. Manifold learning: The representation of training samples in 

the latent space of a DNN is similar to that learning a low dimensional manifold which contains all the data samples. 

Ordinary differential equation: a recurrent neural networks is basically a solution of an ordinary differential equation 

with the Euler method.  
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(a) FCNN (b) Vanilla CNN (c) CAE 

 

 

  

(d) U-Net (e) GAN (f) RNN 

Figure 8. Sketches of DNNs. The blue lines indicate inputs, and the orange lines indicate outputs. The length of 

the blue and orange lines represents the data dimension. The green lines indicate intermedia connections. (a) In 

FCNN, the inputs of one layer are connected to every unit in the next layer. f stands for a nonlinear activation 

function. In (b)-(f), we omit the details of the layers and maintain the shape of each network architecture.  (b) 

Vanilla CNN is cascaded by convolutional layers, pooling layers, nonlinear layer, and etc. In CNN, the outputs 

of the convolutional layers are either the same or smaller than the input depending on the strides used for 

convolution. Pooling layers will reduce the size of the extracted features. In regression or classification tasks, 

the output usually has the same dimension or a smaller dimension than the input (where (b) shows the latter 

situation). The difference between regression and classification is that the outputs are continuous variables in 

regression tasks and discrete variables representing categories in classification tasks. The dimension of the 

latent feature space in the CAE may be either larger or smaller than that of the data space, where (c) shows the 

latter. (d) Skip connections in U-Net are used to bring the low-level features to a high level. (e) In a GAN, low-

dimensional random vectors are used to generate a sample from the generator, and then the sample is classified 

as true or false by the discriminator. (f) In an RNN, the output or hidden state of the network is used as input in 

a cycle.  
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(a)  (b)  

Figure 9. Details in DNN architectures. (a) Activation functions in the nonlinear layer. ReLU is commonly used 

since its gradient is easily computed and can avoid gradient vanishing. (b) A typical block in CNN. The 

convolutional layer and ReLU layer (nonlinear layer) are the basic components of one CNN block. The batch 

normalization layer can avoid gradient explosion. The pooling layer can extract features by subsampling the input.  
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Figure 10. The procedure of exploration geophysics. (a) The subsurface structures. The seismic 

wave is excited at sources (red point) and propagates downward to the reflector and then propagates 

upwards until recorded by the receivers (blue points). (b) The seismic records are after processing. 

(c) The seismic imaging result, where the lines stand for the reflectors. (d) Underground properties 

are interpreted to determine where the reservoir locates. 
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(a) Traditional exploration geophysics methods 

 

(b) DL-based exploration geophysics methods 

Figure 11. Comparison of traditional and DL-based methods in exploration geophysics. (a) In random denoising 

tasks, the curvelet denoising method (Herrmann and Hennenfent 2008) assumes that the signal is sparse under 

curvelet transform, and a matching method is used for denoising. In velocity inversion tasks, full-waveform 

inversion based on the wave equation is used for forward and adjoint modeling in the optimization algorithm. In 

fault interpretation tasks, faults are picked by interpreters. (b) The mentioned tasks are treated as regression 

problems that are optimized with neural networks. Different tasks may require different neural network 

architectures. 
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Figure 12. Deep learning for scattered ground-roll attenuation. On the left is the original noisy 

dataset. On the right is the denoised dataset. The scattered ground roll marked by the green arrows is 

removed. 
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(a) (b) (c) 

Figure 13. The training set and seismic interpolation result (Zhang et al. 2020). (a) A subset of the natural image 

dataset. The natural image dataset was used to train a network for seismic data interpolation. (b) An under-sampled 

seismic record. (c) The interpolated record corresponding to (b). The regions 1.6-1.88 s and 1.0-1.375 km are 

enlarged at the top-right corner.  
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Figure 14. Phase picking based on U-Net. The inputs are seismological data. The outputs are zeros above the 

first arrival in the green area, ones below the first arrival in the yellow area, and twos for the first arrival on the 

blue line. The green line indicates the predicted first arrival. This experiment was performed based on the 

modified code from https://github.com/DaloroAT/first_break_picking. 
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Figure 15. Predicting the velocity model with U-Net from raw seismological data (Yang and Ma 

2019). The columns indicate different velocity models. From top to bottom are the ground truth 

velocity models, generated seismic records from one shot, and the predicted velocity models.  
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Figure 16. Converting a three-channel color image into a velocity model (Wang and Ma 2020). (a)-

(c) are original color image, grayscale image, and corresponding velocity model. (d) is the seismic 

record generated from a cross-well geometry on (c). 
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Figure 17. Velocity picking based on U-Net. The inputs are seismological data on the left. The 

outputs are the picking positions on the right. GT means ground truth. PD_REG and PD_CLS 

represent the velocity predictions of the regression network and classification network, respectively. 
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Figure 18. Modified RNN based on the acoustic wave equation for wave modeling (Liu 2020). The 

diagram represents the discretized wave equation implemented in an RNN. The auto-differential 

mechanics of a DNN help to efficiently optimize the velocity and density. 
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Figure 19. (a) A post-stack dataset. (b) Fault prediction result of (a). (c) A synthetic dataset (Wu et al. 

2020). 
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Figure 20. (a) The architecture of WST. Unlike in a CNN, the outputs of WST are combined with the 

outputs of each layer. Then, the outputs of WST serve as features for a classifier.  

 

  



manuscript submitted to Reviews of Geophysics 

 66 

  

 

Figure 21. Locating earthquake sources with deep learning. The black triangles are stations. Left: the 

blue dots are the actual locations. Right: the red circles are the predicted locations. The radius of a 

circle represents the predicted epicenter error (Zhang et al. 2020). 
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Figure 22 AI models reconstruct temperature anomalies with many missing values (Kadow et al. 2020). 
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Figure 23 The bottom panel shows a keogram from auroral data collected on 21 January 2006 at Rankin Inlet. The 

keogram consists of a single column from the auroral images at different times. The middle panel shows the 

probabilities for the six categories as predicted by the ridge classifier trained with the entire training dataset. At the 

top are auroral images at different times. (Clausen and Nickisch 2018) 
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(a) Datasets transfer learning (b) Tasks transfer learning 

Figure 24. Diagrams of transfer learning. (a) Transfer learning between different datasets. The 

parameters of one trained model can be moved to another model as initialization conditions. (b) 

Transfer learning between different tasks. The first layers of one trained model can be copied to 

another model. 
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Figure 25. An illustration of multimodal deep learning 
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Figure 26. Federated learning. The clients train the DNN with local datasets and uploads the model gradient to the 

server. The server aggregates the gradients and updates the global model. Then, the updated model is distributed to 

all the local clients. Many rounds of training are performed until the model meets a certain accuracy requirement. 
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Figure 27. An illustration of active learning. We choose samples with high uncertainty and manually annotate them 

to serve as training samples.  
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