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Abstract

Based on previous applications of laser altimetry to planetary geodesy at GSFC, we use the recently developed PyXover software

package to analyze altimetric crossovers from the Mercury Laser Altimeter (MLA). Using PyXover, we place new constraints

on Mercury’s geodetic parameters via least-squares minimization of crossover discrepancies. We simultaneously solve for orbital

corrections for each MLA ground track, for the geodetic parameters of the IAU-recommended orientation model for Mercury

(pole right-ascension and declination coordinates, prime meridian rotation rate and librations), and for the Mercury’s Love

number h2. We calibrate the formal errors of our solution based on closed-loop simulations and on the level of robustness

against a priori values, data selection, and parametrization. Our solution of the Mercury’s rotational parameters is consistent

with published values. In particular, our new estimate for the orientation of the pole places Mercury in a Cassini state, with

an obliquity = 2.031 ± 0.03 arcmin compatible with previous “surface” related measurements. Moreover, we provide a first

data-based estimate of the Love number h2 = 1.55 +- 0.65. The latter is consistent with expectations from models of Mercury’s

interior, although its precision does not enable their refinement.
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Key Points:10

• We provide an independent solution for Mercury’s orientation parameters based11

on the analysis of the Mercury Laser Altimeter crossovers.12

• Our solution places Mercury in a Cassini state with an obliquity ε = 2.03±0.03,13

larger than the recent gravity-based estimate.14

• We provide a first constraint on Mercury’s tidal Love number h2 to be in the range15

from 0.9 to 2.2.16
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Abstract17

Based on previous applications of laser altimetry to planetary geodesy at GSFC, we use18

the recently developed PyXover software package to analyze altimetric crossovers from19

the Mercury Laser Altimeter (MLA). Using PyXover, we place new constraints on Mer-20

cury’s geodetic parameters via least-squares minimization of crossover discrepancies. We21

simultaneously solve for orbital corrections for each MLA ground track, for the geode-22

tic parameters of the IAU-recommended orientation model for Mercury (pole right-ascension23

and declination coordinates, prime meridian rotation rate and librations), and for the24

Mercury’s Love number h2. We calibrate the formal errors of our solution based on closed-25

loop simulations and on the level of robustness against a priori values, data selection,26

and parametrization. Our solution of the Mercury’s rotational parameters is consistent27

with published values. In particular, our new estimate for the orientation of the pole places28

Mercury in a Cassini state, with an obliquity ε = 2.031±0.03 arcmin compatible with29

previous “surface” related measurements. Moreover, we provide a first data-based es-30

timate of the Love number h2 = 1.55±0.65. The latter is consistent with expectations31

from models of Mercury’s interior, although its precision does not enable their refine-32

ment.33

Plain Language Summary34

Measuring the orientation of bodies in space is one of the few means we have to35

learn about their internal structure. We analyze Mercury’s orientation from distance mea-36

surements between the planet’s surface and the MESSENGER probe, acquired with laser37

pulses from orbit around Mercury between 2011 and 2015. In particular, we use obser-38

vations of the same surface locations at different times, called crossovers. Any difference39

in the measured elevation at these crossover points results either from an error in MES-40

SENGER’s estimated position in space or from an error in the assumed orientation of41

Mercury. Based on these differences, we make corrections to both MESSENGER’s tra-42

jectory and to the pole position, rotation rate and oscillations of Mercury. Tides raised43

on Mercury by the Sun are also expected to periodically vary the surface elevation by44

more than 2 meters. Since these tidal effects are also expressed as elevation differences45

at the crossovers, our analysis provides a first measurement of their amplitude. Our up-46

dates to Mercury’s orientation and tidal response bring important information about its47

internal structure, such as the size of its core and its internal level of differentiation.48
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1 Introduction49

Mercury is one of the most interesting objects in the Solar System, still challeng-50

ing our understanding of planetary formation and evolution with its high density, un-51

expected magnetic field, and the 3 : 2 resonance between its rotational and orbital pe-52

riods.53

After the early flybys by Mariner 10 in the 1970s, the MESSENGER spacecraft (MErcury54

Surface, Space ENvironment, GEochemistry, and Ranging; Solomon et al., 2008) exe-55

cuted three equatorial flybys of Mercury in 2008−2009 before entering a highly ellip-56

tical, near-polar orbit from March 2011 to April 2015. Mercury’s orientation and rota-57

tion have been studied by a variety of techniques, as they have implications for the mo-58

ment of inertia of the outer solid shell and thus its mass distribution, internal structure,59

and thermal evolution of Mercury (e.g., Margot et al., 2012; Phillips et al., 2018; Gen-60

ova et al., 2019). Already before MESSENGER, Margot (2009) used ground-based radar61

observations to develop early orientation models. Several independent confirmations and62

refinements of Mercury’s rotational parameters followed, based on a variety of techniques63

using multiple MESSENGER datasets. In particular, Mazarico et al. (2014), Verma and64

Margot (2016), Genova et al. (2019), and Konopliv et al. (2020) all analyzed the radio65

tracking data of the MESSENGER spacecraft, with different approaches; Stark et al. (2015)66

co-registered altimetry from the Mercury Laser Altimeter (MLA, Cavanaugh et al., 2007)67

and shape models derived from the Mercury Dual Imaging System (MDIS) camera im-68

ages. Solutions for most rotational parameters agree within provided error bars (with69

a wide range of magnitudes), yet significant differences are present between recent es-70

timates of both the orientation of the pole and Mercury’s spin rate.71

While several orbit determination (OD) based studies have provided estimates of72

Mercury’s tidal Love number k2 (Mazarico et al., 2014; Verma & Margot, 2016; Genova73

et al., 2019), no data-based solution for the vertical Love number h2 has been produced74

to date, mainly because of the small expected signal (a maximum vertical deformation75

of < 2.5 meters at the equator and 50 cm at the poles for h2 = 1), because of the poor76

knowledge of small scale topography required to use direct altimetry analysis (Thor et77

al., 2020), and because of MESSENGER’s orbital configuration, which strongly limits78

the density of altimetry crossovers at latitudes < 30◦N .79
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MLA collected measurements of surface height during ∼ 3, 200 periapsis passes over80

Mercury’s northern hemisphere. Where two MLA groundtracks intersect, we get a so-81

called crossover point. A crossover is thus a differential measurement between two dis-82

tinct observations of the same surface location at two different times. Any difference in83

height at the crossover point, referred to as its discrepancy v, is thus mainly due to the84

following effects: (1) errors in the spacecraft orbit and attitude, or small variations (due85

to thermal deformations or other environmental conditions) to MLA fixed boresight ori-86

entation, (2) interpolation errors of the surface topography between MLA footprints, and87

(3) geophysical signal, e.g., due to mismodeled time-varying planetary rotation or to tidal88

vertical motions. Although crossovers require a complex processing pipeline, they are89

a powerful tool to explore the state of planetary bodies (Rowlands et al., 1999; Rosat90

et al., 2008; Mazarico et al., 2014) and provide an opportunity to measure Mercury’s ori-91

entation and rotation. In our study, we provide an independent solution based on the92

application of this technique to MLA crossovers with the in-house PyXover code (Bertone93

et al., 2020), that we recently developed for this analysis. The resulting discrepancies94

v constitute the observation residuals to be minimized in the least-squares (LS) proce-95

dure, involving the simultaneous adjustments of MESSENGER orbit corrections and Mer-96

cury’s geodetic parameters. Within an iterative procedure, we solve for four of the ori-97

entation parameters of the model recommended by the International Astronomical Union (IAU,98

Archinal et al., 2018), i.e., right ascension (RA) and declination (DEC) of the spin pole99

at J2000, spin rate (ω), and a scale factor for the librations amplitude (L) of Mercury,100

as well as for the degree-2 tidal radial response h2.101

This paper is structured as follows. In section 2, we present our reference dataset102

and the auxiliary data used for this study. Details about the data weighting and solu-103

tion strategy are provided in section 3. Finally, our solution and error calibration for Mer-104

cury’s orientation and tidal parameters based on MLA crossover analysis are presented105

in section 4 and discussed in section 5. Throughout the text, we use small bold letters106

to denote vector quantities, and capital bold letters for matrices.107

2 Data description, modeling and parametrization108

The MESSENGER spacecraft orbited Mercury between 2011 and 2015 in a highly-109

elliptical, near-polar orbit with a periapsis of ∼ 200−400 km, an apoapsis between ∼110

15000− 20000 km, and an orbital period of 12 hrs initially and reduced to 8 hrs after111
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Figure 1. North-polar stereographic map of MLA crossovers sensitivity to several rotational

and tidal Mercury’s parameters. Bottom-right: pre-fit crossovers discrepancies v on Mercury

surface.

one year. The spacecraft was within ranging distance for the onboard MLA instrument112

over 15-45 min periods near periapsis, typically at Northern latitudes. MLA collected113

over 22 million measurements of surface height with a vertical precision of ∼ 1 m and114

an accuracy of ∼ 10 m (Zuber et al., 2012).115

Because of the elliptical orbit, the laser spot diameter on the surface varies between116

∼ 10−100 m. The inter-spot distance is then ∼ 350−450 m, so that the average dis-117

tance between each crossover and its bracketing spots is usually ∼ 200 m (Zuber et al.,118

2012). The total MLA dataset contains ∼ 3, 200 tracks and ∼ 3 million crossovers, ge-119

ographically distributed as shown in Fig. 1 (bottom-right). These crossovers represent120

repeated measurements of the same surface locations, such that any difference between121

the elevation measured along the two profiles results from an error either in the orbit and122

attitude reconstruction, or in the a priori knowledge of the planetary rotation and tidal123

response. Fig. 1 shows the partial derivatives of MLA crossovers, and hence their sen-124

sitivity to the parameters of interest as a function of their geographical location on the125

surface of Mercury.126

–5–



manuscript submitted to JGR: Planets

From the MLA dataset available on the NASA Planetary Data System, we extract127

the laser pulse emission time in Barycentric Dynamical Time (TDB, Soffel et al., 2003)128

and the Time of Flight (TOF) of the signal, along with the channel associated with each129

measurement. Data with a “channel” value > 4 include an elevated level of noise and130

are thus excluded from our analysis. If multiple data points within the nominal 10 Hz131

sampling rate are available, we only include the one with the lowest channel value, i.e.,132

the most reliable.133

Our processing, detailed in section 3, also requires a reference orbit and attitude134

for the spacecraft carrying the altimeter. We mostly refer to the MESSENGER orbits135

reconstructed by KinetX based on radio tracking by the Deep Space Network (DSN) an-136

tennas and on the spacecraft attitude provided by on-board star-trackers. Both are avail-137

able as NAIF/Spice (Acton et al., 2018) kernels on the NASA PDS, where the teleme-138

tered attitude has already been corrected for aberration effects. We process these ker-139

nels via the SpiceyPy wrapper for Python (Annex et al., 2020). In section 4.4, we also140

perform our analysis on MESSENGER orbits based on the Genova et al. (2019) process-141

ing baseline, in order to quantify the independence of our solution from a priori orbits142

and to a more robust estimate.143

We model the resulting crossover discrepancies v as a function of errors in the a pri-144

ori orbit, as well as of deviations from the IAU rotational model (Archinal et al., 2018)145

and as mismodeling of tidal deformations. These constitute our estimated parameters146

vector q. Orbital parameters include corrections to the a priori orbit which can be mod-147

eled as a constant offset estimated once for each track in every direction of the orbital148

frame: along-track A, cross-track C, and radial R. In addition, attitude (roll and pitch)149

biases and time-dependent corrections (e.g., linear or quadratic) could be estimated for150

each track within PyXover, but we do not want to over-parametrize our solution. Ad-151

ditional geodetic parameters characterize the tidal deformation of Mercury and its ori-152

entation in space, and enter the geolocation of the MLA groundtracks via the transfor-153

mation from the inertial frame (in which the MESSENGER orbits are provided) to the154

Mercury-fixed frame (where MLA groundtracks need to be rotated to form crossovers).155

Following the IAU formalism (Archinal et al., 2018), we parameterize the orientation of156

Mercury by the right ascension (RA or α) and declination (DEC or δ) of Mercury’s pole157

at J2000 (their secular trends are fixed to their nominal IAU values). The planetary prime158

meridian (PM) direction is also modeled as a quadratic function of time (since J2000).159

–6–



manuscript submitted to JGR: Planets

In the following, we indicate by ω and estimate exclusively the linear term of this series,160

i.e., the spin rate. On top of this, we consider the longitudinal libration (L), i.e. the sum161

of all the terms at different periods from Margot (2009). We then estimate corrections162

to the pole orientation at J2000, to Mercury’s spin rate, and a scaling factor (1+
dL

L
)163

for Mercury’s librations.164

To model the solid tidal displacement ur at Mercury surface, we use a solid tide165

model based on the degree 2 potential terms exerted by the Sun (e.g., Van Hoolst & Ja-166

cobs, 2003), so that167

ur(r, t) = −h2V2(r, t)

g
, (1)168

where h2 is the Love number of degree 2, g is the gravitational acceleration at the sur-169

face, and170

V2(r, t) = −GM
2

r2

R3
(3 cos2 ψ − 1) (2)171

is the tidal potential caused by the Sun at a point on Mercury surface with coordinates172

r, with G the universal gravity constant, M the mass of the Sun, R the distance between173

the centers of mass of the Sun and Mercury, and ψ the angle between the Mercury-centric174

directions of the Sun and of the point considered.175

3 Processing and solution strategy176

We perform the analysis of MLA crossovers within the recently developed PyX-177

over python package (Bertone et al., 2020), whose modular structure is sketched in Fig. 2.178

The crossover analysis can be divided into three main steps. First, laser altimetry179

ranges are geolocated to the planetary surface (i.e., we assign a set of latitude, longitude180

and elevation in the planet frame to each MLA shot) and partial derivatives of the ground-181

tracks are computed with the chosen set of parameters q by finite differencing. Initial182

geolocation is based on a set of reference orbit solutions for MESSENGER (see section 4)183

and on a priori knowledge of Mercury’s orientation (e.g., Archinal et al., 2018). Tidal184

deformations are modeled according to Van Hoolst and Jacobs (2003) with the a priori185

value for h2 set to 0.186

Second, intersections between the tracks are identified and characterized. The hor-187

izontal coordinates (x̄0, ȳ0) of the crossover points are first computed in a local North188

polar stereographic projection, to provide an approximate location of all possible inter-189

sections. For computational reasons, the tracks are sub-sampled to a ratio of 1 : 4, that190

–7–
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is, looking for intersections between straight lines connecting MLA measurements ∼ 1200191

meters from each other. This (time consuming) step is performed only once to locate the192

horizontal coordinates of potential crossovers. Subsequent iterations only refine crossover193

coordinates based on results from previous iterations. Short track segments constituted194

of the (fully sampled) 4 MLA observations involved in a potential crossover are thus an-195

alyzed. We reproject the coordinates of each subtrack around the preliminary crossover196

coordinates and fine-tune them. To finally compute the elevation discrepancy197

v = ηA − ηB , (3)198

for all confirmed crossovers, we interpolate MLA-derived elevations along each track A199

and B using cubic splines to determine elevations ηA and ηB at the refined crossover co-200

ordinates (x0, y0). The discrepancies vector v constitutes the residuals to be minimized201

in the LS optimization process. Moreover, we associate each measurement v with a weight202

according to its reliability, following criteria detailed in section 3.2.203

The corrections δq resulting from the LS inversion detailed in section 3.3 are then204

applied to parameters values from previous iteration qi, so that qi+1 = qi + δq. Up-205

dated orbits and geodetic parameters constitute the basis for the following iteration, in-206

cluding a new geolocation of the MLA data, the fine determination of new crossovers tri-207

dimensional coordinates and of a new residual vector v and of the associated partial deriva-208

tives. We set the following criteria for convergence: first, when the Root Mean Square209

Error (RMSE) of residuals stabilizes within 5%, we fix the weighting of observations to210

the latest evaluation and we start estimating h2, which is initially held fixed to 0 because211

of its correlation with orbital errors; then, we further iterate with fixed observation weights212

until the relative improvement of residuals RMSE falls below 1% and corrections for global213

parameters are lower than their formal errors at 3σ. This usually happens within < 10214

iterations. The choice of different convergence criteria would impact the rate of conver-215

gence rather than the final solution.216

3.1 Computation of the crossover partial derivatives217

From Eq. (3), we obtain the partial derivatives of each discrepancy v at intersec-218

tion of tracks A and B with respect to a parameter q belonging to q as219

dv

dq
=

dηA
dq
− dηB

dq
. (4)

–8–
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Figure 2. Workflow of the PyXover code: geolocation of altimetry data, crossovers location

and setup of observation equations, QR-filter solution for a chosen set of parameters, with given

weights and constraints.

By expanding Eq. (3), we also obtain220

v(ηA, ηB) = v [ηA(λA, φA, q), ηB(λB , φB , q)] , (5)221

with λX the longitude, φX the co-latitude, and ηX the elevation of a measurement from222

track X, while q is the vector of the solved-for orbital and geodetic parameters, so that223

dη

dq
=
∂η

∂λ

∂λ

∂q
+
∂η

∂φ

∂φ

∂q
+
∂η

∂q
. (6)224

During the geolocation phase, we compute the partial derivatives
∂λ

∂q
,
∂φ

∂q
, and

∂η

∂q
nu-225

merically, by finite differencing of the ground location of individual MLA shots. Deriva-226

tives with respect to h2 are an exception. Indeed, based on Eq. (1), and considering that227

η(r, t) = η0(r)+ur(r, t), the analytical expression of
∂η

∂h2
is straightforward. We also228

obtain updated epochs for the intersection of the laser pulses with the surface for tracks229

perturbed with respect to each parameter, in order to compute the accurate planetary230

state at bounce. We get “perturbed groundtracks” (λ, φ)q by linear extrapolation as231

(λ, φ)q = (λ, φ)0 ± (
∂λ

∂q
,
∂φ

∂q
)∆q (7)232

from the nominal groundtrack (λ, φ)0 using an appropriate increment ∆q. Based on these233

perturbed tracks, we locate perturbed crossover coordinates and further correct the el-234

evation by
∂η

∂q
. For each track X, we finally compute Eq. (6) numerically by235

dηX
dq

=
ηX(q+)− ηX(q−)

2∆q
, (8)236
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where ± indicate the elevation at crossover points of “positively and negatively” perturbed237

tracks. We are then able to fully compute Eq. (4) and thus populate the partials (or first238

design) matrix A.239

3.2 Data weighting240

The quality of the crossovers included in the analysis can affect the estimation of241

our results. Instead of removing poor pseudo-measurements, we associate a weight to242

each crossover based on several factors determining its reliability: belonging to a “well243

behaved” MLA track, being close to neighboring MLA measurements, belonging to close-244

to-nadir measurements, and not having an unreasonably large a priori discrepancy. This245

helps the stability of the LS solution by maintaining a uniform dataset among iterations.246

First, we evaluate the quality of OD for each MLA track involved in our analysis.247

For each of the Nτ = 3200 tracks, we analyze the residuals of all Nw(iτ ) crossovers re-248

sulting from intersections of track iτ with the remaining tracks over the whole MESSEN-249

GER mission. The average bias of the resulting time series (preemptively screened for250

large outliers) enable the evaluation of the quality of each track. Fig. 3 shows examples251

of a “good” track (left), where the rather noisy residuals are centered around 0, and of252

a “bad” track (right), where residuals are globally biased. The resulting error στ asso-253

ciated to each track is then propagated to a full covariance matrix at the crossover level,254

by setting255

Σwτ = AτΣτA
T
τ , (9)256

where Στ is a (Nτ ×Nτ ) covariance matrix containing στ for each track on the main257

diagonal and zeros elsewhere, while Aτ is the (Nw×Nτ ) transfer matrix between tracks258

and crossovers, where for each observation column j, Aτ j = ±1 if the track τj inter-259

venes in the crossover, else Aτ j = 0. We obtain the related weight matrix by taking260

the element-wise inverse of Σwτ . The resulting weight matrix is clearly non diagonal.261

This procedure identifies and down-weights crossovers carrying erroneous information262

from one of the parent tracks. As shown in Fig. 3 (right), an unreliable track also includes263

crossovers with v ∼ 0, which could degrade the solution if included in the analysis by264

a less sophisticated screening.265

The second main source of error in v is the interpolation noise. The use of altime-266

try crossovers considerably reduces the reliance of our analysis on the Digital Terrain Model267

–10–
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Figure 3. Examples of good (a) and bad (b) tracks (RMSE in meters vs. time in seconds

along the track, red dashed lines at ± RMSE). Using this criterion, also crossovers with v ∼ 0

from (b) will be significantly down-weighted.

(DTM) quality. Still, because of the finite MLA sampling of 10 Hz and the high orbital268

velocity of the spacecraft around periapsis (∼ 4.3 km/s), chances that the crossover lo-269

cation coincides with an altimetric measurement are low. Because of the limited knowl-270

edge of Mercury topography at baselines relevant for our analysis (i.e., from the 20 me-271

ters laser footprint to the 400 meters of average separation, see Zuber et al., 2012), we272

use a cubic spline to interpolate elevation profiles from the bracketing track points to the273

crossover location. This operation introduces an additional error σwι, which in princi-274

ple depends on both the separation and the terrain roughness (i.e., the interpolation er-275

ror will be lower on a smooth plain than in a rough area). In this study, however, we use276

an average terrain roughness of 100 m/km2 based on Kreslavsky et al. (2014), as detailed277

roughness maps are not available at latitudes < 65◦ N. For each crossover, we compute278

the average of the minimal separation of each profile and use it as reference baseline for279

the observation. We extrapolate the regional roughness at this baseline using the spec-280

tral power of Mercury’s surface as derived from the stereo DTM data provided by Steinbrügge281

et al. (2018). We consider this roughness at separation as an indicator of the relative in-282

terpolation error σwι between crossovers, and the associated weight matrix to have a value283

of 1/σwι on the main diagonal.284

On top of this, Huber weighting (defined as wt = (k̄/k)q if k > k̄, wt = 1 oth-285

erwise) is then applied to each crossover according to its off-nadir angle (k̄ = 2◦, q =286

1), while crossovers with abnormally large residuals (v > 50 meters, q = 1) are strongly287

down-weighted.288
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All weight components are then multiplied for each crossover observation to get the289

final weight matrix W to be associated with residuals v and partial derivatives in A used290

in computing the LS solution.291

3.3 Solution strategy292

Given the partial derivatives in A, we estimate corrections δq to the parameter vec-293

tor q by minimizing the RMSE of the measurement residuals vector v so that294

δq =
(
ATWA+ P

)−1 [
ATWv − P (q − q0)

]
, (10)295

where values for all quantities have to be intended at iteration i, except for q0 indicat-296

ing the a priori value of the estimated parameters.297

Weak constraints P are applied, mainly to contain the impact of correlations be-298

tween orbit and geodetic parameters. We use ridge regression (Tikhonov et al., 1998)299

to penalize statistically large variations for orbit parameters and deviations of the av-300

erage orbital corrections in each direction (from an expectation of 0). This helps improve301

correlations between, e.g., an offset in the determination of the spin and a solid rotation302

of all (quasi-)polar MESSENGER orbits in the cross-track direction. We use Variance303

Component Estimation (VCE, Kusche, 2003) to determine the optimal weights between304

observations and constraints and to both stabilize the solution and get more realistic er-305

ror estimates. Following Lemoine et al. (2013), we define the VCE determined weight306

λV CE ≡ σ−2
V CE by307

σ2
V CE = σ2

0

[
(v −Aδq)TW(v −Aδq)

N − Tr(ATWAN−1)

]
. (11)308

for observations and309

σ2
V CE = σ2

0

[
qTPq

N − Tr(PN−1)

]
. (12)310

for constraints, and with the constrained normal matrix N = ATWA + P. In partic-311

ular, we compute two separate weights for parameter constraints and for constraints act-312

ing on average values of orbit corrections, so that313

P = Λq̄Pq̄ + ΛqPq , (13)314

where Λ is a diagonal matrix having as elements315

Λ = λV CEλ , (14)316
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λ is a vector the size of q, manually set to constrain parameters with respect to each other317

(based on the reliability of prior knowledge and on preliminary simulations), Pq is a di-318

agonal square matrix with the size of the total number of parameters and values 0 or 1,319

depending on the corresponding parameter in the solution vector p, and320

Pq̄ = (I− 11T

N
) , (15)321

with I the identity and 1 the unary matrix, respectively. This procedure stabilizes our322

solution, by providing an optimal balance between amplitude of the solution vector δq323

and the minimization of the residuals vector v.324

By introducing the Cholesky square root of P on both sides of the observation equa-325

tions, we finally set-up the Square Root Information Filter (SRIF, Bierman, 1977) so-326

lution algorithm, as depicted in Fig. 2. Given the size of the A matrix (i.e., up to 3×327

106 observations/rows per ∼ 8000 parameters/columns) and its low density, we use sparse328

algebra operations provided by the SciPy library (Virtanen et al., 2020) to efficiently per-329

form the required matrix manipulations.330

4 Iterative solution and error assessment331

We perform an iterative weighted LS solution of orbit corrections and geodetic pa-332

rameters based on the processing setup presented in section 3. We base our solution on333

a set of 106 crossovers selected according to their computed weight (i.e., their quality)334

and to their balanced geographical distribution. The quality threshold is thus higher above335

60◦N latitude, while at low latitudes only the worst 20% of the crossovers are excluded,336

given the latter are more sensitive to parameters of interest. We show in Fig. 4 the dis-337

tribution of the weights as a function of discrepancies v and of the separation to the brack-338

eting points.339

We use KinetX-recovered MESSENGER orbits and the IAU orientation models (Archinal340

et al., 2018) recommended for Mercury as a priori. Following the procedure sketched in341

section 3, we estimate corrections for orbit and geodetic parameters until convergence342

is reached (see Fig. 5). Typical orbital corrections are in the order of 50− 100 meters343

for “per-track” biases in along- and cross-track directions and 20 meters in the radial di-344

rection, as shown in Fig. 6.345
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Figure 4. Log-log representation of the weights assigned to each crossover point as function of

its discrepancy. The color scale shows the average minimal separation between the crossover and

the neighboring observations. Huber weighting ensures a sharp cutoff for crossovers with v > 100

meters. One can see that small values of v do not ensure a high weight. Also, most observations

with high separation show large residuals and low weights.

Figure 5. Convergence of residuals RMSE and geodetic parameter corrections for a refer-

ence iterated solution. The y-scales indicate, for each iteration, the parameter improvements in

units of the associated formal errors (red, 3σ) and, bottom-right, the percentage RMSE change

(blue-red dashed lines at 5% − 1%, respectively)
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Figure 6. Orbit corrections at convergence, parametrized as biases in MESSENGER orbital

frame (radial, along-, and cross-track) estimated for each MLA track (i.e., once per orbit). Larger

corrections in the along- and cross-track indicate a lower sensitivity of both radio-science and

crossovers to these components. A few larger outliers up to several hundred meters have been

removed to enhance visualisation.
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Figure 7. Pre- (FWMH=35 meters) and post-fit (FWMH=24 meters) assessment of discrep-

ancies residuals (left) and improvement in the distribution of tracks quality, evaluated by the

average bias of their crossovers (right)

In order to assess the quality of the obtained solution, we check several factors. As346

shown in Fig. 7, the distribution and RMSE of post-fit crossover discrepancies signifi-347

cantly improves, as expected. Also, we check that individual MESSENGER tracks ben-348

efit from our estimated corrections, by comparing pre- and post-fit distributions. Our349

iterated solution results in significant improvements on the base of all the above crite-350

ria.351

Formal errors resulting from LS and VCE notoriously neglect systematic errors in-352

tervening in the solution. In sections 4.1 to 4.4 we thus analyze several possible sources353

of systematic errors, i.e., the a priori chosen for MESSENGER trajectory and the Mer-354

cury’s rotational state, data selection and other intrinsic biases in our crossover analy-355

sis (which we evaluate by processing a simulated MLA dataset). The resulting error bud-356

get is summarized in Table 1, while our final solution including calibrated error bars is357

shown in Fig. 11. Correlations between these parameters are < 0.3 when using the whole358

MLA crossovers dataset, while only ∼ 3% of all orbit parameters have correlations >359

0.9, mainly between along-track and radial corrections estimated for the same track.360

4.1 Influence of a priori MESSENGER orbit and rotational parameters361

We compute solutions based on different Doppler orbit reconstructions (KinetX and362

Genova et al., 2018) and from both IAU (Archinal et al., 2018) and Genova et al. (2019)363

values for Mercury’s rotational parameters. We analyze the 4 possible combinations and364
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Parameter solution formal systematic a priori subset intrinsic

RA (◦) 281.0093 5.4× 10−5 5.8 ×10−4 5.3× 10−4 5.× 10−5 1.5× 10−5

DEC (◦) 61.4153 2.8× 10−5 4.6× 10−4 3.8× 10−4 8.5× 10−5 7× 10−6

ω (◦/d) 6.138510 1.5× 10−7 2.7× 10−6 2.7× 10−6 4.× 10−8 8.× 10−8

L (as) 39.03 0.2 0.9 0.7 0.15 0.04

h2 1.55 0.3 0.35 0.2 0.08 0.1

Table 1. Summary of solutions, statistical and systematic sources of error for our crossovers

analysis. Least-squares provided formal errors are scaled by a factor 3 to provide a more robust

range of parameter values, while the “systematic” column is the sum of: influence of a priori

values, data selection, and other intrinsic biases in our analysis.

compare parameter solutions at convergence in Fig. 8. Clustering is visible for most so-365

lutions. The solution shown in Table 1 and in Fig. 11 is the weighted average of these366

solutions according to their respective formal errors. We use the statistical dispersion367

of these solutions to evaluate the systematic error introduced by the choice of a priori368

values and to update formal error bars, as summarized in column “a priori” of Table 1.369

Orbits derived from Genova et al. (2019) show a lower consistency with MLA crossovers370

than KinetX orbits, possibly due to the chosen minimal parametrization with empiri-371

cal terms. Hence, we first estimate a priori offsets for the spacecraft positions to get a372

refined a priori geolocated track for the iterative crossover analysis. In particular, we use373

the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) numerical optimization374

method (Jorge Nocedal, 2006) to minimize differences of MLA measured elevations to375

Mercury’s DTM, which reduces crossover residuals to a level close to the one obtained376

from KinetX orbits.377

4.2 Influence of data sampling378

To analyze the impact of data sampling on our solution, we construct 10 different379

random subsets of 5×105 crossovers out of the full MLA dataset (after removing 10%380

of data with the lowest quality). We choose a stratified resampling without replacement,381

in order to retain the latitudinal distribution of the original dataset. Common data among382
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Figure 8. Comparison of our solutions for [RA, DEC, ω, L, h2], based on a set of 106

crossovers, and using the same parametrization and data selection criteria, but on different com-

binations of MESSENGER orbit reconstructions (KinetX and Genova et al., 2018) and rotational

parameters, i.e., IAU, Archinal et al. (2018) and Genova et al. (2019), as a priori values (green

and red triangles). The dispersion of the converged solutions (colored dots) is used to evaluate

the systematic error introduced by the choice of a priori.
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any pair of subsets do not exceed 20%. We compute a fully iterated solution for each sub-383

set and measure their dispersion.384

The dispersion of most solutions falls well within the formal error bars provided385

by the LS (the dispersion of L and h2 are comparable with formal error bars), and we386

conclude that our solution is robust with respect to an arbitrary selection of MLA mea-387

surements and resulting crossovers. Statistical results of this analysis are summarized388

in column “subset” of Table 1.389

4.3 Influence of orbit constraints390

As discussed in Section 3.3, we apply VCE to identify optimal relative weights for391

data (i.e., crossovers discrepancies) and parameter constraints. We get λV CEq̄ = 10 and392

λV CEq = 1 relative to the unweighted data. By choice, constraints are only acting on393

orbital ACR corrections (full value and average over the whole mission), while geode-394

tic parameters are freely estimated.395

We found that constraint λV CEq̄ , acting on the global average of estimated ACR396

corrections (which is expected to be close to 0 as the a priori dynamic solution is known397

to be unbiased on the whole), is the main factor to consider and explored the impact of398

a wide range of values. Fig. 9 shows the variation of the global 3-dimensional mean (green)399

and RMS (red) of orbital corrections over the whole mission, as a function of λV CEq̄ and400

of the crossovers RMSE. As expected, the crossover fits (x-axis) degrade with tighter con-401

straints. Different mean values correspond to a global shift of ACR corrections, rather402

than to isolated outliers (as verified with median values and visual inspection). We use403

this representation to perform an L-curve analysis (Hansen, 1999) based on the (green)404

means vs crossovers RMSE curve, and get a weight λV CEq̄ = 5, close to the one sug-405

gested by VCE. The total RMS of corrections (red) shows the orbit variations allowed406

by our current parametrization and weighting, consistently with Fig. 6.407

Concerning our solution for Mercury’s orientation and tidal parameters, we only408

found a significant impact on the estimate of h2, while estimates for other parameters409

are stable within their error bars. Fig. 9 (bottom) illustrates the range of possible h2 es-410

timates for a set of (IAU, KinetX)-based solutions only differing by λV CEq̄ . We highlight411

in grey the range of “optimal estimates” favored by VCE and L-curve analysis. The av-412

erage value of this range, together with formal and systematic errors shown in Table 1,413
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Figure 9. Influence of the relative weighting of data and constraints on estimated orbit cor-

rections (top) and tidal parameter h2 (bottom). Each point corresponds to the solution of a

subset of 500, 000 crossover discrepancies with different constraint applied on the averages of

ACR orbit corrections computed over the whole mission. Resulting averages of 3D corrections

(green) are used to validate the VCE-based weighting via an L-curve analysis; the resulting total

RMS (red) of corrections is also shown for reference. Relative constraints favored by VCE and

L-curve (grey area indicating 5 < λV CE
q̄ < 10) also define a range of favored h2 values.
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result in a best estimate of h2 = 1.55± 0.65. Solutions based on Genova et al. (2019)414

a priori orbits generally require a stronger orbit regularization to converge on consistent415

results.416

4.4 Validation on simulated data417

To fully characterize the behavior of the solutions, and in order to choose an ap-418

propriate parametrization and weighting scheme, we conduct extensive simulations with419

time-of-flight ranges consistently generated from a realistic topography.420

To model small scale Mercury topography, we compute a fractal noise map com-421

posed by 5 superposed levels: the main noise level has an amplitude of 30 meters on a422

600 meters baseline, while for each of the following ones the amplitude is divided by
√

2423

and the baseline is halved, consistently with the structure function of Mercury topog-424

raphy estimated by, e.g. Susorney et al. (2017) and Steinbrügge et al. (2018). Instead425

of a map for the full surface, we generate a limited size “stamp” (Mazarico et al., 2015)426

of 0.25◦×0.25◦ with a periodic pattern in both latitude and longitude, such as the one427

shown in Fig. 10. For each set of coordinates on Mercury surface, we define the local el-428

evation as the sum of MLA derived topography and of the simulated small-scale noise.429

We simulate the full MLA dataset and repeat the selection procedure outlined in430

section 4 to select the “best” 106 crossovers. We first check the impact of the interpo-431

lation error on crossovers residuals and on the recovery of the geodetic parameters, by432

considering a perfect knowledge of MESSENGER trajectory and Mercury’s orientation433

and tides. We show the distribution of the resulting discrepancies (FWMH < 10 me-434

ters) in Fig. 10, while estimated parameter corrections (expected to be 0) have ampli-435

tudes of 10−5 deg for RA, 10−6 deg for DEC, 5.×10−9 deg/day for ω, 10−3 arcsec for436

L, and 0.075 for h2.437

Then, we analyze a more realistic situation, where both the orbits and the geode-438

tic parameters are perturbed. To simulate a realistic mismodeling occurring in the pro-439

cessing of real data, we degrade our a priori knowledge by applying both a bias and lin-440

ear drift in ACR and a bias to pointing parameters, but only estimate a set of ACR bi-441

ases per each track. Perturbations have been set to an RMSE of 50 meters (+40 meters/day)442

in AC and 20 meters (+10 meters/day) in R, 0.5 arcsec for the pointing, 5 arcsec for right-443

ascension and declination of the pole, 3 as/y for the spin rate, and 1.5 arcsec for libra-444
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Figure 10. Left: Simulated small-scale topography of Mercury surface. Right: Crossover

discrepancies histogram (meters) of perturbed simulation setup (blue) and “zero-test” (only

including interpolation noise, red).

tions, according to the value of current uncertitudes (Archinal et al., 2018). Orbit and445

pointing perturbations are randomly chosen for each track, according to the selected RMSE.446

An histogram of discrepancies for each experiment is shown in Fig. 10: pre-fit discrep-447

ancies of the perturbed solution are comparable with the ones of real MLA data. We re-448

port in Table 1 (column “intrinsic”) the parameter residuals at convergence, i.e. the dif-449

ference between the applied perturbations and the solution. We consider these as intrin-450

sic errors from the processing pipeline (e.g., interpolation noise, numerical errors, and451

imperfections in our modeling and parametrization), also contributing to the systematic452

errors budget of our analysis.453

5 Discussion454

Our solution for the Mercury’s rotational parameters, based on the full MLA dataset455

and an average of solutions with different a priori orbits and values (see section 4.1), is456

shown in Fig. 11 along with previous solutions provided by other groups using various457

techniques (camera and altimetry, Doppler, Earth-based radar). Our updated values and458

calibrated error bars (based on the analysis presented in section 4) are consistent with459

most recent solutions and provide an independent validation.460

Our solution puts Mercury in a precise Cassini state, as predicted by dynamical461

models (Peale, 1988), without any explicit constraints to place it in this state. While de-462

viations from the Cassini state of the order of a few arc-seconds are expected (e.g., due463
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Figure 11. Our solutions for Mercury’s orientation (RA, DEC, ω, L) and tidal Love num-

ber h2 based on MLA crossovers analysis (red, 3σ errors), compared with Margot (2009)

(blue), Mazarico et al. (2014) (black), Stark et al. (2015) (yellow), Verma and Margot (2016)

(mauve), Genova et al. (2019) (green), and Konopliv et al. (2020) (cyan), all using different

datasets and techniques. As ours is the first data-based estimate of Mercury’s h2, we compare

our solution to theoretical predictions from Steinbrügge et al. (2018) (brown) and Goossens et

al. (2019) (orange). Black dashed lines indicate either the Cassini plane (RA/DEC) or Mercury’s

resonant spin rate (ω).
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RA (◦) DEC (◦) ω (◦/day) L (m) ε (arcmin) C/MR2

Margot (2009) 281.0103 ± 1.4 × 10−3 61.4155 ± 1.4 × 10−3 6.1385025 38.5 ± 1.6 2.04± 0.08 0.346± 0.014

Mazarico et al. (2014) 281.00480± 0.0054 61.41436± 0.0021 6.138511 ± 1.15 × 10−6 - 2.06± 0.16 0.349± 0.014

Stark et al. (2015) 281.00980± 8.8× 10−4 61.4156± 1.6× 10−3 6.13851804± 9.4× 10−7 38.9± 1.3 2.029± 0.085 0.3437± 0.011

Verma and Margot (2016) 281.00975± 4.8× 10−3 61.41828± 2.8× 10−3 - - 1.88± 0.16 0.318± 0.028

Genova et al. (2019) 281.0082± 9.4× 10−4 61.4164± 3.× 10−4 6.1385054± 1.3× 10−6 40.0± 8.7 1.968± 0.027 0.333± 0.005

Konopliv et al. (2020)† 281.0138± 2.5× 10−3 61.4161± 1.7× 10−3 6.138514± 6× 10−6 - 2.04± 0.12† 0.345± 0.020†

This study 281.0093± 6.3× 10−4 61.4153± 4.8× 10−4 6.138510± 2.8× 10−6 39.03± 1.1 2.031± 0.03 0.343± 0.006

Table 2. Values of Mercury’s orientation parameters, ε, and C/MR2: updated version based

on Baland et al. (2017). In bold the values currently adopted by the IAU (Archinal et al., 2018).

† The obliquity ε given by Konopliv et al. (2020) is inconsistent with the pole axis orientation

they report, as already noted by Steinbrügge et al. (2020): we derived values for ε and C/MR2.

to the precession of perihelion or to tidal dissipation, see Baland et al., 2017), these are464

of the order of our error bars and significantly smaller than offsets presented by most pre-465

vious solutions (also see, e.g., Dumberry, 2020). Compared to the gravity measurements466

provided by Genova et al. (2019) (also in agreement with a Cassini state), we get a higher467

obliquity ε = 2.031 ± 0.03 arcmin, consistent with a normalized polar moment of in-468

ertia C/MR2 = 0.343 ± 0.006 (with C, M , and R the polar moment of inertia, mass,469

and radius of Mercury, respectively). Explicit equations for these quantities are given470

in Genova et al. (2019) (supplementary material, where we note that Eq.5 contains a typo471

and should read472

ε =
C

MR2 Ω̇ sin i
C

MR2 Ω̇ cos i+ 2nG210(e)C22 − nG201(e)C20

473

) , while Baland et al. (2017) provides useful numerical values and a detailed discussion474

of the underlying dynamical theory. Recent estimates for Mercury’s rotational param-475

eters, obliquity and polar moment of inertia (and associated errors) are summarized and476

compared in Table 2, updating a similar table from Baland et al. (2017). Our crossover-477

based solution is hence closer to previous estimates from Earth-based radar (Margot et478

al., 2012) and from imagery and altimetry (Stark et al., 2015), but with smaller error479

bars. Since these techniques are tied to and sensitive to the rotation of the crust only,480

while gravity measurements by Verma and Margot (2016) and Genova et al. (2019) sense481

the whole planet, the discrepancy between these values might be interpreted as a differ-482

ent state for different layers of the planet. Geophysical implications of our results are483

presented later in this section.484
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Concerning Mercury’s spin rate, our solution favors Mazarico et al. (2014), rather485

than the other analysis which used MLA data (Stark et al., 2015). Error bars values in486

Table 1 are the result of a thorough evaluation (e.g., already reflect the sensitivity of the487

solution to a priori values and parametrization) and can thus be used as such. Regard-488

ing the amplitude of Mercury’s longitudinal librations, our solution is consistent with489

the literature, with error bars comparable with previous “surface measurements” by Margot490

et al. (2012) and Stark et al. (2015). Based on the polar moment of inertia and estimate491

for longitudinal librations, we compute the ratio Ccr+m/C = 0.423±0.012, where Ccr+m492

is the fractional polar moment of inertia of the solid crust plus mantle and values ∼ 0.5493

indicate a fluid outer core.494

We then use a Markov Chain Monte Carlo (MCMC) process to generate an ensem-495

ble of interior models of Mercury. Our models follow earlier works: pressure variations496

with depth are computed using hydrostatic assumptions, and we numerically integrate497

the differential equations for pressure, gravity, and temperature (Sohl & Spohn, 1997;498

Hauck et al., 2013; Knibbe & van Westrenen, 2015). Based on these values, we deter-499

mine the local density from equations of state. Our approach is entirely based on our500

earlier work as reported in Genova et al. (2019) (using the same parameters for the equa-501

tions of state). We use our newly derived values for C/MR2 and Ccr+m/C as measure-502

ments, together with a constraint of 0.2% on the bulk density of Mercury (the same as503

in Genova et al, 2019). Our MCMC results thus satisfy Mercury’s mass constraint. As504

was the case before, the outer core radius is the parameter that is best determined (Hauck505

et al., 2013; Genova et al., 2019). As shown in Fig. 12, our best estimate for the outer506

core radius roc = 2020 ± 50 km (at 3σ) is significantly larger than what estimated in507

gravity analysis by Genova et al. (2019), but close to the value estimated by Hauck et508

al. (2013). Because our polar moment value is close to that used by the latter, our MCMC509

results are also very similar. This is the case for the outer core radius, but also for other510

parameters such as the mantle density and weight fraction of Si in the core (not shown511

here). An important difference with the results used in Hauck et al. (2013), however, is512

that our rotation state is exactly in the Cassini state. This allows us to directly apply513

the procedure outlined by Peale et al. (2002) to derive Mercury’s internal structure from514

our estimates. In addition, our error bars are smaller, which results in smaller error bars515

on the outer core radius. Because our polar moment value is larger than that of Genova516

et al. (2019), our outer core radius is also larger. Because the estimate of Genova et al.517
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Figure 12. Outer core radius, roc, resulting from Markov chain Monte Carlo solutions con-

sistent with values of Mercury’s moment of inertia C/MR2 and Ccr+m/C based on our analysis

of MLA altimetry crossovers. As for previous solutions based on the tracking of surface features,

our best estimate for roc is significantly larger than gravity estimates by Genova et al. (2019)

(also shown, for comparison).

(2019) was based on gravity, indicating a sensitivity to the whole planet, and ours on mea-518

surements related to the crust, this further illustrates a possible difference between these519

measurements. While it is unclear which measurement type (if any) would yield the cor-520

rect answer on its own, one has to be aware of these differences, because they have con-521

sequences for the resolved interior models: a higher polar moment as resolved from crustal522

measurements results in a larger outer core radius, and might not be able to constrain523

a solid inner core (Hauck et al., 2013; Margot et al., 2018). We note the latter in our re-524

sults as well. Despite a smaller error, our current MCMC results do not make a distinc-525

tion between the solid and liquid core as we find that their density is often close to one526

another.527

As differential measurements of Mercury’s surface elevation, altimetry crossovers528

are sensitive to vertical displacements due to the tidal influence of other bodies (mainly529

the Sun), and hence to the Love number h2. However, the geographical distribution of530

MLA crossovers and of tidal deformations at Mercury surface (see Fig. 13), along with531

their amplitude (> 2 meters only at limited longitudes and close to Mercury equator)532
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Figure 13. The geographical distribution of MLA crossovers (darker areas indicate more

crossovers per sq. km) is superposed to a map of the total Mercury’s tidal deformations (for

h2 = 1) integrated over a Mercury year. The comparison shows that although most MLA

crossovers lie in regions where deformations are below 1 meter, a large variety of tidal patterns

are covered.

makes tidal variations particularly challenging to measure with currently available mea-533

surements from orbit.534

When combined with measurements of the gravitational Love number k2, h2 pro-535

vides important constraints on the deep interior of a body, such as its inner core size (Van Hoolst536

& Jacobs, 2003; Steinbrügge et al., 2018). Up to now, the value of Mercury’s h2 has only537

been predicted based on Mercury’s mean density and moment of inertia inferred from538

the MESSENGER mission data analysis (0.77 < h2 < 0.93, Steinbrügge et al., 2018,539

based on C/MR2 = 0.34 and k2 = 0.46) and on Markov-Chain Monte-Carlo (MCMC)540

analysis of Mercury’s interior taking into account experimental measurements of its mo-541

ment of inertia and gravitational tidal response (h2 = 1.02± 0.06, by Goossens et al.,542

2019, based on estimates by Genova et al., 2019).543

In section 4 we provided our solution for h2 and highlighted how its estimate from544

MLA data is a delicate matter, sensitive to orbital errors and to the choice of constraints545

and parametrization. We discussed in Sec. 4.3 how to partially mitigate these factors,546
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Figure 14. h2 and k2 have a positive correlation when using current reference values in sim-

ulations of Mercury interior: results from the MCMC analysis shown in Fig. 12 indicate that

h2 < 1.1 is expected given current k2 estimates (left). However, this behaviour is sensitive to

a multitude of model parameters such as mantle viscosity (right) or the rheology model (here

we adopt Andrade rheology, see Andrade, 1910; Jackson, 1993). For these reasons we opt not to

force our h2 solution to be close to model predictions.

and set our error bars accordingly. Our error budget includes the main error sources iden-547

tified in previous studies (e.g., elevation interpolation, orbital and pointing errors, see548

Steinbrügge et al., 2018) but also systematic errors due to sampling, LS constraints, and549

the choice of a priori orbits and rotational parameters. Fig. 14 shows that larger h2 val-550

ues would correspond to larger k2 values, according to MCMC-derived correlations. As551

such, only the lower part of our solution range for h2 = 1.55±0.65 would map on cur-552

rent best estimates of k2 by Genova et al, 2019 at 3σ level. We could in principle apply553

tighter constraints towards 0 on either our h2 estimate or MESSENGER orbit correc-554

tions to “regularise” our solution towards values closer to the “expected” h2 ∼ 1, but555

we rather choose to provide a loosely constrained solution. While the upper and central556

part of our solution range is hardly compatible with, e.g., recent measurements of Mer-557

cury’s k2, it’s important to remind that modeling predictions are sensitive to a wide range558

of highly correlated parameters. As an example, Fig. 14 shows the dependency of h2 on559

Mercury’s mantle viscosity, whose range of values is currently mainly controlled by k2560

estimates. For such reasons, we opt to use MCMC predictions as “guidance” to inter-561

pret our results, rather than as prior constraints to force our solution to fall within a given562

range.563
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While acknowledging these limitations, we analyze the implications of our data-564

driven h2 estimate. The ratio of currently available k2 = 0.5690 ± 0.025 (Genova et565

al., 2019) with our new estimate of h2 = 1.55±0.65 (taking a robust 3σ range for for-566

mal errors, or ±0.45 at 1σ) yields h2/k2 = 2.7±1.2 (at 3σ, or ±0.9 at 1σ), which can567

be compared with Steinbrügge et al. (2018) to predict the size of Mercury’s inner core.568

Even if the error associated with our solution does not allow to finely discriminate be-569

tween different interior models, it constitutes a first experimental confirmation from h2570

of the range obtained by Genova et al. (2019), i.e., a solid inner core with a radius of571

590−1400 km, marginally favoring Mercury’s inner core radius to be > 1000 km (following572

the relations given in Steinbrügge et al., 2018) although this would result in a lower den-573

sity, approaching the one of the outer core.574

6 Conclusion575

In this paper we presented new solutions for Mercury’s rotational state based on576

crossover analysis of the altimetry dataset collected by MLA over the full mission (in-577

cluding 2 equatorial flybys in 2008 and the 2011−2015 orbital phase). Crossover anal-578

ysis has several advantages, including a lower dependence on the knowledge of small scale579

topography, and is a powerful tool to determine the orientation and tidal deformations580

of a celestial body (Mazarico et al., 2014).581

In particular, we analyze the MLA crossovers “dataset” with an original procedure,582

including a detailed light-propagation model and optimized procedures to locate the 3-583

dimensional coordinates of MLA crossovers within the newly developed in-house soft-584

ware package PyXover. We apply an extensive error modeling based on a set of factors,585

as detailed in section 3.2, and VCE to ensure an optimal weighting of data and constraints586

to 0 applied on orbital corrections. These result in a solution based on a refined dataset587

and covariance information. We present the first data-based solution for Mercury’s tidal588

Love number h2, which is consistent with the presence of a solid inner core predicted by589

previous studies. Our results point to a complex scenario, and they highlight the great590

interest to improve h2 and k2 determination with future analysis of existing and upcom-591

ing data. Moreover, our solution for Mercury’s orientation places it in a precise Cassini592

state, while the corresponding moment of inertia C/MR2 and Ccm+r/C are consistently593

computed within our solution. This results in values for the radius of the outer core that594

are larger than what measured by gravity (Genova et al., 2019) and consistent with other595
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analysis based on methods sensitive to the rotation of Mercury’s crust only. We inter-596

pret the apparent inconsistency between results based on gravity and “crust-related” anal-597

ysis as possible evidence of different states for different layers of the planet, as discussed598

in section 5.599

While limits posed by MESSENGER observation geometry and accuracy exist, the600

quality of Doppler-based orbit reconstruction can be improved by MLA contribution, as601

we showed crossovers to be sensitive to inconsistencies in MESSENGER orbit. While the602

parametrization employed in this study can only partially correct these imperfections,603

a combined reconstruction of MESSENGER orbits based on both Doppler and altime-604

try data, e.g., as crossovers constraints, could potentially benefit the estimate of both605

orbital and empirical parameters included in the reconstruction of science orbits. In turn,606

such improvements would benefit the interpretation of many products and observations607

by the MESSENGER mission. Future observations of Mercury by the ESA mission Bepi-608

Colombo (Benkhoff et al., 2010), expected to reach its orbital phase in 2025, will further609

constrain these parameters by extending measurements from low orbit to the Southern610

hemisphere of the planet. In particular, gravity estimates will profit from a less ellipti-611

cal orbit and the refined X/Ka-band transponder (MORE, Iess et al., 2009) on-board612

the Mercury Planetary Orbiter (MPO), allowing to remove a large part of plasma noise613

from tracking data. The Italian Spring Accelerometer (ISA, Iafolla et al., 2010) will also614

contribute to a refined calibration of non-gravitational forces, e.g., solar radiation pres-615

sure, acting on the spacecraft. Beside the positive impact on Mercury’s gravity field es-616

timation, these factors will likely results in an improved knowledge of its Love number617

k2 and orientation. Altimetry measurements by the on-board BepiColombo Laser Al-618

timeter (BELA, Thomas et al., 2007; HosseiniArani et al., 2020) could then be combined619

with MLA measurements to extend and refine the present analysis, either in form of crossovers620

or as individual measurements of surface elevation (Steinbrügge et al., 2018; Thor et al.,621

2020).622
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Steinbrügge, G., Stark, A., Hussmann, H., Wickhusen, K., & Oberst, J. (2018,798

September). The performance of the BepiColombo Laser Altimeter (BELA)799

prior launch and prospects for Mercury orbit operations. , 159 , 84-92. Re-800

trieved from https://ui.adsabs.harvard.edu/abs/2018P\&SS..159...84S801

doi: 10.1016/j.pss.2018.04.017802
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