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Abstract

NASA’s Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimeter launched in Fall 2018, providing an invaluable

addition to the polar altimetry record generated by ESA’s CryoSat-2 radar altimeter. The simultaneous operation of these

two satellite altimeters enables unique comparison studies of sea ice altimetry, utilizing the different frequencies and profiling

strategies of the two instruments. Here, we use freeboard data from ICESat-2 to assess Antarctic snow freeboard retrievals from

CryoSat-2. We first discuss updates made to a previously-published CryoSat-2 retrieval process and show how this Version

2 algorithm improves upon the original method by comparing the new retrievals to ICESat-2 in specific along-track profiles

as well as on the basin-scale. In two near-coincident along-track profiles, we find mean snow freeboard differences (standard

deviations of differences) of 0.3 (9.3) and 7.6 cm (9.6 cm) with 25 km binned correlation coefficients of 0.77 and 0.89. Monthly

mean freeboard differences range between -2.9 (10.8) and 6.6 cm (16.8 cm) basin wide, with the largest differences typically

occurring in Austral fall months. Monthly mean correlation coefficients range between 0.57 and 0.80. While coincident data

show good agreement between the two sensors, they highlight issues related to geometric and frequency sampling differences

that can impact the freeboard distributions.
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Abstract 17 

 NASA’s Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimeter launched in 18 
Fall 2018, providing an invaluable addition to the polar altimetry record generated by ESA’s 19 
CryoSat-2 radar altimeter. The simultaneous operation of these two satellite altimeters enables 20 
unique comparison studies of sea ice altimetry, utilizing the different frequencies and profiling 21 
strategies of the two instruments. Here, we use freeboard data from ICESat-2 to assess Antarctic 22 
snow freeboard retrievals from CryoSat-2. We first discuss updates made to a previously-23 
published CryoSat-2 retrieval process and show how this Version 2 algorithm improves upon the 24 
original method by comparing the new retrievals to ICESat-2 in specific along-track profiles as 25 
well as on the basin-scale. In two near-coincident along-track profiles, we find mean snow 26 
freeboard differences (standard deviations of differences) of 0.3 (9.3) and 7.6 cm (9.6 cm) with 27 
25 km binned correlation coefficients of 0.77 and 0.89. Monthly mean freeboard differences 28 
range between -2.9 (10.8) and 6.6 cm (16.8 cm) basin wide, with the largest differences typically 29 
occurring in Austral fall months. Monthly mean correlation coefficients range between 0.57 and 30 
0.80. While coincident data show good agreement between the two sensors, they highlight issues 31 
related to geometric and frequency sampling differences that can impact the freeboard 32 
distributions. 33 

 34 

Plain Language Summary 35 

Measuring sea ice freeboard from space is an important first step in estimating its 36 
thickness. A previous study had developed a new method of measuring freeboard over Antarctic 37 
sea ice using ESA’s CryoSat-2 altimeter, however, few validation data existed at the time to 38 
determine how well it performed. In this paper, we improve the CryoSat-2 processing and make 39 
use of data from NASA’s ICESat-2 altimeter for comparisons with the CryoSat-2 data. While 40 
agreement is strong overall, there are still differences between the measurements that we 41 
hypothesize come from the different footprint sizes and wavelengths of the two instruments. 42 

1 Introduction 43 

 ESA’s CryoSat-2 radar altimeter has provided a more than 10-year time series of surface 44 
elevation data since its launch in 2010 that has been invaluable for cryospheric studies. For sea 45 
ice research in particular, CryoSat-2 has enabled basin-scale estimates of Arctic sea ice freeboard 46 
and thickness from space, building on the satellite altimeter-based freeboard/thickness time 47 
series that began with ERS-1 and -2 (Laxon et al., 2003) and continued with ICESat (Zwally et 48 
al., 2008) and Envisat (Connor et al., 2009). Freeboard data from CryoSat-2 have been used to 49 
quantify Arctic sea ice thickness and volume over time (Kwok & Cunningham, 2015; Laxon et 50 
al., 2013; Tilling et al., 2018), to develop new retrieval algorithms for sea ice properties (Kurtz et 51 
al., 2014; Lee et al., 2016), and to better understand potential bias and uncertainty from radar 52 
altimetric studies of sea ice (Kwok 2014; Landy et al., 2020; Nandan et al., 2017; Ricker et al., 53 
2014). 54 
 Despite its widespread use in the Arctic, CryoSat-2 data remain underutilized for sea ice 55 
research in the Southern Ocean (Meredith et al., 2019). This is due in part to the lack of available 56 
pan-Antarctic snow depth on sea ice information, which contributes to the uncertainty in the 57 
dominant scattering horizon from radar returns and limits accurate sea ice freeboard and 58 
thickness retrievals (Massom et al., 2001; Paul et al., 2018). Nevertheless, some studies have 59 
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attempted to provide estimates of freeboard and thickness using different methods and with 60 
various caveats. Kwok and Kacimi (2018) calculated ice freeboard and thickness profiles in the 61 
Weddell Sea using CryoSat-2 and data from NASA’s Operation IceBridge (OIB). Snow depth 62 
values were estimated by subtracting the CryoSat-2 freeboards from the Airborne Topographic 63 
Mapper (ATM) laser (total) freeboards. Price et al. (2015) similarly computed thickness from 64 
CryoSat-2 in a single region – McMurdo Sound – using snow depth from models, reanalysis, and 65 
passive microwave sensors. Work done through ESA’s sea ice Climate Change Initiative (CCI, 66 
Paul et al., 2018; Schwegmann et al., 2016) showcased freeboard retrievals in the Southern 67 
Ocean and comparisons between CryoSat-2 and Envisat, but the lack of snow depth data has 68 
prevented them from computing sea ice thickness. Fons and Kurtz (2019) put forth a waveform-69 
fitting method that attempted to circumvent the complexities of the effect of the snow layer on 70 
radar returns by retrieving the air-snow interface elevation from CryoSat-2. This work exploited 71 
the fact that scattering at Ku-band frequencies – though potentially smaller in magnitude than 72 
scattering from the snow-ice interface – does occur from the air-snow interface (Kwok 2014; 73 
Willatt et al., 2010), and incorporated this scattering in a forward waveform model. While the 74 
results showed promise, they lacked independent, pan-Antarctic snow freeboard data to validate 75 
the retrievals.  76 
 While challenges to CryoSat-2-derived Antarctic sea ice freeboard and thickness remain, 77 
studies using satellite laser altimetry have proven more successful. Laser altimeters range to the 78 
surface of the snow on sea ice and therefore are not impacted by the uncertain scattering horizon 79 
within the snow layer. The freeboard retrieved from laser altimeters is therefore the snow 80 
freeboard, which can be combined with snow depth information to estimate thickness. NASA’s 81 
ICESat was the main platform used for laser altimetric studies of sea ice prior to 2019, and 82 
studies combined the retrieved snow freeboard with snow depth information from various 83 
sources, including passive microwave-derived snow depth (Zwally et al., 2008), a zero-ice-84 
freeboard assumption (Kurtz & Markus, 2012), and a one-layer modified density model (Kern et 85 
al., 2016, Li et al., 2018) to compute thickness. The launch of ICESat-2 in late 2018 has provided 86 
an opportunity to advance sea ice research in the Southern Ocean, both in stand-alone studies of 87 
Antarctic sea ice and as a unique compliment to CryoSat-2 for combination studies and 88 
validation. One such study (Kacimi & Kwok, 2020) combined CryoSat-2 radar freeboards with 89 
ICESat-2 snow freeboards to make estimates of snow depth on Antarctic sea ice. They used the 90 
resulting snow depth and freeboards to estimate pan-Antarctic thickness and volume for the 91 
Austral winter 2019. These results showcase a new thickness dataset but are limited to the years 92 
in which both satellites are operating. More combination studies are possible if the recent 93 
CRYO2ICE campaign (ESA, 2018), which better aligned the CryoSat-2 orbit with that of 94 
ICESat-2 to improve spatial/temporal coincidence in the Arctic, is altered to optimize the orbital 95 
overlaps in the Southern Hemisphere. 96 
 Here, we utilize ICESat-2 Southern Ocean snow freeboard data to validate the CryoSat-2 97 
snow freeboard retrieval method originally published in Fons and Kurtz (2019). Fons and Kurtz 98 
(2019) was a feasibility study that lacked coincident validation data for proper evaluation. Now, 99 
with ICESat-2, we are able to better assess and draw conclusions on the CryoSat-2 freeboard 100 
retrievals. This work will first discuss improvements made to the CryoSat-2 retrieval algorithm 101 
since publication in 2019, which include updates to the model parameters, sea surface height 102 
(SSH) determination, the sea ice surface height pdf, and other components of the algorithm 103 
(section 3). Then, we showcase validation of the improved algorithm using data from ICESat-2 104 
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both along-track and pan-Antarctic (section 4). We conclude with a discussion of potential error 105 
sources, sampling biases, and difficulties of laser-radar comparisons (sections 5 and 6). 106 
 107 

2 Data 108 

The primary dataset used in this work is the CryoSat-2 baseline-D Level 1-B waveform 109 
data (ESA 2019, ESA 2019a). These data are acquired by the SIRAL instrument aboard CryoSat-110 
2, which has a frequency in the Ku-band centered at 13.575 GHz (Wingham et al., 2006). SIRAL 111 
operates in three different modes: low resolution mode (LRM), synthetic aperture mode (SAR), 112 
and synthetic aperture-interferometric mode (SARIn). Both the SAR and SARIn modes are 113 
utilized in this study and provide complete coverage of the Antarctic sea ice pack. The CryoSat-2 114 
echoes in SAR and SARIn modes represent a pulse-doppler-limited footprint of approximately 115 
380 m along track and 1.65 km across track (ESA, 2019b; Scagliola, 2013), however, these 116 
echoes can be influenced by off-nadir, specular returns from approximately 15 km across-track 117 
(Tilling et al., 2018). For consistency, both SAR and SARIn waveforms are reduced to 128 range 118 
bins, with SAR data being truncated and SARIn data being clipped to 128 range bins about the 119 
maximum power location. We compute elevation from these waveforms following the procedure 120 
outlined in Fons and Kurtz (2019), which involves retracking the waveforms and applying the 121 
geophysical and retracking corrections to the raw ranges.  122 
 To assess the retrieved CryoSat-2 snow freeboards we utilize snow freeboard data from 123 
ICESat-2, specifically, the release 3 Level 3A sea ice freeboard product ATL10 (Kwok et al. 124 
2020). ATL10 provides estimates of snow freeboard in both hemispheres for each of the six 125 
ICESat-2 beams. The freeboard estimates are computed using the sea ice and sea surface 126 
elevations from the ATL07 sea ice height product, which includes variable length segments 127 
(ranging from ~20-200 m) encompassing 150 returned signal photons (Kwok et al., 2019, 128 
2020a). Here, we use the highest resolution, segment-scale “beam freeboard”, which provides a 129 
freeboard estimate for each beam and ATL07 segment using only the leads estimated along the 130 
given beam (Kwok et al., 2020a). Unless otherwise noted, mentions of “freeboard” in this paper 131 
refer to the snow freeboard (i.e. the height of the sea ice and snow above the sea surface). 132 

For this study, the CryoSat-2 and ICESat-2 data are analyzed for the coincident ICESat-2 133 
overlap period, ranging from October 2018 until October 2020. Pan-Antarctic maps of freeboard 134 
are computed using monthly means and gridded to the NSIDC 25 km x 25 km polar 135 
stereographic grid. CryoSat-2 snow freeboards below -0.1 m and above 3.0 m are filtered out 136 
prior to gridding, to account for instrument noise and to remove anomalously high freeboard 137 
values. Gridded values are only computed if the grid cell contains at least five samples and an ice 138 
concentration of at least 50%. We use Version 3 Bootstrap monthly average ice concentration 139 
data (Comiso, 2017) for 2018 and 2019, and use the NOAA/NSIDC Climate Data Record Near-140 
Real-Time (NRT CDR) monthly sea ice concentration product for 2020, when the Bootstrap data 141 
is not yet available (Meier et al., 2017). The NRT CDR product essentially takes the higher value 142 
from the Bootstrap and NASA Team algorithms (Cavalieri et al., 1997). ICESat freeboard data is 143 
used in a limited capacity in this work (described in section 3.1) as part of an initialization of the 144 
waveform-fitting model. These data range from 2003-2008, with a description found in Kurtz 145 
and Markus (2012). 146 
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3 Algorithm design and improvements 147 

In this section, we provide a brief overview of the procedure put forth in Fons and Kurtz 148 
(2019), which herein will be referred to as Version 1 (V1), but focus mainly on the 149 
improvements that have been made to the algorithm to create Version 2 (V2). For a more 150 
detailed look at the model and waveform-fitting process, see Fons and Kurtz (2019).  151 
 To retrieve sea ice elevation and calculate freeboard from CryoSat-2, we employ a 152 
physical – as opposed to the more commonly used empirical – retracking technique. This 153 
technique uses a forward model and waveform-fitting algorithm that constructs a modeled 154 
CryoSat-2 waveform from given initial parameters, fits the model to the CryoSat-2 data using an 155 
optimization approach, and calculates the retrieved elevation using the best-fit waveform and 156 
parameters. The output (free) parameters are given in Table 1, where the snow depth and snow-157 
ice interface time delay allow us to compute the elevations of both the air-snow and snow-ice 158 
interfaces, and from there, estimate both the snow freeboard and the ice freeboard. The initial 159 
guess parameters in Table 1 are derived from the actual CryoSat-2 waveform and independent 160 
measurements. This method was originally put forth in Kurtz et al. (2014), and then was 161 
modified to include scattering effects from the snow layer in Fons and Kurtz (2019). In the V1 162 
retrieval, the modeled waveform was given by: 163 
 164 

𝛹(𝜏) = 𝑃!(𝜏) ⊗ 𝐼(𝜏,a) ⊗ 𝑝(𝜏,s) ⊗ 𝜈(𝜏, ℎ"#)    (1) 165 
 166 
where 𝛹 is the constructed waveform, 𝑃! is the transmit pulse, 𝐼 is the rough surface impulse 167 
response, 𝑝 is the surface height probability density function, and 𝜈 is the scattering cross section 168 
per unit volume – all of which are a function of 𝜏, the echo delay time on the waveform, and 169 
other parameters given in Table 1 (Fons & Kurtz, 2019; Kurtz et al., 2014). Since Fons and 170 
Kurtz (2019), we have improved a few aspects of the original method to better model sea ice 171 
waveforms and reduce the potential for convergence on local minima, resulting in the V2 172 
algorithm. The main improvements consist of: reducing the number of free parameters in the 173 
model, using a new surface height probability density function (pdf), altering the SSH 174 
calculation, and a few smaller modifications. These changes are explained in this section. 175 
 176 

3.1 Free parameters 177 

The V1 algorithm used a model with nine free parameters – a relatively large number that 178 
increases the potential for the waveform-fitting optimization procedure to converge on a local, as 179 
opposed to global, minimum. In V2, we elected to reduce the number to five parameters and 180 
designated the radar backscatter terms of snow and ice as static. Given the uncertainty associated 181 
with these backscatter parameters, we now rely on values published previously (given in table 1). 182 
We make the assumption that these static terms represent average values across the Antarctic, 183 
and acknowledge that further study into these quantities could provide useful information on 184 
their seasonal and regional variations. V1 retrievals used ICESat data as an initial guess for the 185 
air-snow interface location parameter. In V2, we have updated the free parameter to be 186 
physically quantifiable (snow depth) and are instead using a combined ICESat and ICESat-2 187 
monthly “climatology” as the initial guess. Like in V1, we invoke the ‘zero ice freeboard’ 188 
assumption for this initial guess that assumes the snow depth is equal to the snow freeboard (the 189 
implications for this assumption are discussed in section 3.5). Each monthly climatology 190 
initialization map (12 in total, one for each month) consists of multiple years of ICESat and 191 
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ICESat-2 snow freeboard data from the given month averaged together. The ICESat data for a 192 
given month comes from the years 2003-2008, while the ICESat-2 data for that month comes 193 
from the years 2018-2019. We added ICESat-2 data to the initialization to incorporate more – 194 
and more recent – data into the initial guess. Additionally, ICESat only collected data during a 195 
few months each year while ICESat-2 collects data year round. The added ICESat-2 data 196 
therefore provide month-to-month variability in the initial guess. By creating this monthly 197 
climatology, we use the same, independent, consistent initialization from year to year. The free 198 
parameters used here are given in table 1. 199 
 200 

Table 1. Free parameters used in the V2 retrieval algorithm and static parameters used in the 201 
volume scattering term of the waveform model. Additional static parameters used can be found 202 

in Fons and Kurtz (2019) and Kurtz et al. (2014). 203 
 204 

3.2 Surface height pdf 205 

In the V1 algorithm, a zero-mean Gaussian distribution was used to represent the surface 206 
height pdf in the waveform model. Here in V2, we have updated the surface height pdf to be a 207 

Free Parameters Initial Value Bounds Reference 

hsd Snow depth ICESat/ICESat-2 
monthly “climatology” +/- 30 cm 

Kurtz and Markus 
(2012); Kwok et al. 

(2020) 

t Snow-ice interface time 
delay 70% power threshold +/- 3 ns Laxon et al. (2013) 

s Roughness 
(std of surface height) 0.15 0 - 1 Fons and Kurtz 

(2019) 

a Angular backscatter 
Lookup table based on 

waveform 
characteristics 

1.5e1 - 9e8 Kurtz et al. (2014) 

Af Amplitude Scale Factor 1 +/- 0.5 Kurtz et al. (2014) 

Static Parameters    

s0sfc-snow Snow surface 
backscatter 0 dB - Arthern et al. (2001) 

s0sfc-ice Ice surface backscatter 8 dB - Kwok (2014) 

s0vol-snow Snow volume 
backscatter -7 dB - Beaven et al. (1995) 

s0vol-ice Ice volume backscatter -17 dB - Beaven et al. (1995) 

Ke-snow 
Snow extinction 

coefficient 0.1 m-1 - Ulaby et al. (1982) 

Ke-ice 
Ice extinction 

coefficient 5 m-1 - Ulaby et al. (1982) 
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lognormal distribution, which has been shown (over Arctic sea ice) to better represent the sea ice 208 
surface pdf over CryoSat-2 footprint scales (Landy et al., 2020) . This distribution is given as: 209 
 210 

𝑝(𝜏) = 	 $
%&!√()

exp 1− (+, %-.)"

(&!
" 3    (2) 211 

 212 
where 𝜇 and 𝜎+ represent the mean and standard deviation, respectively, of the natural logarithm 213 
of the surface height. We assume a zero-mean distribution and initialize the roughness term (𝜎) 214 
as 0.15, which gets converted to 𝜎+ and adjusted during fitting as a free parameter (Table 1). The 215 
impact of the lognormal surface height pdf is shown in Figure 1. Modeled waveforms were 216 
created with varying roughness values and run using both a lognormal (solid) and normal 217 
(dashed) surface height pdf. For small roughness values, the difference in the modelled 218 
waveform shape (measured by the squared norm of the residuals) when using the lognormal 219 
versus normal distribution is negligible. Conversely, as the roughness increases, these differences 220 
increase exponentially. Judging by the example roughness distribution output by this algorithm 221 
from September 2020 (Fig 1), most fit waveforms have s values between 0.1 and 0.45 m and 222 
therefore are less sensitive to the modified surface height pdf used. However, there are still 223 
waveforms fit with s  values over 0.5 m which would be more sensitive to the modified surface 224 
height pdf and benefit from the more representative lognormal distribution. 225 
 226 

 227 
Figure 1. Sensitivity of modelled waveform shape to roughness and surface height pdf used. 228 

Left: Solid lines show modelled waveforms with varying values of s  created using a lognormal 229 
surface height pdf, while dashed lines show the same but using a normal surface height pdf. 230 
Right: The difference in shape is quantified using the squared norm of the residual (resnorm, 231 

black line) plotted at 1 cm increments from 0 to 1 m roughness. An example normalized 232 
histogram of gridded s values from September 2020 is shown to give its expected range. 233 

 234 

3.3 Sea surface height 235 

The SSH determined by lead elevations in V1 was, in essence, a 25 km gridded SSH. 236 
Though freeboard was computed along-track, the sea surface was averaged for all tracks within 237 
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the grid cell, and then subtracted from the along-track sea ice elevations. This method 238 
overlooked the smaller scale variability in SSH, and therefore potentially biased our retrievals. In 239 
V2, we instead calculate an along-track SSH. Following Kwok and Cunningham 2015, we 240 
average all the lead-type elevations in along-track segments, and discard any segments where 241 
fewer than three SSH measurements exist. Given that the lead distribution within the Antarctic 242 
sea ice pack is more widespread than that of Arctic sea ice (Reiser et al., 2020), we use a 243 
segment length of 10 km as opposed to 25 km in Kwok and Cunningham 2015. The 10 km SSH 244 
segment length is the same as that used in the ICESat-2 along-track sea ice data products (Kwok 245 
et al., 2020). 246 

3.4 Additional modifications 247 

In addition to the improvements mentioned above, a few smaller changes were made to 248 
improve on the V1 retrievals and streamline the processing. For one, we implemented an “ocean” 249 
surface type classification in V2 using the waveform characteristics of stack standard deviation 250 
(SSD) and skewness. Waveforms with an SSD greater than 50, a skewness less than 0.3, and an 251 
along-track rolling average of skewness less than 0.3 are considered ocean points and filtered out 252 
before fitting. The rolling average is used to invoke a more conservative filtering scheme, so that 253 
single returns with an anomalously low skewness would not be misclassified as ocean-type and 254 
so that the sea ice edge would be preserved for fitting and later potential filtering due to ice 255 
concentration (Fig. 2). 256 
 257 

 258 
Figure 2. Ocean-type waveform filtering for a CryoSat-2 SAR data file. Points are individual 259 

waveforms plotted by their skewness (left y-axis) and colored by SSD. The purple line represents 260 
the 30 km rolling average of skewness. Dashed red line is the skewness threshold used to filter 261 
ocean waveforms, and green points are those above the SSD threshold. Points with red centers 262 

are waveforms filtered out along this profile. Solid black line shows the along-track sea ice 263 
concentration (right y-axis). 264 

 265 
Another update to V1 was made to the radar propagation correction that accounts for 266 

scattering within the snowpack. The V1 algorithm used a typical representation of this 267 
correction, given by: 268 
 269 

𝛿ℎ = 	𝑍0(1 − 𝑐" 𝑐⁄ )     (3) 270 
 271 
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where 𝛿ℎ is the radar range correction, 𝑐 is the radar wave speed, 𝑐"  is the wave speed through 272 
snow, and 𝑍0is the snow depth corrected for wave speed (Mallett et al., 2020). However, the V1 273 
algorithm treated Zr as the actual snow depth (as it is conventionally interpreted, Mallett et al., 274 
2020) when it should have been corrected for wave speed through snow. Mallett et al. (2020) 275 
showed that this interpretation can lead to a bias in the freeboard retrievals through the erroneous 276 
reduction by a factor of 𝑐" 𝑐⁄ . In the V2 algorithm, we correct this interpretation and instead use 277 
the wave speed-corrected snow depth in equation 3, given by: 278 
 279 

𝑍0 = 𝑍	(𝑐 𝑐"⁄ )      (4) 280 
 281 

where 𝑍 is the real snow depth.  282 
 The last update made involved converting the processing from MATLAB to Python 283 
programming language. While care was taken to ensure that results were consistent between the 284 
two languages, inherent differences in the standard curve fitting toolboxes led to small 285 
discrepancies from V1 to V2. For best consistency with the previous processing, we utilize the 286 
scipy curve_fit package (Virtanen et al., 2020) over other fitting packages. 287 

3.5 Retrieval assumptions and limitations 288 

Despite the improvements made to create the V2 algorithm, certain assumptions are still 289 
inherent within the freeboard retrievals that could impact results. One such assumption is the 290 
zero ice freeboard assumption used to initialize the snow depth parameter. We invoke this 291 
assumption when inputting the snow freeboard climatology as a first guess for snow depth. It is 292 
understood that while the zero-ice freeboard can be a good assumption is some regions and 293 
seasons (Kurtz & Markus, 2012), it is likely not valid for the whole Antarctic sea ice pack 294 
(Kwok & Kacimi, 2018) and may lead to biases in the retrievals (discussion in section 5). It is 295 
used as a starting point until better snow depth information is available. 296 

Another limitation of the model is its handling of surface roughness. Roughness at 297 
different length scales has been shown to significantly impact Ku-band radar returns and bias 298 
freeboard retrievals (Landy et al., 2020). We attempt to handle this fact by setting s  as a free 299 
parameter in the model, with bounds that cover the expected range of roughness (0-1m). 300 
However, the tracking point on a radar waveform can be influenced by roughness (Figure 1, 301 
Landy et al., 2020), and therefore our single-value initialization for snow-ice interface tracking 302 
point (t) may introduce a bias. Further work is needed to determine the impacts of a roughness-303 
induced dynamic tracking point initialization on elevation and freeboard retrievals using this 304 
method. 305 

4 Results 306 

We processed all CryoSat-2 data from October 2018 to October 2020 using the V2 307 
algorithm processing. This section compares the retrieved CryoSat-2 snow freeboards to those 308 
from ICESat-2 by examining along-track retrievals using near-contemporaneous overlaps of the 309 
two satellites (section 4.1) and comparing pan-Antarctic, monthly gridded freeboard data 310 
(section 4.2). Uncertainty in the snow freeboard retrievals is estimated in section 4.3. 311 
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4.1 Along-track comparisons 312 

To compare the freeboard retrieval performance along-track, we first found near-313 
contemporaneous overlaps in the two satellites’ ground tracks that occurred in the sea ice zone 314 
with the least possible time difference. We define an orbital overlap as a CryoSat-2 and ICESat-2 315 
ground track being within 4 km of each other for at least 10 seconds of flight time, which is 316 
approximately 70 km along-track. Given the 1.65 km across-track footprint of CryoSat-2 and the 317 
3.3 km spread of the three beam pairs of ICESat-2, 4 km is the maximum separation that could 318 
still theoretically result in overlapping footprints. We find that this overlap definition results in 319 
reasonably overlapping orbital tracks for freeboard comparisons. When the maximum allowable 320 
time difference was restricted to 5 hours, 179 such overlaps occurred in various lengths and 321 
locations around the Southern Ocean between October 2018 and October 2020 (Figure 3). It is 322 
important to note that, with the definition above, no such overlaps have occurred in the Southern 323 
Hemisphere sea ice zone since the CRYO2ICE orbit re-configuration – which was optimized for 324 
Arctic overlaps – took place in late July 2020.  325 

Due to the orbital alignments and distance of the sea ice pack from the pole (where orbit 326 
density is greater), none of the 179 overlaps have occurred with less than three hours of time 327 
difference, which is expected for overlaps lasting longer than 5 seconds (ESA, 2018, slide 14). 328 
All overlaps occurred with between 3.0 and 4.2 hours difference and lasted between ~70 km and 329 
~1800 km. These overlaps come from the satellite orbits alone and do not take into account 330 
available freeboard data. Therefore, despite the large number of overlaps (Figure 3), many are 331 
not ideal for comparisons due to their short length (for those occurring in regions of smaller ice 332 
extent) or missing freeboard data (mostly from ICESat-2 missing data due to clouds). Here, we 333 
have chosen two Austral winter overlaps with many available ICESat-2 data: 27 October 2018, 334 
when the satellite ground tracks were approximately 4 hours and 10 minutes apart, and 02 335 
September 2019, when they were about 3 hours and 36 minutes apart (Figure 4). Both overlaps 336 
were close to 1015 km long over the sea ice zone, but were trimmed to 1000 km (2018) and 800 337 
km (2019) to remove end sections of the overlaps where significant amounts of ICESat-2 data 338 
were missing. Implications of the time differences are discussed in section 5. 339 
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 340 
Figure 3. CryoSat-2 and ICESat-2 orbit overlaps (defined in text) from October 2018 to 341 

December 2020, colored by year. Sea ice concentrations for each month are averages of the years 342 
in which there are overlaps present. 343 

 344 
 Figure 4 shows the two along-track comparisons of snow freeboard between CryoSat-2 345 
and ICESat-2. Both the shot-to-shot and 25 km binned average freeboards are shown. In the 346 
2018 (2019) profile, the mean difference is 0.3 cm (7.6 cm) and the standard deviation of 347 
differences is 9.3 cm (9.6 cm). Though the 25 km binned correlation is higher in 2019 (0.89) 348 
than in 2018 (0.77), the distribution captured by CryoSat-2 in 2018 tends to match ICESat-2 349 
better than in 2019. There is a clear discrepancy in the number of data points from each sensor, 350 
with ICESat-2 recording 120-140 times more valid measurements than CryoSat-2. This 351 
discrepancy is largely due to the footprint size difference: the smaller footprint of ICESat-2 352 
allows for many more measurements over a given distance than CryoSat-2. Additionally, some 353 
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CryoSat-2 data are filtered out due to leads (to which CryoSat-2 is more sensitive), mixed 354 
surface returns, or poor fitting, which further reduces the number of valid measurements.  355 

 356 
 357 
Figure 4. Along-track comparisons from two near-coincident overlaps of ICESat-2 (green) and 358 
CryoSat-2 (purple). Both profiles showcase data from the CryoSat-2 V2 algorithm. Points show 359 
individual measurements while lines give a binned 25 km average. ICESat-2 data come from a 360 

single strong beam, given in the right plots. Binned averages are only computed if at least 5% of 361 
the possible datapoints for that bin exist. Mean differences (md), standard deviations of 362 

differences (std) and correlation coefficients (r) are given in the right plots. Maps show the 363 
overlaps used in the profile, with the blue point representing the start and red point representing 364 

the end of the profile. 365 
 366 

4.2 Monthly gridded comparisons 367 

The V2 retrieval algorithm was applied to all CryoSat-2 data within the ICESat-2 era, and 368 
monthly gridded maps of snow freeboard were created. Figure 5 shows an example monthly map 369 
(September 2020) of CryoSat-2 V2 data in comparison with that from ICESat-2 and CryoSat-2 370 
V1. As mentioned in section 3.1, only ICESat-2 data from 2018 and 2019 were used in the 371 
initialization climatology. Therefore, none of the 2020 ICESat-2 data was included in the 372 
initialization of the CryoSat-2 model, allowing for independent monthly comparisons. Snow 373 
freeboard values ranged from nearly 0 to over 1.8 m, with a mean (mode) value of 28 cm (21 374 
cm) from CryoSat-2 and 29 cm (23 cm) from ICESat-2. The pan-Antarctic map of freeboard 375 
matches well between the two sensors, as the widespread patterns found with ICESat-2 are 376 
captured by the CryoSat-2 retrievals with a correlation coefficient of 0.77. A majority of the 377 
differences between CryoSat-2 and ICESat-2 are within +/- 10 cm, with larger magnitude 378 
differences found along the Amundson-Bellingshausen coastline and off the peninsula in the 379 
western Weddell sea. The mean difference between the two (CryoSat-2 – ICESat-2) is 0.5 cm. 380 
While Figure 5 is given to show an example month, this pattern of differences is similar in all 381 
months when comparing to ICESat-2. 382 

 383 
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 384 
Figure 5. An example monthly comparison between CryoSat-2 and ICESat-2 for September 385 

2020. CryoSat-2 V1 is this month computed by the original method put forth in Fons and Kurtz 386 
(2019). The distribution from the V1 map is shown in the black line (lower middle). In the lower 387 

right, the dashed line is the 1:1 line, while the red line is the linear best fit. 388 
 389 
The original (V1) processing from Fons and Kurtz (2019) was run for this month as well, 390 

shown in the top right plot of Figure 5. While a similar spatial pattern of snow freeboard exists, 391 
there tend to be thicker freeboards in more of the Weddell Sea and in the Eastern Ross Sea. 392 
Additionally, there is more “speckle” in the freeboard pattern from V1 as compared to V2, as the 393 
snow freeboard varies more in V1 over a given area. The V1 distribution is broader with a higher 394 
spread than the narrower V2 and ICESat-2 distributions, though the modes of all three are 395 
similar. It is clear that the improvements made to create the V2 algorithm have a large impact on 396 
the freeboard retrievals, leading to better agreement with ICESat-2. 397 

The freeboard distributions from ICESat-2 (green) and CryoSat-2 V2 (purple) for all 398 
months of overlapping operation are given in Figure 6. One can see the seasonal evolution in the 399 
freeboard distribution, from the broader distributions of Austral summer, to the narrower 400 
distributions skewed to lower freeboards of the Austral winter. There are consistently more grid 401 
cells in the CryoSat-2 data than in the ICESat-2, brought on by data loss due to clouds that 402 
attenuate the laser beam but do not impact radar pulses. In general, the distributions given by the 403 
two sensors are quite similar, with some systematic differences showing in each month, 404 
discussed below. The monthly mean freeboard values given by the vertical lines are overall very 405 
similar between CryoSat-2 and ICESat-2, with the exception of larger differences of means in 406 
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Austral fall months, up to 9 cm in March 2020. The monthly mean differences range from -2.9 to 407 
6.6 cm between CryoSat-2 and ICESat-2, with the standard deviation of differences ranging from 408 
10.8 to 16.8 cm. Correlation coefficients range from 0.57 in January 2020 to 0.80 in September 409 
2019. 410 

 411 

 412 
Figure 6. Snow freeboard density histograms and PDFs from CryoSat-2 V2 (purple) and 413 

ICESat-2 (green) for October 2018 to October 2020. Mean values are shown by the vertical 414 
lines. Plots from 2020, where no coincident ICESat-2 data are included in the initialization, are 415 

bordered in red. 416 
 417 

 In most months shown in Figure 6,  ICESat-2 records a greater frequency of thinner (10-418 
15 cm and below) and thicker (50 cm and greater) freeboards. Inversely, CryoSat-2 records a 419 
greater probability of “average” (20 to 30 cm) freeboard compared to ICESat-2. In the Austral 420 
fall, mainly in March and April 2019 and 2020, the shape of the distributions are most dissimilar, 421 
with ICESat-2 skewed to thinner freeboards compared to CryoSat-2. These differences in the 422 
freeboard distributions are discussed in section 5.  423 
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4.3 Snow freeboard variability 424 

 Here, we investigate differences in the monthly mean snow freeboards between CryoSat-425 
2 and ICESat-2 and variability in the measurements. Averaging all years of data for each 426 
calendar month yields a mean annual cycle (for the two years October 2018-October 2020), 427 
given in Figure 7a. Both CryoSat-2 and ICESat-2 exhibit similar shapes in the cycle, with the 428 
most notable difference being the more gradual monthly changes in CryoSat-2 freeboards during 429 
the Austral fall months compared to ICESat-2. To get a sense of the grid cell variability in the 430 
freeboard measurements from both instruments, we compute the standard deviation of all snow 431 
freeboard measurements (sfb) in each 25 km grid cell for a given month. For ICESat-2, sfb is 432 
around 5 cm basin-wide, but ranges monthly from ~3.4 (June) to ~7.5 cm (February). For 433 
CryoSat-2, sfb is smaller – around 3 cm basin-wide – and ranges between 2.5 (July) and 3.7 cm 434 
(February). These values are given as the shading in Figure 7a. 435 
 436 

Figure 7. (a) Monthly basin-wide mean snow freeboard from ICESat-2 (green) and CryoSat-2 437 
V2 (purple) averaged from October 2018 to October 2020. Shaded region gives the basin-438 

average standard deviation of freeboard measurements in each grid cell, sfb. (b) Snow freeboard 439 
difference (CryoSat-2 V2 minus ICESat-2) for each year 2018 – 2020 and the total average. 440 
Freeboard differences are broken into the SSH (blue) and elevation (grey) components (bars) 441 

where the left-most bar in each month represents the earlier year of data for that month (2019 in 442 
January -September, 2018 in October – December). 443 

 444 
The monthly mean freeboard differences (CryoSat-2 – ICESat-2) are shown in Figure 7b, 445 

where the dashed lines indicate the mean freeboard differences from each year, and the solid 446 
black line indicates the 2018-2020 mean freeboard difference for each calendar month. As was 447 
also shown in Figure 6, the largest differences occur in Austral fall, with CryoSat-2 recording as 448 
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much as ~6 cm thicker snow freeboards compared to ICESat-2. In other months, differences fall 449 
between +/- 1cm, which is mostly in part to offsetting, larger differences in the SSH and floe 450 
elevation components. The variability in differences between individual years is largest in 451 
January through March (around 5 cm) but is around 2 cm in all other months. 452 

The mean freeboard differences in Figure 7b are broken down into the contributions from 453 
the SSH difference and floe height elevation difference. These components are given as bars 454 
where each two-colored bar represents a different year (earlier year of data for a given month is 455 
on the left). Since the mean freeboard difference is the sum of the elevation plus the SSH 456 
components, the elevation difference can be greater than the freeboard difference when the SSH 457 
difference is negative (and vice versa). The SSH difference between CryoSat-2 and ICESat-2 is 458 
typically within +/- 2 cm, reaching as much as -4 cm in February 2019. The floe elevation 459 
difference is typically largest in Austral fall, where it reaches over 8 cm, and is smaller in later 460 
months of the year. The elevation difference dominates the large freeboard differences found in 461 
Austral fall. A discussion on potential sources of these differences is given in the following 462 
section. 463 

5 Discussion 464 

Results from the V2 algorithm show substantial improvement over the V1 algorithm and 465 
better agreement with ICESat-2 snow freeboards, especially in the monthly comparisons. This 466 
agreement is particularly encouraging for the monthly comparisons in 2020 when no ICESat-2 467 
data was included in the model fitting initialization. The along-track comparisons are promising 468 
but stronger conclusions are hard to draw due to the time difference between satellite overlaps. 469 
Despite the similarity, there still exist differences in the retrieved freeboards brought on by 470 
inherent sampling discrepancies between the satellites, discussed herein. 471 
 Comparing the along-track freeboards in Figure 4, it is likely that differences between 472 
CryoSat-2 V2 and ICESat-2 arise from two major sources: the time delay between satellite 473 
overlaps and the sampling (both geometry and frequency) differences between the instruments. 474 
As mentioned in section 4.1, the time delay between the satellite overpasses in the Southern 475 
Ocean is at minimum 3 hours. In the locations of the two overlaps in Figure 4, the monthly mean 476 
sea ice drift can reach upwards of 10 km per day (Kwok et al., 2017), meaning that the two 477 
satellites could be sampling entirely different sea ice. The location of the 2018 overlap in the 478 
Amundson Sea typically experiences faster sea ice drift than the location of the 2019 overlap in 479 
the near-coastal Weddell sea (Kwok et al., 2017), which could explain the higher correlations 480 
observed in 2019.  481 

In addition to the time offsets, the large sampling differences – both geometric and 482 
frequency-related – likely also contribute to the differences in freeboards observed here. Sea ice 483 
surface features can vary greatly over small areas, and the CryoSat-2 SAR/SARIn footprint – 484 
with an area over 6,000 times larger than an ICESat-2 footprint – will sample much more of the 485 
surface per shot and therefore sample different features with varying elevations and freeboards 486 
(Giles et al., 2007). Due to this footprint size difference, the small difference in mean freeboards 487 
and similar distributions (especially in 2018) is encouraging, despite the variability in the along-488 
track shot-to-shot freeboard profiles. Additionally, the sampling frequency combined with 489 
footprint size limit CryoSat-2 SAR data to approximately 2.6 measurements per along-track 490 
kilometer, while ICESat-2 is able to record upwards of ~50 measurements per kilometer, 491 
depending on the photon rate and resultant segment length. This higher number of samples 492 
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provides an enhanced resolution along the surface and could allow ICESat-2 to better capture the 493 
thickest and thinnest freeboards observed in the profiles. 494 
 The mean snow freeboard differences (Figure 7) display an overestimation of the snow 495 
freeboard by CryoSat-2 in Austral fall when compared to ICESat-2. Since this discrepancy is 496 
dominated more by the elevation retrieval and less from the SSH, we estimate that this difference 497 
is a product of the initial guesses used in the waveform-fitting model. As no reliable, pan-498 
Antarctic measurements of snow depth exist, we initialize the snow depth parameter using snow 499 
freeboard data and apply the zero-ice-freeboard assumption (Kurtz & Markus 2012, sec. 3.5). 500 
This assumption is likely an overestimate of the snow depth on Antarctic sea ice (Kwok & 501 
Kacimi, 2018), and a possible contributor to the positive differences observed here. The fact that 502 
the largest differences exist in Austral fall, when snow depth is typically thinnest (i.e. that the 503 
zero ice freeboard assumption is least valid), further corroborates this hypothesis. More 504 
exploration into the variability in freeboard measurements is needed that could help explain 505 
some of the negative differences observed. 506 

The geometric sampling discrepancy discussed above could also contribute to the 507 
seasonal freeboard differences observed (Figure 7). Tilling et al. (2019) found that Arctic 508 
freeboard data from the larger-footprint Envisat displayed a thick bias compared to the smaller-509 
footprint CryoSat-2, that was attributed to enhanced off-nadir ranging to leads in less-510 
consolidated ice regions. This effect would theoretically be present when comparing CryoSat-2 511 
and ICESat-2, where the difference in footprint size is greater than that of CryoSat-2 and 512 
Envisat. Paul et al. (2018, figure 11) also compared CryoSat-2 and Envisat freeboards but in the 513 
Antarctic, and showed similar differences in freeboard distributions to the ones shown in Figure 514 
6. In both cases, the smaller footprint satellite (CryoSat-2 in Paul et al. (2018) and ICESat-2 515 
here) tended to have broader freeboard distributions while the larger-footprint satellite (Envisat 516 
in Paul et al. (2018) and CryoSat-2 here) showed taller, narrower distributions. Even the 517 
seasonality of the distribution differences closely aligns between Figure 6 and Paul et al. (2018), 518 
where discrepancies are found to be largest in Austral fall. This finding leads us to hypothesize 519 
that the differing footprint sizes may contribute to the differences in freeboard distributions 520 
shown. More work is needed, however, to quantify the geometric sampling discrepancies and 521 
determine the amount that they contribute to the differences in the freeboard distributions. 522 

It is important to note that the comparisons shown in Tilling et al. (2019) and Paul et al. 523 
(2018) compare sensors of the same wavelength, while CryoSat-2 and ICESat-2 operate at very 524 
different frequencies. It is likely that scattering differences between radar and laser also 525 
contribute to the differences observed here. Each radar pulse responds to the sea ice surface 526 
differently than that from a laser, which is especially true over mixed sea ice and open water 527 
surfaces. In footprints containing both sea ice and leads, a radar pulse can get overwhelmed by 528 
the strong specular return from the water while the laser can either record a drop or a rise in the 529 
surface photon rate depending on the roughness of the water surface (Kwok et al., 2020; Ricker 530 
et al., 2014; Tilling et al., 2017). Additionally, the Ku-band backscatter coefficient varies non-531 
linearly across heterogeneous surfaces (Landy et al., 2019), which means that a radar return does 532 
not represent an average of the surfaces in the footprint, but is instead weighted based on the 533 
roughness of the surface and features present. More ground-based studies of laser and radar 534 
scattering over sea ice, similar to Stroeve et al. (2020), would be useful to better quantify the 535 
potential uncertainty brought on by the footprint-scale scattering of these sensors, which could 536 
enable better comparisons. 537 
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6 Conclusions and future work 538 

 In this work, we have outlined improvements made to the CryoSat-2 waveform-fitting 539 
retrieval algorithm put forth in Fons and Kurtz (2019) and showcased first comparisons of the 540 
snow freeboard retrievals to ICESat-2 data in the Southern Ocean. Some significant changes 541 
were implemented that improved the physical representativeness of the model, reduced the 542 
potential for anomalous convergence on local minima, and increased processing efficiency. 543 
These V2 improvements were motivated by recent publications (such as Landy et al. (2020) and 544 
Mallett et al. (2020)). We ran this improved algorithm on all CryoSat-2 data from October 2018 545 
to October 2020 in order to compare with new snow freeboard data obtained from NASA’s 546 
ICESat-2.  547 

Our results showed 2018-2020 monthly mean differences between these CryoSat-2 snow 548 
freeboard retrievals and ICESat-2 ATL10 data ranging seasonally from -0.6 to 5.6 cm; the larger 549 
of which we link to the zero ice freeboard assumption used in our model initialization. When 550 
comparing coincident along-track profiles and individual monthly grids, differences ranged from 551 
0.3 to 7.6 cm and -2.9 to 6.6 cm, respectively. We find that snow freeboard distributions between 552 
the two instruments are comparable in shape, but hypothesize that differences could arise from 553 
geometric sampling and sensor frequency discrepancies. These differences are enhanced in 554 
Austral fall, matching what was found by Paul et al. (2018) comparing Envisat and CryoSat-2. 555 
More work is needed to discern the exact role that the new ice and thin snow depths found during 556 
these months play in the differences observed, and how the wavelength discrepancies between 557 
these two sensors may also contribute. 558 
 In order to more accurately assess the retrievals and compare snow freeboard 559 
measurements from these two sensors, more - and longer - orbital overlaps with a time delay 560 
closer to zero would be beneficial. These overlaps could also help in estimating systematic 561 
uncertainty in the CryoSat-2 retrievals, which is challenging due to a considerable lack in ground 562 
truth data from Antarctic sea ice. This idea of generating more overlaps between CryoSat-2 and 563 
ICESat-2 is the premise behind the CRYO2ICE campaign, which is currently providing near-564 
coincident overlaps in the Arctic. However, since the orbital realignment in late July 2020, no 565 
CryoSat-2 and ICESat-2 overlaps (as defined above) have occurred over sea ice in the Southern 566 
Hemisphere as of December 2020. To better facilitate sea ice research in the Southern Ocean, it 567 
would be useful to adjust the orbital configuration to optimize for the Southern Hemisphere, as 568 
proposed by the CRYO2ICE project (ESA, 2018). 569 
 Moving forward, we hope this work can be useful for deriving new estimates of sea ice 570 
snow freeboard in the Southern Ocean for the length of the CryoSat-2 mission, which do not 571 
currently exist. A CryoSat-2 snow freeboard time series could be reconciled with that from 572 
ICESat and ICESat-2 to create a more than 17-year record of Antarctic snow freeboard. Further 573 
exploration and validation into the snow depth parameter produced in this forward model output 574 
is necessary, but, combined with these or other estimates of freeboard, could enable Antarctic sea 575 
ice thickness calculations from CryoSat-2. 576 
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