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Abstract

The estimation of crustal structure and thickness is instrumental in understanding the formation and evolution of terrestrial

planets. Initial planetary missions with seismic instrumentation on board face the additional challenge of dealing with seismic

activity levels that are only poorly constrained a priori. For example, the lack of plate tectonics on Mars leads to low seismicity

which could in turn hinder the application of many terrestrial data analysis techniques. Here we propose using a joint inversion

of receiver functions and apparent incidence angles, which contain information on absolute S-wave velocities of the subsurface.

Since receiver function inversions suffer from a velocity depth trade-off, we in addition exploit a simple relation which defines

apparent S-wave velocity as a function of observed apparent P-wave incidence angles to constrain the parameter space. We

then use the Neighbourhood Algorithm for the inversion of a suitable joint objective function. The resulting ensemble of models

is then used to derive uncertainty estimates for each model parameter. In preparation for analysis of data from the InSight

mission, we show the application of our proposed method on Mars synthetics and sparse terrestrial data sets from different

geological settings using both single and multiple events. We use information theoretic statistical tests as a model selection

criteria and discuss their relevance and implications in a seismological framework.
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Abstract16

The estimation of crustal structure and thickness is instrumental in understanding17

the formation and evolution of terrestrial planets. Initial planetary missions with seismic18

instrumentation on board face the additional challenge of dealing with seismic activity levels19

that are only poorly constrained a priori. For example, the lack of plate tectonics on20

Mars leads to low seismicity which could in turn hinder the application of many terrestrial21

data analysis techniques. Here we propose using a joint inversion of receiver functions22

and apparent incidence angles, which contain information on absolute S-wave velocities23

of the subsurface. Since receiver function inversions suffer from a velocity depth trade-24

off, we in addition exploit a simple relation which defines apparent S-wave velocity as a25

function of observed apparent P-wave incidence angles to constrain the parameter space.26

We then use the Neighbourhood Algorithm for the inversion of a suitable joint objective27

function. The resulting ensemble of models is then used to derive uncertainty estimates28

for each model parameter. In preparation for analysis of data from the InSight mission,29

we show the application of our proposed method on Mars synthetics and sparse terrestrial30

data sets from different geological settings using both single and multiple events. We use31

information theoretic statistical tests as a model selection criteria and discuss their relevance32

and implications in a seismological framework.33

1 Introduction34

Receiver function (RF) analysis is a powerful technique to gain information about the35

discontinuities in the crust and upper mantle beneath a single three-component seismic36

station. RFs are essentially time series that are sensitive to the structure near the receiver.37

The basic principle behind this method is that when a seismic wave is incident upon a38

discontinuity, mode conversion between the compressional (P) and shear (S) waves will39

take place in addition to the generation of reflected and transmitted waves. The resulting40

converted wave (Ps or Sp) will have a time offset with respect to its parent wave, and this41

time offset is directly proportional to the depth of the discontinuity and the velocity of42

the layers above. In addition to the direct converted waves, the multiples resulting from43

reflections and conversions between the discontinuity and the free surface can provide further44

constraints on the layer thickness and help to resolve the depth-velocity trade-off. The RF45

can be obtained by deconvolving the vertical component from the radial component of a46

teleseismic event recorded on a three-component seismometer (Langston, 1979; Owens et al.,47

1987; Ammon, 1991). Since only a small percentage of the incident energy is converted at a48

discontinuity, it is difficult to observe these conversions in a single seismogram. A number of49

RFs can instead be used to measure the crustal thickness and average vP /vS ratios by H-k50

(crustal thickness - average vP /vS) stacking for individual stations (Zhu & Kanamori, 2000;51

Helffrich & Thompson, 2010) or imaging by CCP (Common Conversion Point) stacking of52

data from many stations (Dueker & Sheehan, 1997). This, however, requires assumptions53

on the velocity structure.54

One method to obtain a detailed velocity structure is to directly invert the calculated55

RFs using linearised iterative procedures, but Ammon et al. (1990) showed that such in-56

versions of RF contain an inherent trade-off between the depth to a discontinuity and the57

velocity above. The primary sensitivity of the RF inversion is to velocity contrasts and rela-58

tive travel time, not to absolute velocity. This lack of sensitivity to absolute velocity results59

from the relative S - P travel time constraints along with the limited range of horizontal60

slowness contained in the data (Ammon et al., 1990). Thus RF data sets are generally61

inverted jointly with other independent data sets that provide additional constraints on ab-62

solute shear wave velocities like surface wave dispersion curves (e.g. Du & Foulger (1999);63

Julia et al. (2000)), or Rayleigh wave ellipticity (Chong et al., 2016). One such relation64

which has not been heavily exploited is between apparent S-wave velocities and P-wave65

polarisation. The polarisation of body waves has been traditionally used in seismology to66
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study the anisotropy of crustal and upper mantle structures (Schulte-Pelkum et al., 2001;67

Fontaine et al., 2009). But the P-wave polarisation can also be used to constrain the near68

surface shear wave speed. Svenningsen & Jacobsen (2007) showed that the amplitudes of69

the vertical (Z) and radial (R) components of the P-receiver function at zero time is directly70

related to the polarisation of P-waves. Deconvolution removes the complex waveform of the71

incoming P-waves, which dominate the Z component. Hence the Z RF is an approximate72

zero-phase spike with arrival instant at exactly t=0, where the time is measured relative to73

the P-wave arrival. This can be used to estimate the apparent P-wave incidence without74

influences from the P-wave coda. Further, filtering at successively long periods, a frequency75

dependent apparent shear wave velocity profile can be obtained (Svenningsen & Jacobsen,76

2007; Knapmeyer-Endrun et al., 2018) which can be used as an effective independent data77

set to be jointly inverted with the RFs.78

Svenningsen & Jacobsen (2007) used a linearised inversion of apparent S-wave velocity79

curves and demonstrated its independence of the starting model. Hannemann et al. (2016)80

applied the method to an OBS data set and used a grid search method concluding that81

the method is usable for single station estimates of the local S-wave velocity structure82

beneath the ocean bottom. Schiffer et al. (2016) used an iterative least squares method83

to jointly invert apparent velocity curves and RFs utilising a minimum number of layers84

(6-8). Knapmeyer-Endrun et al. (2018) used a grid search over parameter space to invert85

the S-wave velocity curve for crustal structure at several Earth stations with varying geology86

and synthetic Mars data. It has also been shown that a priori S-wave velocity information87

deduced from P-wave polarisations can be useful when inverting RF waveforms (Peng et88

al., 2012). Park & Ishii (2018) further showed that the S-wave polarisation is sensitive to89

both the compressional and shear wave speeds, and successfully combined P- and S-wave90

polarisation directions measured by principal component analysis to derive the distribution91

of near-surface P- and S-wave speeds in Japan.92

In this paper, we use a modified version of the Neighbourhood Algorithm (Sambridge,93

1999a; Wathelet, 2008) for the joint inversion of receiver functions and apparent S-wave ve-94

locity profile. The Neighbourhood Algorithm (NA) is a derivative-free optimisation method95

which uses a pseudo-random trajectory in exploring the parameter space. Rather than96

making inferences on model parameters using only the lowest-misfit model, it provides the97

option of using the suite of all generated models for this purpose. With a well sampled98

parameter space, an ensemble algorithm also benefits from the possibility of a probabilistic99

solution with full uncertainty estimates. In contrast with earlier studies on this topic which100

are predominantly based on large amounts of available data, we show how this method can101

be used with limited data sets comprising only a few events. This becomes crucial in the102

context of planetary seismology where the amount of data may be limited. For example,103

it can be used to study the crustal structure of Mars using data from the InSight mission104

(Lognonné et al., 2019). Another problem associated with determining the crustal structure105

is the number of inter-crustal layers to be inverted for. We address this problem using a two-106

fold approach: we start by inverting for a model of low complexity and gradually increase it107

till no significant velocity contrast along with misfit reduction is observed, with major dis-108

continuities being adequately represented by the model. We then use Akaike weights derived109

from AIC (Akaike Information Criterion) values (Akaike et al., 1973) for all of these models110

as a selection criteria. We apply this joint inversion scheme on synthetic seismograms for111

Mars and selected terrestrial data.112

2 Datasets113

2.1 Mars Synthetics114

In order to demonstrate and verify our proposed method, we first use synthetic seis-115

mograms for Mars that are generated using Greens Function (GF) databases prepared for116

a suite of apriori 1D velocity models with varying crustal thicknesses, seismic wave speeds,117

–3–



manuscript submitted to Earth and Space Science

densities, mantle compositions and aerotherms. These apriori models are obtained by the118

inversion of bulk chemistry, mineralogy and geotherm, following the approach described in119

Khan & Connolly (2008), Connolly (2009), and Khan et al. (2016). The GF databases are120

computed using a 2.5D axis-symmetrical spectral element code, AxiSEM (Nissen-Meyer et121

al. 2014), and are publicly available within the Marsquake Service (MQS) at ETH Zurich122

((Ceylan et al., 2017), http://instaseis.ethz.ch/marssynthetics/). Synthetic broadband seis-123

mograms can be calculated from these GF databases for arbitrary moment tensors and124

source receiver combinations using the Instaseis package (van Driel, Krischer, et al., 2015).125

These simulations are based on full numerical solutions of the visco-elastic wave equation126

and include the effects of attenuation, are accurate down to a period of 1 s, and allow for a127

total simulation duration of 30 minutes.128

Since a large variation in crustal thickness is expected across Mars, a thin (30 km)129

and thick (80 km) crust is employed to create the initial models, both with a 10 km thick130

upper crustal layer. Further details of these models can be found in Ceylan et al. (2017).131

The thin and thick crusts with different velocity contrasts at the Moho represent 1-D global132

end-member models, rather than what is expected beneath the InSight landing site. In133

this paper we have used two thin crust models (C30VH AKSNL, C30VL AKSNL) and one134

thick crust model (C80VL AKSNL) for the purpose of demonstrating the method. For all135

of these models, we calculated synthetic seismograms and receiver functions at epicentral136

distances between between 15◦ and 180◦ in 1◦ increments. Assuming normal faulting, a dip137

slip source at an angle of 45◦ and at a depth of 5 km due north of the seismometer was used138

to generate the synthetic waveforms. Since the synthetics do not have any added noise, we139

assume a reasonable 25% standard deviation on mean absolute values of RFs and VS,app
140

whenever appropriate for likelihood calculations. We demonstrate the results of applying141

our method first on a single event and then multiple events together.142

2.2 Terrestrial Data143

To verify how the algorithm works in a real setting, we analysed data from two sta-144

tions in Central Europe - BFO in Germany (Federal Institute for Geosciences and Natural145

Resources, 1976) and SUW in Poland (GEOFON Data Centre, 1993). Reference values of146

crustal thickness for these stations were taken from the Moho depth map of the European147

plate (Grad et al., 2009) and Knapmeyer-Endrun et al. (2014). Because these sites have148

known differences in crustal structure, this gives us the opportunity to test how the method149

works in a range of possible scenarios and in the presence of noise. Station BFO is located on150

the thinned crust of the Upper Rhine Graben which is a part of the European Cenozoic Rift151

system (Ziegler, 1992). In contrast to this, station SUW is situated on the relatively thick152

East European Craton which is the core of the Baltica proto-plate and occupies the north-153

eastern half of Europe. It is characterized by a thick three-layer crust with an additional154

fast lower crustal layer (Grad et al., 2003). The East European Craton is of Precambrian155

origin and overlain by a young thin sedimentary cover (Bogdanova et al., 2006) which leads156

to strong reverberations in the P-receiver function for SUW (Wilde-Piórko et al., 2017)157

3 Method158

3.1 Calculation of Receiver Functions159

The teleseismic P-wave receiver function represents the structural response near a160

recording station to the incoming teleseismic P-wave. It can be obtained by removing the161

source wavelet, propagation effects and the instrument response from the vertical, radial and162

transverse waveforms. This is generally done by deconvolving the vertical component from163

the radial and transverse components in a process called source equalisation (Vinnik, 1977;164

Phinney, 1964). Several methods have been described in the literature for this deconvolu-165

tion process (e.g., see Vinnik (1977), Phinney (1964), Langston (1979), Owens et al. (1987),166

Kind et al. (1995)) Here we use a time-domain Wiener filter for deconvolution as described167
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by Hannemann et al. (2017). The synthetic seismograms do not require the removal of any168

instrument response, but they are filtered between 1 Hz and 50 s, 1 Hz being the upper169

frequency limit of the synthetics. Additionally, due to the alignment of source and receiver,170

these data are already in the ZRT system. For the terrestrial data, we first remove the171

instrument response from all components and then filter the seismograms between 5 Hz and172

50 s. The ZNE coordinate system is then rotated into ZRT using back-azimuths determined173

by polarization analysis (Jurkevics, 1988) to obtain radial and transverse components. The174

Wiener filter is determined such that it transforms the P-wave signal on the vertical com-175

ponent into a band-limited spike. This filter is then applied to all components of the signal176

to finally obtain the RF with the spike positioned at the centroid of the signal.177

3.2 Apparent S-wave velocity178

Following the relationship between true and apparent incidence angles (Wiechert, 1907),179

it can be shown that the apparent incidence angle is sensitive to absolute shear wave velocity180

vS,app
= sin(0.5ip)/p

where ip denotes the apparent P-wave incidence angle and p denotes ray parameter. Sven-
ningsen & Jacobsen (2007) proposed a method to directly estimate the apparent incidence
angle using RFs instead of the raw waveform data which in turn emphasised the true S-wave
velocity information contained in them. We follow a similar procedure and estimate the ap-
parent P-wave incidence angle from the amplitudes of vertical and radial receiver functions
at time t=0 using the relation

tan ip =
RRF (t = 0)

ZRF (t = 0)

Now estimating īp as a function of low pass Butterworth filter period (T) results in a vS(T )181

curve which emphasises the absolute S-wave velocity variation with depth. Larger T implies182

more smoothening and thus more multiples at later times influence the values of the filtered183

receiver functions at t=0. In contrast with the squared cosine filters used by Svenningsen &184

Jacobsen (2007), we use a Butterworth filter which has twice the corner period as a cosine185

filter. For each trace we measure the dominant period of the spike in the ZRF and discard186

the values of filter periods smaller than that. We show cases with both single and multiple187

events. When multiple events are used at varying epicentral distances, we calculate the188

median of the apparent S-wave velocity curve at each sample period.189

3.3 Inversion190

For the purpose of this study, we have employed a modified version of the Neighbour-191

hood Algorithm (NA) (Wathelet, 2008) for the joint inversions of RF and apparent S velocity192

curves. Being a derivative free optimisation algorithm and taking into account the low di-193

mensionality of our problem, NA seems to be a good choice because of its simplicity (two194

tuning parameter scheme) and lack of dependence on starting models (Sambridge, 1999a).195

Moreover, an ensemble of models rather than a single model can be used to make robust196

statistical inferences about the model parameters. The modifications by Wathelet (2008)197

further implement dynamic scaling of model parameters and allows to define irregular limits198

to the searchable parameter space. The idea behind the NA is to start with an initial coarse199

sampling of the parameter space, then select the regions with lowest misfits and continue200

to resample these regions such that the heaviest sampled regions correspond to the models201

which best fit the data. In each iteration, the NA uses nearest-neighbour regions defined by202

Voronoi cells to partition and search the parameter space. The misfit is assumed to be con-203

stant within each of these Voronoi cells, and with each iteration, sampling is concentrated204

on the cells with lower misfit relative to the rest of the cells. The algorithm relies on only205

two control parameters : Ns - number of new samples to generate at each iteration and206
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Nr - number of promising models to select for further sampling. The ratio Ns/Nr controls207

whether the algorithm behaves exploratively or exploitatively (Sambridge, 1999a,b).208

We use the L2 norm in order to measure how well a given model with a particular set
of parameters can reproduce the given data quantitatively

Φ(m) =

∥∥∥∥g(m)− dobs
σd

∥∥∥∥2

where g(m) is the estimated data and σ2
d is the estimated variance of the data noise.

In this study, the noise has been assumed uncorrelated for simplicity and thus a simple
Euclidean distance can be used. For a joint inversion of receiver function and apparent
S-wave velocity, the objective function is defined by the linear combination of misfits of the
weighted receiver functions ΦRF and the apparent velocity curve ΦVapp

, using the L2 norm,
thus takes the form

Φ(m) = αΦRF + ΦVapp
(1)

The weighting constant α is tuned manually by sample forward runs prior to the inversion209

process such that both the individual misfits are of the same order of magnitude. As210

mentioned before, the two parameters that control the NA need to be tuned depending on211

the problem and the style of sampling needed. For a more explorative search that is robust212

against local minima, we perform 1200 iterations in each inversion run with 300 models213

produced at each iteration (ns) and 100 cells re-sampled at each iteration (nr), resulting214

in an ensemble of ∼ 360000 models per run. Each inversion was repeated several times to215

test the stability of the results. High ns/nr ratio ensures faster convergence while a high216

number of initial models (ns0 = 3000) ensures highly explorative behaviour.217

Knapmeyer-Endrun et al. (2018) compared several algorithms used in literature for the218

computation of receiver functions before choosing the forward calculation implemented by219

Shibutani et al. (1996). The algorithm calculates the impulse response of a layer stack in the220

P-SV system. We then convolved the resulting synthetic Z- and RRFs with the observed221

ZRFs to account for the observed complexity and waveform widths. Once the RFs are222

obtained, we can straight away calculate the apparent S wave velocities using the procedure223

described in the last section. Density was not considered to be a parameter to be inverted224

for and was calculated using Birch’s law (Birch, 1961), while the S-wave velocity and the225

vP /vS ratio were allowed to vary. Furthermore, the S-wave velocity was constrained to226

increase with increasing depth. The fact that a single forward calculation can be performed227

in a matter of seconds and the waveform complexity matches that of real data makes this228

algorithm suitable for the propose of this study.229

3.4 Bayesian Formulation230

The Bayesian formulation allows to account for prior knowledge of the parameters of231

our model, provided that this information can be expressed as a probability distribution232

ρ(m). The prior corresponds to the knowledge that we have about our system, for example233

from previous studies. As new data is available, often in the form of likelihoods, this prior234

information can then be updated using Bayes’ rule. This results in what is known as235

the posterior distribution for these unknowns - a distribution over the full range of these236

parameters.237

3.4.1 Computing average Likelihoods238

The likelihood ρ(dobs|m) is a function of the model parameters that describes the
goodness of fit of a model to the observed data. Asssuming a Gaussian error distribution
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for a given misfit measure, Φ(m), the likelihood function is defined as :

ρ(dobs|m) ∝ exp
(
−Φ(m)

2

)

As mentioned before, the NA initially starts with a coarse sampling of the parameter239

space, and eventually the algorithm guides the sampling such that the best fitting regions of240

the parameter space are also the most heavily sampled regions. This therefore introduces a241

bias in the sampling of the parameter space which otherwise could be used to compute the242

full uncertainty from the ensemble of acceptable solutions. Sambridge (1999b) demonstrates243

that this could be achieved by a Gibbs re-sampling of the output ensemble which essentially244

concentrates on the low misfit regions and approximates the true posterior density by an ap-245

proximate one. Here we show a simple alternative method to compute marginal histograms246

from the biased samples based on binning model parameters. In essence, each model in the247

ensemble has a pair-wise distance to every other model which can be calculated using multi-248

dimensional scaling. Binning model parameters within a small distance and computing249

average likelihoods then approximates the true posterior density as a histogram.250

Consider N sample models m(1), ...,m(N) in a K-dimensional space, distributed accord-251

ing to an (everywhere positive) unknown distribution ν(m) . Assume that ν(m) is close to252

the distribution, f(m), and that we wish to compute the marginal histograms fk(mk) from253

the samples.254

The height h[a,b] of the histogram column for an interval [a,b] must (for N → ∞ ) be255

proportional to the marginal probability Pk(a < mk < b). Hence,256

h[a,b] ≈
∫ b

a

fk(mk)dmk

except for a normalization factor. This can be re-written as a mean value (expectation)257

of the ratio fk(mk)
ν(mk) over the interval [a, b] with respect to ν(mk):258

h[a,b] ≈
∫ b

a

fk(mk)

ν(mk)
ν(mk)dmk

and since the sample models m(1), ...,m(N) are distributed according to ν(m) , we have259

the approximation:260

h[a,b] ≈
1

N

∑
{i|a<m(i)

k <b}

fk(m(i))

ν(m(i))

This expression can be used when fk can be evaluated in the sample points, and when261

we can evaluate ν(m(i)) from the density of sample points. The density at m(i) can, e.g.,262

be evaluated over a cube C with edge length ∆m, centered at m(i):263

ν(m(i)) =
1

(∆m)K
Nc

where NC is the number of sample points in C264
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3.4.2 Priors265

We impose a minimal prior knowledge on all the parameters by using the uniform266

distribution as our choice of priors. The prior for each parameter takes a constant value267

over a defined interval. For example, if X is a model parameter which can take values over268

the interval ∆X = (Xmax −Xmin), we define the prior probability density as :269

ρ(xi) =

{
1

∆X , if Xmin ≤ xi ≤ Xmax

0, otherwise

We can now apply Bayes’ rule (Bayes, 1763) to combine the likelihood of observing the data270

with the prior distribution and to give the posterior probability density function:271

ρ(m|dobs) ∝ ρ(dobs|m)ρ(m)

Note that the denominator in the Bayes’ rule, ρ(dobs), which is a sum over all possible272

models has been treated as a constant in this work, leading to a proportionality sign in the273

equation.274

3.5 Model Selection275

We use Akaike’s Information Criterion (AIC) (Akaike et al., 1973) as a model selection
criterion, which essentially gives the Kullback-Leibler divergence between a candidate model
and the true model as

AIC = 2k − 2ln(L)

where k and L denote the number of model parameters and the value of maximum likelihood
of the model, assuming Gaussian errors. The first term in this equation is a measure of fit
between the synthetic model and the true model representing the reality; the second term
penalizes the order of complexity of this synthetic model. While raw AIC values themselves

have no meaning, the quantity exp
(
AICmin−AICi

2

)
is an estimate of the relative likelihood

of the ith model. These model likelihoods can then be normalized to obtain Akaike weights
wi(AIC)(Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004),

wi(AIC) =
exp{−0.5∆i(AIC)}∑K
k=1 exp{−0.5∆k(AIC)}

which can be interpreted as the probability that the ith model is the best (i.e., it minimizes
the estimated information loss (Anderson & Burnham, 2004)). The strength of evidence in
favour of one model over the other can then also be obtained by dividing their respective
Akaike weights. When the number of samples is small, a correction factor is added to the
above equation giving the corrected AIC (AICc) values

AICc = 2k − 2ln(L) +
2kn

n− k − 1

Here k denoted the number of model parameters and n the number of independent samples.276

Since the samples of a seismogram are generally correlated, with the correlation length being277

proportional to sampling frequency, we instead use the product of the Nyquist rate and the278

signal length as a measure of the number of independent samples (van Driel, Wassermann,279

et al., 2015). For a band limited signal, the Nyquist rate is given by 2 ∗ (fhigh− flow) which280

gives 1.96 Hz and 9.96 Hz for synthetics and terrestrial data, respectively (fhigh and flow281

denote the upper and lower frequency limits). Anderson & Burnham (2004) suggest using282

AICc when the ratio between the sample size n and the number of model parameters k283

is low (< 40). We will therefore use AICc when dealing with synthetic data and AIC for284

terrestrial data.285
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Figure 1. Result for thin crust model C30VH AKSNL and event distance 70◦ (a) 1-D velocity

profile. The light gray lines represent traversed models outside the maximum misfit range. The

blue dashed line represents the true model. (b) Fit to vS,app (c) vP /vS ratio as a function of depth

(d) Fit to receiver function waveforms. The blue dashed lines denote the observed data and the

green dash-dotted lines represent the uncertainty in observations.

Figure 2. Same as Figure 1 for C80VL AKSNL. Event distance is 40◦.

4 Results286

4.1 Mars Synthetics287

Figures 1 and 2 show the result of applying the method on single events for a priori Mar-288

tian velocity models with a thin fast (C30VH AKSNL) and a thick slow (C80VL AKSNL)289

crust, respectively. Since noise is not a limiting factor here, in both cases, the residual in-290

cludes the misfit for the complete waveform up to 30 s and apparent S wave velocity to 117291

s. Each inversion was repeated 3 times to test the stability and the results were concate-292

nated. The plots include all models within a maximum misfit value, ranked and color coded293

according to misfit with black models being the best fitting solutions. This maximum misfit294

value is derived such that it encompasses the best 25% of all the models in the ensemble.295
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Figure 3. Model probabilities based on AICc values for (a) C30VH AKSNL (b) C80VL AKSNL

(c) C30VL AKSNL and AICc values for (d) BFO (e) SUW

Adding a third layer to the model parameterization did not produce any considerable296

changes to the result. For C30VH AKSNL the additional third layer produced a velocity297

contrast of around 0.8 % against the layer adjacent to it with an insignificant misfit drop,298

while C30VH AKSNL produced a similar low velocity contrast of around 0.45 %. This shows299

that an additional layer is not warranted by the data. This is also confirmed numerically by300

our model selection criteria. Figures 3(a) and (b) show the respective probabilities obtained301

from AICc values for 1, 2, 3 and 4 layer models with constant velocity over a half space for302

C30VH AKSNL and C80VL AKSNL respectively. For C30VH AKSNL, there is a higher303

probability ( ∼ 16%) of explaining the data with just a single layer than for C80VL AKSNL.304

This is consistent with a weak Moho signal produced by the small velocity contrast. Since305

the 2 layer model has the highest probability (and thus minimum AIC), we conclude that306

it is the optimum model that explains this data set. This is also in agreement with the true307

models indicated by the blue dashed lines in figures 1 and 2. The apriori range for each308

parameter for both 2 layer and 3 layer cases are shown in Figures 4 and 5.309

The top layer crustal S-wave velocity and transition depth is well resolved for both310

the representative end member models. For C30VH AKSNL, there is a high uncertainty in311

the Moho depth which in turn escalates the uncertainty in the S-wave velocity in the lower312

crust. This might be explained as the direct converted phase and the multiples produced313

by the intra-crustal discontinuity at 10 km depth are clearly visible in the data while the314

Moho conversion for the thin crust model is not readily recognizable. This is in contrast to315

C80VL AKSNL where the direct converted phase and the multiples produced at the Moho316

are clearly visible. The mantle S-wave velocities on the other hand are better constrained317

for C30VH AKSNL than for C80VL AKSNL. This is explained by the vS,app
curves for the318

models. The vS,app
curve for C80VL AKSNL does not contain any information on the upper319

mantle velocity within its period range whereas in the vS,app
curve for C30VH AKSNL, the320

velocities converge to the upper mantle velocity of 4.1 km/s for periods longer than ∼ 50 s.321

This clearly demonstrates the advantage of inverting receiver functions along with frequency322

dependent apparent S-wave velocities.323

In both cases, the vP /vS ratio is also fairly well constrained for the top two layers by324

the method, as can be seen in the sub-figures (d). This is in agreement with Sambridge325

(1999a), where it was shown that the vP /vS ratio from the NA inversion is better resolved in326

the top layers than for the deeper ones. The thickness of the layers and their corresponding327

S-velocities are also better constrained than the vP /vS ratio. For C80VL AKSNL, the328

vP /vS ratio of the half-space is not well resolved and varies across the whole model range329
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Figure 4. C30VH AKSNL : 1D marginal posterior densities of depth, velocity and vP /vS ratio

for each layer. The half-space has no depth parameter. The red dashed line denotes the mean value

and the black dotted line represents the true parameter value.

Figure 5. Same as Figure 4 for C80VL AKSNL

investigated, whereas for C30VH AKSNL, it is adequately resolved for all the layers even330

though the variance increases with depth.331

To test how the method performs when multiple events are available, a median vS,app332

curve was calculated for model C30VL AKSNL from the RFs between 40◦ to 90◦ where333

the the vS,app
curves are similar for each distance (Knapmeyer-Endrun et al., 2018). This334

median vS,app
curve was then jointly inverted with 6 receiver functions selected at epicentral335

distances of 90◦, 80◦, 70◦, 60◦, 50◦ and 40◦. The resulting profile along with the waveform336

fit for each RF and vS,app curve is shown in Figure 6. The velocity profile lies well within337

the range of the uncertainty and the receiver function at each distance is also well modelled.338

The variance in velocity again increases with depth and is maximum for the mantle. The339
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Figure 6. Example of multiple inversions for C30VL AKSNL (a) 1-D velocity profiles. The

light gray lines represent traversed models outside the maximum misfit range. (b) Fit to receiver

function waveforms at epicentral distance of (i)90◦ (ii) 80◦ (iii) 70◦ (iv) 60◦ (v) 50◦ and (vi) 40◦

(c) Fit to the median vS,app (d)vP /vS ratio as a function of depth. The blue dashed curves denote

the observed data and the green dash-dotted lines represent the data uncertainty.

median vS,app
curves are also close to the observed curve, even though the kinks between 2 -340

3 s and 7 s appear to be slightly sharper than in the observed curve. Unlike C30VH AKSNL,341

C30VL AKSNL has a shorter vS,app curve extending to 82 s. This restricts the retrieval of342

S-wave velocity information from longer periods and has the effect of an increased variance343

in the upper mantle velocity. The Moho on the other hand is well resolved due to a high344

impedance contrast which results in a direct phase at around 6 s for RFs at 40◦ and 50◦ ,345

and a clear multiple at around 19 and 24 seconds for RFs at 90◦, 80◦ and 70◦. Looking at346

the probability densities we see that using more data has the effect of an overall decrease in347

uncertainty levels. From Figure 3(c), we see that the data is best explained by a 2 layer model348

which has the highest value for wj(AICc). To check whether there is a decrease in the depth349

velocity trade off, we further compared the density plots of Moho depth and the velocity350

above with the results from a direct receiver function inversion which did not employ vS,app
351

as an additional constraint. Here we used the best 25% models of the respective ensembles.352

It is evident from the Figure 8 that along with a gain in accuracy, there is a considerable353

reduction in trade-off between depth and velocity in the case of the joint inversion. For an354

application of the method to synthetic data with added noise see Drilleau et al. (2020).355

4.2 Terrestrial Data356

The examples above from synthetic data show that in principle the joint inversion357

of apparent S-wave velocity with receiver functions serves as a useful complement. This358

section presents inversion results for terrestrial data where the inherent data noise becomes359

an important consideration and has a strong influence on the resulting model parameters360

and their associated uncertainties. Figure 9 (a) shows the noise levels computed for stations361

BFO (green) and SUW (blue) using the pre-event noise of the radial component of the362

receiver functions since they should ideally be independent and non-correlated. For each363

station we calculate the mean of the pre-event noise of the radial component of each receiver364

function from all the events considered here for multiple inversions and bin them according365

to amplitude, creating a distribution from which noise parameters can be estimated. The366

variance in the noise level was found to be the higher for SUW with each roughly following367

a Gaussian distribution. Similarly Figure 9 (b) shows the noise characteristics for the vS,app368

curve for both the stations calculated by binning of residuals from the median curve.369

Selection of the model complexity that best describes the data is again done using the370

procedure described in the previous section. Starting at a low degree, we gradually increase371
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Figure 7. Same as Figure 4 for C30VL AKSNL

Figure 8. Comparison of depth velocity trade off for (a) Joint inversion of RF with vS,app (b)

RF inversion without vS,app . The grey dashed lines denote the true values of depth and velocity.

the complexity until the parameterization produces no significant deviation in profile and372

misfit reduction. We then compare the corresponding relative likelihood values and choose373

the maximum.374

The results for seismic station BFO are summarized in Figure 10. From the velocity375

profile (subplot (a)) we can see that the data can be sufficiently described by a minimum376

parameterisation comprising 3 layers with constant velocity over a half-space - a low velocity377

top layer of sediments, an upper crustal layer extending from the base of the sediments378

to a depth of ∼ 7 km and a thick lower crust that extends from 7-8 km to the Moho379

at ∼ 25 km depth. Various studies found the Moho depth between 23.8 and 27 km for380

station BFO (Geissler et al., 2008; Knapmeyer-Endrun et al., 2014; Grad et al., 2009).381

The mantle velocities are also adequately constrained by the data showing a maximum382

probability for mantle vS velocity of 4.6 km/s. The results for the S-wave velocity model383

also show close agreement with Svenningsen & Jacobsen (2007) (shown in blue dashed lines)384

and Knapmeyer-Endrun et al. (2018) (shown in green dashed lines). Since Svenningsen &385

Jacobsen (2007) used the apparent velocity curve up to 0.2 s in contrast to 1.3 s allowed by386

our data-set, the top sediment layer could be better resolved to thickness values below 1km.387
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Figure 9. Noise characteristics of (a) RF shown as a frequency distribution of amplitude cal-

culated from radial component of receiver functions for different stations (b) vS,app calculated as a

frequency distribution of error from the median curve.

Figure 10. Example of joint inversions for terrestrial data from station BFO (a) 1-D velocity

profiles. The blue and green dashed line represents the results from Svenningsen & Jacobsen (2007)

and Knapmeyer-Endrun et al. (2018). The light gray lines represent traversed models outside the

maximum misfit range.(b) Fit to receiver function waveforms at epicentral distance of (i) 82◦ (ii)

79◦ (iii) 70◦ (iv) 51◦ (v) 45◦. The blue dashed curve denotes the observed radial RFs and green

dashed lines represent the standard error. The dark blue dotted line at 15s shows the end of the

misfit window. (c) Fit to the median vS,app (d) vP /vS ratio as a function of depth

Subplots (b) and (c) show the corresponding fits to the receiver function for each event and388

a median vS,app curve. Except for the RF waveform in event (i) where the phase at ∼ 10 s is389

over-pronounced, the models fit the data from other events adequately well. The modelled390

vS,app
curve also follows the data closely at all periods, including the sharp kink around ∼ 2391

s. At longer periods after ∼ 50 s, the velocities seem to converge to ∼ 4.8 km/s providing392

a tight constraint on the upper mantle which explains the low uncertainty seen in the the393

half space vS .394

Station SUW is located on the East European craton and sits on a relatively thicker395

crust than BFO. Using a similar parameterization as before with 3 layers including a top396

sedimentary layer results in a subsurface velocity profile shown in Figure 11 (a). The model397

predicts the Moho to be located at a depth of ∼ 45 km with the highest probability density398

and an intra-crustal discontinuity at 15 km. Previous studies have estimated the Moho399

depth to lie between 41 km and 46.8km for station SUW (Geissler et al., 2008; Knapmeyer-400

Endrun et al., 2014; Grad et al., 2009). The thickness and vS of the sedimentary layer,401

however, are not well constrained with the uncertainty for vS being the highest amongst all402

all layers. This is also evident from the modelled vS,app
curves (subplot (c)) which show a403
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Figure 11. Same as Figure 10 for station SUW (b) shows the fit to receiver function waveforms

at epicentral distances of (i) 82◦ (ii) 77◦ (iii) 72◦ (iv) 68◦ (v) 64◦ (vi) 60◦

slight deviation from the observed curve at short periods. Such a deviation could indicate404

that the sedimentary layer is more complex than our parameterization which models it405

simply as layer with constant velocity. An increase in the model complexity (e.g., modelling406

the sedimentary layer with a velocity gradient) could lead to a better fit here as suggested407

by Knapmeyer-Endrun et al. (2018). Further, the missing vS information at long periods in408

the observation leads to an increase in uncertainty in the upper mantle velocity which shows409

the highest probability density at a value of ∼ 4.9 km/s. The modelled RFs shown in Figure410

11 (b) clearly show the ringing effect with gradual decrease in amplitude with time caused411

by the thin sediment layer. These strong reverberations produce high amplitude oscillations412

in the early part of the signal and completely masks the direct Moho conversion at ∼ 6s.413

This example in particular shows that caution is needed to interpret receiver functions with414

a sedimentary layer in terms of subsurface structures.415

Figures 3(d) and 3(e) show the respective model probabilities obtained from AIC values.416

We see that both the data can be best explained by 3 layer models with constant velocity417

over a half space. However, there is still ∼ 9% probability for a 4 layer model in both cases.418

The resulting values for vP /vS for each layer are also shown in suplots (d) in Figures 10 and419

11. Unlike the case for synthetics, a high variation is observed here between the layers. In420

all the examples, the top sediment cover shows the highest uncertainty. The first and second421

layers are better resolved. The average vP /vS values estimated from RF analysis in previous422

studies are between 1.69 and 1.75 for BFO (Geissler et al., 2008; Knapmeyer-Endrun et al.,423

2014)) and between 1.81 and 1.84 for SUW. We find that the mean values from our results424

are broadly similar with values of 1.67 and 1.82, respectively.425

5 Summary and Conclusion426

In the context of the InSight mission, receiver function analysis has been envisioned427

as a likely method to study the crustal structure of Mars (Panning et al., 2017). In order428

to diminish the depth-velocity trade off inherent in travel time methods, we propose to429

use the information provided by apparent P-wave incidence angles derived from P-receiver430

functions as an additional constraint (Knapmeyer-Endrun et al., 2018). In this study, we431

present a method for joint inversion of receiver functions and frequency dependent apparent432

S-wave velocity curves using the Neighbourhood Algorithm. This results in an ensemble433

of model solutions along with their respective misfit values which can in turn be used to434

compute the full uncertainty of the model parameters. We then develop such a probabilistic435

solution using the resultant ensemble and apply this method to various data sets. Further,436

determining the sufficient number of layers for an optimal model presents another challenge437

in waveform inversion. We tackle this by gradually increasing the number of layers till adding438
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Figure 12. Same as Figure 4 for the inversion of data from station BFO

Figure 13. Same as Figure 4 for the inversion of data from station SUW

yet another produces no significant change, and then using AIC as a statistical inference439

test on all possible model families.440

The method is successfully applied to synthetic seismograms generated for three aprori441

Mars subsurface models. Here we used both single and multiple events, and the uncertainty442

in the retrieved model parameters decreases with an increase in the size of the data set. We443
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then applied the method on terrestrial data from three different seismic stations located in444

different geological settings. The resulting subsurface models were in good agreement with445

the results obtained in previous studies using diverse approaches which corroborated the446

efficacy of the method. Some aspects in applying this method to InSight data do warrant447

attention. The effect of location uncertainties will considerably affect the calculation of448

vS,app
. Knapmeyer-Endrun et al. (2018) showed that the biggest affect in vS,app

can be449

caused by an uncertainty in distance and back-azimuth. A ±25% uncertainty in distance450

could yield an uncertainty of ±1 s/deg of the ray parameter for the P phase, while an451

erroneous back-azimuth will lead to a decrease in estimated vS values at shorter periods.452

The thickness and velocity of a thin regolith layer can also be quite difficult to resolve if453

there is missing or erroneous information at short periods, as was the case in our study of454

terrestrial data. Another factor that limits the information that can be obtained from vS,app455

on Mars is long period noise and effects of glitches (Scholz et al., 2020). Knapmeyer-Endrun456

et al. (2018) suggests that long period noise will affect longer periods while it has been457

observed that glitches can contaminate any part of the signal. Unlike the synthetics and458

terrestrial data used in this study, the vS,app
curve obtained from actual Mars data could be459

limited to much shorter periods. This would then increase the uncertainty in the retrieved460

vS values at larger depths. A similar situation was encountered in Drilleau et al. (2020).461

In our previous study, Lognonné et al. (2020), we have been able to constrain the S-wave462

velocity and depth for the first inter-crustal layer of Mars between 1.7 to 2.1 km/s and 8463

to 11 km, respectively, using such a limited vS,app
curve while further work involving the464

entire crust is in preparation. It is therefore important that all these factors are correctly465

accounted for.466
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