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Abstract

Water storage plays an important role in mitigating heat and flooding in urban areas. Assessment of the water storage capacity
of cities remains challenging due to the inherent heterogeneity of the urban surface. Traditionally, effective storage has been
estimated from runoff. Here, we present a novel approach to estimate effective water storage capacity from recession rates
of observed evaporation during precipitation-free periods. We test this approach for cities at neighborhood scale with eddy-
covariance based latent heat flux observations from fourteen contrasting sites with different local climate zones, vegetation cover
and characteristics, and climates. Based on analysis of 583 drydowns, we find storage capacities to vary between 1.3-28.4 mm,
corresponding to e-folding timescales of 1.8-20.1 days. This makes the storage capacity at least one order of magnitude smaller
than the observed values for natural ecosystems, reflecting an evaporation regime characterised by extreme water limitation.
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Abstract36

Water storage plays an important role in mitigating heat and flooding in urban areas.37

Assessment of the water storage capacity of cities remains challenging due to the inher-38

ent heterogeneity of the urban surface. Traditionally, effective storage has been estimated39

from runoff. Here, we present a novel approach to estimate effective water storage ca-40

pacity from recession rates of observed evaporation during precipitation-free periods. We41

test this approach for cities at neighborhood scale with eddy-covariance based latent heat42

flux observations from fourteen contrasting sites with different local climate zones, veg-43

etation cover and characteristics, and climates. Based on analysis of 583 drydowns, we44

find storage capacities to vary between 1.3–28.4 mm, corresponding to e-folding timescales45

of 1.8–20.1 days. This makes the storage capacity at least one order of magnitude smaller46

than the observed values for natural ecosystems, reflecting an evaporation regime char-47

acterised by extreme water limitation.48

Plain Language Summary49

Urban water storage plays an important role in mitigating urban flooding and af-50

fects urban heat via cooling through evapotranspiration. Determining the amount of wa-51

ter that can be stored in a city remains challenging due to the variability in urban land-52

scapes. The methodology presented estimates this water storage based on how evapo-53

transpiration declines over time during periods without precipitation. The estimated stor-54

age capacities amount to 1.3–28.4 mm, which is an order of magnitude smaller than in55

natural ecosystems.56

1 Introduction57

With a large and growing share of the world population living in cities (United Na-58

tions, 2018), the impact weather-related risks magnified by climate change, such as heat-59

waves and flooding (Wilby, 2007), also increases. In cities, air temperatures are typically60

higher than in the rural surroundings due to the Urban Heat Island effect (UHI) (Oke,61

1982; Santamouris, 2014; Oke et al., 2017). The UHI originates from the difference be-62

tween the rural and urban energy balances due to lower albedo, radiation trapping, less63

vegetation, higher heat storage capacity and anthropogenic heat release (Oke, 1982). Be-64

cause of its positive effect on evaporative cooling that is complemented by shading, ur-65

ban vegetation is often given a central role in attempts to improve thermal comfort (Ennos,66

2010). Indeed, higher vegetation fractions are associated with lower urban air and canopy67

temperatures (e.g. Gallo et al., 1993; Weng et al., 2004; Theeuwes et al., 2017), although68

in specific situations vegetation can cause higher temperatures (Meili et al., 2021a). Wei69

and Shu (2020) showed that expanding the vegetation fraction as part of urban renewal70

can improve thermal comfort. However, vegetation-mediated cooling strongly depends71

on water availability for evapotranspiration (ET) (Avissar, 1992; Manoli et al., 2020).72

The generally low ET over urban areas also reflects a different water balance that73

makes cities more prone to flooding. A high impervious surface fraction promotes storm74

water runoff, which can accumulate relatively fast (Arnold Jr & Gibbons, 1996; Fletcher75

et al., 2013). Consequently, high runoff ratios decreases water availability for ET, and76

thus indirectly contributes to the UHI (Taha, 1997; Zhao et al., 2014). Heavy rainfall77

in cities can lead to flood volumes that are 2–9 times higher than in rural areas (Paul78

& Meyer, 2001; Hamdi et al., 2011; Zhou et al., 2019), often causing considerable dam-79

age (Tingsanchali, 2012). Solutions to problems related to the urban water and energy80

balance have been proposed under various names such as Water Sensitive Urban Design81

(Wong, 2006), Low Impact Development (Qin et al., 2013), Sustainable Drainage Sys-82

tems (Zhou, 2014), Sponge Cities (Gaines, 2016), and Nature Based Solutions (Somarakis83

et al., 2019). All these concepts promote increasing infiltration and effective storage ca-84

pacity, of which the latter is crucial for their performance (Graham et al., 2004; Qin et85
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al., 2013). Therefore, methods to assess effective storage in cities at urban landscape scale86

are needed.87

Estimation of the urban water storage capacity is challenged by the heterogene-88

ity of sources for ET (Sailor, 2011). Previous studies have mainly focused on ET from89

individual sources (e.g. Gash et al., 2008; Starke et al., 2010; Pataki et al., 2011; Rama-90

murthy & Bou-Zeid, 2014), as well as on their combined behaviour at street or neigh-91

borhood scale (e.g. Christen & Vogt, 2004; Jacobs et al., 2015; Meili et al., 2020, 2021b).92

In order to study the ET on a neighborhood scale (order of hundreds of meters to 1–293

kilometers), flux measurements of with their associated footprint through eddy covari-94

ance or scintillometry, are becoming increasingly popular. Due to relatively large foot-95

prints, urban EC measurements often reflect a myriad of sources including impervious96

surfaces, vegetation, open water and all other sources of ET. Hence, in this paper an ur-97

ban surface is defined as the entire urban landscape found within the footprint, rather98

than impervious surface only. This is in line with many studies on urban ET from an99

EC perspective, since the ET sources cannot be separated (e.g. Coutts et al., 2007b; Vulova100

et al., 2021). In contrast, modelling-oriented studies are able to make this separation and101

thus often use urban and impervious interchangeably (e.g. Masson, 2000; Wouters et al.,102

2015). Examples of cities for which EC measurements have been studied are Arnhem (Jacobs103

et al., 2015), Basel (Christen & Vogt, 2004), Helsinki (Vesala et al., 2008), Melbourne104

(Coutts et al., 2007b), Seoul (Hong et al., 2019) and Singapore (Roth et al., 2017). Un-105

der water-limited conditions, ET observations contain information on storage (Teuling106

et al., 2006). In one of the few studies directly linking urban ET and storage, Wouters107

et al. (2015) applied this principle to validate a new parametrization for the impervious108

contribution to urban water storage in Toulouse. However, the link between ET and footprint-109

scale urban water storage remains largely unexplored.110

Recession analysis can be used to link eddy-covariance flux observations and stor-111

age properties. From the 1970s, discharge recession analysis has been extensively used112

in groundwater and hillslope hydrology (e.g. Brutsaert & Nieber, 1977; Kirchner, 2009;113

Troch et al., 2013). Similarly, daily ET values can be linked to water storage during a114

drydown, a period without precipitation creating water-limited conditions. Assuming115

that the ET decay is exponential, the e-folding time, or the timescale over which ET de-116

clines by 63%, reflects the available storage and resilience to droughts (Wetzel & Chang,117

1987; Salvucci, 2001; Saleem & Salvucci, 2002). Since the storage is inferred directly from118

ET observations, this water storage is defined as the dynamic water storage capacity avail-119

able to the atmosphere for ET, which includes soil moisture, intercepted precipitation120

and open water varying from lakes to puddles. As a result of plant-physiological processes,121

this storage is not necessarily constant (Dardanelli et al., 2004). In studies using daily122

ET over natural ecosystems, Teuling et al. (2006) and Boese et al. (2019) found timescales123

ranging from 15 days for short vegetation to 35 days for forest ecosystems, and corre-124

sponding storage capacities of 30–200 mm, with most sites in the range of 50–100 mm.125

A global-scale analysis of surface soil moisture recession by McColl et al. (2017) found126

timescales ranging from 2 to 20 days. Although valuable insight can be obtained from127

a comparison of urban and rural ET dynamics, recession analysis has not yet been ap-128

plied to urban ET.129

In this study, we extend the methodology developed by Teuling et al. (2006) to es-130

timate footprint-scale water storage capacity directly from EC observations of daily ET131

in cities without modeling ET itself. The methodology is applied to a new, unique col-132

lection of urban ET data containing cities in a range of climate conditions and with dif-133

ferent urban land cover and structure. This allows for a first assessment of urban stor-134

age capacity across cities, an evaluation of how site characteristics (e.g. vegetation frac-135

tion) affect water storage, and a comparison of urban water storage to that of natural136

ecosystems.137
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2 Data and Methods138

We analyze latent heat fluxes and auxiliary meteorological data from eddy covari-139

ance flux towers at fourteen sites in twelve different cities to estimate water storage. Ta-140

ble 1 lists a number of important characteristics of each site, including key references.141

In these references, all observation sites and measurement details are fully described. The142

sites were selected based on the length of the data record (minimum of a year), flux foot-143

prints representing typical urban neighborhoods without other land covers, and the avail-144

ability of observed precipitation and latent heat fluxes. All sites are located in reason-145

ably flat terrain. Most sites were located in mid-latitude climates, except Mexico City146

with a subtropical climate, Singapore with a tropical climate, and Helsinki,  Lódź and147

Seoul with a continental climate. Vegetation fractions in the associated footprints vary148

between 6–56%.149

Observations were reported in averaging periods of 10–30 min depending on the150

measurement protocol of each site. In this study, hourly averages were used to determine151

the timing of rainfall and 24-hour averages were used for the recession analysis. For all152

sites the quality control of the observed heat fluxes was performed by individual researchers153

responsible for their ET flux observation site. Although the exact methodology of the154

quality control differs per site, all fluxes have been properly tested in accordance with155

procedures published in literature (Aubinet et al., 2012).156

During multi-day drydowns in urban areas without rainfall, runoff is typically min-157

imal after a steep peak shortly after rainfall (Walsh et al., 2005; Fletcher et al., 2013).158

Therefore, the evolution in landscape-scale dynamic storage (S) over the whole drydown159

can be simplified as:160

dS(t)

dt
= −ET(t) (1)161

Under water-limitation, daily ET becomes a function of storage. For impervious162

surfaces in cities, the storage dynamics have been described by a 2
3 -power function re-163

sulting in depletion within a few hours of daytime (Masson, 2000; Ramamurthy & Bou-164

Zeid, 2014). ET from other sources will likely show different behavior (Granger & Hed-165

strom, 2011; Nordbo et al., 2011), with ET from (urban) vegetation behaving more as166

a linear reservoir (Williams & Albertson, 2004; Dardanelli et al., 2004; Peters et al., 2011).167

Since impervious surfaces are typically quickly depleted, open water is constant and veg-168

etation behaves more linear, we assume the flux footprint reflecting a mixture of differ-169

ent ET sources to effectively behave as a linear reservoir:170

ET(t) = f(S(t)) = cS(t) (2)171

in which c = 1/λ is a proportionality constant. Combining Eq. 1 and Eq. 2 and172

solving the differential equation leads to an exponential response of ET:173

ET(t) = ET0exp

(
− t− t0

λ

)
(3)174

where λ is the e-folding timescale, and ET0 the initial ET. With these parameters175

the total dynamic storage volume S0 in mm that would be depleted during a complete176

dry down (t→∞) is given by:177

S0 =

∫ ∞
t0

ET(t)dt = λET0 (4)178

–4–
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so that S0 can be estimated by fitting observed ET in time during a drydown, with-179

out modeling the flux. Because of this direct inference without an imposed model struc-180

ture, the shape of the fit has minimal influence on the results. To further tailor this con-181

cept to urban environments, the anthropogenic moisture flux can be included. This flux182

can contribute substantially to ET, in particular during long, dry periods (Grimmond183

& Oke, 1986; Moriwaki et al., 2008; Miao & Chen, 2014), and includes processes like trans-184

port, heating, cooling (indoor), human metabolism and irrigation, which do not directly185

depend on rainfall. Variation in the daily averages of these processes, except for irriga-186

tion, can be expected to be negligible over the course of one drydown. Thus, to account187

for these processes we added a constant base term to Equation 3. Since this yields para-188

meters in compliance with the requirements explained below for only one drydown, we189

conclude that including this part of the anthropogenic moisture flux does not improve190

the physical representation of the city. As mentioned earlier, irrigation cannot be expected191

to be constant, while in some cities (e.g. Vancouver (Grimmond & Oke, 1986; Järvi et192

al., 2011) and Melbourne (Barker et al., 2011)) its contribution to ET can be consider-193

able during long dry periods. We adapt the methodology in two ways to prevent irriga-194

tion affecting the results. First the chance of irrigation decreases with a maximum du-195

ration of a drydown of 10 days. This also reduces the influence of the tail of the drydown196

on ET0. Second we require an R2¿0.3, which is not achieved if irrigation causes ET to197

suddenly rise.198

To estimate the parameters λ and ET0, we identified all periods without precip-199

itation for at least three continuous days, the minimum requirement for an exponential200

fit (Figure 1). In order to preserve the information in ET during the first hours after rain-201

fall (in case of low λ), we start the 24-hour averaging bins directly after the rainfall event,202

regardless of its magnitude. The bin-average is assigned to the middle of the day (e.g.203

the first bin is assigned to 0.5 day since rainfall). We exclude hours with an average short-204

wave incoming radiation below 10 W m−2 (i.e. nighttime), since during the night ET tends205

to be low. No gap-filling was applied, and only bins with at least 70% of data for day-206

time hours were analyzed. For the longest time series (Basel (KLIN)), requiring 70% in-207

stead of 100% increased the sample size by 48% respectively, while the median of the wa-208

ter storage capacities only changed by 25%. Further lowering the threshold did not in-209

crease data availability. Given the minimal effect on the results and potential to increase210

the sample size, 70% provides more information especially regarding cities with a shorter211

measurement period without compromising the results.212

For every individual drydown, we estimate λ and ET0 by fitting a linear relation213

through the log-transformed ET observations of a single drydown effectively applying214

Equation 3. The method of least squares is used as fit criterion. With increasing R2, the215

parameters converge until R2 ≈ 0.3 (not shown), which shows drydowns with a lower216

R2 are less reliable. In addition, the parameters are required to be physically plausible217

meaning positive λ and ET0, but below 35 days (maximum found by Teuling et al. (2006))218

respectively 10 mm d−1. Also, the average temperature during a drydown needs to ex-219

ceed 0◦C to exclude snow conditions, which is strict enough, confirmed by a check against220

snow records. To quantify the uncertainty of the estimated parameters, we applied boot-221

strapping using 5000 re-samples containing 90% of the estimates. The confidence inter-222

val is defined as the 5th and 95th percentile of the median distribution from the re-samples.223

With λ and ET0 the storage capacity is calculated according to Equation 4 (shaded224

area in Figure 1), as we assume the storage to be completely filled after every rainfall225

event. This assumption is supported by the absence of dependence of the parameters to226

the rainfall before the drydown. Drydowns from all seasons are included and analyzed227

for a seasonal effect, since the water storage available to the atmosphere may change due228

to for example leaf phenology. Since it is not feasible to measure the water storage ca-229

pacity in a complete urban footprint, this methodology offers the most direct estimation230

of the urban water storage. To investigate the possible impact of day-to-day variation231
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Figure 1. Illustration of the recession analysis. 24-hour aggregated ET versus the number

of days following the last hour of precipitation for an example drydown from the Seoul data set

with the fitted recession curve. Note that the fit was obtained by a linear fit on log-transformed

data (see Data and Methods). In the figure the parameters are indicated.

or change in energy availability on the results, we repeated the recession analysis based232

on evaporative fraction (Gentine et al., 2007) multiplied by the average available energy233

over the drydown, which we included in the supplementary information (Table S1 and234

Figure S1 and S2).235

3 Results236

In Figure 2, the individual drydowns (in grey) show a good resemblance of the char-237

acteristic behaviour of the recession confirming the exponential behaviour. In general,238

ET is quickly decaying within days after rainfall in all LCZ’s represented in our sample,239

indicating urban ET is generally strongly limited by water availability even on the first240

day after rainfall. As all cities respond approximately similarly, this confirms the qual-241

itative, decaying relation during a drydown. The spread of the observations is higher than242

the uncertainty, which is the result of a seasonal dependency. The uncertainty is visi-243

bly higher in cities with shorter measurement periods, since shorter periods inevitably244
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mean smaller samples of drydowns. For Arnhem, Basel (both), Berlin (both), Helsinki,245

 Lódź and Vancouver, observations are available for more than two full years resulting246

in narrow uncertainty bands. In contrast to the uncertainty bands for the sites with records247

of less than two years (Amsterdam, Melbourne, Mexico City, Seoul and Singapore), which248

are as wide as the range of observations. In some panels (e.g. Amsterdam and Helsinki),249

we observe two groups of curves with distinct slopes, for which we found no explanation250

in seasonality, energy availability, temperature and pre-drydown rainfall (amount and251

timing).252

In Table 1, an overview of the parameters is given for the 583 drydowns that com-253

plied with all criteria. Of the total number of 1606 drydowns, 540 are excluded because254

of a negative λ and 151 because of a λ above 35 days. All drydowns had a positive ET0,255

and only three exceeded 10 mm d−1. Snow conditions potentially influenced 132 drydowns,256

which are thus excluded. Finally, 700 drydowns did not meet the minimum R2 of 0.3.257

The remaining drydowns have an R2 of 0.69 and yielded initial evapotranspiration be-258

tween 0.3–2.1 mm d−1 and e-folding timescales between 1.8–20.1 days with the major-259

ity below 10.4 days, corresponding to half-lives of 1.3–14.0 and 7.2 days. The related stor-260

age capacities appear to be between 1.3–28.4 mm with the majority below 13.4 mm. As261

mentioned before, the length of the measurement period determines the magnitude of262

the uncertainty, which for S0 varies from 1.2 mm in Basel (AESC) to 20.7 mm in Sin-263

gapore.264

For all sites, we find a considerable spread in the ET observations (Figure 2), which265

recurs in the estimated S0 values. In Figure 3, S0 is plotted against the month of the266

drydown, showing a very distinct seasonal dependency explaining why the spread in ob-267

servations exceeds the uncertainty. Both ET0 and λ, on which S0 is based, show sim-268

ilar behaviour (not shown). Melbourne is shifted to fit the seasonality, as it is situated269

on the southern hemisphere. Since Singapore is close to the equator, it is not expected270

to show seasonal effect, which is confirmed in Figure 3. We expect that the effective stor-271

age capacity in summer is caused by increased root activity. Any connection between272

S0 and the site characteristics in Table 1 and climatic variables among which precipi-273

tation regime is overshadowed by the seasonal dependency covering the full range of S0274

(Table 1), as we illustrate in Figure S3 and S4. It is unfortunately not possible to elim-275

inate the influence of this dependency by focusing on one season due to the steep slope,276

and not by focusing on one month due to the low data density. Only after omitting half277

of the cities based on the number of drydowns, a relation between S0 and site charac-278

teristics is visible (Figure S5).279

4 Discussion280

In contrast to the results presented here for urban areas, Teuling et al. (2006) found281

timescales ranging from 15–35 days and storage varying between 30 and 150 mm for forests282

and grassland following a similar methodology. When compared to the urban param-283

eter values (1.8–20.1 days and 1.3–28.4 mm), it is clear that both the timescales and stor-284

age capacities are much higher in rural areas. McColl et al. (2017) have analyzed soil mois-285

ture drydowns in a global study using satellite data with a resolution too coarse to ex-286

plicitly resolve individual cities, thus resembling rural values. Although their timescales287

with values from 2–20 days are closer to ours, it must be noted the temporal resolution288

is one in every three days and their observations only regard the first few centimeters289

instead of the root zone. Also, the satellite product in their research is known to under-290

estimate the timescales compared to in-situ observations (Rondinelli et al., 2015; Shel-291

lito et al., 2016). When compared to storage values found for impervious surfaces by Wouters292

et al. (2015) (1.1–1.5 mm), the values in this study are higher as a result of the footprint293

scale analysis that includes natural in addition to impervious surfaces. Hence, the re-294

sults show that both λ and S0 are an order of magnitude smaller in cities indicating shorter295
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sphere (Melbourne is included shifted by half a year) in blue and for Singapore as grey dots. The

uncertainty is determined similarly as in Figure 2.

–10–



manuscript submitted to Geophysical Research Letters

timescales and lower storage capacities in urban areas regardless of their climate and veg-296

etation fraction.297

Since our method is based on direct inference from observations, the reliability of298

the measurements determines the quality of our estimates. Eddy covariance is a sophis-299

ticated method for measuring fluxes, but comes with a set of potential challenges in cities300

(Velasco & Roth, 2010; Feigenwinter et al., 2012; Järvi et al., 2018). By carefully select-301

ing locations and applying quality control, these problems are minimized. All sites have302

an observation height well above the mean building height (see Table 1), and measure303

in the inertial sublayer. This reduces the variability in flux measurements in response304

to the heterogeneity of the monitored footprint, which is induced by the many, unevenly305

distributed surfaces with different characteristics and water storage capacities in the ur-306

ban landscape. The only site in this research that includes a non-homogeneous footprint307

is Seoul, for which the observations are filtered by wind direction to exclude a nearby308

forest. A relatively small variability between our estimates for each site suggest the ob-309

servations are accurate enough for our application .310

The methodology assumes that at the start of a drydown the storage capacity is311

completely full. A partly empty storage capacity would lead to an underestimation of312

the capacity, as less water is available for ET. We have compared the magnitude of the313

rain event before a drydown with the resulting parameters and found no correlation. Since314

the storage can be refilled by a series of events separated by dry days, we regressed the315

storage parameters against the Antecedent Precipitation Index (API) (Fedora & Beschta,316

1989). The API takes into account rainfall occurring during preceding days (here lim-317

ited to 20), but its observed values show no correlations with the λ and S0. Therefore,318

the assumption of a completely filled storage is tangible and no selection has been per-319

formed based on rainfall event size. The evaporation directly after rainfall consists largely320

of interception ET from various surfaces (e.g. Grimmond & Oke, 1991; Gerrits, 2010;321

Oke et al., 2017). By calibrating an impervious-storage parameterization, (Wouters et322

al., 2015) estimated this storage to be between 1 and 1.5 mm for a site in Toulouse with323

little vegetation cover (8%), suggesting interception ET is an important component of324

urban ET also in more diverse and greener urban landscapes included in this study.325

5 Conclusion326

The timescales of ET recession observed through eddy covariance in urban envi-327

ronments appear to be considerably shorter than in rural environments. This is related328

to the storage capacity, which is also found to be lower. Based on 583 drydowns, we find329

recession timescales of cities within 1.8–20.1 days with the majority below 10.4 days and330

storage capacities between 1.3–28.4 mm with the majority below 13.4 mm. The timescales331

and storage capacities are inferred for the entire footprint (including all ET sources) and332

do not translate to impervious surfaces. Both are an order of magnitude smaller than333

found in rural areas. We were unable to analyze differences between cities to vegetation334

fraction, local climate zone or climate for two reasons. Firstly, the seasonal dependency335

in the storage capacities is as large as the total observed variation. Secondly, the num-336

ber of sites is limited, and half of them contain data records shorter than one year. When337

provided with more data, the presented water storage capacity method has the poten-338

tial to establish robust empirical relations explaining the differences between cities, in339

particular when complemented with soil moisture observations and/or Earth observa-340

tion.341
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Introduction This supplementary information contains additional figures and one table

further visualizing the analyses that we present in the paper. We include the results of

the urban water storage capacity estimation approach with a correction for the amount of

available solar energy (Figure S1 and S2 and Table S1). We also present the comparison

of the site characteristics with the estimated parameters related to the water storage

capacity (Figures S3 and S4), and a more detailed comparison of the vegetation fraction

with the estimated parameters (Figure S5).
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Table S1. Same as last part of Table 1, but with results from the analysis with ET corrected

for the amount of available solar energy.
City Drydowns Days ET0 (mm d−1) λ (day) t1

2
(day) S0 (mm) R2

Amsterdam 16 61 0.6 – 2.1 (1.5) 2.8 – 7.6 (5.2) 1.9 – 5.2 (3.6) 3.9 – 14.8 (6.6) 0.60
Arnhem 39 148 0.9 – 1.3 (1.1) 1.6 – 2.9 (2.2) 1.1 – 2.0 (1.6) 2.1 – 3.2 (2.6) 0.80
Basel (AESC) 109 445 0.9 – 1.2 (1.1) 4.1 – 5.2 (4.7) 2.8 – 3.6 (3.3) 3.9 – 5.4 (4.7) 0.75
Basel (KLIN) 150 623 1.2 – 1.4 (1.3) 5.5 – 7.2 (6.3) 3.8 – 5.0 (4.4) 6.4 – 9.3 (7.4) 0.66
Berlin (ROTH) 9 36 0.6 – 1.9 (0.8) 4.8 – 13.7 (11.9) 3.3 – 9.5 (8.2) 4.2 – 22.1 (11.5) 0.79
Berlin (TUCC) 30 122 0.4 – 0.9 (0.6) 2.4 – 4.0 (2.8) 1.7 – 2.8 (2.0) 1.2 – 3.1 (1.8) 0.68
Helsinki 41 177 1.7 – 2.0 (1.8) 3.4 – 7.8 (5.0) 2.4 – 5.0 (3.5) 6.6 – 11.9 (8.6) 0.80
Heraklion (HECKOR) 3 13 0.9 – 3.4 (2.9) 0.8 – 5.0 (1.7) 0.6 – 3.5 (1.2) 1.5 – 14.3 (2.9) 0.86
Lodz 55 249 1.3 – 1.8 (1.6) 3.2 – 4.8 (3.9) 2.2 – 3.3 (2.7) 4.2 – 7.6 (5.5) 0.70
Melbourne 2 9 0.7 – 1.8 (1.2) 1.6 – 10.2 (5.9) 1.1 – 7.1 (4.1) 1.1 – 17.9 (9.5) 0.65
Mexico City 9 52 0.8 – 1.5 (1.4) 4.8 – 14.6 (9.5) 3.3 – 10.1 (6.6) 5.6 – 19.1 (11.4) 0.60
Seoul 7 39 1.1 – 2.7 (1.7) 1.7 – 8.2 (4.3) 1.2 – 5.7 (3.0) 5.5 – 9.7 (8.9) 0.53
Singapore 8 43 1.3 – 1.6 (1.4) 6.2 – 17.7 (8.8) 4.3 – 12.3 (6.1) 9.3 – 24.6 (12.5) 0.76
Vancouver 61 282 1.3 – 1.7 (1.4) 4.9 – 7.8 (6.1) 3.4 – 5.4 (4.2) 6.7 – 10.0 (7.7) 0.60
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Figure S2. Same as Figure 3, but with results from the analysis with ET corrected for the

amount of available solar energy. This correction is performed by multiplying the evaporative

fraction by the average available energy over the drydown.
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Figure S3. Estimated model parameters as function of climatological and urban form site

characteristics.
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Figure S4. Estimated model parameters as function of climatological and urban form site

characteristics. The size of the dots indicates the number of drydowns. Between brackets the

correlation coefficient is displayed based on a weighted linear regression (based on the number of

drydowns per city) for the quantitative site characteristics.
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Figure S5. Boxplots of estimated model parameters as function of vegetation fraction. Only

locations with at least 20 drydowns are taken into account.
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