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Abstract

Conventional tide gauges are usually housed along the coast. Satellite altimetry works well in the open ocean but poorly near

the coast due to issues such as signal contamination by land returns. These limitations lead to an observational gap in the

coastal ocean. Using data collected by a GPS installed on top of an anchored spar-buoy in Tampa Bay, we retrieved water

levels through a combination of precise positioning and interferometric reflectometry. Individual water level retrievals agree

with a nearby acoustic tide gauge at ˜16 cm level. Amplitude and phase of the major tidal constituents are well recovered by

the GPS spar-buoy measurements. Over a 2-year period, agreement of daily mean sea levels measured by the GPS spar-buoy

and a nearby acoustic tide gauge is 3.1 cm. When sea level data measured by the GPS spar-buoy are included in the coastal

ocean circulation model, low-frequency error propagated from the open boundary is reduced.
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Key Points: 10 

  An anchored spar-buoy seafloor geodetic system is used to measure offshore sea levels 11 

based on GPS interferometric reflectometry (GPS-IR). 12 

  Agreement of daily mean sea levels measured by the GPS spar-buoy and a nearby 13 

acoustic tide gauge is 3.1 cm. 14 

  Sea levels measured with the GPS spar-buoy can help improve coastal ocean circulation 15 

models. 16 

  17 
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Abstract 18 

Conventional tide gauges are usually housed along the coast. Satellite altimetry works well in the 19 

open ocean but poorly near the coast due to issues such as signal contamination by land returns. 20 

These limitations lead to an observational gap in the coastal ocean. Using data collected by a 21 

GPS installed on top of an anchored spar-buoy in Tampa Bay, we retrieved water levels through 22 

a combination of precise positioning and interferometric reflectometry. Individual water level 23 

retrievals agree with a nearby acoustic tide gauge at ~16 cm level. Amplitude and phase of the 24 

major tidal constituents are well recovered by the GPS spar-buoy measurements. Over a 2-year 25 

period, agreement of daily mean sea levels measured by the GPS spar-buoy and a nearby 26 

acoustic tide gauge is 3.1 cm. When sea level data measured by the GPS spar-buoy are included 27 

in the coastal ocean circulation model, low-frequency error propagated from the open boundary 28 

is reduced.  29 

 30 

Plain Language Summary 31 

GPS receivers record direct signals from satellites as well as reflected signals from local objects. 32 

The reflected signals can interfere with the direct signals, enhancing or reducing overall signal 33 

strength. This characteristic can be used to measure the height difference between the GPS 34 

antenna and the reflecting surface. We used GPS data collected by a spar-buoy anchored in 35 

Tampa Bay to calculate water levels at different times. The calculated water levels can be used to 36 

study sea level change, ocean circulation, and tidal height predictions. 37 

 38 
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 42 

1 Introduction 43 

Global navigation satellite systems (GNSS), including the Global Positioning System 44 

(GPS), have been widely used in Earth science studies, such as crustal deformation (e.g., Dixon, 45 

1991), atmospheric water vapor variation (e.g., Bevis et al., 1992), ionosphere perturbation (e.g., 46 

Ho et al., 1996), tide gauge calibration (Watson et al., 2008), ice motion (Zhang et al., 2008), and 47 

volcanic plume detection (Larson, 2013). One of the error sources for precise positioning, 48 

multipath, can be used to measure the height and other characteristics of the reflecting surface 49 

using a technique called interferometric reflectometry (Larson et al., 2013, 2017, 2021; Larson & 50 

Nievinski, 2013; Liu & Larson, 2018; Roesler & Larson, 2018; Peng, 2019; Karegar et al., 2020; 51 

Purnell et al., 2020; Wang et al, 2020). GNSS interferometric reflectometry (GNSS-IR) exploits 52 

the periodic constructive and destructive interference between the direct and the reflected 53 

signals. The resulting oscillation in signal-to-noise ratio (SNR) can be used to estimate the height 54 

difference between the phase center of the GNSS antenna and the reflecting surface (Larson & 55 

Nievinski, 2013). Among different reflectors, water is a nearly specular reflector and is well-56 

suited to GNSS-IR applications. Previous studies demonstrated typical root-mean-square (RMS) 57 

differences between water levels measured by ground-based GNSS-IR and conventional tide 58 

gauges on the order of ~10 cm for individual estimates and a few centimeters for daily means 59 

(e.g., Williams & Nievinski, 2017; Larson et al., 2017; Peng et al., 2019). When the antenna is in 60 
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kinematic mode, i.e., mounted on a moving platform, water level estimates by GNSS-IR become 61 

noisier due to the platform’s complicated motion (e.g., Roggenbuck & Reinking, 2019). 62 

Compared to conventional tide gauges (e.g., acoustic sounding tube, radar or pressure 63 

sensors), the sampling rate and corresponding precision for GNSS-IR is lower. However, this 64 

technique has several advantages over conventional tide gauges. For example, GNSS-IR can 65 

measure absolute water level changes without relying on additional data such as vertical land 66 

motion, and the hardware needs little maintenance. Considering that there are many geodetic 67 

quality GNSS stations available, and for most of them the primary purpose is precise positioning, 68 

GNSS-IR can provide useful sea level measurements without additional cost. 69 

While water level measurements with GNSS-IR have been demonstrated in a number of 70 

studies, previous applications are mainly in coastal areas with stationary GNSS sites (e.g., 71 

Larson et al., 2013, 2017, 2021; Peng et al., 2019). Roggenbuck & Reinking (2019) tested the 72 

method with three months of data collected by a ship-based GNSS antenna along a ferry route. 73 

The standard deviation of the differences between the estimated water levels and a nearby tide 74 

gauge measurements in that study was about 4-6 cm. Here we use a GPS station installed on an 75 

anchored spar-buoy to measure offshore water levels at a fixed site (Figure 1). The system was 76 

designed for measuring three-component seafloor motion, with the GPS antenna placed on top of 77 

the spar, and the bottom of the spar connected to a heavy ballast by a shackle. A float is 78 

integrated into the spar to provide buoyancy, keeping the buoy near vertical (Xie et al., 2019). 79 

The GPS antenna is constantly moving due to strong tidal currents and other environmental 80 

forcing, representing a potential noise source. Height changes of the antenna above water are 81 

caused by a combination of vertical motion of the anchor, spar tilt, and water level changes, 82 



manuscript submitted to JGR: Oceans 

 5 

although after several months of settling vertical motion of the anchor is minimal. Since only 83 

GPS data are used in this study, we refer to the method as GPS-IR unless noted. 84 

 85 

2 GPS Data 86 

Dual-frequency (L1 and L2) GPS data obtained between 23 August 2018 and 15 87 

September 2020 were used in this study. In different experimental stages, the data sampling 88 

intervals differ: 15-second from 23 August 2018 to 17 May 2019, 5-second from 18 May 2019 to 89 

25 August 2019, and 30-second from 26 August 2019 to 15 September 2020. A satellite 90 

elevation angle mask of 7º was set in the receiver. SNR data collected when the satellite 91 

elevation angle was between 7º and 13º were used in the GPS-IR analysis. Figure 1b shows an 92 

example of GPS-signal multipath reflection points. Figure 1c shows an example of the sensing 93 

zones on water (First Fresnel Zones, see details in Larson & Nievinski (2013)) for satellites at 7º 94 

and 13º elevation angles. The gap in the north direction is due to orbit limitations in the satellite 95 

constellation. Compared to many coastal GNSS sites where some of the sensing zones are not on 96 

water or are obstructed, in our case data collected from all directions can be used. 97 

Note that some previous GNSS-IR studies used SNR data collected at lower satellite 98 

elevation angles (e.g., Larson et al., 2013; Peng et al., 2019; Roggenbuck & Reinking, 2019). 99 

However, in our case the GPS spar-buoy system was not originally designed for GPS-IR 100 

measurements, hence a 7º elevation angle mask was used to reduce multipath noise in precise 101 

positioning and limit data rate. A maximum elevation angle of 13º was chosen because the 102 

effects of multipath modulation on SNR data become less obvious at higher elevation angles. 103 

Nevertheless, a satellite track from 7º to 13º provides enough data for reflecting height estimates 104 
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(see below). Figure 2a shows a typical one-day example of satellite tracks used for our GPS-IR 105 

measurements. 106 

 107 

3 Data analysis 108 

Water levels were calculated by H=Hg-Hr, where H, Hg, and Hr denote water level, 109 

elevation of the GPS antenna phase center, and reflecting height (vertical distance between GPS 110 

antenna phase center and the water surface), respectively. Kinematic GPS processing to estimate 111 

Hg was reported in Xie et al. (2019); we follow the same method here. Typical formal error of Hg 112 

for a single epoch is 4-5 cm. Grey dots in Figure 3a shows the time series of Hg. An exponential 113 

subsidence signal is evident, mainly due to anchor settling and tidal current scouring. The total 114 

vertical displacement of the buoy is about -0.8 m during the study period. 115 

To estimate the reflecting height Hr, the method described in Larson et al. (2013) was 116 

used, with several changes to account for the motion of the GPS antenna, described in the 117 

following steps: 118 

1) Data selection: L1 or L2 data obtained during GPS satellite ascending or descending 119 

tracks (7º-13º elevation angle) were analyzed separately. The average satellite transit time of 120 

each track is 18.3 minutes during the study period.  121 

2) Data detrending: A third-order polynomial was used to detrend the SNR versus sin E 122 

data, where E represents the GPS satellite elevation angle. This removes long-period variations 123 

due to changes in the receiver-satellite distance and the gain pattern of the antenna, leaving the 124 

multipath effect (red line in Figure 2b).  125 
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3) Preliminary reflecting height estimate: The dominant frequency of the detrended SNR 126 

versus sin E data was picked by a Lomb-Scargle periodogram (LSP) analysis, which can be 127 

converted to preliminary reflecting height using Hr=�*fmax/2, where � is the wavelength of the 128 

GPS signal (19.05 cm for L1, 24.45 cm for L2) and fmax is the dominant frequency picked by the 129 

LSP analysis (Figure 2c). 130 

4) Nonstationary reflecting height correction: Due to tidal variation and buoy motion, the 131 

vertical distance between the antenna and water surface is not constant during each analyzed 132 

satellite track, biasing the preliminary reflecting height estimate by 𝐻 𝑟tan E/𝐸  (Larson et al., 133 

2013). An eighth-order polynomial was used to fit a 3-day time series of Hr, and the derivations 134 

of the middle day were used for corrections. 135 

Several criteria were used for quality control. First, an iterative method was applied to 136 

ensure that only satellite tracks with observation numbers above the Nyquist sampling limit are 137 

used. For example, a preliminary analysis shows that the reflecting heights are between 7-11 m 138 

during the entire study period, hence a theoretical maximum height of 11.5 m (in a conservative 139 

sense) was used to calculate the equivalent frequency and required minimum number of 140 

observations to recover the dominant frequency in the subsequent LSP analysis. Second, to 141 

ensure the LSP result is robust, the theoretical number of cycles in the SNR versus sin E must be 142 

larger than 3. For example, the satellite track shown in Figure 2b has ~5 cycles. Third, to 143 

determine if the dominant frequency signal estimated by the LSP analysis is significant, the SNR 144 

versus sin E data were detrended by a best fitting sine function (black line in Figure 2b) with the 145 

estimated dominant component, and another LSP analysis was applied to the residuals 146 
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(periodogram shown by grey line in Figure 2c). If the peak LSP amplitude is reduced by less 147 

than 50% between the two LSP analyses, the result is discarded. 148 

GPS microwave signals are subject to tropospheric delays, and previous work suggests 149 

they could perceptibly affect GPS-IR measurements (Williams & Nievinski, 2017). We adopted 150 

the correction method developed by Williams & Nievinski (2017) and used the discrete products 151 

of the Vienna Mapping Functions 3 (VMF3) and the Global Pressure and Temperature 3 (GPT3) 152 

model (Landskron & Böhm, 2018) to calculate the tropospheric delays. While the absolute biases 153 

due to tropospheric delays in our GPS-IR reflecting height estimates have a mean of 4.0 cm, the 154 

fluctuation is small, with a standard deviation of 0.4 cm, primarily due to the relatively small 155 

tidal range at the study area (~1 m). 156 

Water levels were calculated by subtracting the GPS-IR-measured reflecting heights from 157 

GPS-measured antenna phase center elevations. Since both GPS L1 and L2 signals were used, 158 

we combined them to form the final water level product. For each satellite track, if both L1 and 159 

L2 data retrieve a water level successfully, then an average value was used in the water level 160 

product. Red dots in Figure 3a show the final water level time series measured by the GPS spar-161 

buoy. Compared to data recorded at an acoustic tide gauge 19.5 km away (Figure 1a), the 162 

standard deviation of water level differences is 15.7 cm. 163 

 164 

4 Discussion 165 

During the study period, an average of 61 water levels per day were retrieved by GPS-IR 166 

measurements. While the precision of a single water level estimate by the GPS spar-buoy is 167 

much worse than a typical conventional tide gauge [Míguez et al., 2012], it does provide an 168 
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independent method for sea level monitoring. Below we discuss quality and potential 169 

applications of the water level product derived from the GPS data. 170 

 171 

4.1 Factors affecting the precision of water levels measured by the GPS spar-buoy 172 

Water levels (Red dots in Figure 3a) were calculated by subtracting the GPS-IR measured 173 

reflecting heights (black dots in Figure 3a) from GPS measured antenna phase center elevations 174 

(grey dots in Figure 3a). Since the reflecting height estimates are based on LSP analyses of data 175 

obtained at different satellite elevation angles, they should be treated as local averages over the 176 

corresponding periods (18.3 minutes on average). Several factors affect the precision of our 177 

water level product, discussed below: 178 

1) Vertical motion of the GPS antenna. Unlike stationary sites on land, the GPS antenna 179 

on top of the spar-buoy is constantly moving due to wind and tidal currents. Our previous study 180 

(Xie et al., 2019) shows that in days without extreme weather events, the buoy moves smoothly 181 

within a short period (e.g., several minutes). Hence the nonstationary reflecting height correction 182 

works well to address the combined effect of GPS antenna motion and water level change over 183 

the satellite tracking period. In contrast, during extreme weather events, bobbing of the buoy 184 

reduces the periodicity of the SNR versus sin E relation, worsening the precision of the dominant 185 

frequency identified by LSP analysis. Reducing the spar-buoy cross section or increasing the net 186 

buoyancy are possible methods to reduce the influence of buoy bobbing on GPS-IR water level 187 

measurements. 188 

2) Sea state. During the study period, a number of extreme weather events occurred at the 189 

spar-buoy site (Xie et al., 2019). Sea state not only affects the GPS antenna motion, but also 190 
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directly influences the roughness of the reflecting surface. Previous applications of storm surge 191 

detections show that high winds downgrade the performance of GNSS-IR (Peng et al., 2019; 192 

Larson et al., 2021). In our case, during extreme weather events (e.g., hurricanes) fewer satellite 193 

tracks fulfilled the quality control and the uncertainty in the sea level estimate is larger compared 194 

to days with calm sea state (Figure 3b). On the other hand, this suggests that the system could  195 

also be used in the future to measure sea state. 196 

3) GPS data interval. While a Nyquist sampling limit was used for quality control, this 197 

criterion only ensures there is just enough observations to estimate a theoretical dominant 198 

frequency in LSP analysis. Denser observations allow more precise reflecting height estimates. 199 

Figure 3b-3d compares three 1-month water levels retrievals with different GPS data intervals. 200 

Higher rate data lead to higher precision (less scatter) in estimated water levels. 201 

 202 

4.2 Comparison to conventional tide gauge data 203 

Compared to a conventional coastal tide gauge located 19.5 km away, precision of water 204 

levels measured by the GPS spar-buoy is lower. However, our technique captures both low (cyan 205 

lines in Figure 3a) and high (Figure 3b-3d) frequency signals well. Figure 4a-4c shows tidal 206 

harmonic analyses of time series obtained from the two techniques. For the eleven largest tidal 207 

constituents, the largest amplitude difference is 1.5 cm. Comparing amplitudes, the differences at 208 

the two locations are all smaller than 15% except for the tidal constituent S1, which has a period 209 

of 24 hr that is also the daily environmental variation cycle. Comparing phases, analyzed tidal 210 

constituents at the tide gauge all lag behind the spar-buoy site (Figure 4a). Except for the solar 211 
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annual term that has a very long period (8766.2 hr), the other five largest tidal constituents have 212 

a mean time lag of 1.5±0.2 hr. 213 

Apart from measurement error in the two techniques, the amplitude and phase differences 214 

likely reflect true tidal differences at the two locations given the 19.5 km separation. Figure 5 215 

compares the phases and amplitudes of the three largest tidal constituents (M2, K1, O1) derived 216 

from the tide gauge measurements, the GPS spar-buoy measurements, and a widely used ocean 217 

tide model OSU TPXO (Egbert & Erofeeva, 2002). For the phase or phase differences, the GPS 218 

spar-buoy and tide gauge data yield results similar to the ocean tide model (Figure 5a-5c). For 219 

the tidal amplitudes, even though the GPS spar-buoy and tide gauge-derived values are 220 

systematically smaller than the ocean tide model, both data and model suggest that the amplitude 221 

differences of the largest three tidal constituents at the two locations is just a few centimeters.  222 

Figure 4d-4e shows a comparison of tide gauge-observed water levels and predictions 223 

from different data sources. The tidal ranges predicted from the GPS spar-buoy or tide gauge 224 

data match well with the various observations. However, the OSU TPXO model-predicted tidal 225 

ranges at the tide gauge or spar-buoy location are both larger than the observations (Figure 4d-226 

4f). We interpret the apparently larger tidal amplitude as an error in this coastal region for the 227 

ocean tide model, since the major data source of the OSU TPXO model is satellite altimetry 228 

(TOPEX/Poseidon), which has poor performance near coasts mainly due to contamination of the 229 

pulse-limited radar altimeter footprints from land returns (Tamisiea et al., 2014).  230 

To assess the ability of the GPS spar-buoy to monitor sea level change, we subtracted the 231 

water level variability due to constituent tides (de-tiding). Figure 6a shows the daily means of de-232 

tided water levels measured by the GPS spar-buoy and the tide gauge. The two results correlate 233 

well. The RMS of the differences is 3.1 cm, 0.8 cm larger than the RMS of water level 234 
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differences measured by a stationary land GPS and a nearby tide gauge in Kachemak Bay, 235 

Alaska (Larson et al., 2013). 236 

 237 

4.3 Contribution with a coastal ocean model 238 

Tampa Bay is the largest of the Florida coastal plain estuaries. With spatial resolution as 239 

fine as 20 m, the Tampa Bay Coastal Ocean Model (TBCOM) resolves the channels, inlets, 240 

bridge causeways, and other geometric complexities (Chen et al., 2018). To maintain high 241 

resolution within the estuary and properly account for exchanges between the continental shelf 242 

and estuary, TBCOM downscales from the continental shelf to the estuary by nesting the 243 

unstructured grid of the Finite Volume Community Ocean Model (FVCOM) (Chen et al., 2003) 244 

in the West Florida Coastal Ocean Model (WFCOM) (Zheng & Weisberg, 2012; Weisberg et al., 245 

2014), which in turn downscales from the deep ocean, across the continental shelf by nesting 246 

FVCOM in the Gulf of Mexico Hybrid Coordinate Ocean Model (HYCOM) (e.g., Chassignet et 247 

al., 2009). Sea levels observed by tide gauges are important data to validate ocean circulation 248 

models. Previously TBCOM used sea level data obtained at several coastal tide gauges and 249 

velocity profiles from a station within the main shipping channel to evaluate the model 250 

simulations (Chen et al., 2018, 2019). The veracity of TBCOM was demonstrated by simulating 251 

the Tampa Bay circulation as driven by tides, winds and rivers, and reproducing the sea level and 252 

circulation under both normal weather conditions (Zhu et al., 2015; Chen et al., 2019) and 253 

extreme events such as Hurricane Irma (Chen et al., 2018). Similar misfits of sea levels between 254 

lowpass filtered observations and model simulations were found at the tide gauge and GPS spar-255 

buoy locations (Figure 7c). These errors originate both from the open boundary sea levels that 256 

propagate to the coastal and estuary areas and errors in the local winds used to force the model 257 
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(e.g., He et al., 2002; Mayer et al., 2017). Because the misfit at GPS spar-buoy station is at 258 

similar level compared to the conventional tide gauges, data obtained by the GPS spar-buoy can 259 

be used to adjust the model simulations with similar accuracy compared to a conventional tide 260 

gauge. By adjusting the simulated sea levels using the GPS spar-buoy-measured sea levels, the 261 

root mean square errors (RMSEs) between the observations and model simulations at all tide 262 

gauges were reduced by 23%-29%, and the correlation coefficients were increased by 4%-11% 263 

(Table 1). 264 

For the diurnal to semi-diurnal tidal constituents, our TBCOM simulations clearly reveal 265 

a time lag of sea level variations at the GPS spar-buoy and the nearby tide gauge at Port Manatee 266 

(Figure 7b), consistent with the tidal harmonic analysis (Figure 4). 267 

 268 

5 Conclusions 269 

An anchored GPS spar-buoy system, originally designed for measuring three-component 270 

seafloor motion in shallow water, is used to measure offshore sea levels in Tampa Bay by a 271 

combination of precise positioning and GPS interferometric reflectometry. Compared to a 272 

stationary GPS site on land, this system has broader sensing zones of the reflecting surface. For 273 

individual water level retrievals, agreement between the GPS spar-buoy and a nearby acoustic 274 

tide gauge is at ~16 cm level. Harmonic analyses of the water levels measured by the GPS spar-275 

buoy and a nearby tide gauge suggest that the amplitude differences of major tidal constituents at 276 

the two locations are no more than 1.5 cm, and the largest short period tidal height variations 277 

(diurnal and semi-diurnal) at the tide gauge lag behind the spar-buoy site by ~1.5 hr. During a 2-278 

year period, RMS of the daily mean sea level differences measured by the two techniques is 3.1 279 
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cm. Numerical modeling of the ocean circulation throughout Tampa Bay suggest that including 280 

the offshore sea levels measured by the GPS spar-buoy can help the model to correct low-281 

frequency sea level error propagated from the open boundary. The capabilities of measuring both 282 

seafloor motion and sea level change make the anchored GPS spar-buoy a comprehensive 283 

monitoring system. 284 

 285 
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 393 

Table 1. Correlation coefficient (CC) and root mean square error (RMSE) between observations 394 

and TBCOM simulations before and after adjusted by water levels measured with the GPS spar-395 

buoy. Model domain, GPS spar-buoy and tide gauge locations are shown in Figure 7a. 396 

 397 

Location Before adjustment After adjustment 

 CC RMSE (cm) CC RMSE (cm) 

Clearwater 0.90 12.5 0.94 9.5 

Mckay Bay 0.86 12.2 0.93 8.9 

St Petersburg 0.86 13.0 0.93 9.4 

Port Manatee 0.86 14.5 0.93 11.2 

GPS spar-buoy 0.84 12.5 0.93 8.8 

  398 
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 399 

 400 
 401 

Figure 1. Study area and GPS spar-buoy system. (a) Location of the study area, distance 402 

between the buoy and a conventional tide gauge (orange hexagon) is 19.5 km. (b) GPS-signal 403 

multipath reflection points on 6 June 2019 when satellite elevation angles are between 7º and 30º, 404 

colors correspond to different GPS satellites labeled by pseudorandom noise (PRN) codes in c. (c) 405 

Sensing zones (first Fresnel zones) for satellites at 7º (thick line ellipses) and 13º (thin line 406 

ellipses) elevation angles on 6 June 2019. (d) The above-waterline portion of the GPS spar-buoy 407 

system. 408 

  409 



manuscript submitted to JGR: Oceans 

 20 

 410 

 411 
 412 

Figure 2. An example of using GPS interferometric reflectometry to retrieve water level. (a) 413 

GPS satellites observed by the receiver at elevation angles between 7º-13º on 6 June 2019. (b) 414 

Signal-to-noise ratio (SNR) data for the descending track of satellite PRN 32 (marked by the 415 

thick red line in a). Red line shows the detrended SNR data, black line shows the least squares 416 

fitting of a sine function. (c) Lomb-Scargle periodogram (LSP) of the detrended SNR data, 417 

frequencies are converted to GPS heights above the reflecting surface. Red line shows LSP for 418 

the data shown by red line in b. Grey line shows the LSP for data with peak frequency signal 419 

(black line in b) subtracted. 420 
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 422 
 423 

Figure 3. GPS spar-buoy and tide gauge observed water levels. (a) Grey dots show GPS antenna 424 

vertical displacements. Black dots show GPS-IR estimated reflecting heights. Red dots show the 425 

GPS spar-buoy derived water levels. Blue line shows tide gauge observed water levels (tide 426 

gauge location is shown in Figure 1a). Cyan lines show 0.2 cycle‐per‐day low‐frequency-pass 427 

filtered water levels. Note except for the black dots, all other markers are offset for clarity. (b-d) 428 

Zoom in view of the GPS spar-buoy and tide gauge observed water levels for periods marked by 429 

orange color in a. Blue for the tide gauge, red for the GPS spar-buoy. Standard deviation (STD) 430 

of the differences is annotated on the upper right. 431 
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 433 

 434 
 435 

Figure 4. Tidal analyses and predictions. (a) The eleven largest tidal constituents from harmonic 436 

analyses of the tide gauge (dotted line) and GPS spar-buoy (solid line) observations, plotted in 437 

polar projection. Each color corresponds to a tidal constituent shown in b and c with the same 438 

color. (b) Amplitude differences of tidal constituents between the tide gauge and GPS spar-buoy 439 

derived results, bottom to top corresponds the largest to smallest tidal constituent (M2 to K2), the 440 
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right annotations are percentages of the amplitude difference in the amplitude (average of the 441 

amplitudes from the two techniques). (c) Phase differences of tidal constituents between the tide 442 

gauge and GPS spar-buoy derived results. The corresponding time lags are annotated on the right. 443 

(d, e) Water level predictions. Blue line shows tide gauge observed water levels for comparison. 444 

(f) Difference in sea level predictions based on observations and model. TG – tide gauge, OSU – 445 

OSU TPXO model (Egbert & Erofeeva, 2002). 446 
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 448 

 449 
 450 

Figure 5. Comparison of the phase (top) and amplitude (bottom) of the largest three tidal 451 

constituents observed at the spar-buoy and the tide gauge locations. Color maps show OSU 452 

TPXO regional tidal solutions for the Gulf of Mexico. Phase (º) or amplitude (cm) at the spar-453 

buoy or tide gauge location is annotated above corresponding triangle marker, with OSU TPXO 454 

modeled value first and then result derived from the GPS spar-buoy or tide gauge observations 455 

(in parentheses).  456 

 457 
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 460 
 461 

Figure 6. Comparison of de-tided daily mean sea levels measured by the GPS spar-buoy and tide 462 

gauge. 463 
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 467 

Figure 7. Sea levels modeled by the Tampa Bay Coastal Ocean Model (TBCOM). (a) Black 468 

mesh shows the model domain, red markers mark the GPS spar-buoy and tide gauge locations. (b) 469 

3.5-day example of observed and hourly modeled sea levels at the GPS spar-buoy and the Port 470 

Manatee tide gauge. (c) Differences between the low pass filtered observed and model simulated 471 

sea levels at the GPS spar-buoy and tide gauges. Details of the TBCOM modeling scheme were 472 

described in Chen et al. (2018, 2019). 473 


