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Abstract

We present a comparison of magnetospheric plasma mass/electron density observations during an 11-day interval which includes

the geomagnetic storm of 22 June 2015. For this study we used: equatorial plasma mass density derived from geomagnetic field

line resonances (FLRs) detected by Van Allen Probes and at the ground-based magnetometer networks EMMA and CARISMA;

in situ electron density inferred by the Neural-network-based Upper hybrid Resonance Determination algorithm applied to

plasma wave Van Allen Probes measurements. The combined observations at L ˜ 4, MLT ˜ 16 of the two longitudinally-

separated magnetometer networks show a temporal pattern very similar to that of the in situ observations: a density decrease

by an order of magnitude about 1 day after the Dst minimum, a partial recovery a few hours later, and a new strong decrease

soon after. The observations are consistent with the position of the measurement points with respect to the plasmasphere

boundary as derived by a plasmapause test particle simulation. A comparison between plasma mass densities derived from

ground and in situ FLR observations during favourable conjunctions shows a good agreement. We find however, for L < ˜3, the

spacecraft measurements to be higher than the corresponding ground observations with increasing deviation with decreasing L,

which might be related to the rapid outbound spacecraft motion in that region. A statistical analysis of the average ion mass

using simultaneous spacecraft measurements of mass and electron density indicates values close to 1 amu in plasmasphere and

higher values (˜ 2-3 amu) in plasmatrough.
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Key Points: 15 

 The combination of two longitudinally-separated magnetometer arrays reproduces the main 16 

magnetospheric plasma density variations observed in situ 17 

 Observations are consistent with predictions provided by a plasmapause test particle 18 

simulation 19 

 Plasma mass densities derived from ground and in situ FLR observations for L > 3 are in 20 

good agreement during favourable conjunction intervals   21 
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Abstract 22 

We present a comparison of magnetospheric plasma mass/electron density observations during 23 

an 11-day interval which includes the geomagnetic storm of 22 June 2015. For this study we 24 

used: equatorial plasma mass density derived from geomagnetic field line resonances (FLRs) 25 

detected by Van Allen Probes and at the ground-based magnetometer networks EMMA and 26 

CARISMA; in situ electron density inferred by the Neural-network-based Upper hybrid 27 

Resonance Determination algorithm applied to plasma wave Van Allen Probes measurements. 28 

The combined observations at L  4, MLT  16 of the two longitudinally-separated 29 

magnetometer networks show a temporal pattern very similar to that of the in situ observations: a 30 

density decrease by an order of magnitude about 1 day after the Dst minimum, a partial recovery 31 

a few hours later, and a new strong decrease soon after. The observations are consistent with the 32 

position of the measurement points with respect to the plasmasphere boundary as derived by a 33 

plasmapause test particle simulation. A comparison between plasma mass densities derived from 34 

ground and in situ FLR observations during favourable conjunctions shows a good agreement. 35 

We find however, for L < ~3, the spacecraft measurements to be higher than the corresponding 36 

ground observations with increasing deviation with decreasing L, which might be related to the 37 

rapid outbound spacecraft motion in that region. A statistical analysis of the average ion mass 38 

using simultaneous spacecraft measurements of mass and electron density indicates values close 39 

to 1 amu in plasmasphere and higher values (~ 2-3 amu) in plasmatrough. 40 

1  Introduction 41 

Understanding the concentration and composition of the plasma populating the Earth's 42 

magnetosphere, its spatial distribution and its temporal variations, represent a relevant 43 

information in the space weather context. In addition, the ability to reliably and routinely specify 44 

in-situ mass density dynamics using ground-based remote-sensing, especially during storms, 45 

would be a major step forward.  46 

Electron and mass density of the magnetospheric plasma can be measured by different 47 

techniques both in space and from the ground. The electron number density can be measured 48 

locally by plasma wave experiments on board of satellites (Kurth et al., 2015) and remotely by 49 

ground detection of VLF whistlers propagating along the geomagnetic field lines (Park, 1972). 50 

On the other hand, the plasma mass density can be inferred from satellite (Takahashi et al., 2006) 51 

and ground (Menk & Waters, 2013) detection of geomagnetic field line resonances (FLR). In situ 52 

measurements of the concentration of different ions have been also reported (Horwitz et al., 53 

1984; Sandhu et al., 2016), but spacecraft charging effects often prevent the detection of the ions 54 

in the low energy range (Moldwin, 1997).  55 

Each of these measurements can provide information at a given time only at particular points in 56 

space and therefore, taken alone, provide only a very limited description of the dynamic 57 

processes occurring in the magnetosphere, especially along the world-line of individual satellites. 58 

Of course, in the absence of available in-situ satellite plasma measurements the ability to remote 59 

sense mass dynamics from the ground becomes of increased importance. 60 

Global images of the plasmasphere (in terms of helium contribution) have been provided in the 61 

past from the EUV imager on the IMAGE satellite (Sandel et al., 2000). These images could be 62 

also converted to He
+
 density maps in the equatorial plane (Sandel et al., 2003) allowing a 63 
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quantitative comparison with other typical density measurements, but for conversion into total 64 

mass density it requires assumptions of the relative abundance of He
+
, H

+
 and other species. 65 

These global images revealed a lot of detailed structures in the plasmasphere (plumes, notches, 66 

channels, shoulders, etc.) which could be followed in their initial formation and time evolution in 67 

response to the variable conditions of the solar wind (Spasojević et al., 2003). No similar 68 

experiments are presently in operation (the IMAGE mission was operative from 2000 to 2005). It 69 

is therefore very important when investigating the dynamics of the magnetospheric plasma (for 70 

example during a geomagnetic storm) to combine as many measurements as possible at different 71 

locations and from different instruments/techniques to get a more complete picture of the 72 

ongoing processes. This is also important for the intercalibration of the different techniques.  73 

It is also extremely useful for the interpretation of local variations to compare the observations 74 

with predictions provided by models and simulations. In this regard, the plasmapause test 75 

particle (PTP) simulation, which provides at any given time the global shape of the plasmapause 76 

using an ensamble of cold test particles subject to ExB drift, has been proven to be very effective 77 

(Goldstein et al., 2005, 2014a, 2014b). 78 

Some coordinated ground-based and satellite observations have been conducted in the past 79 

(Carpenter et al., 1981; Clilverd et al., 2003; Dent et al., 2003, 2006; Grew et al., 2007; Maeda et 80 

al., 2009). These studies showed a good consistency among the different measurements and 81 

enabled in some cases to infer the concentration and the dynamics of the heavy ions during 82 

different geomagnetic activity conditions. Combined measurements of electron and mass density 83 

have been also conducted by using only in situ measurements from the same satellite (Nosé et 84 

al., 2011, 2015; Takahashi et al., 2006, 2008). These studies confirmed for example the 85 

formation of an oxygen torus near the plasmapause during the initial and recovery phase of a 86 

geomagnetic storm (Fraser et al., 2005). 87 

In this paper we present a comparative study of plasma mass/electron density observations 88 

during an 11-day interval which includes the geomagnetic storm of 22 June 2015 (Dst minimum 89 

of 204 nT). The data used for this study are: a) equatorial plasma mass density derived from 90 

geomagnetic field line resonances (FLRs) detected at the ground-based magnetometer networks 91 

EMMA (Lichtenberger et al., 2013) and CARISMA (Mann et al., 2008); b) equatorial/local 92 

plasma mass density derived from FLRs detected by Van Allen Probes (Takahashi et al., 2015); 93 

c) in situ electron number density measurements by Van Allen Probes (Neural-network-based 94 

Upper hybrid Resonance Determination (NURD) data, Zhelavskaya et al., 2016). Measurements 95 

are also compared with the expected temporal evolution of the plasmapause shape from 96 

plasmapause test particle simulations (Goldstein et al., 2014b) available at 97 

http://enarc.space.swri.edu/PTP.  98 

The remainder of the paper is organized as follows. Section 2 presents an overview of the 99 

examined interval and describes the experiments, data and methods used for the analysis. Section 100 

3 presents a comparative study among the different kind of observations. Section 4 presents 101 

conclusions. 102 
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2  Data and Method 103 

2.1  Ground Measurements 104 

The event under study (18-28 June, 2015) was already examined in a previous paper (Piersanti et 105 

al., 2017) but using only plasma mass density estimates derived from EMMA-FLR observations. 106 

The adopted technique is comprehensively described in Del Corpo et al. (2019, 2020). Briefly, 107 

fundamental FLR frequencies were determined for the mid-point of 37 station pairs with a time 108 

step of half an hour, and then converted to equatorial plasma mass densities eq using the T02 109 

Tsyganenko magnetic field model (Tsyganenko, 2002) and a radial dependence of the density 110 

along the field lines as given by the power law model: 111 

                                                                 = eq(req /r)
m
,
                                                                                             

(1) 112 

where r is the geocentric distance, and req is the equatorial distance. Following indications from 113 

previous studies (Vellante & Förster, 2006), we used a power law index m = 1. Equatorial 114 

densities were then evaluated at any given distance in the local time sector monitored by EMMA 115 

by applying a smoothing spline to the radial profiles (Del Corpo et al., 2019). As well known, at 116 

nighttime the low ionospheric conductivity generally prevents the formation of FLRs and 117 

therefore the method was usable only during daytime hours.  118 

An overview of the temporal variation of the mass density for the event on a daily scale is shown 119 

in Figure 1 along with the geomagnetic indices Kp and Dst. The observations refer to the 120 

equatorial distances: 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 Earth radii (RE) and two different magnetic 121 

local times (MLT): 10 and 16. Dashed horizontal lines in each panel indicate the density level of 122 

22 June when the storm effects are not yet evident. In the morning sector (left panels) the density 123 

variation is characterized by a strong decrease on 24 June (1 day after the Dst minimum) for r >= 124 

3 RE, followed by an almost complete recovery on the next day, a new decrease (even stronger) 125 

on 26 June, and a more gradual recovery on the next days. A similar pattern is observed on the 126 

afternoon sector but the recovery on 25 June was only partial. 127 

Using a single meridional array we can monitor a given MLT region only every 24 hours. In 128 

order to increase the monitoring rate, we extended the analysis by using magnetometer data from 129 

the Alberta line ( 310° CGM longitude) of the CARISMA network (Mann et al., 2008; 130 

https://www.carisma.ca) which is longitudinally separated from EMMA by 150° (10 hours in 131 

MLT). Station pairs which were available and useful for the present analysis are reported in 132 

Table 1. Figure 2 shows the mapping to the magnetic equatorial plane (using IGRF) of the 133 

EMMA (blue dots) and CARISMA (red dots) mid points of the station pairs used for the 134 

analysis. Longitude values, reported around the outermost circle in Figure 2, are expressed in 135 

terms of the difference between MLT and UT. CARISMA data were then processed for the 136 

whole period by applying the same technique used for the EMMA data. For the present study we 137 

restricted the analysis to req = 4 RE where the CARISMA data coverage was the best. As a matter 138 

of fact, this distance was generally very close to the equatorial region mapped by the MSTK-139 

VULC pair (L = 3.83). It also corresponds to the mean equatorial radius of the plasmapause 140 

(Carpenter, 1968), and so it is a suitable location for monitoring the plasmasphere dynamics. 141 

2.2  In Situ Measurements 142 
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During the investigated period the orbits of the Van Allen Probes, formerly known as Radiation 143 

Belt Storm Probes (RBSP), were characterized by outbound and inbound legs occurring in the 144 

daytime and night-time sectors, respectively. An example, for 24 June 2015, is shown in Figure 3 145 

using L-MLT coordinates. The blue/red line refers to RBSP A/RBSP B, respectively, with Probe 146 

A preceding Probe B by  1 hour. In the morning sector the Van Allen Probes were very close to 147 

the Earth (L < 2), so only the orbit section occurring in the afternoon was usable for a 148 

comparison with the daytime ground observations. In particular, the spacecraft crossed the L-149 

shell = 4 at MLT  16. The orbit characteristics changed little with time during the investigated 150 

period, so each Van Allen Probe crossed the same L-MLT region approximately every 9 hours.  151 

We used RBSP electron number density values as derived by applying the NURD algorithm to 152 

plasma wave measurements (Zhelavskaya et al., 2016) which are freely available at the 153 

ftp://rbm.epss.ucla.edu/ftpdisk1/NURD/ ftp site. The data have a temporal resolution of 6 s and a 154 

variable uncertainty ranging from 10% to 14%. 155 

We also used magnetic field (Kletzing et al., 2013) and electric field (Wygant et al., 2013) 156 

measurements made by both RBSP A and RBSP B to detect harmonic frequencies of toroidal 157 

mode standing Alfvén waves which were then converted to equatorial or local plasma mass 158 

density estimates. When expressed in magnetic field-aligned (MFA) coordinates, toroidal mode 159 

waves are identified in the azimuthal component of the magnetic field (B) and in the radial 160 

component of the electric field (E). Toroidal frequencies were then determined by first 161 

searching for peaks in the B and E power spectra which were computed in a moving 15 min 162 

data window shifted in 5-min steps. For each significant peak, a weighted average frequency 163 

(with the weight given by the corresponding power spectral density) was then computed within a 164 

given band around the spectral peak (see Takahashi et al., 2015 for more details). The top panel 165 

of Figure 4 shows the harmonic toroidal frequencies (fundamental, second, third, and fifth 166 

harmonic detected in B, and the fundamental harmonic detected in E) for the outbound leg of 167 

the orbit n. 2726 of RBSP B on 21 June 2015. The bottom panel of Figure 4 shows the 168 

corresponding estimates of the equatorial mass density derived from each detected harmonic 169 

frequency using the T02 magnetic field model and a radial dependence of the density along the 170 

field line  r
1

. The error associated to each estimate may have different sources (spectral 171 

method, poloidal-toroidal mode coupling, field line mapping, functional dependence of the 172 

density along the field line, etc.), but we expect the error to be larger for the densities derived 173 

from the fundamental harmonic because of the larger relative error in the frequency estimation. 174 

In any case, the example shows that the densities derived from different harmonics are consistent 175 

with each other. The red line is a smoothing spline applied to the experimental points and it is 176 

used to evaluate the density at any desired distance.  177 

2.3  Plasmapause Test Particle Simulation 178 

In order to provide contextual information for the local measurements, we used a plasmapause 179 

test particle (PTP) simulation (Goldstein et al., 2014b). Starting from an initial configuration 180 

specified by the Kp-based empirical plasmapause model of O’Brien and Moldwin (2003), the 181 

model predicts at any next time the global shape of the plasmapause in the equatorial plane using 182 

an ensamble of cold test particles subject only to ExB drift. The convection electric field is 183 

driven by solar wind data and the Kp geomagnetic index (see Godstein et al., 2014b, for further 184 

details). The PTP model has demonstrated its validity when compared to global images of the 185 
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plasmasphere from IMAGE EUV (Goldstein et al., 2005), observations at geostationary orbit 186 

(Goldstein et al., 2014a), and Van Allen Probes observations (Goldstein et al., 2014b). In 187 

particular, Goldstein et al. (2014b) found that the mean difference in plasmapause encounter time 188 

between model and Van Allen Probes observations was about 30-40 min, and the mean model-189 

observations difference in radial location was 0.4 RE. The output of the model (freely available 190 

at http://enarc.space.swri.edu/PTP/) provides the plasmapause location (in L-MLT coordinates) 191 

at a 15-min cadence, also in a movie format. For a direct comparison with the real observations, 192 

we generated virtual observations from this model at a given fixed point P0 by constructing an 193 

index, IP0-PP, in the following way (where dmin is the distance from P0 to the plasmapause): 194 

IP0-PP = 0 :  P0  outside the plasmasphere, dmin > 0.4 RE; 195 

IP0-PP = 1 :  P0  outside the plasmasphere, dmin  0.4 RE; 196 

IP0-PP = 2 :  P0  inside the plasmasphere, dmin  0.4 RE; 197 

IP0-PP = 3 :  P0  inside the plasmasphere, dmin > 0.4 RE. 198 

In the present study (see section 3.1), we considered the point of coordinates L = 4, MLT = 16. 199 

2.4  Midnight Plasmapause Location as Derived From Swarm Measurements 200 

Recenty, Heilig and Lühr (2013) found observational evidence for a close relationship between 201 

the position of the night side plasmapause and the inner boundary of small-scale (< 40 km) field-202 

aligned currents (SSFACs) observed at low-Earth orbit, i.e. the L-shell across which the intensity 203 

of SSFACs increases by orders of magnitude. The correlation between the simultaneous 204 

variations of the two boundaries was found to be strongest near midnight, while at other MLTs 205 

the dayside plasmapause position correlates well with earlier observed position of the near-206 

midnight SSFAC boundary. The observed time lag corresponds to the corotation time from 207 

sunrise to the MLT of the dayside plasmapause crossings. While the location of the SSFAC 208 

boundary was found very sensitive to the variations in geomagnetic activity, at a given 209 

disturbance level the boundary can be well fitted by a circle. Both the centre position and the 210 

radius of the circle depend on geomagnetic activity. Based on observations of ESA’s Swarm 211 

satellites, Heilig and Lühr (2018) introduced a simple boundary model. Applying the model to 212 

observations made at any MLT, the midnight position of the boundary can be calculated as 213 

described in detail by Heilig and Lühr (2018). For this study, we derived a proxy of the midnight 214 

plasmapause position based on this approach. From the Swarm-detected SSFAC boundary 215 

positions, we first estimated the midnight boundary position. Then based on the validation results 216 

reported by Heilig and Lühr (2018), we subtracted 0.25 RE from all values to account for the 217 

average distance between the two boundaries near midnight. 218 

3  Comparative Study 219 

3.1  Temporal Variation at L = 4, MLT = 16 220 

We performed a comparison of the temporal variation observed by all of the measurement 221 

approaches described above at a fixed location in the magnetosphere during 18-28 June 2015 222 

(Figure 5). Similar studies have been often used in the past using whistler measurements (Park, 223 

1970, 1974), ground FLR measurements (Chi et al., 2000; Dent et al., 2006; Obana et al., 2010), 224 
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and in situ measurements (Denton et al., 2012, 2016; Reinisch et al., 2004), especially for 225 

evaluating long-term density refilling rates after a depletion event. For the present study, because 226 

of the limitations imposed by the Van Allen Probes orbits and FLR measurements, the best point 227 

to monitor resulted to be L = 4, MLT = 16. The different kind of measurements were obtained as 228 

follows. 229 

Equatorial mass density values inferred by EMMA/CARISMA observations (panel i) were 230 

obtained by interpolating the corresponding radial density profiles to fixed req = 4 RE at 14:00 231 

UT/00:00 UT of each day.  232 

Similarly, equatorial mass density values derived from FLRs detected by RBSP A and RBSP B 233 

(panels g-h) were obtained by interpolating the radial density profiles to fixed req = 4 RE (see 234 

description of Figure 4).  235 

As regards the electron number density estimates from the NURD plasma wave technique 236 

(panels e-f), in order to reduce random measurement fluctuations, the original 6 sec data were 237 

logarithmically averaged over the interval corresponding to the outbound transit time between 238 

the L-shells 3.9 and 4.1 ( 8.5 min). The magnetic latitude of the spacecraft at these passes was 239 

always less than 15°, so for the present analysis, no corrections were made to take into account 240 

of different distances from the equator from pass to pass. For example, assuming a density 241 

variation of r
1

 along the field line, the density value at a latitude of 15° would be only 7% lower 242 

than at the equator. 243 

Lines connecting data points are drawn to guide the eye. They are drawn as dashed lines (panels 244 

g-h) when data are missing between two consecutive observations. For each panel the mean 245 

MLT value and the corresponding standard deviation is also indicated. 246 

Also shown in the four uppermost panels (a-d) are the Dst index, the Kp index, the hourly 247 

averages of the Z-component of the interplanetary magnetic field (IMF) in GSM coordinates 248 

(solar wind OMNI data), and the hourly averages of the midnight plasmapause proxy as derived 249 

from Swarm observations (see section 2.4). The black line in panel (d) is a smoothing spline 250 

through the data. Note the very good correspondence of the midnight plasmasphere erosion 251 

phases observed in panel (d) with the intervals of southward direction of Bz,IMF (highlighted in 252 

red in panel (c)). The greatest erosion occurred at the beginning of 23 June (in correspondence 253 

with the Dst minimum) with the midnight plasmapause retreating down to 2 RE. 254 

As can be seen, the temporal variation is remarkably similar for all density measurements. In 255 

particular, the same sequence of decrease and increase through 23-25 June is observed. This 256 

pattern could not have been observed at ground if only one latitudinal array (as in Figure 1) had 257 

been used. Note also the delay in the afternoon density depletions with respect to the midnight 258 

plasmasphere contractions, which is compatible with the time required by the night-time 259 

plasmasphere to corotate into the afternoon sector. 260 

The almost full recovery observed in the middle of 24 and 25 June appears too quick to be 261 

attributed to a refilling from the ionosphere. Indeed, both theoretical arguments (e.g., Rasmussen 262 

et al., 1993) and previous experimental observations (Obana et al., 2010; Park, 1974) indicate a 263 

duration of several days for an L = 4 flux tube to refill after a storm-associated depletion. A more 264 

likely explanation is that an extended plasmasphere structure drifted through the observation 265 

point (Denton et al., 2012; Reinisch et al., 2004).  266 
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This hypothesis is supported by the virtual observations from the plasmapause test particle (PTP) 267 

simulation reported in the bottom panel of Figure 5 in terms of the IP0-PP index defined in section 268 

2.3. Values above/below the horizontal dashed line mean that the monitored point is in 269 

plasmasphere (PS)/plasmatrough (PT). As can be seen, the virtual observations are qualitatively 270 

consistent with the real observations. In particular the index mimics the sequence of the up and 271 

down density variations observed during 24-25 June. Also worth of note is the correspondence in 272 

the strong density increase observed through the first half of 18 June. 273 

An overview of the global evolution of the simulated plasmasphere during 24-25 June is shown 274 

in Figure 6, with one snapshot every 4 h. The times of these snapshots are marked in Figure 5j 275 

with dotted vertical lines. Also indicated in each snapshot are the RBSP A and B locations and 276 

orbits, the monitored point at L = 4, 16 MLT (orange dot), and the midnight plasmapause 277 

location as determined from Swarm observations (black cross). According to the simulation, the 278 

density increase observed in the middle of 24 June is interpretable in terms of the rotation of a 279 

drainage plume through the monitored point. The increase on the next day (25 June) would be 280 

due instead to the sunward surge of the plasma (snapshot at 08 UT) caused by a new 281 

enhancement of the convection, as testified by the increase of Kp at 06-09 UT (Figure 5b) and a 282 

corresponding southward turning of Bz,IMF (Figure 5c). The subsequent plume rotation, when the 283 

convection subsided, brought the monitored point to be back outside the plasmasphere at the end 284 

of 25 June. Note also that for the 10 MLT sector, the strong decrease on 24 June followed by an 285 

almost complete recovery on 25 June observed by EMMA (left panels of Figure 1) is consistent 286 

with the corresponding snapshots at 08 UT in Figure 6. In fact, on 24 June 08 UT, at 10 MLT 287 

(blue straight line) the plasmapause is located at 3.4 RE, and 24 hours later at 5.2 RE. Also 288 

worth of note is the general good agreement of the Swarm-derived midnight plasmapause 289 

location (black cross) with that expected from the PTP simulation.  290 

3.2  Conjunction Study 291 

We also conducted a more detailed comparison between space and ground measurements by 292 

restricting the analysis to favourable conjunction periods. Fairly good conjunction occurred 293 

every eighth RBSP orbit, i.e. every third day (on 22, 25, and 28 June 2015). The list of the 294 

selected intervals is reported in Table 2, where the start-end time in the last column is the time 295 

interval covered by the RBSP-FLR measurements. Figure 7 shows the locations of the EMMA 296 

stations in geographic coordinates along with the magnetic field footprints of RBSP A and B for 297 

the six intervals reported in Table 2. The footprints in Figure 7 (red/blue dots) are evaluated in 298 

correspondence of each detected toroidal frequency measurement made every 5 min and are 299 

obtained using the T02 magnetic field model. 300 

The results of the ground-space comparison for each of the selected intervals are shown in Figure 301 

8. The red points are the RBSP equatorial mass densities derived from the toroidal frequencies 302 

evaluated at a 5-min time step. The inversion procedure was applied to all detected harmonics, so 303 

different density estimates may be present at a given time. For each RBSP measurement, the 304 

closest in time EMMA radial density profile was fitted by a smoothing spline and the fitting 305 

value at the RBSP position was taken. These EMMA values are indicated in Figure 8 with blue 306 

open circles. The electron density profile (NURD data) is also shown as a black solid line for the 307 

entire outbound leg. The original 6-s local measurements were first converted in equatorial 308 

values assuming a radial distribution along the field line  r
1

 and then a smoothing spline was 309 



manuscript submitted to JGR: Space Physics 

9 

 

applied to reduce short-scale fluctuations due to measurement errors. The dashed curve is the 310 

Carpenter and Anderson (1992) saturated plasmasphere electron density model which is drawn 311 

as a useful reference. The measurements are plotted as a function of UT, and reference L values 312 

(and corresponding MLT values) are indicated by dotted vertical lines. The mean MLT deviation 313 

(MLT) between EMMA and RBSP measurements is also indicated.  314 

There is a general good agreement between ground and space mass density estimates. Mass 315 

density values (in amu cm
-3

) are also generally close to electron number density values (in cm
-3

), 316 

which would be consistent with a plasma composed mainly of hydrogen ions. The largest 317 

discrepancy is observed in panel (d) where, for r > 5 RE (outward of an abrupt density falloff), 318 

both RBSP and EMMA mass density values are significantly above the electron number density 319 

level, up to a factor of 8. This might be indicative of the presence of an oxygen torus just 320 

outward of the plasmapause (Fraser et al., 2005). 321 

There is also some indication for the RBSP and EMMA mass density profiles to diverge with 322 

decreasing distance in the range 2 < L < 3 (see panels (c), (d), (e), (f)), the RBSP estimates being 323 

higher than the corresponding EMMA estimates. 324 

The observations for these conjunction events have been statistically analyzed and the results are 325 

shown in Figure 9. Panel (a) shows the equatorial density ratio 
RBSP

/
EMMA as a function of req. 326 

105 sample pairs were available for this analysis. The different markers/colors indicate from 327 

which harmonic the RBSP estimate was obtained. The lower quartile (0.96), the median (1.14), 328 

and the upper quartile (1.34) of the whole population are indicated on the top. The black dots 329 

connected by straight lines are the medians in req bins, and the vertical bars connect the lower 330 

and upper quartiles. The number of samples and medians for each bin are also indicated above 331 

the horizontal axis. These results indicate a very good agreement between plasma mass densities 332 

derived from ground and in situ FLR observations at all distances, but also confirm 333 

systematically higher RBSP estimates for req < 3 RE. 334 

Panel (b) is the plot of the local RBSP mass density over the corresponding electron number 335 

density, i.e. the estimated local average ion mass M. The RBSP mass densities are the same used 336 

in panel (a) but converted to local mass densities at the RBSP position assuming a density 337 

variation of r
1

 along the field. The electron number density values were obtained by taking a 338 

log average over 5-min windows around the central time of the FLR measurements. The results 339 

look very similar to those of panel (a). The higher M values obtained for req < 3 RE are then 340 

possibly due to an overestimation of the mass density (underestimation of the FLR frequency) 341 

from the spacecraft data rather than to a real increase of the average ion mass (see discussion 342 

below). 343 

Panel (c) is the plot of the local average ion mass, but using EMMA measurements for the mass 344 

density. As expected from the results of panels (a) and (b), the M values are slightly lower and 345 

closer to 1 amu, even for req < 3 RE. 346 

The previous results are restricted to the time intervals with good RBSP-EMMA conjunction. In 347 

Figure 10a the analysis of the average ion mass is extended using the whole RBSP-FLR data set 348 

for 18-28 June 2015. For a better consistency with the previous analysis only outbound passes 349 

were considered. 1182 data points were available, i.e. a much larger data set with respect to that 350 
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used in Figure 9b. The median values are practically identical to those of Figure 9b, except for 351 

slightly higher values ( 20%) for req > 4 RE. 352 

A clear increase of M for req < 3 RE is confirmed even for this larger data set. Since we do not 353 

find a similar effect when using ground observations (Figure 9c), we argue that it could be due to 354 

a downward frequency shift caused by the faster cross-L movement of the spacecraft at lower L 355 

values. More specifically, during the investigated interval, the RBSP cross-L velocity was 356 

maximum at L  1.8. A similar effect was previously found by Anderson et al. (1989), Vellante 357 

et al. (2004), Heilig et al. (2013), and Takahashi et al. (2015). The frequency shift was 358 

theoretically interpreted either by considering each crossed L-shell oscillating at its own 359 

resonance frequency (Anderson et al., 1989), or by considering the satellite movement across the 360 

resonance region in case of a monochromatic driving wave (Vellante et al., 2004). In the present 361 

study, no RBSP-FLR measurements were available during inbound passes at L < 3, so we could 362 

not verify the expected opposite effect, i.e. a mass density underestimate due to an upward 363 

frequency shift. Another (or additional) possible cause of the higher M medians for req < 3 RE 364 

could be a downward bias in the frequency estimate due to the weighted averaging method 365 

which was adopted in the frequency selection (section 2.2). Indeed, due to the typical power law 366 

decrease with frequency of the background power spectral density, the frequencies on the left of 367 

the spectral peak have on average a larger weight with respect to the frequencies to the right of 368 

the peak. This effect should increase with decreasing frequency, and then might be more 369 

significant for req < 3 RE where the fundamental frequency samples are dominant. We evaluated 370 

that in some cases the corresponding density overestimation could be up to 20%. 371 

An M value of 1.2 amu, found in this analysis in the range 3 RE < req < 6 RE, is typical for the 372 

plasmasphere (Nosé et al., 2015; Takahashi et al., 2015) which is dominated by H
+
 ions. Larger 373 

values ( 3-7 amu) were found, instead, in the plasmatrough by Takahashi et al. (2006, 2008) 374 

and Nosé et al. (2011, 2015), using the same technique of the present paper. In order to separate 375 

plasmaspheric-like from trough-like observations, we used the same empirical criterion adopted 376 

by Sheeley et al. (2001), i.e. we considered an observation to refer to the 377 

plasmasphere/plasmatrough region if the local electron number density was higher/lower than 378 

the separation value given by the following expression no = 10 (6.6/L)
4
. Figure 10b shows in 379 

fact that the electron number density values (black dots) are distributed in two different groups 380 

which are quite well separated by the threshold density no (red line). Also shown in the figure is 381 

the Carpenter and Anderson (1992) saturated plasmasphere electron density model (blue line). 382 

After using this criterion, we found for the plasmatrough a moderate increase in the estimated 383 

average ion mass: a median value of 1.55 amu when considering the whole population (398 data 384 

pairs) and a maximum median value of 3.0 amu in the 3.0-3.5 RE bin. 385 

Lastly, we examined the effect of using a different power law dependence of the mass density 386 

along the field line. All results discussed so far have been obtained by using a power law index m 387 

= 1 in equation (1). We considered reasonable to assume as a possible range of the power law 388 

index: 0 <= m <= 2. For example, Takahashi et al. (2006) and Nosé et al. (2015) used m = 0.5. 389 

We found no significant differences when using m = 0, or m = 2 instead of m = 1. For example, 390 

the median value for the whole population in panel (d) changed to 1.32 for m = 0 and 1.16 when 391 

using m = 2. The maximum change occurred in the highest req bin (6-6.5 RE) with a variation of 392 

  10%. 393 
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4  Conclusions 394 

The detection of geomagnetic field line resonances by ground-based magnetometer arrays is a 395 

very useful tool for remote sensing temporal and spatial variations of the magnetospheric plasma 396 

mass density. For example it has been applied successfully for a) identifying the plasmapause 397 

(Del Corpo et al., 2020; Kale et al., 2007; Menk et al., 2004; Milling et al., 2001), b) studying the 398 

diurnal (Chi et al., 2013; Del Corpo et al., 2019; Waters et al., 1994) and annual (Berube et al., 399 

2003; Menk et al., 2012; Vellante et al., 2007) variations, c) examining the dependence on the 400 

solar EUV irradiance (Vellante et al., 2007), d) constructing an empirical model in the equatorial 401 

plane (Berube et al., 2005; Del Corpo et al., 2020). 402 

The FLR-technique has been also used to investigate magnetospheric density variations during 403 

geomagnetic storms with particular regard to the study of plasmasphere erosion and subsequent 404 

refilling from the ionosphere (Chi et al., 2000, 2005; Dent et al., 2006; Grew et al., 2007; Kale et 405 

al., 2009; Lichtenberger et al., 2013; Obana et al., 2010; Pezzopane et al., 2019; Piersanti et al., 406 

2017; Villante et al., 2006). However, the use of a single meridional array (which can monitor 407 

only one longitudinal sector) does not allow to get a global picture of the spatio-temporal plasma 408 

dynamics during these processes. In addition, without contextual information provided by global 409 

observations or models, the causes of the observed variations may not be unambiguously 410 

determined. 411 

In the present paper, we found that by combining the observations from two meridional 412 

magnetometer arrays (EMMA and CARISMA) longitudinally separated by 10 hours in local 413 

time, we can reproduce the main variations in plasma density observed by the RBSP spacecraft 414 

on consecutive passes (every 9 hours) through the same magnetospheric region (L = 4, 16 415 

MLT) during a disturbed period. In addition, the supporting information provided by a 416 

plasmapause test particle simulation was crucial to correctly interpret the causes of such 417 

variations. In particular, the PTP simulation allowed to interpret rapid recoveries observed after 418 

strong density depletions as due to the passage of a drainage plume through the measurement 419 

point in one case, and to the sunward surge of the plasma at the beginning of a magnetospheric 420 

convection enhancement in another case. So in general, the approach of combining ground 421 

remote sensing of mass density using arrays from different longitudes results to be effective for 422 

diagnosing the spatio-temporal mass dynamics associated with the advection of dense plasma 423 

which occurs locally on much shorter timescales than plasmaspheric refilling. Obviously more 424 

latitudinal chains would be able to reveal more detailed information. 425 

We also conducted a direct comparison between the plasma mass densities derived from ground 426 

FLR observations and those derived from space FLR observations for favourable conjunction 427 

events. 105 measurements could be compared in the L-range 2-6. To our knowledge, this is the 428 

most extensive direct comparison between ground and space FLR measurements. Quite a good 429 

agreement was found between the plasma mass densities inferred from the two kind of 430 

measurements, with the in situ density estimates being on average 10% higher than the 431 

corresponding ground estimates. Larger deviations were found for L < ~3, up to a factor of ~2 at 432 

L ~2. This result is qualitatively consistent with a downward shift in the frequency observed by a 433 

spacecraft moving outward across the L shells, which is expected to increase with decreasing 434 

radial distance because of the increasing spacecraft cross-L velocity.  435 
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An analysis of the average ion mass using simultaneous RBSP measurements of the mass and 436 

electron number density indicates an average ion mass close to 1 amu in the plasmasphere and 437 

higher values (typically ~ 2-3 amu, and up to ~ 8 amu) in the plasmatrough, consistent with 438 

previous observations (Nosé et al., 2011, 2015; Takahashi et al., 2006, 2008).  439 
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Table 1.  CARISMA station pairs employed
a
 680 

Station pair Geog. 

Lat. 

(°N) 

Geog. 

Lon. 

(°E) 

CGM 

Lat. 

(°N) 

CGM 

 Lon. 

(°E) 

L MLT CGM 

Lat.Separ. 

(°) 

CGM 

Lon.Separ. 

(°) 

FCHP-MCMU 57.72 248.84 64.95 310.69 5.68 UT – 7.91 h 2.06 0.54 

MCMU-MSTK 55.00 247.91 62.16 310.28 4.67 UT – 7.94 h 3.52 1.35 

MSTK-VULC 51.86 247.03 58.93 309.99 3.83 UT – 7.96 h 2.94 0.74 

VULC-POLS 49.02 246.41 56.02 309.90 3.26 UT – 7.97 h 2.90 0.88 

a
L shell, geomagnetic coordinates, and MLT are calculated for 2015 at 120 km altitude  681 
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Table 2.  Ground-space conjunction intervals 682 

N  Probe Orbit n.         Date DoY start-end time (hh.mm.ss) 

1 RBSP-A   2744 22 June, 2015  173    12.55.00-14.20.00 

2 RBSP-A   2752 25 June, 2015  176    12.20.00-13.25.00 

3 RBSP-A   2760 28 June, 2015  179    12.05.00-14.10.00 

1 RBSP-B   2729 22 June, 2015  173    13.30.00-15.25.00 

2 RBSP-B   2737 25 June, 2015  176    13.30.00-17.00.00 

3 RBSP-B   2745 28 June, 2015  179    13.55.00-17.40.00 

683 
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Figure 1.  Day-to-day variation of the equatorial plasma mass density at different geocentric 684 

distances and for two different Magnetic Local Times, derived from field line resonance 685 

frequencies detected at the EMMA magnetometer network. Top panels show the Kp and Dst 686 

indices.687 
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Figure 2.  Locations of station pair midpoints for EMMA (blue dots) and CARISMA (red dots) 688 

in L-MLT coordinates. Values reported around the outermost circle are the difference between 689 

MLT and UT. 690 

691 
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Figure 3.  RBSP orbits in L-MLT coordinates (calculated using a centered dipole) during 0200-692 

1100 UT on 24 June 2015. Locations at start/end times are indicated by dots/crosses. 693 

694 
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Figure 4.  Top panel: Selected harmonic frequencies for the outbound leg of the orbit n. 2726 of 695 

RBSP B on 21 June 2015. Bottom panel: Corresponding estimates of the equatorial plasma mass 696 

density. See text for details. 697 

698 
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Figure 5.  (a-d) Kp, Dst, BZ,IMF in GSM coordinates (red/blue colours indicate 699 

southward/nortward direction), and midnight plasmapause proxy during 18-28 June 2015. (e-i) 700 

Plasma density evaluated at L = 4, 16 MLT: (e, f) RBSP-NURD electron density; (g, h) plasma 701 

mass density from RBSP-FLR measurements; (i) plasma mass density from EMMA/CARISMA-702 

FLR observations. (j) Virtual observations from the plasmapause test particle simulation in terms 703 

of the IP0-PP index defined in section 2.3. Values above/below the horizontal dashed line mean 704 

that the monitored point is in plasmasphere (PS)/plasmatrough (PT).  705 
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Figure 6.  Output of the plasmapause test particle simulation with a time step of 4 hours during 706 

24-25 June 2015. The green regions represent the simulated plasmasphere. Circles are drawn at 707 

4, 6, and 6.6 RE. Also shown are the orbits and locations of RBSP A (red) and RBSP B (blue), 708 

the monitored point at L = 4, 16 MLT (orange dot), and the midnight plasmapause location as 709 

determined from Swarm observations (black cross). The blue straight lines drawn at 08 UT of 710 

both days indicate 10 MLT.  711 
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Figure 7.  Geographic locations of the EMMA stations and the RBSP magnetic field footprints 712 

for six different conjunction intervals (see Table 2). Footprints are determined using the T02 713 

magnetic field model. 714 

715 
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Figure 8.  Comparison between RBSP-equatorial mass densities (red points), EMMA-equatorial 716 

mass densities (blue open circles), and NURD-equatorial electron densities (black solid line) for 717 

the six conjunction intervals listed in Table 2. Dashed curve is the Carpenter and Anderson 718 

(1992) saturated plasmasphere electron density model. Dotted vertical lines are drawn at L = 2, 3, 719 

4, 5, 6. The mean MLT deviation between EMMA and RBSP measurements is indicated inside 720 

each panel. See text for more details. 721 

722 
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Figure 9.  (a) Ratio between RBSP/FLR-derived and EMMA/FLR-derived plasma mass density 723 

for the conjunction intervals as a function of the equatorial distance. The different markers/colors 724 

indicate from which harmonic the RBSP estimate was obtained. Black dots connected by straight 725 

lines are the medians in req bins, and the vertical bars connect the lower and upper quartiles. 726 

Lower quartile, median, and upper quartile of the whole population are indicated on the top. 727 

Number of samples and medians for each bin are indicated above the horizontal axis. (b) The 728 

same as (a) but for the ratio between RBSP/FLR-derived plasma mass density and RBSP/NURD 729 

electron number density (average ion mass). (c) The same as (b) but for the ratio between 730 

EMMA/FLR-derived plasma mass density and NURD electron number density. 731 
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Figure 10.  (a) The same as in Figure 9b but for the whole RBSP/FLR data set. (b) Electron 732 

number density (black dots) as a function of the equatorial distance. The red line is the empirical 733 

criterion for separating plasmaspheric-like from trough-like observations (Sheeley et al., 2001). 734 

The blue line is the Carpenter and Anderson (1992) saturated plasmasphere electron density 735 

model.   736 


