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Abstract

This study investigates the direct radiative-convective processes that drive and maintain aggregation within convection per-

mitting elongated channel (and smaller square) simulations of the UK Met Office Unified Model (UM). Our simulations are

configured using three fixed sea surface temperatures (SSTs) following the radiative-convective equilibrium model intercom-

parison project (RCEMIP) protocol. By defining cloud types based on the vertical distribution of condensed water, we study

the importance of radiative interactions with each cloud type to aggregation. We eliminate the dependence of the vertically-

integrated frozen moist static energy (FMSE) variance budget framework on SST by normalizing FMSE between theoretical

upper and lower limits based on SST. The elongated channel simulations reach similar degrees of aggregation across SSTs,

despite the contributions of normalized shortwave and longwave interactions decreasing with SST. High-cloud longwave inter-

actions are the main drivers and maintainers of aggregation. Their influence decreases with SST as high clouds become less

abundant. This SST-dependence is consistent with changes in grid spacing and RHcrit, however the magnitude of high-cloud

longwave interactions is likely reduced as grid spacing and RHcrit are reduced. Both factors tend to decrease condensed water

path and cloud top height, decreasing the anomalous longwave heating rates of these clouds. Shortwave interactions with water

vapor are key maintainers of aggregation and are dependent on SST and the degree of aggregation itself. The analysis method

used provides a new framework to compare the effects of radiative-convective processes on self-aggregation across different SSTs

and model configurations in order to improve our understanding of self-aggregation.
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Abstract12

This study investigates the direct radiative-convective processes that drive and main-13

tain aggregation within convection permitting elongated channel (and smaller square)14

simulations of the UK Met Office Unified Model (UM). Our simulations are configured15

using three fixed sea surface temperatures (SSTs) following the radiative-convective equi-16

librium model intercomparison project (RCEMIP) protocol. By defining cloud types based17

on the vertical distribution of condensed water, we study the importance of radiative in-18

teractions with each cloud type to aggregation. We eliminate the dependence of the vertically-19

integrated frozen moist static energy (FMSE) variance budget framework on SST by nor-20

malizing FMSE between theoretical upper and lower limits based on SST.21

The elongated channel simulations reach similar degrees of aggregation across SSTs,22

despite the contributions of normalized shortwave and longwave interactions decreasing23

with SST. High-cloud longwave interactions are the main drivers and maintainers of ag-24

gregation. Their influence decreases with SST as high clouds become less abundant. This25

SST-dependence is consistent with changes in grid spacing and RHcrit, however the mag-26

nitude of high-cloud longwave interactions is likely reduced as grid spacing and RHcrit27

are reduced. Both factors tend to decrease condensed water path and cloud top height,28

decreasing the anomalous longwave heating rates of these clouds. Shortwave interactions29

with water vapor are key maintainers of aggregation and are dependent on SST and the30

degree of aggregation itself. The analysis method used provides a new framework to com-31

pare the effects of radiative-convective processes on self-aggregation across different SSTs32

and model configurations in order to improve our understanding of self-aggregation.33

Plain Language Summary34

The spontaneous clustering of rainstorms (termed convective self-aggregation) is35

a common feature in weather and climate models. The amount of aggregation has a large36

influence on both weather and climate, so being able to understand how aggregation de-37

velops and how it is affected by a warming climate is important in both weather and cli-38

mate modeling. Previous studies have shown that interactions between convection and39

radiation (both solar radiation and thermal radiation) are crucial for driving and main-40

taining aggregation. This study provides a detailed analysis into the key radiative-convective41

interactions that influence aggregation within simulations of the Met Office Unified Model.42

We assess their sensitivities to the model’s sea surface temperature (SST), grid spacing,43

and critical cloud formation humidity. We find that the contribution of radiative-convective44

interactions to aggregation decreases as the SST is increased because the amount of high45

cloud decreases, and because the difference in absorption of solar radiation between hu-46

mid and dry regions becomes less significant for aggregation. Decreasing both the model47

grid spacing, and the model’s critical cloud formation humidity has the effect of decreas-48

ing the magnitude of the cloud interactions with thermal radiation, leading to a hypoth-49

esized slowing of the rate of aggregation.50

1 Introduction51

Weather over the tropical oceans is dominated by convection. The tropical atmo-52

sphere is in an approximate equilibrium between atmospheric radiative cooling and con-53

vective heating called radiative-convective equilibrium (RCE) (e.g. Arakawa & Schubert,54

1974). With radiative cooling of the free troposphere, consistently high surface temper-55

atures, and an abundant supply of moisture, convection occurs in an attempt to neutral-56

ize conditional instability, resulting in strong rainstorms. This convection can form a wide57

variety of structures with a great range of spatial and temporal scales depending on the58

state of convective organization. Structures can range from individual cumulonimbus clouds,59

to squall lines, mesoscale convective systems (MCSs), tropical cyclones, and the Madden-60
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Julian Oscillation (MJO) (Madden & Julian, 1971; Houze, 2004; Nakazawa, 1988; Mapes61

& Houze, 1993). The degree of aggregation affects the environment of both the convec-62

tive and surrounding subsiding regions (e.g. Wing & Emanuel, 2014), as well as global-63

scale circulations (Arnold & Randall, 2015) and climate (Coppin & Bony, 2018).64

There are many processes that cause convective organization, including convection65

within equatorial waves (Kiladis et al., 2009), organization along fronts, sea surface tem-66

perature (SST) hotspots, land and orography. Another process has been termed convec-67

tive self-aggregation: a process, first identified in idealized models, by which convection68

spontaneously becomes clustered despite homogeneous initial conditions and forcing (e.g.69

Wing et al., 2017). Self-aggregation has been the focus of many recent studies, the ma-70

jority of which have used idealized simulations of radiative convective equilibrium to fur-71

ther understand the processes that cause this phenomenon (Held et al., 1993; Brether-72

ton et al., 2005; Muller & Held, 2012; Wing & Emanuel, 2014). A review of self-aggregation73

in numerical models has been published by Wing et al. (2017). Despite self-aggregation74

being first recognized in these idealized numerical models, key processes that drive self-75

aggregation are indeed relevant to the real atmosphere (Holloway et al., 2017).76

We use the spatial distribution of frozen moist static energy (FMSE) as a frame-77

work to study aggregation (Wing & Emanuel, 2014). FMSE, or h, is given by78

h = cpT + gz + Lvqv − Lfqi (1)

where cp is the specific heat of dry air at constant pressure, T is temperature, g is the79

gravitational acceleration, z is the height above the surface, Lv is the latent heat of va-80

porization, qv is the water vapor mixing ratio, Lf is the latent heat of fusion and qi is81

the condensed ice mixing ratio.82

The density-weighted vertical integral of FMSE is only affected by radiation, sur-83

face fluxes and advection. FMSE is approximately conserved, but redistributed under84

convective processes. As convection becomes more clustered, the horizontal variance in85

vertically integrated FMSE increases. A budget equation for the rate of change of ver-86

tically integrated FMSE shows that the horizontal variance in vertically integrated FMSE87

is driven by feedbacks with radiation, surface fluxes and advection. Many studies have88

shown the feedbacks between FMSE and both shortwave and longwave radiation are the89

key drivers and maintainers of aggregation (e.g. Holloway & Woolnough, 2016), and in-90

teractive radiation in models is essential for aggregation to occur (Bretherton et al., 2005;91

Muller & Bony, 2015).92

Muller and Held (2012) find that it is the longwave cooling effect of low clouds within93

dry regions that is responsible for the onset of self-aggregation. The resultant circula-94

tion driven by the radiative cooling drives an upgradient transport of FMSE, which in-95

creases the variance of FMSE. They find the sensitivity of self-aggregation to domain size96

and resolution to be a result of the sensitivity of low cloud distributions within the model.97

Once the convection is aggregated, the longwave cooling effect of low clouds is not nec-98

essary to maintain aggregation (Muller & Held, 2012; Muller & Bony, 2015). During the99

mature phase of aggregation, the reduced longwave cooling of high clouds within high-100

FMSE regions becomes the dominant feedback maintaining aggregation (Wing & Emanuel,101

2014).102

Wing and Emanuel (2014) note the importance of the shortwave radiative feedback103

due to the increased absorption of shortwave radiation within high FMSE regions com-104

pared to low FMSE regions, increasing the FMSE variance. They also note that dry re-105

gions initially have anomalously strong radiative cooling, resulting in a positive longwave106

feedback, whereas at later times, the dry regions amplify, becoming dryer, which decreases107
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low-level emissivity. Anomalous longwave heating then develops at low levels to the ex-108

tent that the column longwave heating anomaly becomes positive.109

The contributions from cloud-radiation interactions to convective self-aggregation110

are generally implied in these previous studies, but a detailed analysis considering the111

role of specific cloud types is missing. With both the horizontal and vertical distribu-112

tion of clouds being one of the largest sources of variability amongst RCE simulations113

(Wing et al., 2020), a detailed investigation into the role of specific cloud types on self-114

aggregation may help in explaining the variability of self-aggregation amongst RCE sim-115

ulations and the consequential implications for climate sensitivity.116

This study investigates the direct radiative-convective processes that are impor-117

tant to self-aggregation, and their sensitivity to SST within elongated channel simula-118

tions of the UK Met Office Unified Model (UM) version 11.0. We then investigate how119

the SST-dependent convective features and their radiative interactions are affected by120

model grid spacing and treatment of subgrid condensation using smaller square domains.121

Our simulations are configured using three fixed sea surface temperatures (SSTs) follow-122

ing the radiative-convective equilibrium model intercomparison project (RCEMIP) pro-123

tocol. The model setup is described in section 2.1. We use a budget equation for the vari-124

ance of normalized vertically-integrated FMSE which minimizes the SST dependence of125

horizontal FMSE variance (section 2.2). This allows us to compare how the impacts of126

radiative feedbacks on aggregation change with SST. We categorize cloud types based127

on the vertical distribution of condensed water path (CWP) and analyze their radiative128

interactions that impact aggregation. This categorization is shown in section 2.3.129

We first analyze how convection aggregates within the three channel simulations130

in section 3, and show how the FMSE budget terms vary with time and SST. We then131

analyze the radiative feedbacks responsible for maintaining aggregation in the large do-132

main and compare how SST affects these feedbacks in section 4. Then, we look at the133

dominant radiative feedbacks during the early stages of aggregation and see how they134

change with time (section 5). Finally, we investigate how these radiative interactions are135

affected by both resolution and the critical humidity threshold for condensation to oc-136

cur (RHcrit), using smaller domains with lower grid spacing (section 6). A summary and137

conclusions is presented in section 7.138

2 Methods139

2.1 Model Configuration140

In this study, we use the UK Met Office Unified Model version 11.0 to run simu-141

lations of RCE at three fixed SSTs of 295, 300 and 305 K. This study mainly focuses on142

convection within the “LARGE” domain, however we also use three other domains: “SMALL”,143

“SMALL HI ”, and “SMALL RHCRIT”, to assess how the radiative properties of clouds144

are affected by grid spacing and RHcrit.145

The LARGE and SMALL simulations have been configured following the radiative-146

convective equilibrium model intercomparison project (RCEMIP) protocol set out by Wing147

et al. (2018). The LARGE domain is 6048 km × 432 km in size with a 3 km horizon-148

tal grid spacing and the SMALL domain is 100 km × 100 km with a 1 km grid spacing.149

The SMALL HI domain is also 100 km × 100 km in size but has a horizontal grid spac-150

ing of 0.1 km.151

The LARGE, SMALL, and SMALL HI simulations all have a uniform RHcrit value152

of 0.99 across the entire domain. The value of RHcrit should depend on the dimensions153

of the grid box, with coarser grid boxes requiring a lower RHcrit to yield realistic cloud154

amounts. Our value is too high to yield realistic low cloud distributions (Morcrette, 2013)155

particularly for our coarser grid spacings. To see the effects of a more realistic RHcrit,156
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we used another set of simulations that are identical to our SMALL simulations but for157

an RHcrit distribution used in the UK Met Office UKV model. Here, RHcrit is set to158

96% in the lowest layers and decreases steadily to 80% at 900 m. RHcrit is then main-159

tained at 80% above this level.160

The RCEMIP protocol states that large-domain simulations for a given SST are161

initialized using the equilibrium soundings of the corresponding small-domain simula-162

tions, providing aggregation does not occur in the small-domain. In our case, the SMALL163

simulations showed signs of self-aggregation, therefore, our LARGE simulations are ini-164

tialized from a corresponding small-domain simulation with homogenized radiation, which165

showed no sign of aggregation. Note that there was a mistake in the initialization of the166

LARGE simulations, in that the initial humidity profile is out by a density factor. With167

density close to unity in the regions with highest absolute humidity, and with the 2-day168

spin-up period neglected in the conclusions of our analysis, we believe this error will not169

have an impact on our conclusions.170

The simulations are configured over an ocean, without rotation, and have a fixed171

solar insolation of 409.6 W m−2 (the tropical annual mean). The LARGE domain sim-172

ulations are run for 113 days, the SMALL simulations are 124 days, the SMALL HI sim-173

ulations are 54 days, and the SMALL RHCRIT simulations are 123 days. 3D data are174

produced every 6 hours, which is the temporal resolution of our analysis.175

The science configuration of our simulations is based on the tropical Regional At-176

mosphere and Land (RAL1-T) configuration (Bush et al., 2020). However, we use the177

Smith sub-grid cloud scheme (Smith, 1990) rather than the PC2 scheme (Wilson et al.,178

2008). With our simulations configured over an ocean, the land settings of RAL1-T are179

not used. The simulations use explicit convection set over a flat, Cartesian grid, with biperi-180

odic boundary conditions, using a vertical sigma-z-coordinate Charney-Philips stagger-181

ing (Charney & Phillips, 1953). We use a 60 s time step for the LARGE simulations,182

a 30 s time step for the SMALL and SMALL RHCRIT simulations, and a 5 s time step183

for the SMALL HI simulations. The dynamical core uses a semi-implicit, semi-Lagrangian184

scheme that solves the non-hydrostatic, fully compressible, deep-atmosphere equations185

of motion (Wood et al., 2014).186

The radiation scheme used is the Suite of Community Radiative Transfer codes based187

on Edwards and Slingo (SOCRATES) (Edwards & Slingo, 1996) with the full radiation188

being computed at 15-minute time steps and the simplified radiation at 5-minute time189

steps. The boundary layer scheme used is based on that described in Lock et al. (2000)190

with updates described in Walters et al. (2019). The subgrid turbulence scheme is based191

on Smagorinsky (1963) with multiple extensions from Lock et al. (2000). We use Rayleigh192

damping of all prognostics in a “sponge layer” in the upper levels of the model, with the193

damping timescale following an exponential function of height from 24-40 km. The mi-194

crophysics used is a single-moment scheme based on Wilson and Ballard (1999).195

2.2 Normalization of FMSE196

Using the variance of vertically-integrated FMSE (var(ĥ)) as the metric for com-197

paring aggregation across different SSTs has its pitfalls as it is very strongly dependent198

on temperature. To account for this, we normalize vertically-integrated FMSE between199

a theoretical upper and lower limit using the formula:200

ĥn =
ĥ− ĥmin

ĥmax − ĥmin

(2)

where hats (̂) denote a density-weighted vertical integral, and ĥmax and ĥmin are up-201

per and lower limits of ĥ for a given SST. ĥmax is defined as the vertically-integrated FMSE202
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of a fully saturated moist pseudoadiabatic profile from the surface to the tropopause, plus203

the integrated FMSE of the initial profile for the LARGE simulations above the tropopause.204

For ĥmin, the vertically-integrated FMSE of a dry adiabatic profile with zero moisture205

is used within the troposphere, and again, integrated FMSE above the tropopause from206

the initial profile is added. The SST is used as the temperature at sea-level pressure to207

initiate both adiabatic profiles. The tropopause is defined as the lowest level in the ini-208

tial profile at which the lapse rate decreases to 2◦C/km or less. The values of ĥmax and209

ĥmin are shown in Table 1, along with the height and pressure of the tropopause and the210

integrated FMSE above it. With less than 15% of the mass-weighted integral of ĥmax211

and ĥmin coming from the FMSE above the tropopause, the way we define the tropopause212

has little effect on these limits and does not impact our conclusions.213

Table 1. Values of ĥmax and ĥmin for each SST used in equation (2) to normalize ĥ.

SST
(K)

ĥmin

(GJm−2)
ĥmax

(GJm−2)

Tropopause Pressure
(hPa)

Tropopause altitude
(km)

ĥ above tropopause
(GJm−2)

295 3.219 3.628 92.0 16.6 0.458
300 3.270 3.837 100.4 16.4 0.486
305 3.315 4.059 100.9 16.8 0.486

The relative importance of different processes to changing the variance of FMSE214

can be analyzed using the budget equation derived by Wing and Emanuel (2014):215

1

2

∂ĥ′2

∂t
= ĥ′LW ′ + ĥ′SW ′ + ĥ′SEF ′ − ĥ′∇h.ûh (3)

where SEF is the surface enthalpy flux, made up of the surface latent heat and sensi-216

ble heat fluxes, ∇h.ûh is the horizontal divergence of the ĥ flux, primes (′) indicate lo-217

cal anomalies from the instantaneous domain-mean, and LW and SW are the net at-218

mospheric column longwave and shortwave heating rates.219

This equation is suitable for comparing the importance of different ĥ feedbacks to220

aggregation within models at the same SST. However, due to the strong dependence of221

var(ĥ) to SST, this equation cannot be used to analyze how the importance of these feed-222

backs to aggregation change with SST. To enable fair comparisons of aggregation with223

SST, we frame our analysis using a budget of the horizontal variance of ĥn. By follow-224

ing the budget equation derivation by Wing and Emanuel (2014) and using ĥn instead225

of ĥ, equation 3 becomes:226

1

2

∂ĥ′2n
∂t

= ĥ′nLW
′
n + ĥ′nSW

′
n + ĥ′nSEF

′
n − ĥ′n∇h. ˆuhn (4)

Here, each of the three normalized flux anomalies on the RHS (LW ′n, SW ′n, and SEF ′n)227

is equal to the original flux anomaly in equation 3 divided by the difference between ĥmax228

and ĥmin. The derivation of this equation is shown in the appendix.229

2.3 Cloud Classification Scheme230

The cloud classification scheme used in this study is based on the classification scheme231

outlined by Hill et al. (2018), which classifies clouds using the vertical structure of con-232

densed water content. In their study, they define high cloud to be located above 440 hPa233

and low cloud to be below 680 hPa with mid-level cloud being anything in between. Clouds234

spanning two or more levels have their own categories, and they distinguished between235
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clouds that are contiguous or not between these layers. In total there are 12 cloud cat-236

egories. In this study, a minimum condensed water content of 10−6 kg m−3 is used as237

a cloud threshold. This is the approximate limit below which the difference between the238

longwave and shortwave heating rates of clear-sky (without condensed water) and all-239

sky radiative transfer calculations are almost negligible (analysis not shown).240
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Figure 1. Cloud base distributions through-

out each of the LARGE domain simulations.

The lower and upper pressure thresholds (P1

and P2) for each SST are shown in narrow and

wide dashed lines respectively, and the mean

freezing level is shown in dotted lines.

With the depth of the troposphere241

being strongly dependent on tempera-242

ture, so too is the vertical distribution243

of cloud. By analyzing the vertical dis-244

tribution of cloud bases throughout the245

LARGE domain simulations, it was ap-246

parent that these pressure thresholds should247

also vary with temperature. Distribu-248

tions of cloud base pressures for each of249

the LARGE simulations are shown in250

Figure 1. The cloud base at a given col-251

umn is calculated as the lowest-altitude252

pressure at which the condensed water253

content exceeds 10−6 kg m−3 (the dis-254

tribution shown, therefore, does not ac-255

count for additional cloud bases above256

the lowest base). The profiles of cloud257

base have very similar features for each258

SST, with two consistent local minima259

within each distribution. These two min-260

ima will be the chosen pressure thresh-261

olds that define the cloud types through-262

out this study. The lower-level thresh-263

old is defined as the first cloud base dis-264

tribution local minimum below the freezing level. The upper-level threshold is the highest-265

altitude cloud base distribution local minimum. The lower-level thresholds (P1), and the266

upper-level thresholds (P2) for each SST are shown in figure 1.267

Rather than using all 12 cloud types used by Hill et al. (2018), we have merged the268

cloud types that were only distinguishable by whether or not they are vertically contigu-269

ous. We analyzed radiative heating rates for all 12 cloud types, and found that the types270

we have merged have similar heating rates for a given CWP (not shown). The merged271

cloud types also have similar ĥ distributions, meaning they will have similar radiative272

interactions for a given CWP. The main differences between the individual cloud types273

is their CWP distributions, with the contiguous types tending to have higher CWPs. We274

end up with the 8 cloud types used in this study, including Clear regions. A schematic275

of the categories is shown in Figure 2.276

Figure 2. Schematic of the categories used in this study. P1 and P2 are the lower and upper-

level pressure thresholds respectively. The shading is contiguous across rows if the cloud type

extends across multiple layers.
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3 Aggregation within the LARGE Domain277

We briefly consider the evolution of convective aggregation in the LARGE domain278

at the different SSTs. Hovmöller plots for each simulation are shown in Figure 3 using279

ĥn as a proxy for moist convective regions. The Hovmöller diagrams were made by av-280

eraging ĥn along the short axis of the domain. The evolution of the variance of column-281

integrated FMSE for each SST is shown in Figure 4a. Visually, this metric has a strong282

correlation with SST since a warmer atmosphere is able to contain exponentially more283

water vapor via the Clausius-Clapeyron relationship, so there will be a larger difference284

in FMSE between the dry and moist regions. Normalization allows for fair comparisons285

of aggregation across all SSTs whilst using the FMSE variance framework. Var(ĥn) is286

a consistent metric for each SST, with values less than 10−4 corresponding to uniformly287

scattered convection, and values greater than 10−3 corresponding to strong convective288

aggregation.289
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Figure 3. Hovmöller diagrams of ĥn for

each SST for the LARGE domain runs. ĥn is

averaged across the short axis of the domain.
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Figure 4. Daily means of the (a) spatial

variance of ĥ, and (b) variance of ĥn, for each

SST for the LARGE domain.

The variance of ĥn is shown in Figure 4b and indicates that the degree of aggre-290

gation reaches a similar level at the end of the three simulations. This is expected be-291

cause the organization of convection visually appears similar at the end of the simula-292

tions, verifying this metric is consistent across the SSTs we have used. This gives us an293

idea of the state of aggregation within the domain, with higher values correlating with294

a more aggregated state. However, the points in time at which the variances of ĥ level295

off appear to occur earlier than the points in time at which the convection becomes the296

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems

most clustered (compare Figures 3 and 4). Once the moist regions no longer get moister,297

and the dry regions no longer become drier, var(ĥ) will reach its maximum value. It may298

only take around the timescale of a convective cell for a column to reach the upper limit299

of ĥ, however it takes much longer for the driest regions to reach the lower limit. The300

drying of the dry regions may be on the same timescale as the subsidence timescale; the301

time it takes for the very dry air near the tropopause to descend throughout the depth302

of the free troposphere. Var(ĥ) correlates strongly with aggregation, although it does not303

necessarily indicate how clustered the convection is once the maximum variance is reached.304

Beginning with the 295 K SST simulation, scattered convection initiates rapidly305

and homogeneously within the first five hours across the entire domain (not shown). Af-306

ter a couple of days, dry regions begin to develop within which deep convection is sup-307

pressed. These dry regions begin to grow in size and subsequently become drier. As the308

dry regions expand and merge, the moist regions become increasingly confined and be-309

come moister. The most prevalent dry regions are usually surrounded by the most in-310

tense convection. Dry regions continue to expand, constricting the moist regions until311

an approximate equilibrium state is reached after around day 70. In this fully-aggregated312

equilibrium state, four to five moist bands align along the short axis of the domain, sep-313

arated by dry, mostly clear regions. This evolution is consistent with the majority of non-314

rotating large-domain simulations of RCE (Wing et al., 2017).315

The aggregation process occurs much faster for the 300 K SST simulation. As soon316

as the convection initiates, numerous dry regions are simultaneously formed. These are317

far more abundant than within the 295 K simulation. They expand, merge, and become318

drier as the moist regions constrict, become moister, and precipitate intensely. The equi-319

librium aggregated state is reached by around day 50. For the 305 K SST simulation,320

dry regions develop within the first day and are as abundant as moist regions. As they321

expand, merge, and dry further, the convection aggregates very rapidly compared with322

the cooler simulations. However, the equilibrium stage is still reached around day 50. This323

progression of aggregation is consistent with other studies such as Wing and Cronin (2016),324

who use a wider and narrower channel domain of 12 288 km × 192 km with a 3 km grid325

spacing. They also find convection aligning into bands along the short axis, occurring326

at time scales similar to what we have seen in our simulations for the SSTs used. They327

observed the length scale of the convective bands decreasing with SST, which is less ap-328

parent in our simulations, with each of ours displaying four to five bands of deep con-329

vection. We likely do not see the same trend as in their simulations due to the less nar-330

row domain of our simulations. However, it appears as though the moist bands in our331

simulations become narrower with increased SST.332
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Figure 5. Domain-mean of RHS terms in equation (4) for (a) 295 K, (b) 300 K, (c) 305 K

within the LARGE domain. Each point represents a daily mean of the term. The convergence

term is calculated as a residual of the other terms and is a 5-day running average, shown to

reduce noise.
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The domain-mean values of the terms in the ĥ′2n budget (equation 4) are shown in333

Figure 5. Where the terms are positive, they are contributing to an increase in var(ĥn),334

and hence encourage aggregation. The figure shows that within all of the LARGE sim-335

ulations, the domain-means of the radiative terms are almost always positive. The long-336

wave term is the dominant driver of aggregation at early times, and both the longwave337

and shortwave feedbacks maintain the aggregation in the mature phase. During the ag-338

gregating phase, the sum of all the terms on the RHS is generally positive, leading to339

an increasing var(ĥn) and increasing aggregation. The magnitude of all terms tends to340

increase as var(ĥn) increases since each term in the equation is a product that includes341

ĥ′n.342

At early times, the advection term becomes increasingly positive with SST and may343

help explain why aggregation occurs faster within our warmer simulations. Once the equi-344

librium state is reached with the convection being fully aggregated, the radiative terms345

are balanced by the surface flux and advection terms. The magnitudes of both the long-346

wave and shortwave radiative terms decrease with SST. The decrease in the radiative347

terms with SST is balanced by the decrease in magnitude of the (negative) surface flux348

and advection terms, resulting in the total variance of ĥ′n being similar across all SSTs349

during the mature phase of aggregation.350

4 Cloud-Radiative Interactions within the LARGE Domain351

Interactions between radiation and cloud/moisture responses to convection have352

been shown to be crucial contributors to convective self-aggregation (e.g. Wing et al.,353

2017; Arnold & Putman, 2018). The aim of this study is to investigate and quantify the354

dominant direct cloud-radiative interactions that impact convective aggregation.355
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Figure 6. Maps of (a) condensed water path (kg m−2), (b) instantaneous FMSE anomaly

(MJ m−2), (c) longwave heating anomaly (W m−2), (d) shortwave heating anomaly (W m−2), (e)

Clear covariance quadrant (4.2) - note that clouds are colored white in (e). Snapshots taken at

day 100 in the LARGE domain with SST = 300 K. Regions where the FMSE anomaly (“E”) and

radiative heating anomaly (“H”) have the same sign contribute to increasing var(ĥ).
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Figure 7. (a) Longwave and (b) shortwave

radiative heating anomalies vs condensed water

path for each cloud type, and (c) distributions

of condensed water path for each cloud type.

Data from the final 20 days of the LARGE,

300 K SST simulation. 50 bins are spaced log-

arithmically throughout the CWP range. The

percentage shown in (c) is the percentage of

each cloud type within a given bin.

Since both radiative anomalies and356

FMSE anomalies are calculated at each357

grid point, the instantaneous values of358

the radiative terms in equation (4) can359

also be calculated at each point across360

the domain. Then, by knowing the cloud361

type at each grid point, the contributions362

of each category to the domain-mean ra-363

diative terms can be found. With this364

approach, we study how the radiative feed-365

backs of the entire column of each cloud366

category contribute to the var(ĥn) ten-367

dency of the entire domain. Note that368

this approach does not describe the cloud-369

only effect, and since the anomalies of370

FMSE and radiation also depend on the371

domain-mean, var(ĥn) is not purely a lo-372

cal metric. We only consider the column-373

integrated cloud-radiative feedbacks here,374

although indirect radiative interactions375

with cloud are shown to be important376

via the generation of circulations (Muller377

& Bony, 2015; Holloway & Woolnough,378

2016). Nevertheless, we find the approach379

to be a useful way to compare the rel-380

ative importance of each cloud type’s di-381

rect radiative contribution to self-aggregation382

across a range of SSTs.383

From Figure 6a–d, it is clear that384

there is a very strong spatial correlation385

between ĥ′ and the column shortwave386

heating anomaly, with CWP having the387

strongest relationship with the column388

longwave heating anomaly. To begin to389

quantify the longwave and shortwave heat-390

ing effects of clouds, the mean radiative391

anomalies of each cloud type for a given392

CWP are shown in Figure 7a & b. The393

radiative heating in both the longwave394

and shortwave varies strongly with CWP.395

The cloud type is also a very important396

factor in the radiative anomalies, par-397

ticularly in the longwave. For a given CWP,398

High clouds have the largest column long-399

wave heating rates since they have low400

outgoing longwave radiation (OLR) and401

they also emit relatively little to the sur-402

face. Low clouds have warm tops and warm403

bases, so they effectively emit into space404

as well as to the surface, efficiently cool-405

ing the column. While Deep clouds emit weakly to space, their low, warm bases strongly406

emit towards the surface, placing their longwave heating rates in between High and Low407

clouds for a given CWP.408
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In the shortwave, each cloud type’s heating rate increases with CWP, although this409

is largely due to increased shortwave absorption by water vapor within these columns410

(section 4.3). There is however some dependence on cloud type due to the high reflec-411

tivity of clouds. Water vapor is a very effective absorber of shortwave radiation and is412

mainly constrained to the warm lower atmosphere. High cloud columns have the low-413

est shortwave heating rates as they reflect radiation out of the column before the low-414

level water vapor has the chance to absorb it. Columns with Low clouds typically have415

the highest shortwave heating rates as their low vertical extent allows lots of shortwave416

radiation to be absorbed by water vapor. The radiation they reflect may also be absorbed417

by water vapor above the cloud.418

The distributions of CWP for each cloud type are shown in Figure 7c. These dis-419

tributions, paired with the dependence of the radiative anomalies on CWP, determine420

the mean radiative anomalies for each cloud category (domain-averaged heating rates421

of all categories are shown in Figure 9f). Despite the High clouds having the largest long-422

wave heating rate for a given CWP, their CWP distribution peaks at around 0.01 kg m−2,423

corresponding to a longwave heating anomaly of roughly 20 W m−2. In contrast, the High424

& Mid cloud has a peak CWP around 0.5 kg m−2 corresponding to a longwave heating425

anomaly around 70 W m−2. This results in High clouds having only the fourth largest426

domain-averaged longwave heating rates out of all categories.427
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Figure 8. Distributions of ĥn for each cloud type for all SSTs within the LARGE domain

during the final 20 days. The vertical dashed line indicates the domain-mean ĥn throughout the

final 20-day period. Note that each curve is normalized individually.

Distributions of ĥn for the final 20 days of the LARGE simulations for each cloud428

category are shown in Figure 8. The vast majority of clouds occur within anomalously429

high ĥn regions, with only a few High and Low clouds occurring with negative ĥ′n. High430

clouds have the largest spread of ĥn out of all the cloud types as they can extend hun-431

dreds of kilometers away from the updraft, spanning a wide ĥn range. Low clouds oc-432

cur within a broad span of ĥn as they can form under a wide range of conditions. At higher433

ĥ′n regions, Low clouds form and may continue to develop into congestus and cumulonim-434

bus, as the environment is favorable for deep convection. At lower ĥ′n regions, descend-435

ing motion throughout the free troposphere increases stability and reduces humidity, mak-436

ing the atmosphere unfavorable for deep convection, but shallow cumulus and stratocu-437

mulus may still form and persist atop the well-mixed boundary layer. The majority of438

the other cloud types are associated with deep convection, which only occurs within high439

ĥ′n regions, where the environment is favorable for updraft development. Whilst the domain-440

mean ĥ′n for the Clear regions is slightly negative, there is a very large spread in the dis-441

tribution of ĥn, with just under half of the Clear regions having positive anomalies.442
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As SST increases, the domain-mean ĥn increases slightly which may be a result of443

the increased moisture content of higher SST simulations, making the mean profile tend444

further away from a dry adiabat, in turn increasing ĥn. However, with our analysis frame-445

work, we are not concerned about the absolute ĥn but rather the anomalies, which can446

be objectively observed by looking at the distance from the mean ĥn line in Figure 8.447

We find that the average ĥn anomaly for each cloud type increases with SST. This is likely448

a result of the decrease in the number of high-FMSE cloudy regions as SST increases (see449

Figure 9c). This brings the domain-mean ĥn towards the mean of the clear regions, mak-450

ing the higher ĥ of the cloudy regions more anomalous.451

4.1 Longwave Cloud Interactions452

The contribution of each cloud category to the radiative terms can be calculated453

by multiplying their mean covariance between the normalized radiative and ĥ anoma-454

lies by their cloud fraction. Figure 9a shows that it is the Clear, High, High & Mid, and455

Deep categories that have the largest contribution to the longwave term once the domain456

is fully aggregated, with the magnitude of their contributions being highly sensitive to457

SST. The contributions of the Low, Mid, Mid & Low and High & Low categories have458

a relatively insignificant contribution. To understand the magnitudes of the contribu-459

tions of each cloud type to the longwave term, the constituents of the longwave term are460

shown in Figure 9b - f. The figure shows the LW ′n × ĥ′n covariance, and the fraction461

of each category. The mean LW ′n and ĥ′n are also shown, as well as the non-normalized462

longwave anomaly. Note that the mean LW ′n multiplied by the mean ĥ′n does not equal463

the mean LW ′n × ĥ′n covariance, although for most categories they are approximately464

equal. One notable exception is the LW ′n × ĥ′n covariance for the Clear regions at 305 K,465

which is negative, despite having both negative LW ′n and ĥ′n. This is discussed in sec-466

tion 4.2.467

At all SSTs, and despite its relatively low LW ′×ĥ′ covariance, the High cloud is468

among the leading contributors to the longwave term in large part because of its abun-469

dance, occurring roughly four times as often as any other cloud type (Figure 9c). The470

longwave covariances for the High & Mid and Deep clouds are high compared to the other471

categories, and they are abundant enough to have an impact on the overall longwave term472

(Figure 9a). Low, Mid, and Low & Mid clouds have a small mean longwave covariance473

and also a small total fraction, making their contribution to the overall longwave term474

negligible. Despite having the third largest longwave covariance, the High & Low cloud475

type has one of the smallest cloud fractions, making its overall contribution also very small.476

There is a significant decrease in the contributions of High and High & Mid clouds477

to the longwave term as SST increases (Figure 9a). Figure 9b shows that the LW ′n × ĥ′n478

covariance remains similar for these cloud types across all SSTs, yet the fraction of these479

clouds decreases (Figure 9c). This suggests the sensitivity of the High and High & Mid480

cloud’s longwave contribution to aggregation is predominantly due to the sensitivity of481

their abundance to SST. This decrease in anvil cloud fraction with SST is consistent with482

the stability iris mechanism described by Bony et al. (2016), who describe the reduction483

in anvil cloud as a consequence of increased anvil stability and decreased convective out-484

flow with increasing SST.485

The absolute longwave heating rates decrease with SST for all cloud types (not shown)486

because the longwave radiation out of the atmosphere (outgoing longwave radiation plus487

downwelling surface radiation) increases with SST more than the increase in upwelling488

surface radiation into the atmosphere. However, the non-normalized longwave heating489

anomalies tend to increase with SST. This is mainly because the fraction of high-topped490

cloud (with high longwave heating anomalies) is halved from the 295 K to the 305 K sim-491

ulations (Figure 9c). This lowers the domain mean longwave heating, which increases492

the longwave anomaly of each category with SST and brings the domain-mean longwave493
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Figure 9. (a) Contribution to longwave term in equation (4) (b) normalized longwave ×
FMSE covariance, (c) cloud fraction (d) ĥn anomaly, (e) normalized longwave heating anomaly,

and (f) longwave heating anomaly. Clear fractions are 73, 80 and 85% on average in order of

increasing SST (not shown). Each data point represents the instantaneous domain-mean of the

category. Orange lines indicate the median. Boxes represent the upper and lower quartiles, with

the whiskers showing the range of the data. This is the range of data points that are within 1.5

times the interquartile range above and below the upper and lower quartile. Outliers above and

below the whiskers (circles) are any data point that is outside this range. Boxes for each cate-

gory are in order of SST increasing to the right. Data are from the final 20 days of the LARGE

domains.
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heating closer to that of the Clear regions. Once the longwave anomalies are normalized494

however, we see there is a slight decrease with SST for the significant cloud types as the495

difference between ĥmax and ĥmin increases. The decrease in the normalized longwave496

anomalies, along with the slight increase in ĥ′n with SST, results in the LW ′n × ĥ′n co-497

variance for the most abundant cloud types remaining approximately constant with SST.498

4.2 Longwave Interactions within the Clear Regions499

Figure 9a shows the contributions of the Clear regions to the longwave term de-500

crease and become negative with SST. The reason for this is not immediately apparent,501

with the mean LW ′n × ĥ′n covariance becoming negative, despite both the mean LW ′n502

and mean ĥ′n remaining negative (which would usually produce a mean positive covari-503

ance). This indicates that there must be a significant proportion of the Clear regions with504

large negative covariance which is able to reduce the overall contribution to the longwave505

term with increasing SST.506
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Figure 10. Instantaneous domain means of (a) ĥn anomalies, (b) cloud fraction (c) normal-

ized longwave heating anomaly, (d) normalized longwave-FMSE covariance, (e) longwave heating

anomaly, and (f) contribution to the normalized longwave term. Data from the final 20 days of

the LARGE simulations.

We consider four types of Clear regions at play here whose significance changes with507

SST. There are the regions with both positive ĥ′ and LW ′ (E+H+), regions with both508

negative ĥ′ and LW ′ (E-H-), positive ĥ′ and negative LW ′ (E+H-) and finally, negative509

ĥ′ and positive LW ′ (E-H+). The Clear covariance quadrant map in Figure 6e shows510
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that E+H+ regions are rare and are found in the highest ĥ′ areas, with a portion of these511

regions perhaps occurring as an artifact of the condensed water content used to define512

clouds. A lot of these E+H+ columns may indeed have enough high-altitude condensed513

water to produce a positive longwave heating anomaly. E+H- regions are typically found514

surrounding the cloud clusters, with E-H- occupying the majority of the dry regions. E-515

H+ occur only within the very driest areas. The E+H+ and E-H- regions both have a516

positive LW ′ × ĥ′ covariance whereas the E-H+ and E+H- regions have a negative co-517

variance. By calculating the domain fraction of these regions, as well as their mean LW ′n518

and ĥ′n and their mean LW ′n × ĥ′n covariance, we can see how their influences on the519

longwave term changes with SST. These calculations are shown in Figure 10.520

There is a shift in dominance from the positive covariance regions to the negative521

covariance regions as the SST increases. For all SSTs, the E+H+ regions only occupy522

around 1% of the domain, making their overall contribution to the longwave term neg-523

ligible. At 295 K, there are two significant Clear regimes; E-H-, occupying 44% of the524

domain and E+H-, occupying 25%. They have similar but opposite LW ′n times ĥ
′
n co-525

variances, so the Clear region’s contribution to the longwave term is dominated by the526

E-H- regions based on their abundance. This results in a positive contribution of the Clear527

regions to the longwave term.528

As SST increases, the LW ′ of the Clear regions as a whole becomes significantly529

less negative (Figure 10e). This is likely due to the approximate halving in the abundance530

of High and High & Mid clouds, which both have a strong positive longwave heating anomaly.531

This then reduces the domain-mean longwave heating rate, making the longwave anomaly532

of the Clear regions less negative. After normalizing the longwave anomalies, the SST533

sensitivity is even more notable (Figure 10c). The contribution of the E-H- regions falls534

rapidly as the LW ′n × ĥ′n covariance decreases. At the same time, the E-H+ regions535

become far more abundant, also helping to decrease the Clear region’s contribution to536

the longwave term. This feature was also noted by Wing and Emanuel (2014) and Emanuel537

et al. (2014), who explain that extremely dry columns with little low-level moisture are538

unable to effectively emit radiation, resulting in anomalous warming.539

The magnitude of ĥ′ are largest for the two regimes with positive LW ′. This is be-540

cause the relationship between ĥ and longwave heating within the Clear regions is not541

linear; the strongest longwave cooling occurs roughly where ĥ′ is zero for all SSTs. This542

can be understood by breaking the net atmospheric longwave heating down into the in-543

dividual longwave fluxes into the atmosphere minus the outward fluxes. Each of these544

terms are plotted against ĥ′n in Figure 11b.545

Water vapor is a strong absorber and emitter of longwave radiation, so the higher546

the water vapor content, the higher the opacity of the atmosphere to longwave radia-547

tion. Having water vapor at higher altitudes will raise the effective level of emission to548

a cooler altitude, and decrease the OLR. Similarly, higher humidity at lower altitude will549

decrease the effective downward emission level to a warmer altitude, therefore increas-550

ing the downwelling emissions to the surface. The effective upward emission level is de-551

fined as the altitude at which the temperature is equal to the OLR divided by σT 4, where552

σ is the Stefan-Boltzmann constant. Similarly, the effective downward emission level is553

the altitude at which the temperature is equal to the downwelling longwave radiation554

divided by σT 4. Figure 11a shows that, starting from the lowest ĥn values, the rate of555

change of specific humidity with ĥn decreases at higher altitudes above the boundary556

layer. This means the change in effective OLR emission height with ĥn initially increases557

at a slower rate than the decrease in the effective downwelling emission height. This re-558

sults in a decreasing net longwave heating rate as we increase ĥn towards a zero ĥ′n. This559

means that positive longwave anomalies are likely to occur at extremely negative ĥ′n re-560

gions, which leads to the E-H+ regions having a significant LW ′n × ĥ′n covariance de-561

spite having the lowest LW ′n.562
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Figure 11. (a) Specific humidity profiles against ĥn anomaly for LARGE domain with 305 K

SST for the final 20 days. Effective level of outgoing TOA longwave emission shown in red, effec-

tive level of longwave emission into the surface shown in blue. (b) All longwave fluxes into, and

out of the atmosphere plotted against ĥn anomaly. 295 K: dotted, 300 K dashed, 305 K: solid.

The fluxes out of the atmosphere are plotted with positive direction into the atmosphere so that

the three fluxes add together to equal the net longwave heating. Horizontal grey lines indicate

the domain-mean longwave column heating. (c) Percentage of Clear grid points within a given

0.001 ĥ′n range. Clear regions to the left of the red line have a positive longwave anomaly on

average.

As ĥn increases from a zero ĥ′n, the effective downward emission level begins to de-563

crease at a slower rate than the OLR emission level increases. This could be because the564

low levels become so humid that it becomes increasingly difficult to decrease the altitude565

of the downward emission level. This means that the net longwave heating rates begin566

to increase with ĥn above a zero ĥ′n. We do not have an explanation as to why the long-567

wave heating minima happens to occur around a zero ĥ′n.568

With the mean longwave heating rates skewed more toward the clear longwave heat-569

ing rates with increasing SST, there is a greater quantity of clear regions with positive570

LW ′. This can be seen in Figure 11c, noting the tails of the ĥn distributions extend more571

into the regions with positive longwave heating anomalies as SST increases.572

4.3 Shortwave Interactions573

Figure 12 shows that shortwave feedbacks in the Clear regions contribute the most574

to the shortwave term once the domain is aggregated. However, this may be an artifact575

of the large fraction of the Clear regions. It can be seen from Figure 6b and d that there576

is a very strong relationship between both FMSE and shortwave anomalies. This is be-577

cause variations of FMSE are dominated by changes in water vapor, which is an excel-578

lent absorber of shortwave radiation. This results in the shortwave-FMSE covariance be-579

ing positive at almost every location (e.g. Arnold & Putman, 2018).580
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Figure 12. Instantaneous domain-means of (a) contribution to the normalized shortwave term

in equation (4), (b) Clear-sky heating divided by total shortwave heating rate. Data from the

final 20 days of the LARGE simulations.

A large portion of the cloud contribution to the shortwave term is due to the amount581

of water vapor in the column. The contribution of water vapor to the column shortwave582

heating rate can be quantified by calculating the clear-sky heating rates and dividing by583

the total heating rates for each category as shown in Figure 12b. The total shortwave584

heating rates can almost entirely be explained by the column WVP, particularly at higher585

temperatures where the quantity of water vapor is higher, making the condensed water586

content less significant at higher temperatures. The clear-sky component of the total short-587

wave heating rate is lowest for clouds with the highest CWP since there is a higher frac-588

tion of the heating rate due to condensed water. The clear-sky heating rate is sometimes589

higher than the all-sky heating rate for the high clouds since the cloud reflects the ra-590

diation that would otherwise have been absorbed by the low-level water vapor.591

The contribution of the shortwave term to aggregation is highly sensitive to SST,592

becoming less important as SST increases. This is because the range of SW ′n decreases593

with increasing SST, whereas the range of ĥn remains similar. This results in the domain-594

mean normalized shortwave-FMSE covariance, and therefore, the shortwave term, de-595

creasing with SST (analysis not shown). The range of column WVP across the domain596

increases exponentially with SST, whereas the relationship between column shortwave597

heating with WVP is logarithmic (Vaquero-Mart́ınez et al., 2018). This results in the598

range of shortwave heating across the domain remaining similar. Once the shortwave heat-599

ing anomalies are divided by ĥmax − ĥmin, SW ′n decreases with increasing SST.600

5 Cloud Type Contributions throughout the Aggregation Process601

So far, we have only discussed the radiative interactions within the already-aggregated602

LARGE domains. In this section, we look at the key radiative-convective interactions603

responsible for the development of aggregation.604

As with the previous sections, the domain-mean longwave and shortwave heating605

rates and covariances are found for each category, as well as their domain fraction. From606

this, the mean longwave and shortwave contributions for each category can be found. Time607
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series of these variables as well as the mean ĥ′ for each category are shown in Figure 13608

for the LARGE, 300 K simulation.609
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Figure 13. Time series of contributions to the (a) normalized longwave and (b) normalized

shortwave term, (c) the normalized longwave, and (d) shortwave × FMSE covariances, normal-

ized (e) longwave and (f) shortwave heating anomalies, (g) domain fraction (excluding Clear),

and (h) ĥn anomaly of each cloud category. For the entirety of the LARGE, 300 K simulation.

Each data point is a daily average.

Interactions between clouds and longwave radiation are the main drivers of aggre-610

gation at early times. This is also shown in Figure 5 (note that the sum of the contri-611

butions in Figure 13a and 13b equal the total radiative terms in Figure 5). Throughout612

the aggregation process, each category’s contribution to both radiative terms increases613

rapidly. This is due to the positive feedback between radiative heating and ĥ. Anoma-614

lous heating in anomalously high ĥ regions causes ĥ to increase. Higher ĥ regions are fa-615

vorable for deep convection, resulting in more anomalous heating in both the longwave616

and shortwave. In anomalously low ĥ regions, deep convection is suppressed, resulting617

in enhanced radiative cooling, further decreasing the FMSE. These feedbacks are the dom-618

inant radiative processes that increase var(ĥ) in our simulations.619
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The effect of clouds on the shortwave term is sensitive to SST and the degree of620

aggregation. This is shown in the time series of the clear-sky component of the short-621

wave term shown in Figure 14. At early times, there is little variation in horizontal dis-622

tribution of water vapor, so the shortwave absorption by clouds has a significant impact623

on the mean SW ′n × ĥ′n covariance. At these times, the shortwave absorption by con-624

densed water accounts for between 30% and 50% of the shortwave term, with clouds hav-625

ing a larger impact at colder SSTs due to the decrease in tropospheric water vapor. As626

soon as dry and moist patches begin to develop, the horizontal variations in the short-627

wave absorption of water vapor dominate the shortwave term, accounting for 87% - 96%628

of the shortwave term as SST increases once the domains are aggregated.629
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Figure 14. Time series of the daily-mean

clear-sky component of the shortwave term,

calculated as the domain-mean shortwave term

divided by the domain-mean shortwave term

using clear-sky heating.

It is the longwave interactions with630

high-topped cloud, as well as the short-631

wave interactions with water vapor, that632

are the key radiative interactions that633

act to increase var(ĥ), and hence drive634

aggregation. These results are sensitive635

to SST. As SST increases, the fraction636

of high-topped cloud decreases, result-637

ing in a decrease of the longwave con-638

tribution to aggregation, proportional639

to the decrease of this cloud fraction change.640

The shortwave interactions become less641

significant for driving aggregation as SST642

increases. The clear-sky shortwave con-643

tribution is inversely proportional to the644

difference between ĥmax and ĥmin, and645

the differential shortwave absorption be-646

tween cloudy and clear regions decreases647

with SST as the atmosphere contains more648

water vapor. This results in the short-649

wave interactions being approximately650

three times more important in driving651

aggregation at 295 K compared to 305 K. Within this domain setup, low-level clouds have652

a negligible direct contribution to the radiative terms because of their low fraction and653

low radiative × ĥ′ covariances, although other studies have shown that the radiatively-654

driven circulations they generate may be significant to the aggregation process (Muller655

& Held, 2012).656

LW ′n for each category remain approximately constant with time whereas SW ′n for657

each cloud category increase by around 5 W m−2 as aggregation increases. The average658

SW ′n for the Clear regions decreases by around 3 W m−2 as the convection aggregates.659

This is because the condensed water content in a column is the dominant factor in de-660

termining the longwave heating of that column, whereas the total water content of the661

column is the dominant factor in determining the column shortwave heating. As the con-662

vection becomes more aggregated, all cloud categories find themselves in moister envi-663

ronments, thereby increasing their shortwave anomalies.664

At early stages of aggregation, the Clear regions have a large positive contribution665

to the longwave term. At this time, the Clear regions’ longwave contribution is domi-666

nated by the E-H- and the E+H- regions due to their abundance (Figure 15). This is667

consistent across all SSTs (not shown). The positive longwave covariance E-H- regions668

have a larger contribution than the negative covariance E-H+ regions at early stages,669

however the LW ′n × ĥ′n covariance of the E-H- regions stops increasing earlier than the670

E-H+ regions. At later stages of aggregation, there is also a sharp increase in abundance671

of the E-H+ regions particularly at higher SSTs (not shown). As the negative covari-672
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ance regions continue to increase, the Clear regions’ longwave contribution then begins673

to decrease and can become negative.674

6 Comparison of Convection within High-Resolution Simulations675
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Figure 15. Time series of (a) contributions

to the normalized longwave term, (b) domain

fraction, (c) mean normalized longwave ×
FMSE covariances, (d) normalized longwave

anomaly, and (e) ĥn anomaly of each Clear cat-

egory. For entire period of the LARGE, 300 K

simulation. Each data point is a daily average.

In the previous sections, only ra-676

diative interactions within LARGE do-677

main simulations have been analyzed.678

In addition to these, we have also sim-679

ulated the three-SST RCEMIP cases in680

three new model configurations on a smaller681

(100 km x 100 km) horizontal domains682

to investigate how the above SST-dependent683

features of RCE convection and its ra-684

diative interactions are affected by changes685

to model grid spacing and the treatment686

of subgrid condensation. Subgrid con-687

densation occurs when the grid point’s688

relative humidity reaches the RHcrit value.689

With this value being set to 0.99, it is690

too high to yield a reasonable cloud field691

and is the reason for the considerable lack692

of low cloud compared to similar mod-693

els compared in RCEMIP (Wing et al.,694

2020).695

With the length scale of the aggre-696

gated features in the LARGE domain697

being many times larger than the dimen-698

sions of our smaller simulations, we are699

not able to quantify how these changes700

in resolution and RHcrit explicitly af-701

fect aggregation. However, we are able702

to see how the radiative properties of the703

clouds are affected. We can then imply704

how these changes in the radiative prop-705

erties of cloud may impact aggregation706

in larger-scale simulations.707

Since the aggregation states between708

the LARGE and the SMALL simulations709

are inevitably very different, we try to710

analyze times where domain size and ag-711

gregation state do not have a significant712

impact on the cloud structures. With the713

convection aggregating rapidly within714

the LARGE 300 and 305 K simulations,715

we have chosen to only compare days two716

to six of the LARGE domains against717

days two onwards of the smaller domains.718

Profiles of cloud fraction reveal that both grid spacing and RHcrit strongly influ-719

ence the vertical structure of clouds across the domain (Figure 16). This figure shows720

only the 300 K simulations, although the same changes are seen at the other SSTs, only721

shifted in altitude as the tropospheric depth is larger for higher SSTs. As the grid spac-722

ing is reduced, there is a sharp increase in the quantity of low and mid-level cloud, with723
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this increase being most apparent when looking at the SMALL HI simulation. Low-level724

clouds generally have smaller length scales so cannot be resolved in coarser grid spac-725

ings due to the unrealistically high RHcrit value used. Our original RHcrit value becomes726

more suitable at lower grid spacings, effectively representing these small-scale clouds more727

realistically. There is also a decrease in altitude of high-level clouds with decreasing grid728

spacing, with a corresponding increase in high-cloud temperature. This contributes to729

an increase in OLR for high-topped clouds, reducing their anomalous longwave heating730

rates.731

As the RHcrit is decreased to that used in the Met Office UKV model, the over-732

all cloud amount increases. This comes from an increase of more than an order of mag-733

nitude in low-level cloud and also a significant increase in mid-level cloud. The upper-734

level cloud amounts remain largely unchanged. Fractions of the High, and High & Mid735

cloud types are greatly reduced due to the increase in low and mid-level clouds, in turn736

increasing the quantities of the High & Low and Deep cloud types.737

Comparisons of cloud type fraction, normalized longwave and shortwave heating738

anomalies, and CWP for each cloud category, SST and domain configuration are shown739

in Figure 17. From this, the resolution dependence of the radiative terms for self-aggregation740

may be inferred.741
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Figure 16. Temporally-averaged

cloud fractions for each domain setup

at 300 K. LARGE domain averages

are for days 2-6, whereas each of the

smaller domains are averaged from

day 2 onward. Horizontal dashed

lines represent the low and high cloud

thresholds (P1 and P2).

There is a significant decrease in the abso-742

lute longwave heating rates of high-topped clouds743

with both decreasing grid spacing and decreas-744

ing RHcrit (not shown). This is mainly due to an745

increase in OLR rather than an increase in the746

downwelling longwave radiation which remains747

approximately constant for these categories with748

grid spacing (not shown). This increase in OLR749

may be mostly explained by the change in cloud750

top height with as well as the decrease of CWP.751

There is an associated increase in cloud top tem-752

perature with decreasing altitude, which increases753

OLR. The cloud top height is likely reduced due754

to the increased updraft mixing of the higher-resolution755

simulations, decreasing updraft buoyancy, and thus756

the maximum altitude of the plume. The CWP757

decreases for the majority of cloud types as the758

critical condensation humidity is reached more widely,759

i.e. by decreasing RHcrit or decreasing the grid760

spacing. Since water vapor is more readily con-761

densed, the clouds that do form are more widespread762

and less concentrated. A decreasing CWP of these763

high-topped clouds decreases their opacity to long-764

wave radiation, decreasing the effective level of765

emission. This also increases OLR, helping to lower766

their longwave heating rates.767

The longwave heating rates of the remain-768

ing cloud categories without high-level cloud re-769

main similar with grid spacing and RHcrit. As770

shown in Figure 7a, the longwave heating rates of these cloud types are less dependent771

on CWP in the LARGE simulations. The combined fractions of the lower longwave heat-772

ing rate categories (Clear, Low, Mid and Mid & Low categories) remain similar with res-773

olution and RHcrit, and remain far more abundant than the high-topped cloud categories774

with relatively high longwave heating rate categories. This reduces the spread of long-775

wave heating rates across the domain, decreasing the magnitude of the longwave anoma-776
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lies for the majority of categories. This may decrease the LW ′n × ĥ′n covariance in777

moist regions and may significantly reduce the longwave term. An increase in Low and778

Mid & Low cloud may also significantly reduce the longwave term since they have strong779

negative heating rates and are mainly found in positive FMSE anomaly regions so have780

a negative LW ′n × ĥ′n covariance on average.781
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Figure 17. Instantaneous domain-means of (a) domain fraction, (b) normalized longwave

heating anomaly, (c) normalized shortwave heating anomaly, and (d) condensed water path, for

each cloud category within all domain setups and SSTs. LARGE domain averages are for days

2-6, whereas the SMALL and SMALL HI averages are for days 2-54. Note that the fraction of

the Clear regions (top-left panel) are on a separate axis to the remaining cloud types. Vertical

bars represent the range of the 10th to 90th percentile.

As grid spacing is reduced, we find an increase in mid-level cloud, resulting in a de-782

crease in the High category fraction and an increase in High & Mid, which typically have783

higher LW ′n. However, the mean LW ′n of all clouds in the domain is reduced as grid spac-784

ing is reduced. With clouds tending to occur in high-FMSE regions, it is argued that the785

domain-mean longwave term would be reduced. A similar result is seen in the reduced786

RHcrit simulation, with the increased low cloud resulting in fewer High and High & Mid787

columns, and more Deep, which again typically has higher LW ′n. However, the mean LW ′n788
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of all the clouds is again reduced, and is mainly a result of the increased Low cloud frac-789

tion with negative LW ′n.790

Cloud-radiation trends with SST in the LARGE domain are largely consistent across791

the grid spacings tested. The total high-topped cloud fraction decreases with SST by a792

similar amount, as does the decrease in LW ′n for these clouds, meaning trends in the ra-793

diative terms to aggregation with SST would likely be similar. This is mainly true for794

the reduced RHcrit simulations, however with Low cloud approximately doubling from795

295 K to 305 K, the magnitude of the longwave term would decrease faster with SST than796

our original RHcrit simulations.797

The shortwave heating rates of columns with cloud are generally significantly re-798

duced with decreasing grid spacing and RHcrit and could be due to the decrease in the799

CWP with less shortwave radiation being absorbed by condensed water. This may slightly800

reduce the magnitude of the shortwave term at early times, although the other terms in801

the FMSE variance budget are more important at these early stages of aggregation. The802

shortwave heating rates depend more on the overall distribution of water vapor which803

is in turn affected by the degree of aggregation. So, we would have to understand how804

sensitive the other terms are to resolution and RHcrit before determining the sensitiv-805

ity of the shortwave term.806

When analyzing the LARGE domain, we found that longwave interactions with807

high-topped clouds is the main driver of aggregation, with their overall impact reduc-808

ing with SST as anvil cloud fraction reduces. As the grid spacing and RHcrit are reduced809

for smaller, less-aggregated domains, we still find that high-topped clouds reduce in abun-810

dance, indicating that smaller high-topped cloud fraction with increased SST is a con-811

sistent trend regardless of these parameters. We also found that Clear regions have a sig-812

nificant positive contribution to aggregation at cooler SSTs, with this contribution de-813

creasing with SST and becoming negative. The longwave heating rates of high-topped814

clouds are lower in the reduced RHcrit simulations, in turn lowering the domain-mean815

longwave heating. This makes the longwave heating anomalies of the Clear regions less816

negative, further lowering the Clear contributions to the longwave term. This downward817

trend with SST remains consistent across all of our simulations.818

These results can be used to infer how aggregation may be affected in large domains819

with smaller grid spacings and at the lower RHcrit. By decreasing the grid spacing, there820

is an associated decrease in the anomalous longwave heating of high-topped clouds, as821

a result of a decreased cloud-top height and decreased CWP. This also increases the mean822

radiative cooling of the entire domain, making the clear regions’ longwave cooling less823

anomalous. With reduced anomalous longwave heating in high-FMSE regions, and re-824

duced anomalous cooling in low-FMSE regions, the LW ′n × ĥ′n covariance will be re-825

duced on average across the domain, slowing the rate of aggregation. The shortwave term826

is largely dependent on the degree of aggregation. However at early times, the shortwave827

absorption by clouds has a significant contribution to the aggregation. With CWP de-828

creasing as the grid spacing is reduced, there will be lower differential shortwave absorp-829

tion between typically higher-FMSE cloudy regions and lower-FMSE clear regions, re-830

ducing the SW ′n × ĥ′n covariance, further reducing the rate of aggregation.831

Similar conclusions can be made from the decreased RHcrit simulations. Reduced832

CWP of high-topped clouds reduces their longwave heating rates. Together with the in-833

crease in Low cloud, the longwave heating rates in high-FMSE regions will be significantly834

reduced. Again, this has the side effect of reducing the anomalous longwave cooling of835

clear regions. Overall, the LW ′n × ĥ′n covariance across the domain would decrease,836

slowing the rate of aggregation. The reduced CWP of clouds again reduces the differ-837

ential shortwave absorption between cloudy and Clear regions, lowering the SW ′n × ĥ′n838

covariance, slowing the rate of aggregation.839
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7 Conclusions840

In this study, we quantify the dominant direct radiative interactions that drive and841

maintain aggregation within large channel domain simulations of radiative-convective842

equilibrium (RCE) of the Met Office Unified Model version 11.0 following the RCEMIP843

protocol (Wing et al., 2018). We have assessed the sensitivity of these interactions to sea844

surface temperature (SST) by comparing simulations with fixed SSTs of 295, 300 and845

305 K using the normalized column-integrated FMSE (ĥn) variance budget as our frame-846

work for studying self-aggregation. We particularly focus on the role of cloud-radiative847

interactions, assigning one of eight different cloud types to each grid column. We also848

investigate how the key radiative interactions are affected by both grid spacing the crit-849

ical condensation relative humidity parameter (RHcrit) using smaller (100 km × 100 km)850

domains.851

The instantaneous horizontal variance of normalized vertically-integrated FMSE,852

var(ĥn), is a consistent aggregation metric across all SSTs, with values below 10−4 cor-853

responding to randomly scattered convection, and values greater than 10−3 correspond-854

ing to highly aggregated convection. The var(ĥn) budget equation (equation 4) states855

how the rate of change of var(ĥn), and hence the rate of change of aggregation, is driven856

by feedbacks between anomalies in ĥn and anomalies in normalized column-integrated857

longwave heating, shortwave heating, surface fluxes, and advection of ĥn. This study fo-858

cuses on the two radiative terms of this equation (longwave and shortwave), which show859

that regions with a positive covariance between the normalized radiative anomalies (LW ′n860

and SW ′n) and ĥ′n help to increase aggregation.861

For all SSTs within our LARGE domains, the longwave radiative term in equation862

(4) is the main driver in increasing the horizontal variance of ĥn at early times, hence863

increasing aggregation, and both the longwave and shortwave terms help maintain ag-864

gregation. Despite each of these simulations reaching a similar state of aggregation (by865

the var(ĥn) metric), the magnitude of the longwave and shortwave terms decrease with866

SST both in the aggregating, and aggregated phases. The decrease in the radiative terms867

are balanced by a decrease in magnitude of the mainly negative surface enthalpy flux and868

advection feedback terms. In our simulations, the sensitivity of the advection-FMSE feed-869

back to SST is the dominant factor in determining how the rate of change of aggrega-870

tion at early times changes with SST.871

High-topped clouds produce the largest positive column-integrated longwave heat-872

ing anomalies, whereas low level clouds produce negative anomalies, with the magnitude873

of these anomalies generally increasing within the typical condensed water path (CWP)874

range that they are found. The mean ĥ′n for each cloud type is positive, therefore clouds875

with a positive radiative anomaly have a positive radiative × ĥ′n feedback and vice versa.876

The average LW ′n × ĥ′n covariance for each of the key cloud types remains similar with877

SST, meaning an individual cloud’s longwave contribution to self-aggregation remains878

similar. The SST dependence of the total longwave contribution is due to the sensitiv-879

ity of cloud fraction to SST. High-topped clouds have large, positive anomalies in long-880

wave heating and FMSE, and they are the most abundant types of cloud so they con-881

tribute the most to the longwave term. As SST increases, from 295 K to 305 K, their882

abundance is approximately halved, and so too is their longwave contribution to aggre-883

gation.884

Longwave interactions within the clear regions can have a large impact on the to-885

tal longwave term, although their contributions to the longwave term are highly sensi-886

tive to SST and aggregation. The longwave contribution of the clear regions is large and887

positive during early stages of aggregation and decreases with aggregation and SST, be-888

coming strongly negative during the fully aggregated stage of the high SST simulation.889

The clear regions’ longwave contribution turns negative when the dry patches become890

amplified and extremely dry. This is a feature also identified by Wing and Emanuel (2014)891

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems

and Emanuel et al. (2014) and can be explained by the reduced ability of extremely dry892

regions to effectively emit radiation, resulting in anomalous heating. We show that the893

typically negative longwave heating anomalies in the clear regions become less negative894

with SST as a result of the domain-mean longwave heating becoming increasingly neg-895

ative. This is due to the reduction of high clouds which have a strong anomalous long-896

wave heating effect, increasing the domain-mean radiative cooling. The mean covariance897

between the longwave heating and FMSE anomalies becomes negative, meaning the clear898

regions have a negative contribution to aggregation at high SSTs.899

Shortwave anomalies are approximately 6 times smaller in magnitude than long-900

wave anomalies, however the domain-mean shortwave term is similar in magnitude to901

the longwave term once the convection is aggregated. This is because the SW ′n×ĥ′n co-902

variance is positive at almost all times and locations, with positive FMSE anomalies yield-903

ing positive anomalous shortwave heating rates mainly due to the shortwave absorption904

by water vapor. Shortwave anomalies are positive on average for all cloud types at all905

CWPs and is likely due to them mainly occurring in anomalously humid environments,906

allowing absorption of shortwave radiation by water vapor to dominate the shortwave907

heating rates.908

The magnitude of the mean shortwave-FMSE feedbacks are heavily dependent on909

the horizontal spread of water vapor and therefore the state of aggregation. At very early910

times, when the water vapor path field is approximately uniform, the role of shortwave911

feedbacks are outweighed by the role of longwave, surface flux, and advective feedbacks912

with FMSE. The contribution of clouds to the shortwave term also depends on the level913

of aggregation. At very early times, the additional shortwave absorption of condensed914

water results in clouds contributing to around 50% of the shortwave term at 295 K and915

30% at the 305 K SST. As soon as distinct moist and dry patches begin to develop, the916

differential absorption of shortwave radiation by water vapor rapidly increases the clear-917

sky component of the shortwave term to 87%-96% of the total shortwave term (from 295 K918

- 305 K). The shortwave term’s dependence on grid spacing and RHcrit depends of the919

sensitivity of aggregation itself to these factors.920

Model grid spacing affects the radiative properties of clouds in a number of ways.921

We find that decreasing grid spacing reduces the mean CWP of clouds, decreases the cloud922

top height of high clouds, and produces more low and mid-level cloud. The overall ef-923

fect of these changes to the cloud properties is a reduced mean longwave heating anomaly924

of high-FMSE cloudy regions. This would decrease the domain mean covariance between925

longwave heating and FMSE anomalies, slowing the rate of aggregation for hypothet-926

ical high-resolution large-domain simulations. Sensitivities with SST that we find in the927

large domain remain similar with grid spacing, meaning the magnitude of the decrease928

in the longwave term with SST would likely remain similar with reduced grid spacing929

in larger simulations.930

When lowering the RHcrit parameter to that used in the Met Office UKV model,931

we find significant changes in the distribution, structure, and radiative properties of cloud.932

Firstly the low level cloud fraction increases from ∼ 1% in the SMALL domain to be-933

tween 15% and 30% within the SMALL RHCRIT simulations. There is also an increase934

in mid-level cloud, and the high-level cloud remains similar. However, as the cloud frac-935

tion increases, the mean cloud CWP decreases, altering the associated longwave heat-936

ing rates. With high-level clouds maintaining a similar fraction but having a decreased937

CWP, their longwave heating anomalies fall, significantly reducing their contribution to938

the longwave term. With the increase in low clouds, with their typically negative longwave-939

FMSE covariance, the longwave term is further reduced, so these combined effects would940

likely lead to a slower rate of aggregation if this RHcrit is used in a large domain. With941

the sharp increase in low cloud with SST, the longwave term would likely decrease at942

a faster rate than the decrease seen in our large simulations, suggesting aggregation could943

be slowed at higher SSTs using this RHcrit value in large-domain simulations.944
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There is much variability in the degrees of aggregation and within numerical mod-945

els of RCE, which has important consequences for weather and climate (Wing et al., 2020).946

With radiative interactions between cloud and moisture being the dominant drivers and947

maintainers of aggregation in our models, understanding how these interactions vary be-948

tween other RCE models may go some way in explaining the differences in self-aggregation949

and this is a focus of our ongoing work. By building on the analysis technique of Wing950

and Emanuel (2014), this paper provides a framework by which a comparison of cloud-951

radiative interactions and their contributions to self-aggregation between models and SSTs952

can be achieved. This technique is suitable for all models with a fixed SST. Its use for953

model/reanalysis studies with a varying SST would require the normalization of ĥ to vary954

in space and time.955
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Appendix A Normalized FMSE Variance Budget Equation Derivation1092

Starting with the equation of normalized FMSE:1093

ĥn =
ĥ− ĥmin

ĥmax − ĥmin

(A1)

ĥn, can be broken down into its domain-mean state plus the anomaly from the mean:1094

ĥn = {ĥn}+ ĥ′n (A2)

where curly brackets denote the domain-mean state. Using this expansion of ĥn, equa-1095

tion A2 becomes:1096

{ĥn}+ ĥ′n =
{ĥ} − ĥmin

ĥmax − ĥmin

+
ĥ′

ĥmax − ĥmin

(A3)

The first term on both sides of the equation is the domain-mean of ĥn and the second1097

term is the anomaly. By subtracting the domain-mean from this equation, we end up1098

with an expression for the anomaly of ĥn:1099

ĥ′n =
ĥ′

ĥmax − ĥmin

(A4)

Differentiating this with respect to time:1100

∂ĥ′n
∂t

=
1

ĥmax − ĥmin

∂ĥ′

∂t
(A5)

Multiplying through by ĥ′n, using the identity x × ∂x/∂t = 1/2 × ∂x2/∂t on the left1101

hand side, and substituting equation (A4) for ĥ′n on the right hand side:1102

1

2

∂ĥ′2n
∂t

=
ĥ′

(ĥmax − ĥmin)2

∂ĥ′

∂t
(A6)

Taking the anomaly of the expression for the tendency of ĥ shown in equation 3 of Wing1103

and Emanuel (2014):1104
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∂ĥ′

∂t
= SEF ′ + LW ′ + SW ′ −∇h.ûh (A7)

Substituting this into equation (A6) gives us an expression for the ĥn tendency budget1105

in terms of ĥ′:1106

1

2

∂ĥ′2n
∂t

=
ĥ′LW ′ + ĥ′SW ′ + ĥ′SEF ′ − ĥ′∇h.ûh

(ĥmax − ĥmin)2
(A8)

Or in terms of ĥ′n, the equation becomes:1107

1

2

∂ĥ′2n
∂t

= ĥ′nLW
′
n + ĥ′nSW

′
n + ĥ′nSEF

′
n − ĥ′n∇h. ˆuhn (A9)

Here, each normalized variable is equal to the original variable in equation 3 divided by1108

the difference between ĥmax and ĥmin.1109
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