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Abstract

This paper shows simulation models for diurnal variation of sub-ionospheric Very Low Frequency (VLF) signals using machine

learning approach. Recording of VLF transmitter signals using a ground-based radio receiver provides a beautiful and cost-

effective way of monitoring the lower ionosphere (D/E regions) in the altitude range (60-90 km). VLF signals respond to the

ionization variations due to the Sun and other terrestrial or extra-terrestrial sources. Consequently, it has many applications

in remote sensing of the lower ionosphere. Therefore, predicting or simulating the diurnal variation of VLF transmitter signals

using past data will help to understand the variability of the ionosphere. Here, the VLF signal from the Indian transmitter VTX

(18.2 kHz) received at Kolkata is used for the training, validating, and testing purposes in the machine learning models. Two

predictive models, multiple linear regression (MLR) and artificial neural network (ANN) have been built and Pearson correlation

coefficients outside the training range are obtained as R=0.94 and R=0.93 respectively for the two models. Variation of the

VLF transmitter signal is also calculated using the well-known Long Wave Propagation Capability (LWPC) code coupled with

the International Reference Ionosphere (IRI-2016) model and the same is compared with the MLR and ANN model predictions.

Both the MLR and ANN models are found to be performing better than the LWPC simulation.
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Abstract. This paper shows simulation models for diurnal variation of sub-12

ionospheric Very Low Frequency (VLF) signals using machine learning approach. Reco-13

rding of VLF transmitter signals using a ground-based radio receiver provides a beauti-14

ful and cost-effective way of monitoring lower ionosphere (D/E regions) in the altitude15

range (60-90 km). VLF signals respond to the ionization variations due to the Sun and16

other terrestrial or extra-terrestrial sources. Consequently, it has many applications in17

remote sensing of the lower ionosphere. Therefore, predicting or simulating the diurnal18

variation of VLF transmitter signals using past data will help to understand the variabil-19

ity of the ionosphere. Here, the VLF signal from the Indian transmitter VTX (18.2 kHz)20

received at Kolkata is used for the training, validating, and testing purposes in the ma-21

chine learning models. Two predictive models, multiple linear regression (MLR) and22

artificial neural network (ANN) have been built and Pearson correlation coefficients23

outside the training range are obtained as R=0.94 and R=0.93 respectively for the two24

models. Variation of the VLF transmitter signal is also calculated using the well-known25

Long Wave Propagation Capability (LWPC) code coupled with the International Refer-26

ence Ionosphere (IRI-2016) model and the same is compared with the MLR and ANN27

model predictions. Both the MLR and ANN models are found to be performing better28

than the LWPC simulation.29

Key words: VLF Remote Sensing; Machine Learning; D-region Ionosphere;
Sub-ionospheric VLF signals;.

30

1. INTRODUCTION

Very Low Frequency (VLF) radio signal in the frequency range between 3-31

30 kHz is one of the important tools to monitor the lower ionosphere continuously.32

VLF signals which are originated from the lightning discharge or the navigational33

transmitters around the world can be received by a suitable antenna-receiver system.34

Due to their low attenuation rate, VLF signals propagate to long distances in the35

earth-ionosphere waveguide with multiple reflections in the earth’s surface and iono-36

Rom. Journ. Phys. Romanian Academy Publishing House ISSN: 1221-146X



2 K. Giri et al. (c) 2021 RJP

sphere. Therefore, it preserves the information about the reflecting surfaces. Prop-37

erties of the lower ionosphere can be studied continuously by recording the VLF38

signals. VLF signals recorded at any place show variation in different time scales39

ranging from seconds, hourly, daily, monthly, seasonal, yearly to long-term. Various40

sources such as lightning, solar x-ray and UV, flares, geomagnetic storms, cosmic41

rays, and solar cycle are responsible for such variations in VLF signals in different42

time scales ([1] and references therein). In addition to such sources, some meteoro-43

logical sources, such as tropical cyclones, stratospheric warming events ([2–4] and44

references therein) and, large seismic activities [5, 6] may affect the sub-ionospheric45

VLF signals as well as contributing to the variability of the ionosphere. One of the46

important needs of the ionospheric community is to predict the ionospheric variabil-47

ity (hourly, daily, monthly, yearly, or long-term) as accurately as possible to under-48

stand the ionospheric behavior. Variability is more in the lower ionosphere (D/E49

regions) which is also responsible for attenuation of the high frequency (HF) radio50

signals.51

There are several physics-based theoretical models to calculate radio wave52

propagation in the earth-ionosphere waveguide. Among them, the popular models53

are the Long Wave Propagation Capability code [7], Finite Difference Time Domain54

(FDTD) method [8], wave-hop or ray theory method [9–11]. All these models pre-55

dict or calculate VLF signal strength between a transmitter and receiver pair based56

on given ionospheric conditions. Ionospheric conditions are provided mostly using a57

parameterized ionosphere model such as Wait’s model [12] or using the International58

Reference Ionosphere (IRI) model [2]. Each radio wave propagation model has its59

advantages and disadvantages in calculation VLF signal strength under various iono-60

spheric conditions. However, the accurate prediction or calculation of the VLF signal61

strength between a transmitter and receiver pair, namely the 24h diurnal variation in62

high resolution with respect to time is still a very challenging task because of various63

factors controlling the variability of the lower ionosphere and variability of the VLF64

signal especially in the night and dusk/dawn hours.65

On the other hand, machine learning models in the framework of artificial intel-66

ligence can do wonder in predicting various ionospheric parameters without knowing67

details of the physical mechanisms. Various studies were done in the past to predict68

ionospheric peak electron density (NmF2), peak height (hmF2), critical frequency69

(foF2), total electron content (TEC) using an artificial neural network (ANN) model70

[13–18]. Santosa & Hobara (2017) applied machine learning to VLF signal such71

as Nonlinear Auto-regressive with Exogenous Input Neural Network (NARXNN) to72

predict daily averaged nighttime VLF signal amplitude one day in advance with the73

Pearson correlation coefficient (r) of 0.93 and Root Mean Square Error 31 (RMSE)74

of 2.02 dB. They considered stratospheric temperature, total column ozone, cosmic75

rays, Dst, and Kp index as the inputs of the model. However, predicting the whole76
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diurnal variation of VLF signals using a machine learning model has never been at-77

tempted.78

In this paper, for the first time, we have used two supervised machine learning79

techniques, such as multiple linear regression (hereafter, MLR) and artificial neural80

network (hereafter, ANN), to model the complex behavior of sub-ionospheric VLF81

signals, especially the diurnal pattern. The whole process has VLF electric field as82

target parameter and the parameters affecting the lower ionospheric variations which83

in turn affect the VLF signal variations, such as F10.7 solar flux, Cosmic ray, solar84

zenith angle, geomagnetic Dst index, and D-region electron density profiles from the85

IRI-2016 model, are considered as inputs to the models.86

2. DATA AND METHODOLOGY

2.1. INPUTS AND OUTPUT

In this present work, we have considered VLF diurnal variation at 18.2 kHz87

from the VTX transmitter. The vertical component of VLF electric fields was recorded88

by Near-Earth Space and Atmospheric Observatory (NESAO) at Kolkata using a 3.6589

m E-field whip antenna. VLF signal amplitudes are influenced by variations in the90

conductivity profiles of the lower ionosphere, namely the D-region ionosphere due91

to solar and extra-terrestrial inputs (such as Solar Lyman alpha, Soft X-ray, Cosmic92

ray, etc.). During geomagnetic storms, energetic particle precipitation in the iono-93

sphere also change the ionospheric profiles and disturb the VLF signals [20, 21].94

Atmospheric forcing from below the ionosphere also modulates the ionospheric con-95

ductivity profiles [22] and therefore VLF signals [23]. But, the major factors that96

determine the VLF diurnal variation for a particular transmitter-receiver propagation97

path are solar inputs and corresponding conductivity profiles of the D-region iono-98

sphere. Though the shape of the VLF diurnal variation depends particularly on the99

propagation characteristics and transmitter-receiver distance [24, 25]. Fig. 1a shows100

the hourly averaged (red in online version) VLF electric field amplitude (dB) from101

25 April 2019 to 06 May 2019 as received in Kolkata. The inset of Fig. 1a shows 24h102

variation of signal amplitude more clearly with 1 min time resolution in UT (black103

solid) along with an hourly averaged (red dotted in online version) signal over that.104

The amplitude minimum between 1-2 UT is generally known as sunrise terminator105

time minimum (SRTm) which formed due to the destructive interference between the106

propagating electromagnetic modes when the sunrise terminator sweeps the propa-107

gation path from the receiver to the transmitter. The amplitude minimum between108

11-12 UT is known as sunset terminator time minimum (SSTm) and after SSTm the109

signal amplitude increased due to the modal interference between daytime and night-110

time modes as the sunset terminator sweeps the propagation path from the receiver111
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to the terminator. Between SRTm and SSTm, the amplitude follows the solar zenith112

angle variation. From 14-23 UT, complete night condition over the propagation path113

ensures the rapid fluctuations of the signal amplitude compared to the daytime.114

Here, we have considered five types of inputs, namely the hourly values D-115

region electron density profiles, F10.7 solar flux, Dst index, solar zenith angle, and116

Cosmic ray. The hourly values of D-region electron density profiles at altitude range117

65 km to 90 km in steps of 5 km are obtained from the IRI-2016 Fortran code (avail-118

able from http://irimodel.org) over the receiver and mid-point of the transmitter-119

receiver great circle path (TRGCPm). Thus, the IRI electron density itself served120

as 12 inputs (6 inputs for receiver and TRGCPm respectively) of the ML models.121

The fifth panel of Fig. 1b shows the variation of D-region electron density over the122

receiver at an altitude of 70 km (solid line) and 80 km (dashed line) as an example123

for the duration 25 April-6 May 2019. Hourly averaged F10.7 solar flux (second124

panel) and Dst index (third panel) data are obtained from the Space Physics Data125

Facility of NASA, USA (https://omniweb.gsfc.nasa.gov). Hourly averaged Cosmic126

ray flux (fourth panel Fig. 1b) is downloaded from the Athens Cosmic ray station127

(http://cosray.phys.uoa.gr). We also consider the daytime solar zenith angle variation128

as shown in the first panel of Fig. 1b. Fig. 2, shows the schematic of the simulation129

setup. In the following two subsections, we describe the two ML models.130

2.2. MULTIPLE LINEAR REGRESSION

The regression analysis helps to predict the trends and future values from the131

existing data. In the context of regression models, the simple linear regression (here-132

after LR) is one of the most basic and common predictive analysis models. LR is133

used mainly to predict the relationship between independent (known as input/s) and134

dependent variables (known as output) assuming a linear relationship between those135

input/s and output. If there is a single input variable, then the model is referred to as136

LR, while there are multiple input variables, the same is termed as a multiple linear137

regression model (MLR). In both LR and MLR, the output will be a single variable.138

For MLR, it is accustomed that the inputs are not directly correlated with each other139

rather, inputs should be independent of each other and random in nature. The dis-140

tribution of regression residuals is a normal distribution. In Fig. 3a, the schematic141

diagram for both the LR and MLR are given. Here, x and (X1,X2, .....,Xn) are142

input/s for LR and MLR restively,while,Y is the output for both LR and MLR.143

2.3. ARTIFICIAL NEURAL NETWORKS

The term Artificial Neural Networks (ANN) is analogous to the human brain.
It includes the computational approach which is inspired by the structure of the hu-
man brain. The human brain consists of many neurons connected to each of their
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Fig. 1 – (a) Diurnal variation of VLF transmitter signal as output (target) parameter and (b) Various
input parameters.
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Fig. 2 – Schematic diagram of the simulation set up.

Fig. 3 – Schematic diagram of MLR and ANN.
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neighbors. In the human brain, each neuron passes the input signal from one to an-
other as well as passes the information that is to be computed for output. Similarly,
the ANN also passes the input signal from one neuron to another and create a net-
work of artificial neurons for computation. The basic structure of the ANN is given
in Fig. 3b. A simple ANN structure consists of a n number of inputs and a single
output process. Let, (X1, X2, X3) are three inputs process and Y is the output pro-
cess. Again, each of the input process contains one input signal,say,(x1,x2,x3) along
with their corresponding weights (W1,W2,W3.....,Wn) interconnected with output
process. However, there may be more than one output process. Now, for all input
process, the net input to the output process is defined as Yin. The net output Yout is
a function of Yin. For a simple ANN, the net output is considered as a binary step
function which is given below.

Yin = x1W1+x2W2+ ........+xnWn =
n∑
1

xiWi

Yout = f(Yin) =

{
1 if Yin > 0

0 if Yin ≤ 0

All the neurons in ANN build the layers or network by interconnecting them-144

selves. These interconnections may or may not be fully connected. According to145

this layered architecture the ANN can be classified into various divisions, viz, single146

layer feed-forward ANN, multi-layer feed-forward ANN, competitive network, and147

recurrent network. All of these networks may have one or more hidden layers with148

the input and output layers. The output only generates from an output processing unit149

when a special function satisfies the required criteria for given input variables. This150

special function that maps the net input value to the output signal values is known as151

the activation function of that output unit of the ANN.152

3. RESULTS AND DISCUSSION

Here, we discuss the simulation results obtained from the two ML models and153

also compared them with the theoretical models.154

3.1. MLR ANALYSIS

MLR is the most common but powerful prediction technique in the context of155

supervised machine learning. As mentioned in the methodology section, the input156

and output data are segregated into two sets randomly. In general, among these157

two sets, the larger set contains more than 50 % of the data which is termed as158

training data, while the rest set containing less than 50% of data is known as test159

http://www.nipne.ro/rjp submitted to Romanian Journal of Physics ISSN: 1221-146X
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data. The data (less than 50%) which was not used during training, are used only160

for the testing phase. It is relevant to mention here that our training data consist of161

the data from 25 April to 06 May 2019 to increase the size of training data. On the162

other hand, to predict VLF, test data are used for May 07-09, 2020. In Fig. 4, the163

scatter plots of both observed (upper panel) and predicted (lower panel) are shown.164

To avoid complexity, we used linear regression lines for both the data. Hence, the165

MLR model reduced the multivariate problem into a simple regression problem with166

predicted output as a function of observed VLF amplitude. The upper panel of Fig. 4167

shows the linear regression between the predicted output and observed values during168

the training phase with the regression coefficient of R = 0.9488. The testing phase169

produced a regression coefficient of 0.9303. As both of the regression coefficients170

are close to 1, we can easily conclude that the prediction using MLR is significantly171

well for the present data.172

Now, we will present our predicted VLF for 07-09 May 2020 using the trained173

model. In Fig. 5, we plotted both the MLR predicted VLFs (red curve) and corre-174

sponding observed VLFs (black curve). Unfortunately, we don’t have any observed175

data after 11 UT of 08 May 2019 due to power failure. It is evident from the daytime176

signal amplitude comparison that the MLR prediction for the first 24 hours i.e., on177

07 May is better than the next 24 hours on 08 May. Though the timings of both the178

minima around sunrise (near ∼2 UT) and sunset (near ∼12 UT) match well with the179

observation, amplitude during sunrise minimum tend to overshoot the observation.180

During night hours (∼14-23 UT), the predicted VLF signal amplitude approximately181

follows the same pattern as the observation but, there is a mismatch between the182

observed and predicted amplitude values, which is responsible for the regression co-183

efficient R = 0.9488 and R = 0.9303 during training and testing phases. Daytime184

prediction in between ∼2-12 UT is very good and matches very well with observa-185

tion.186

3.2. ANN ANALYSIS

We have used a multi-layer perceptron ANN to predict the sub-ionospheric187

VLF transmitter signal. The 16 variables, as discussed in the previous section, have188

been used as primary inputs of the model. Levenberg-Marquardt (LM) algorithm189

[26, 27] has been used to train the neural network. After performing several test runs190

and analyzing the performance along with regression values, we found that the ar-191

chitecture with one hidden layer that contains seven neurons gives the best results.192

During the training process, the total data from 25 April to 06 May 2019 (288 data193

points) are divided into three parts, namely training (70% of 288 data points), vali-194

dation (15% of 288 data points), and testing (15% of 288 data points). It is relevant195

to mention here that the distribution (70+15+15) is standard in the context of super-196

http://www.nipne.ro/rjp submitted to Romanian Journal of Physics ISSN: 1221-146X
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vised machine learning. However, one may also let this distribution as 80+10+10197

etc. The ANN model used the training data set to obtain the nonlinear relationship198

between input parameters and the target VLF electric field. The validation set, which199

is not used during training, is used to optimize the network performance, and the200

testing data set is used to assess the network performance only. The best validation201

performance is obtained with mean squared error MSE = 1.438, while the same for202

the training set is MSE=1.432. Fig. 6 shows the linear regression coefficient (R)203

between the target (observed VLF filed) and ANN output during training, validation,204

and testing phases. The bottom right of Fig. 6 shows the regression between the205

predicted and target parameters for all the data. The colored solid lines represent the206

fit of the corresponding predicted values, and the regression values are shown on the207

top of each panel. The regression values of the training phase (R=0.9525) and the208

validation phase (R=0.9515) indicate a good fit between the target and model out-209

put. The regression values of the test phase (R=0.9332) and all data (R=0.9495) also210

indicate a significant linear relationship between the target and model output.211

After the training, validation, and testing phase, the trained model is examined212

for learning efficiency with a new set of input data for 07-08 May 2019. The pre-213

dicted output (red dashed in on-line) is then compared with the actual observed VLF214

amplitude data (black in on-line) for the same 48 hours in Fig. 7. Observed data215

were absent from sunset terminator time minimum around 11 UT for 08 May 2019.216

We can see that the ANN predicted output is well correlated with the observed val-217

ues and the linear correlation coefficient between the two is 0.95. Most importantly,218

the error in prediction or the mismatch between predicted and observed values is219

relatively large during night hours (between 13-23 UT), while the predicted values220

are almost accurate for other times. Also, the ANN model captured the two minima221

around sunrise and sunset (SRTm and SSTm) very well. These results indicate that222

the learning efficiency and prediction capability of the ANN model are very good for223

the simulation of diurnal variation of the VLF transmitter signal.224

3.3. LWPC SIMULATION

Here, we have calculated the VLF signal amplitude using the most well-known225

Long Wave Propagation Capability (LWPC) v2.1 code [7]. The LWPC code is a226

two-dimensional full-wave model for the calculation of amplitude and phase of VLF227

signals propagating in the Earth-ionosphere waveguide. The lower waveguide bound-228

ary is characterized by the permittivity (ε) and conductivity (σ) of the Earth surface229

along the radio propagation path between a transmitter and a receiver pair. The230

ionospheric conditions can be specified by the altitude profiles of electron and ion231

density and the collision frequency profiles between electrons, ions, and neutrals.232

The electron density (Ne) and electron-neutral collision frequency (νe) profiles are233

http://www.nipne.ro/rjp submitted to Romanian Journal of Physics ISSN: 1221-146X
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sufficient to model the VLF signal variations [28]. Here, we have used the FOR-234

TRAN code of the International Reference Ionosphere model IRI-2016 to get the235

electron density profiles in the altitude range 65-100 km along the radio propagation236

path used as inputs to the LWPC model. The electron-neutral collision frequency237

(νe) profile as functions of altitude (h) for the D region ionosphere reads as [12],238

νe(h) = 1.816×1011exp(−0.15h) in sec−1 and is default to the LWPC model. The239

propagation path has been divided into 15 path segments partly based on ground240

conductivity. The LWPC code has been coupled and automatized with the IRI-2016241

model to calculate the radio signal taking inputs for the path segments from the IRI-242

2016 model along the propagation path. This process was also described in [2, 28].243

Then we ran the range-table model of the LWPC code for the VTX-Kolkata propa-244

gation path to calculate the diurnal variation of the VTX amplitude at 18.2 kHz with245

electron density (Ne) and electron-neutral collision frequency (νe) along the path.246

In Fig. 8, we present the IRI-LPWC calculation of the diurnal variation of VTX247

signal amplitude for the receiver placed at Kolkata by dashed line (red in on-line)248

corresponding to 07 May and 08 May 2019. The observed variation is indicated by249

the solid circled line (black in on-line) line. As can be seen from the figure, the250

IRI-LWPC calculation predicts the SRTm position in the diurnal variation almost at251

the same time, but the position of the SSTm is delayed by ∼ 1 h and also the IRI-252

LWPC with the default collision frequency predicts slightly lower amplitude at noon.253

To compare this calculation with the ML models developed earlier, we have plotted254

the MLR and ANN predictions of the signal amplitude in the same Fig. 8 with the255

dot-dashed (green in on-line)) and solid (blue in on-line) lines respectively. Thus256

it can be seen that the ANN and MLR models perform better than the IRI-LWPC257

model and the ANN model is best among the three. All the model predictions failed258

to reproduce the variation of the nighttime signal amplitude as the nighttime iono-259

sphere is highly variable with respect to time and space mainly due to the absence of260

a dominating ionizing sources like the Sun in the daytime.261

4. SUMMARY AND CONCLUSION

VLF signal is one of the most important diagnostic tools to monitor the lower262

part of the ionosphere below 90 km altitude. Continuous monitoring of VLF signals263

helps to monitor lower ionospheric variability associated with any space weather264

conditions or other conditions affecting the lower ionosphere. Therefore, their pre-265

diction also helps to predict lower ionospheric variability and D-region absorption.266

In this paper, we have exercised two machine learning models, namely the regression267

(MLR) and neural network (ANN), for the simulation of diurnal variation of VLF268

transmitter signal between a transmitter and receiver pair. D-region electron den-269
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sity variation over the receiver and middle point of the transmitter-receiver path, Dst270

index, solar zenith angle, Cosmic ray flux, F10.7 solar index are considered as the271

inputs of the two models. Data from 25 April to 6 May (12 days, 288 data points)272

are chosen for training and testing purposes. Then using the trained models, we have273

predicted VLF diurnal variation for 7-8 May 2019. The prediction results are also274

compared with IRI-LWPC simulation results. It is observed that both the MLR and275

ANN models simulated the VLF signal variation very well during daytime and dawn-276

dusk conditions. But the prediction is not good at night. This is because during the277

nighttime variability of VLF signals is very high compared to daytime as there is no278

Sun which causes the lower D-region to vanish completely and only weak ionization279

remained at the upper D-region/lower E-region (above 85 km).280

Further, the atmospheric forcing from below dominates the ionospheric vari-281

ability during nighttime causing VLF signals to fluctuate rapidly compared to day-282

time. In our model, there are no input parameters that take care of ionospheric vari-283

ability at night minutely like VLF signals causing a mismatch between hourly ob-284

servation and prediction during nighttime. The IRI-LWPC simulation also predicted285

the daytime behavior closely related to the observation except for dusk (during sun-286

set) and night hours. Further, the comparison of all three models indicates that the287

ANN and MLR models perform better than the IRI-LWPC simulation. Therefore,288

the studied models can be used to fill the data gaps of sub-ionospheric VLF signals289

that exist due to power failure or other problems. The present results also indicate290

that there is a lot of scopes to improve the models for accurate simulation of VLF291

signals by selecting the input variable wisely at any condition including night. Al-292

ternatively, the opposite problem can be exercised to calculate the lower ionospheric293

electron density variation from the VLF observations which will be reported in our294

next communication.295
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