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Abstract

The past six decades has seen an explosive growth in remote sensing data across air, land, and water dramatically improving

predictive capabilities of physical models and machine-learning (ML) algorithms. Physical models, however, suffer from rigid

parameterization and can lead to incorrect inferences when little is known about the underlying physical process. ML models,

conversely, sacrifice interpretation for enhanced predictions. Geostatistics are an attractive alternative since they do not have

strong assumptions like physical models yet enable physical interpretation and uncertainty quantification. In this work, we

propose a novel multiscale multi-platform geostatistical algorithm which can combine big environmental datasets observed at

different spatio-temporal resolutions and over vast study domains. As a case study, we apply the proposed algorithm to combine

satellite soil moisture data from Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) with point

data from U.S Climate Reference Network (USCRN) and Soil Climate Analysis Network (SCAN) across Contiguous US for a

fifteen-day period in July 2017. Using an underlying covariate-driven spatio-temporal process, the effect of dynamic and static

physical controls—vegetation, rainfall, soil texture and topography—on soil moisture is quantified. We successfully validate the

fused soil moisture across multiple spatial scales (point, 3 km, 25 km and 36 km) and compute five-day soil moisture forecasts

across Contiguous US. The proposed algorithm is general and can be applied to fuse many other environmental variables.
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Abstract 13 

The past six decades has seen an explosive growth in remote sensing data across air, 14 

land, and water dramatically improving predictive capabilities of physical models and 15 

machine-learning (ML) algorithms. Physical models, however, suffer from rigid 16 

parameterization and can lead to incorrect inferences when little is known about the 17 

underlying physical process. ML models, conversely, sacrifice interpretation for 18 

enhanced predictions. Geostatistics are an attractive alternative since they do not have 19 

strong assumptions like physical models yet enable physical interpretation and 20 

uncertainty quantification. In this work, we propose a novel multiscale multi-platform 21 

geostatistical algorithm which can combine big environmental datasets observed at 22 

different spatio-temporal resolutions and over vast study domains. As a case study, we 23 

apply the proposed algorithm to combine satellite soil moisture data from Soil Moisture 24 

Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) with point data 25 

from U.S Climate Reference Network (USCRN) and Soil Climate Analysis Network 26 

(SCAN) across Contiguous US for a fifteen-day period in July 2017. Using an 27 

underlying covariate-driven spatio-temporal process, the effect of dynamic and static 28 

physical controls—vegetation, rainfall, soil texture and topography—on soil moisture is 29 

quantified. We successfully validate the fused soil moisture across multiple spatial 30 

scales (point, 3 km, 25 km and 36 km) and compute five-day soil moisture forecasts 31 

across Contiguous US. The proposed algorithm is general and can be applied to fuse 32 

many other environmental variables. 33 

  34 
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1 Introduction 35 

On April 1, 1960, (National Aeronautics and Space Administration) NASA launched the 36 

Television and Infrared Observation Satellite (TIROS 1) demonstrating that satellites 37 

could observe weather patterns, marking the advent of remote sensing (RS) to observe 38 

global environmental phenomena. Sixty years and the launch of several satellites later, 39 

rapid progress has been made in observing Earth-system processes (across air, land, 40 

and water) accompanied by an explosion in the availability of data. This so called “big 41 

data” are often spatio-temporal (indexed by a spatial coordinate and a time stamp) 42 

resulting in an increased interest in space-time problems in the past two decades 43 

(Gelfand et al., 2010; Wikle et al., 2019). Usually, environmental data are 1) spatio-44 

temporally dependent, 2) available at multiple resolutions from various instruments, 45 

and 3) observed with gaps and noise. It is unreasonable to expect one source of data to 46 

fill all the gaps across space and time. However, combining multi-sensor data, while 47 

accounting for individual strengths and weaknesses, can lead to novel insights into 48 

Earth-system Science. Paradigms facilitating the fusion of disparate data while handling 49 

the sheer size of datasets are thus critical. 50 

 51 

RS data have traditionally been used to update the states and improve parameterization 52 

of physically based models. Indeed, the assimilation of satellite data into numerical 53 

weather prediction models led to the “quiet revolution” (Bauer et al., 2015) in global 54 

weather prediction. Data assimilation has also found success in oceanography 55 

(Evensen, 1994; Ghil & Malanotte-Rizzoli, 1991) and land-surface hydrology (Reichle et 56 

al., 2002). Physical models are vital for predicting variables poorly observed by RS 57 

platforms such as ocean mixed layer (Wang et al., 2000) and root-zone soil moisture 58 
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(SM) (Lievens et al., 2017). However, the rigid parameterization of physical models can 59 

be a hindrance when knowledge of the underlying spatio-temporal process is 60 

incomplete (Girotto et al., 2017). The resulting predictions can suffer from signatures of 61 

strong (and sometimes incorrect) assumptions (Akbar et al., 2019). Moreover, RS 62 

observations usually need to be pre-processed for correcting bias and scale-mismatch 63 

before assimilation in the numerical model (Koster et al., 2009). 64 

 65 

The recent decade has seen an incredible rise of Machine Learning (ML) in Earth-66 

System Sciences, which has been instrumental in improving predictive accuracy of 67 

disparate physical processes (Camps-valls et al., 2013; Hengl et al., 2017; Jung et al., 68 

2010; Mao et al., 2019; Shi et al., 2017).  Though classical ML models are inept at 69 

accounting for spatio-temporal dependence, recent research in Deep Learning seems 70 

promising (Fang et al., 2017; Shen, 2018; Shi et al., 2017). Accuracy without 71 

interpretability, however, is insufficient (Reichstein et al., 2019); the lack of transparency 72 

and physical interpretability of many ML models is viewed as a major deficiency. 73 

Moreover, current state-of-the-art ML models are ill-equipped to handle some of the 74 

major challenges associated with fusing RS data such as accounting for multi-sensor 75 

multiscale data, uncertainty in observations and predictions, and missing data 76 

(Reichstein et al., 2019). 77 

 78 

On an interpretation-prediction spectrum, physical models derived from the first laws 79 

of physics lie on one end while ML algorithms using black-box models fall on the other. 80 

Geostatistics lie somewhere in the middle and are an attractive alternative for spatio-81 

temporal inference in a data-driven setting. They do not have strong assumptions like 82 

physical models yet enable physical interpretation and uncertainty quantification. From 83 
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its humble origins in South African mines (Cressie, 1990; Krige, 1952), geostatistics has 84 

been widely used in modeling the spatio-temporal distribution of environmental 85 

variables including precipitation (Cecinati et al., 2017), temperature (Lanfredi et al., 86 

2015), soil properties (Lark, 2012; Mohanty et al., 1991, 1994; Mohanty & Kanwar, 1994), 87 

carbon dioxide (Zhong & Carr, 2019), ground-water quality (Goovaerts et al., 2005) and 88 

SM (Joshi & Mohanty, 2010; Kathuria et al., 2019a; Mohanty et al., 2000). Recent work on 89 

covariate-driven non-stationary models have also enabled the seamless integration of 90 

covariates into geostatistical models (Reich et al., 2011; Risser & Calder, 2015) enabling 91 

them to model complex spatio-temporal phenomena. 92 

 93 

Geostatistical approaches typically assume an underlying Gaussian process (GP) 94 

requiring quadratic memory and cubic time complexity in the number of observations, 95 

which make them prohibitive as the data size increases. Various approximations have 96 

therefore been proposed for applying geostatistics to massive datasets. Such approaches 97 

generally aim at approximating the covariance (e.g., Kaufman et al., 2008) and inverse-98 

covariance matrices (e.g., Nychka et al., 2015). Among these, the Vecchia approximation 99 

(Vecchia, 1988) is one of the oldest with several advantages such as it is 1) suitable for 100 

high-performance parallel computing,  2) accounts for uncertainty in predictions, and 3) 101 

outperforms several state-of-the-art approaches in accuracy (Guinness, 2018). Moreover, 102 

recent work (Katzfuss et al., 2020; Katzfuss & Guinness, 2017) has shown that Vecchia 103 

approximation can be generalized to include many existing GP approximation 104 

approaches as special cases. However, the use of the Vecchia approximation, to the best 105 

of the authors’ knowledge, has been restricted to single-scale data only. 106 

 107 
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Thus, the objective of this paper is to investigate whether geostatistics, with its rich 108 

parametric inference and uncertainty quantification, can potentially be used with 109 

Vecchia approximation to fuse spatio-temporal multiscale big data.. We achieve this by 110 

applying the Vecchia approximation to a geostatistical hierarchical model (Gelfand et al., 111 

2001; Kathuria et al., 2019b).  In this paper, we define the term “multiscale big data” as 112 

data which are observed from multiple platforms at varying footprints, are massive in 113 

size, and are observed over vast extents rendering standard geostatistical (and many 114 

other statistical) approaches infeasible.  115 

 116 

We explore the utility of the approximation using simulations, and by fusing real SM 117 

datasets as a case study. SM is a critical variable governing land-atmosphere 118 

interactions and contains significant information about physical processes such as 119 

rainfall (Koster et al., 2016), streamflow (Koster et al., 2018) and evapotranspiration (ET) 120 

(Akbar et al., 2019). SM is highly correlated in space and time resulting from dynamic 121 

interactions between surface and atmospheric controls making it a prime candidate for 122 

geostatistics driven multiscale data fusion. Kathuria et al. (2019b)  previously proposed 123 

a geostatistical data fusion scheme for combining multiscale SM data but its application 124 

was restricted to regions with small extent and small data size limiting its utility. We 125 

also choose SM as a case study application for our proposed algorithm to provide a big 126 

data closure for Kathuria et al. (2019b). The rest of the paper is organized as follows. We 127 

describe the SM datasets used in the case study in Section 2. The data fusion algorithm 128 

along with its big data extension is detailed in Section 3. This is followed by the 129 

discussion of results in Section 4 before we conclude in Section 5. Note that in the 130 

following sections, all vectors are assumed to be column vectors. 131 

 132 
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2 Study Area and Data 133 

2.1 Case Study: Soil moisture 134 

We apply the proposed algorithm to combine daily point surface (top 0-5 cm) SM data 135 

from U.S. Climate Reference Network (USCRN) (Diamond et al., 2013) and Soil Climate 136 

Analysis Network (SCAN) (Schaefer et al., 2007) with satellite data from Soil Moisture 137 

Ocean Salinity (SMOS) (Barré et al., 2008) and Soil Moisture Active Passive (SMAP) 138 

(Entekhabi et al., 2010) for Contiguous US (CONUS) for July 06-20, 2017. This fifteen-139 

day time interval was randomly chosen for the warm summer period so that the effect 140 

of snow on SM estimation is minimal. For any given day, there are approximately 143 141 

sites for USCRN and SCAN while individual satellites partially observe SM across 142 

CONUS with some overlap between the two data sets (Figure 1). 143 

 144 

Both SMOS and SMAP use L-band radiometers to measure surface brightness 145 

temperature (𝑇!) at an average revisit time of three days (Colliander et al., 2017; Pablos 146 

et al., 2019). Both the satellites apply (different) retrieval algorithms to 𝑇! and generate 147 

composite daily L3 SM products resampled, at 36 km for SMAP (L3) and 25 km for 148 

SMOS (Barcelona Expert Center L3), to an Equal Area Scalable Earth (EASE)-2 grid. For 149 

the SMAP data we remove the pixels where 1) the retrieval was unsuccessful (using flag 150 

data), and 2) where the vegetation water content is greater than 5 𝑘𝑔/𝑚" (O’Neill et al., 151 

2018). For consistency we use the morning overpass for both satellites— 6 AM local 152 

time. For the covariate data, daily rainfall data were extracted from Parameter-elevation 153 

Regressions on Independent Slopes Model (PRISM) at 4 km resolution. PRISM provides 154 

gridded rainfall data across CONUS at a daily scale using a combination of 155 

climatological and statistical methods (Daly et al., 1994). Soil and elevation data were  156 
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 157 
  158 

Figure 1. Fifteen day soil moisture data from USCRN and SCAN (black cross), SMOS (swath - black outline) 
and SMAP (swath - purple outline) for July 06-20, 2017. For individual days, both SMOS and SMAP observe 
different regions of Contiguous US (CONUS) and there is a significant overlap between the data. The size of the 
SM data and the extent of study domain (CONUS) are both massive making data fusion computationally 
demanding. 
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extracted from Soil Survey Geographic Database (1 km) (Soil Survey Staff, 2020) and 159 

Leaf Area Index (LAI) (as a proxy for vegetation) were extracted from Moderate 160 

Resolution Imaging Spectroradiometer (MCD15A3H, 500m) (Myneni et al., 2015).  161 

 162 

3 Methodology 163 

3.1 Multiscale data fusion 164 

Let the environmental variable varying across space and time (such as SM, ET, 165 

temperature, etc.) be denoted by 𝑦. We assume that 𝑦(. ) is a Gaussian Process (GP) (a 166 

standard geostatistical assumption) at the point scale in a domain or extent 𝔇 in 𝑑 167 

dimensions	(𝑑 = 1, 2,3… ). For instance, if 𝑦 represents daily land-surface temperature 168 

(LST) varying spatially (latitude and longitude) and temporally (days), then 𝑑 equals 3. 169 

The variable 𝑦 is defined at the point scale using a mean function 𝜇 and a covariance 170 

function 𝐶: 171 

 172 

 𝑦(. ) ∼ 𝐺𝑃(𝜇, 𝐶).                                                                                                                         (1)   173 

 174 

For any environmental variable 𝑦, in addition to point data, we might observe data at 175 

aggregate resolutions from RS platforms or large-scale numerical models. For instance, 176 

surface SM is observed at aggregate resolutions from SMAP (∼ 36	𝑘𝑚	 × 	36	𝑘𝑚, daily) 177 

and SMOS (∼ 25	𝑘𝑚	 × 	25	𝑘𝑚, daily) while ET is observed using ECOSTRESS (∼178 

70𝑚	 × 	70𝑚, daily) and MODIS (∼ 500𝑚	 × 	500𝑚, 8-day). Since 𝑦 is defined at point 179 

scale, for any aggregate pixels 𝐴# and 𝐴$,  𝑦(𝐴#) =
%
|'!|

∫ 𝑦(𝑠)𝑑𝑠'!
, with the corresponding 180 

mean and covariance as: 181 
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 182 

 𝜇(𝐴#) =
%
|'!|

∫ 𝜇(𝑠)𝑑𝑠'!
 and 183 

 𝐶@𝐴#, 𝐴$A =
%
|'!|

%
|'"|

∫ ∫ 𝐶(𝑠%, 𝑠")𝑑𝑠%𝑑𝑠"'"'!
,                                                                                 (2) 184 

 185 

where |𝐴#| is the 𝑑-dimensional resolution of pixel 𝐴# and 𝑠 represents a point in 𝑑 186 

dimensions. If 𝐴# and 𝐴$ represent coordinates of point data, the mean of data at 𝐴# is 187 

simply 𝜇(𝐴#) and the covariance between 𝐴# and 𝐴$ is given as 𝐶(𝐴# , 𝐴$). If 𝐴# is an areal 188 

pixel and 𝐴$ represents a point, then the covariance 𝐶(𝐴# , 𝐴$) is given as %
|'!|

∫ 𝐶@𝑠, 𝐴$A𝑑𝑠'!
. 189 

 190 

Let the total number of observed pixels be 𝑛 and be denoted by 𝒜 = {𝐴%, … , 𝐴(} with 191 

𝐴# ⊂ 𝔇. The joint distribution of 𝑦(𝒜) = @𝑦(𝐴%),… , 𝑦(𝐴()A can be shown to be 192 

multivariate normal (Gelfand et al., 2001):  193 

 194 

 𝑦(𝒜) = 𝒩((𝜇(𝒜), 𝐶(𝒜,𝒜)),                                                                                                   (3) 195 

 196 

where 𝜇(𝒜) is a vector of length 𝑛 and 𝐶(𝒜,𝒜) is a matrix of size 𝑛	 × 	𝑛. The 197 

individual elements of @𝜇(𝒜)A
#
 and @𝐶(𝒜,𝒜)A

#$
 are given by equation 2. Since we 198 

cannot always analytically solve the above integrals, we use a numerical approximation 199 

(Gelfand et al., 2001) by assuming an equidistant numerical grid 𝒢 over the extent 𝔇 200 

with 𝑛𝒢	number of grid points such that 𝒢 = {𝑔%, … , 𝑔(𝒢} or equivalently 𝒢 = {𝑔*: 𝑘 =201 

1,… , 𝑛𝒢}. Here 𝑔* denotes the location of the 𝑘+, grid point in 𝒢. We can then 202 

approximate 𝑦(𝐴#) as: 203 
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 204 

 𝑦(𝐴#) ≈
%
($!

∑𝑦(𝑔*)
-%∈	𝒢$!

,                                                                                                                (4) 205 

 206 

where 𝒢'!  denotes the subset of the total grid points 𝒢 lying inside the pixel 𝐴# ,and 207 

𝑛'!	denotes the number of grid points in 𝒢'! .  The corresponding approximations for the 208 

mean and covariance can be written as:  209 

 210 

𝜇(𝐴#) ≈
%
($!

∑
-%∈𝒢$!

𝜇(𝑔*),  211 

 𝐶@𝐴#, 𝐴$A ≈ 	
%
($!

%
($"

∑ ∑ 𝐶(-&∈𝒢$"-%∈𝒢$!
𝑔* , 𝑔0).                                                                           (5) 212 

 213 

We illustrate the numerical approximation using a hypothetical example in Figure 2. 214 

Figure 2 (a) represents three partially overlapping datasets which cover different 215 

extents and have different resolutions: two areal datasets 𝑅% (64 green pixels) and 𝑅" (36 216 

purple pixels), and point dataset 𝑃% (40 blue triangles). Figure 2 (b) represents the 217 

equidistant grid 𝒢 (black dots) over the study domain. Assuming the mean and 218 

covariance functions are known at the point scale, the mean of pixel 𝐴% (𝐴") and the 219 

covariance between pixels 𝐴% and 𝐴" in Figure 2 (c) are given by equation 5. Here 220 

𝒢''(𝒢'() are subset of the total grid points 𝒢, color-coded as green (purple), lying inside 221 

𝐴% (𝐴") with 𝑛'' = 9 (𝑛'( = 6). Similarly, the mean function at point 𝐴1 in Figure 2 (d) is 222 

simply given as 𝜇(𝐴1) while 𝐶(𝐴%, 𝐴1) is given by %
($'

∑ 𝐶(𝑔* , 𝐴1)-%∈𝒢$'
.  223 

  224 
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 225 

 226 
  227 

Figure 2. (a) Example depicting two areal (green and purple) and one point (blue triangles) data platforms (b) 

Equidistant point grid assumed throughout the study domain (c) The mean and covariance of pixels 𝐴) and 𝐴* 

approximated using the numerical grid (d) The mean and covariance between a pixel 𝐴) and point observation 

𝐴+. 
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We can write %
($!

∑𝑦(𝑔*)
-%∈	𝒢$!

 (equation 4) in matrix form as ℎ'!
2 𝑦'! , where ℎ'!  is a vector of 228 

length 𝑛'!  with each element equal to 1/𝑛'! or  ℎ'! =	 (1/𝑛'! , . . . . . ,1/𝑛'!), and 𝑦'! is a 229 

vector of length 𝑛'! with elements {𝑦(𝑔*): 𝑔* ∈ 𝒢'!}. Similarly in equation 5, 𝜇(𝐴#) can be 230 

written as  ℎ'!
2 𝜇'!  (with 𝜇'!  having elements {𝜇(𝑔*): 𝑔* ∈ 𝒢'!}). We also write 𝐶@𝐴#, 𝐴$A in 231 

equation 5 in matrix form as ℎ'!
2 (𝐶(𝒢'! , 𝒢'"))ℎ'", where (as mentioned before) 𝒢'! 232 

denotes the subset of the total grid points 𝒢 lying inside the pixel 𝐴#. 233 

 234 

Retrievals of an environmental variable from different platforms are typically subject to 235 

systematic (bias) and stochastic (random) errors (e.g. refer Fan et al. (2020) and Reichle 236 

& Koster (2004) for SM, Li et al. (2014) and Westermann et al. (2012) for LST, Klees et al. 237 

(2007) for water storage, Hu et al. (2015) and Velpuri et al. (2013) for ET). Thus, for any 238 

observed pixel 𝐴#, it is important to differentiate between the noisy observation from a 239 

platform (denoted as 𝑧(𝐴#)) and the latent environmental variable 𝑦(𝐴#) that is 240 

uncorrupted by the parameterized errors. For a given observation 𝑧(𝐴#) (from a data 241 

platform) for pixel 𝐴#, we thus write: 242 

 243 

 𝑧(𝐴#) = 𝑦(𝐴#) + 𝛿(𝐴#) + 𝜅(𝐴#)𝑦(𝐴#) + 𝜖(𝐴#),                                                                         (6) 244 

 245 

where 𝛿(𝐴#), 𝜅(𝐴#) and 𝜖(𝐴#)  are respectively the additive bias, multiplicative bias, and 246 

random measurement error associated with 𝑧(𝐴#). We parameterize the random error as  247 

𝜖(𝐴#) ∼ 𝒩(0, 𝜏'!
" ) with variance  𝜏'!

" . We then write: 248 

 249 
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 𝑧(𝐴#) ≈ ℎ'!
2 𝑦'! + 𝛿(𝐴#) + 𝜅(𝐴#)ℎ'!

2 𝑦'! + 𝜖(𝐴#) 250 

            = @1 + 𝜅(𝐴#)Aℎ'!
2 𝑦'! + 𝛿(𝐴#) + 𝜖(𝐴#) 251 

             = (ℎ'!
3 )2 	𝑦'! + 𝛿(𝐴#) + 𝜖(𝐴#),                                                                                        (7) 252 

where ℎ'!
3 = @1 + 𝜅(𝐴#)Aℎ'!

2 . The mean (𝜇) and covariance function (𝐶) in equation 1 are 253 

thus given parametric forms based on the environmental variable 𝑦 while the additive 254 

bias (𝛿(𝐴#)), multiplicative bias (𝜅(𝐴#)) and error-variance (𝜏'!
" ) for a pixel 𝐴# in 255 

equation 7 are parameterized depending on the data platforms. Let all the parameters 256 

used to parameterize the mean, covariance, bias and random error be denoted by the 257 

vector 𝜃. Elements of 𝜃 can either assumed to be known or be estimated from the 258 

observations. If the total number of observations from all platforms is equal to 𝑛, we 259 

denote 𝑧(𝒜) = {𝑧(𝐴%), 𝑧(𝐴"), … , 𝑧(𝐴()}. The parameter vector 𝜃 is estimated by 260 

maximizing the likelihood 𝑓(𝑧(𝒜)|𝜃) where 𝑓(𝐴|𝐵) denotes the probability density of A 261 

given B. For our model, it can be easily derived that the (log-) likelihood is: 262 

 263 

 −2𝑙𝑜𝑔(𝑓(𝑧(𝒜)|𝜃) = 𝑙𝑜𝑔(𝑑𝑒𝑡(𝛴4)) + (𝑧(𝒜) − 𝜇4)2𝛴45%(𝑧(𝒜) − 𝜇4) + 𝑛𝑙𝑜𝑔(2𝜋),            (8) 264 

 265 

where the 𝑖+, element of the vector 𝜇4 (size 𝑛) and the (𝑖, 𝑗)+, element of the matrix 𝛴4 266 

(size 𝑛	 × 𝑛) in equation 8 are given as: 267 

  𝜇4,# ≈ (ℎ'!
3 )2𝜇'! + 𝛿(𝐴#),  268 

𝛴4,#$ ≈ (ℎ'!
3 )2(𝐶(𝒢'! , 𝒢'"))ℎ'"

3 + 𝜏'!,"
" ,                                                                                        (9) 269 

 270 
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where  𝜏'!,"
" = b𝜏'!

" , 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

. However this data fusion algorithm becomes computationally 271 

infeasible when the size of the datasets and/or the extent of study domain becomes 272 

large. We therefore propose an approximation to the fusion algorithm for such cases in 273 

the next Section. 274 

 275 

3.2 Vecchia-multiscale: An Approximation for Multiscale Big Data 276 

If the total number of observations (governed by the number of data platforms and 277 

resolution of pixels for a given study domain) be 𝑛, and the number of assumed grid 278 

points (governed by the extent of the study domain and distance between individual 279 

grid points) be 𝑛𝒢, then computing 𝛴4 and finding its inverse 𝛴45% in equation 8 requires 280 

𝒪(𝑛𝒢") + 𝒪(𝑛1) floating point operations. This evaluation becomes computationally 281 

prohibitive as the number of data and the size of study domain increase (e.g., when 282 

combining multiple data platforms for continental scale fusion of an environmental 283 

variable), and thus requires an approximation. To approximate the likelihood, we first 284 

write the joint distribution in 𝑓(𝑧(𝒜)|𝜃) as a product of univariate conditional 285 

distributions as 286 

 𝑓(𝑧(𝒜)|𝜃) = 𝑓(𝑧(𝐴%)|𝜃) × ∏
#7"

(
𝑓(𝑧(𝐴#)|𝒛(𝑨𝟏:𝒊5𝟏), 𝜃),                                                          (10) 287 

where 𝑨𝟏:𝒊5𝟏 denotes {𝐴%, … , 𝐴#5%} and thus 𝒛(𝑨𝟏:𝒊5𝟏) denotes {𝑧(𝐴%), … , 𝑧(𝐴#5%)}. 288 

Following Vecchia (1988) we approximate the likelihood 𝑓(𝑧(𝒜)|𝜃) as:  289 

 290 

 𝑓h(𝑧(𝒜)|𝜃) = 𝑓(𝑧(𝐴%)|𝜃) × ∏
#7"

(
𝑓(𝑧(𝐴#)|𝒛(𝑨𝒎!), 𝜃),                                                               (11) 291 

 292 
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where 𝑨𝒎! is a subvector of  𝑨𝟏:𝒊5𝟏 of length 𝑚# such that 𝑚# = i𝑖 − 1, 𝑖 ≤ 𝑚
𝑚, 𝑖 > 𝑚 . Here 𝑚 is 293 

an integer lying between 1 and 𝑛 − 1 with 𝑚	 = 	𝑛 − 1  representing the exact likelihood 294 

in equation 10. The elements of  subvector 𝑨𝒎! consist of 𝑚# elements from 𝑨𝟏:𝒊5𝟏 which 295 

are closest to 𝐴# in space. The subvector 𝒛(𝑨𝒎!) is the observed data vector 296 

corresponding to 𝑨𝒎!  . To illustrate the approximation, we again use the hypothetical 297 

example in Figure 2 (a) comprising three datasets: areal data 𝑅% (64 green pixels) and 𝑅" 298 

(36 purple pixels), and point data 𝑃% (40 blue triangles), making the total number of 299 

observations 𝑛	 = 	140. For this data, the univariate conditional distributions are 300 

illustrated in Figure 3 using a random permutation of the pixels 𝒜 and choosing 𝑚 =301 

20. Column (a) presents the conditional distributions in equation 10 corresponding to 302 

the exact likelihood while column (b) consist of the corresponding conditional 303 

distributions resulting from the Vecchia approximation. The 𝑖+, pixel 𝐴# in equations 10 304 

and 11 (where 𝑖 = 2, . . . , 140 increases from top to bottom in the columns) is color-filled 305 

in red while the pixels (or points) of the conditioning vector 𝒛(𝑨𝟏:𝒊5𝟏) (equation 10) or 306 

𝒛(𝑨𝒎!)	(equation 11) are color-filled in green (𝑅%), purple (𝑅") and blue (𝑃%). It can be 307 

seen in Figure 3 that for 𝑖 > 𝑚, the Vecchia approximation selects a subset of 𝑚 pixels 308 

(or points) for each 𝐴#. It can be shown that this approximation is equivalent to inducing 309 

sparsity (large percentage of zeros) in the inverse Cholesky factor matrix 𝛬 (𝛬2𝛬 = 𝛴45%). 310 

This leads to fast evaluation of 𝛴45% (and consequently the likelihood) in equation 8 used 311 

for estimating the parameter vector 𝜃 as well as doing subsequent predictions. The 312 

detailed algorithm for parameter estimation and subsequent predictions is given in 313 

Appendix A1. We call this approximation Vecchia-multiscale. 314 
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    315 

Figure 3. Illustration of the Vecchia-multiscale to the hypothetical data in Figure 2(a) consisting of 64 green 

pixels (𝑅)), 36 purple pixels (𝑅*) and 40 point data 𝑃) (blue triangles). Column (a) denotes the conditional 
distributions as implied by the the exact likelihood while column (b) gives the conditional distributions using 

Vecchia-multiscale approximation with maximum size of the conditioning vector m equal to 20. The 𝑖-. pixel 𝐴/  

(where 𝑖 = 2, . . . ,140 increases from top to bottom in the columns) is color-filled in red while the pixels (or 

points) of the conditioning vector are color-filled in green (𝑅)), purple (𝑅*) and blue (𝑃)). 
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3.2.1 Permutation in Vecchia-multiscale 316 

There are two criteria we seek in the approximation: speed and accuracy. For the 317 

Vecchia-multiscale, significant computational and memory benefits can be achieved by 318 

selecting 𝑚 ≪ 𝑛. Further, equation 11 results in a product of independent univariate 319 

distributions which is readily parallelized for faster computations.  320 

 321 

Regarding accuracy for a fixed value of 𝑚, as the right side of equation 11 consists of an 322 

“ordered” sequence of conditional probability distributions, the approximation 323 

depends on the order in which the pixels appear in 𝒜. This is because in equation 11, 324 

for a pixel 𝐴# (𝑖	 ≥ 2), we select the subset 𝑨𝒎!  (of length 𝑚#) from elements of 325 

𝑨𝟏:𝒊5𝟏	which are closest in space to 𝐴#. This leads to different values for 𝒛(𝑨𝒎!) in 326 

equation 11 based on how we permute {𝐴%, . . . , 𝐴(}. Thus, the approximation accuracy 327 

will depend upon what permutation of {𝐴%, . . . , 𝐴(} we choose for the pixels (and points) 328 

for computing 𝑓h(𝑧(𝒜)|𝜃) in equation 11. When the size of the multiscale data is 329 

massive, it is infeasible to explore all such permutations. For point data, Guinness (2018) 330 

found that certain permutations of 𝒜 give more accurate approximations when 331 

compared with the exact likelihood 𝑓(𝑧(𝒜)|𝜃). In this paper we explore the same for 332 

multiscale data. We use four popular permutations (Guinness, 2018): 1) Joint-Coordinate 333 

(ordering the locations based on increasing coordinate values), 2) Joint-Middleout 334 

(ordering locations based on increasing distance to the mean location of the extent), 3) 335 

Joint-Maxmin (ordering in which each successive point is chosen to “maximize the 336 

minimum distance” to previously selected points), and 4) Joint-Random (randomly 337 
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ordering locations). Interested readers are encouraged to refer to Section S1, Supporting 338 

Information (SI) and Guinness (2018) for details on these permutations. 339 

 340 

In addition to the above “Joint-“ permutations, we introduce “Separate-” permutations 341 

where we first separate out the point and areal data and apply the above-mentioned 342 

four permutations separately to each. We then form the final permutation by sorting the 343 

“ordered” point data followed by the “ordered” areal data. This leads to four additional 344 

corresponding permutations: 5) Separate-Coordinate, 6) Separate-Middleout, 7) Separate-345 

Maxmin, and 8) Separate-Random. The difference between “Joint-“ and “Separate-” 346 

permutations is illustrated in Figure 4. We assume the centroid of an areal pixel as its 347 

location for applying the permutations.   348 

 349 

Using the hypothetical example in Figure 2 (a), we illustrate the effect of these eight 350 

chosen permutations (Section S1, SI) on how the pixels and points are ordered in 𝒜 and 351 

how it affects the evaluation of 𝑓h(𝑧(𝒜)|𝜃). To see which permutation performs better 352 

for the Vecchia-multiscale in general, we use simulated data in two (e.g, a variable 353 

varying across latitude and longitude) and three (e.g., a variable varying across latitude, 354 

longitude and time) dimensions. The details of the simulations and the corresponding 355 

results are given in Section S2, SI.  356 

 357 

For both two and three dimensions, in general, the Separate-Maxmin and Separate-358 

Random perform the best while the Coordinate-based orderings perform the worst. This is 359 

important because many approximation schemes use Coordinate-based ordering as their 360 

default (e.g. Datta et al., 2016; Sun & Stein, 2016) and it should be used with caution  361 
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 362 

Figure 4. Illustration of “Joint-“ and “Separate-“ permutations for Vecchia-multiscale. (a) Hypothetical example 
comprising six aggregate pixels and four point data. Different colors are used to distinguish between different 
pixels and points. (b) The “Joint-“ permutation results in both the pixels and points getting permuted together 
following a given permutation “Perm1”. For “Separate-“ ordering, we first separate the point and aggregate 
data, apply the permutation “Perm1” separately to each, and then form the final permutation by sorting the 
permuted point data followed by the permuted aggregate data. In this figure we choose a random permutation as 
“Perm1” and the resulting permutations of the pixels/points are shown. The “Joint-“ and “Separate-“ 

permutations can lead to different ordering of the pixels/points in 𝒜 = {𝐴), … , 𝐴)0} resulting in different values 
of the approximate likelihood computed using Vecchia-multiscale. In this paper, we explore “Coordinate”, 
“Middleout”, “Maxmin” and “Random” as possible permutations for “Perm1”. The centroid of an aggregate 
pixel is chosen as its location for permutations. 
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when using Vecchia-multiscale. The subvector 𝑨𝒎! (equation 11) consists of a good mix of 363 

both far and near pixels as well as nearby point data for Separate-Maxmin (Figure S2 (i)-364 

(l), SI) and Separate-Random (Figure S2 (m)-(p), SI). We hypothesize that conditioning a 365 

pixel/point on both near and far pixels help in better approximation of the exact 366 

likelihood. Additionally, the “Separate-“ permutations lead to the subvector 𝑨𝒎𝒊  consist 367 

of nearby point data which is potentially helpful because 1) for a given study domain, 368 

point data are generally sparse for any environmental variable and are generally (but 369 

not always) considered more accurate than remote sensing data, and 2) we define our 370 

model at the point scale (equation 1), and it is thus potentially helpful to condition 371 

pixels/points on nearby point data.  372 

 373 

We therefore suggest adopting Separate-Maxmin or Separate-Random when using Vecchia-374 

multiscale. Since, our aim is to propose a general algorithm, we only use location 375 

information for permuting {𝐴%, . . . , 𝐴(}. A promising area of future research is exploring 376 

physically-based permutation of pixels based on the environmental variable to be fused. 377 

In the next Section, we apply the Vecchia-multiscale to fuse multiscale SM data for 378 

CONUS. 379 

4 Results and Discussion 380 

4.1. Case Study : Soil moisture 381 

We fuse fifteen days of SMOS, SMAP, and point (USCRN and SCAN) SM data across 382 

CONUS from July 06-20, 2017. We randomly hold-out 27 point stations (≈ 20%) for 383 

validation leaving 116 station data for training. Since SM observations are theoretically 384 

bounded between 0 and 1 and exhibit considerable skewness, the Gaussian assumption 385 
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becomes untenable. We thus use a logit transform 𝑆𝑀< = 𝑙𝑜𝑔( =>
%5=>

) which transforms 386 

the SM values to lie between −∞ to ∞ and also make the distribution less skewed 387 

(Figure S4, SI). Overlapping data from SMOS and SMAP during the analyzed period 388 

also exhibit slightly better correlation on the transformed scale (Figure S5, SI). 389 

 390 

4.2.1 Mean, covariance and bias 391 

Numerous studies (Cosh & Brutsaert, 1999; Crow et al., 2012; Entin et al., 2000; Gaur & 392 

Mohanty, 2013, 2016; Joshi et al., 2011; Joshi & Mohanty, 2010; Kathuria et al., 2019a; 393 

Ryu & Famiglietti, 2006; Teuling & Troch, 2005; Vereecken et al., 2014) have found that 394 

SM distribution across space and time is affected primarily by precipitation, soil texture, 395 

topography and vegetation. Therefore, we model the spatio-temporal SM distribution 396 

as a function of these physical covariates. For SMAP, since we only consider pixels 397 

where SM retrieval was successful (from flag data) and have a vegetation water content 398 

≤ 5 𝑘𝑔/𝑚", we assume that the SMAP data are of good quality and do not have any 399 

bias. As we did not pre-filter SMOS data, we assume a constant additive and 400 

multiplicative bias for SMOS. Exploratory analysis between overlapping SMOS-SMAP 401 

pixels at the logit scale (Figure S5, SI) also suggest a (additive and multiplicative) bias 402 

between the two platforms. We assume normally distributed measurement error (at the 403 

transformed scale) with mean zero and variance 𝜏=>'?"  and 𝜏=>@="  for the two platforms 404 

respectively. Since the USCRN/SCAN data undergo rigorous quality control, we 405 

assume point data to be the ground truth with no bias/error.  406 

 407 

We use exploratory analysis for determining the parametric forms for the mean 408 

function. Since we assume bias in SMOS data, we use only SMAP and point data for the 409 
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exploratory analysis. For the exploratory analysis, the covariates are linearly averaged 410 

to the SMAP resolution. For rainfall, we assume 3-day antecedent mean rainfall as a 411 

covariate. On the original scale (Figure 5 (a)), the relationship between SM and the 412 

physical controls is non-linear. But after some non-linear transformations of the 413 

covariates (and logit transform of SM), an approximate linear relationship between SM 414 

and the covariates can be assumed (Figure 5 (b)). The mean trend of SM can be therefore 415 

written as: 416 

 417 

 𝜇 t𝑙𝑜𝑔 u =>
%5=>

vw = 𝜇(𝑆𝑀<) = 𝛽A + 𝛽%𝑙𝑜𝑔(𝐿𝐴𝐼) + 𝛽"𝑒𝑥𝑝(−
BC#(

D23!4
5 ) + 𝛽1𝑒𝑥𝑝(−

E0EFC+#G(

D6&6738!94
5 ).     (12) 418 

  419 

We fix 𝑝BC#(
H  and 𝑝E0EFC+#G(

H  as 3.3 mm and 342.6 m based on exploratory analysis. These 420 

two parameters represent the range of the exponential functions in equation 12 for 421 

which an approximate linear relationship holds between 𝑆𝑀< and the transformed 422 

covariates in Figure 5 (b). Note that the covariates are resampled only for exploratory 423 

analysis and no resampling of (SM and covariate) data is required for implementing the 424 

actual algorithm in Section 3. Since we use an equidistant grid to approximate 425 

multiscale SM data, the grid points are assigned values according to the covariate pixels 426 

in which they lie. Though this results in grid points lying in a covariate pixel getting the 427 

same values, this allows us to work with covariate data at different resolutions and 428 

avoid errors introduced due to resampling of covariate data. 429 

 430 

The covariance between any two points (𝑥%, 𝑦%, 𝑡%) and (𝑥", 𝑦", 𝑡"), where 𝑥, 𝑦, 𝑡 431 

represent the latitude, longitude and time respectively, will also vary based on the 432 

underlying covariate heterogeneity and therefore the assumption of a stationary  433 
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 434 
  435 

Figure 5 Exploratory analysis of soil moisture with physical covariates. (a) The relationship of soil moisture with 
the physical covariates is non-linear on the original scale. (b) Appropriate covariate transformation results in an 

approximate linear relationship of SM (on the logit scale) with the physical covariates. The values of 𝑝:;/<
=  and 

𝑝>?>@;-/A<
= are fixed as 3.3 mm and 342.6 m in the plots. 
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covariance function is too simplistic. Thus, for the covariance function 𝐶 (equation 1), 436 

we use a non-stationary covariance function (Kathuria et al., 2019a; Reich et al., 2011) 437 

such that:  438 

𝐶@𝑆𝑀<(𝑥%, 𝑦%, 𝑡%), 𝑆𝑀<(𝑥", 𝑦", 𝑡")A = 𝐶(𝑠%, 𝑠")  439 

                                                         = ∑
$7%

>
𝑤$(𝑋IGF(𝑠%))𝑤$(𝑋IGF(𝑠"))𝐶$(|𝑠% − 𝑠"|).                  (13) 440 

The covariance function in equation 13 is a weighted sum of 𝑀 isotropic covariance 441 

functions {𝐶$; 𝑗 = 1,2, … . . ,𝑀} where the weights {𝑤$; 𝑗 = 1,2, … . . ,𝑀} are a function of the 442 

underlying physical covariates 𝑋IGF(𝑠) affecting the covariance. The weighting 443 

functions 𝑤$s are modeled using a multinomial logistic function of the underlying 444 

covariates: 𝑤$(𝑠) =
EJD(LB97(M)CO")

∑&D'
E EJD(LB97(M)CO&)

. The details of the covariance function can be found 445 

in Reich et al. (2011) and Kathuria et al. (2019a). For our analysis, we choose exponential 446 

covariance functions (Matern with smoothness = 0.5) for individual 𝐶$s (equation 13)  447 

with different range parameters for space (𝑟JQ
$ ) and time (𝑟+

$) (e.g., Guinness, 2018):  448 

  449 

 𝐶$(𝑠%, 𝑠") = 𝜎$"𝑒𝑥𝑝(−�
||(J',Q')5(J(,Q()||(

(BFG
" )(

+ |+'5+(|(

(B8
")(

).                                                                (14) 450 

We chose the exponential covariance functions for individual 𝐶$s as changing the 451 

smoothness parameter for Matern resulted in insignificant change in the estimated 452 

maxmimum likelihood, and exponential functions are computationally faster to 453 

evaluate than Matern due to the added cost of evaluating the Bessel functions for the 454 

Matern function. We fix 𝑀 = 3 to keep the number of parameters to be estimated 455 

relatively low.  We include LAI, three-day mean antecedent rain, clay and elevation in 456 
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𝑋IGF. As mentioned in Section 3, both the mean and covariance functions are defined at 457 

point scale with computations at areal supports done as outlined in Section 3.1. In this 458 

work, since point data are sparse, the parameter estimates of the mean and covariance 459 

functions are expected to be mainly driven by SMAP and SMOS data. Note that we do 460 

not include latitude, longitude or time as covariates in either the mean or covariance 461 

function to make the fusion scheme more general and transferable.  462 

 463 

4.2.2 Parameter estimation and inference 464 

We assume a numerical grid 𝒢 (Section 3.1) spaced approximately 0.09 degrees apart 465 

across the CONUS for each of the fifteen days resulting in close to 100,000 grid points 466 

per day (𝑛𝒢  ≈ 15	 × 100,000 = 	1,500,000). The total number of observations 𝑛 from all 467 

platforms (SMAP, SMOS, and USCRN/SCAN) for fifteen days equal 100,386. Parameter 468 

estimation and subsequent predictions by computing exact likelihood is 469 

computationally intractable for such a big dataset and thus requires an approximation. 470 

We use the approximation detailed in Section 3 using the Separate-Maxmin orderings. 471 

Since SMAP and SMOS observe SM at an interval of 3-7 days, we compute the Separate-472 

Maxmin ordering only considering the spatial coordinates (latitude and longitude) of 473 

the data so that the temporal information of SM is also adequately represented in the 474 

conditioning vector 𝒛𝒎! in equation 11. We fix the number of neighbors as 𝑚 = 60; the 475 

choice of 𝑚 was taken to balance the predictive accuracy and computational speed. We 476 

carry out parameter estimation using a global optimization algorithm called 477 

Generalized Simulated Annealing (Xiang et al., 2013), a generalized and improved form 478 

of simulated annealing, to find the parameter estimates that maximize the likelihood.   479 

 480 
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On the logit scale, the estimated mean parameters (equation 12) are 𝛽 = {𝛽A, 𝛽%, 𝛽", 𝛽1} = 481 

{-1.71, 0.08, -0.35, 0.17} thus showing a good correlation of mean SM with the controls 482 

especially antecedent rainfall. The additive and multiplicative bias for SMOS are  𝛿 =483 

	−0.003 and 𝜅 = 0.15  respectively, while the measurement error variance for SMAP 484 

and SMOS are 𝜏=>'?" = 0.026 and 𝜏=>@=" = 0.023. To quantify the effect of covariates on 485 

the spatio-temporal covariance of SM, we first transform the covariance to the original 486 

scale. For a specified covariance between two points (from the covariance function in 487 

equation 13) on the logit scale, we use the well-known Cholesky-Decomposition 488 

method to simulate (50,000) pairs of values for these two points (Gong et al., 2013). We 489 

then back-transform these values to the original scale and use the empirical covariance 490 

of the pairs as an approximation of the covariance at the original scale. 491 

 492 

For the non-stationary covariance function, since the covariance between any two 493 

points depends on the lag-distance in space and time as well as the covariates(𝑋IGF), the 494 

effect of an individual covariate on the covariance is nontrivial.  We thus quantify the 495 

effect of a covariate by comparing the covariance for different lags (in space and time) 496 

when the control is at the mean value (of the study domain) to when the control is at 497 

extreme value (5+, and 95+, percentile) while keeping the other controls at their mean 498 

values (Kathuria et al., 2019a; Reich et al., 2011). The resulting correlation plots are 499 

given in Figure 6. We find that all four covariates affect the correlation in space with 500 

higher values of rainfall, LAI, percent clay and lower values of elevation associated with 501 

increase in spatial correlation. For the temporal correlation, we found only a slight effect 502 

of the covariates on the correlation. Note, however, inclusion of other physical  503 

  504 
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  505 

Figure 6. Spatial (top) and temporal (bottom) correlation plots when one of the physical covariates (Leaf Area Index, 

rainfall, clay and elevation) is changed from the mean value (of the study domain) to high (95-.percentile) and low 

values (5-.percentile). For each of the plots, the blue curve is the same representing the spatial and temporal 
correlation when all the covariates are at their mean values (LAI =1.3, Rain = 7.1 mm, Clay =17.4%and Elevation 
= 586 m) The red (green) curve refers to the correlation when one covariate is changed to a high (low) value keeping 
the other three covariates at the mean value. 
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covariates as well as analysis of a longer time-period might show the effect of certain 506 

covariates on the temporal SM correlation. 507 

 508 

Of course, individual plots in Figure 6 represent only three combinations of the physical 509 

covariates. In reality, all the covariates exhibit considerable heterogeneity across 510 

CONUS (Figure S6, SI) and act together to give vastly different correlation patterns. To 511 

illustrate this effect, we choose 5 points (A-E, Figure 7) across CONUS under 512 

contrasting covariate heterogeneity and look at the spatial correlation of these points 513 

with surrounding points (~ 3 km apart) within an approximately 60	𝑘𝑚	 × 	60	𝑘𝑚 514 

region for July 06, 2017. We see that the correlation pattern differs significantly based on 515 

the how the quartet of rainfall, LAI, clay and elevation vary in the surrounding region 516 

of the respective points. 517 

 518 

4.2.3 Predictions at different Scales 519 

Once the parameters have been estimated, we compute multiscale SM predictions 520 

(Appendix A1.2) across CONUS. As a final step, we back-transform the predictions i.e., 521 

𝑆𝑀 = 𝑒𝑥𝑝(𝑆𝑀<)/(1 + 𝑒𝑥𝑝(𝑆𝑀<)) to the original scale. We compare our SM predictions at 522 

four support scales: point (USCRN and SCAN), 3 km (SMAP/Sentinel-1), 25 km 523 

(SMOS) and 36 km (SMAP). We compute five-day SM forecasts from July 21-25, 2017 on 524 

all four support scales.  525 

 526 

4.2.3.1 USCRN and SCAN Scale  527 

As mentioned before, we randomly held out 27 USCRN and SCAN stations across 528 

CONUS (Figure 8) as test data. Figure 9 depicts the SM for the “observed”  529 
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 530 

Figure 7. Spatial Correlation pattern of Soil moisture for five points (A-E) across Contiguous US for July 06, 
2017. The correlation of the five points with their surrounding region varies considerably due to the covariate 
heterogeneity of the regions. 
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 531 

 532 
  533 

Figure 8. Location of the validation USCRN/SCAN stations across Contiguous US. We randomly hold out the 
27 USCRN/SCAN stations to compare soil moisture predictions at the point scale across Contiguous US. The 
locations span different hydroclimates and surface heterogeneities. 
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 534 
  535 

Figure 9. Comparison of soil moisture predictions with the observed SCAN/USRN data for the “observed” (July 06-
20, 2017) and “forecast” period (July 21-25, 2017). The covariate values of LAI (averaged during the forecast 
period), percent clay and elevation (m) are denoted by green, brown and purple colors respectively. The three-day 
mean antecedent rainfall is also given in blue during the forecast period to demonstrate its effect on SM forecasts. 
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(July 06-20, 2017) and “forecast” (July 21-25, 2017) period. For the observed period, the 536 

correlation (R) and root mean squared error (RMSE) are 0.67 and 0.087 v/v respectively. 537 

The slightly high value of the overall RMSE can be attributed to some point station data 538 

where there is high bias between the predictions and observation (such as Site 1, 2, 7 539 

and 10) and some stations where the observed SM does not change much during the 20-540 

day period (such as Site 14) possibly resulting from sensor malfunction. Though the SM 541 

predictions during the observed period will be mainly influenced by SMAP and SMOS, 542 

the predictions serve to fill in important gaps left by these platforms which observe SM 543 

at a time interval of 3-7 days. 544 

 545 

For the forecast period, R and RMSE of the sites are 0.57 and 0.086 v/v respectively. The 546 

forecast period is especially important because it allows us to forecast five-day SM at 547 

the point scale in the absence of any observed SM data. We plot the three-day mean 548 

antecedent rainfall (from 4km PRISM data) during the forecast period to demonstrate 549 

the wetting of SM in response to rainfall. The degree of wetting of SM in our predictions 550 

varies not only with rainfall amount but also with the underlying land-surface 551 

covariates. Overall, the forecasts for July 21-25, 2017 at point scale are satisfactory given 552 

that we utilize only SMAP, SMOS and 116 point station (training) data across CONUS 553 

during July 06-20, 2017. Better bias characterization driven by underlying surface 554 

heterogeneity for both SMOS and SMAP can help to reduce the bias occurring at some 555 

sites. 556 

 557 

4.2.3.2 SMAP/Sentinel-1 Scale  558 

The SMAP/Sentinel-1 L2 SM (Das et al., 2018) product uses concurrent 36 km SMAP 𝑇!  559 
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  560 

Figure 10. Comparison of soil moisture predictions and SMAP soil moisture with the observed SMAP/Sentinel-
1 soil moisture at 3 km scale.  For the majority of the days, the predicted soil moisture using the fusion approach 
outperforms the original base SMAP product (even for the forecast period). The red line denotes the 1:1 line. 
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measurements and 3 km backscatter measurements from Sentinel-1 radars to give 3 km 561 

SM in the overlapping regions of the two platforms. The Sentinel-1 radars have a much 562 

narrower swath (∼250 km) however, compared with the relatively wide swath (1,000 563 

km) of SMAP which significantly reduces the spatial coverage of the SMAP/Sentinel-1 564 

product. The average temporal revisit time of Sentinel-1 radars is 6 days and due to 565 

different revisit times of SMAP and Sentinel-1 radars, the temporal resolution of the 566 

SMAP/Sentinel-1 SM product varies from 6-12 days. Therefore, for any given day, the 567 

coverage of the SMAP/Sentinel-1 product across CONUS is quite limited. 568 

 569 

We compute SM predictions at 3 km (assuming the equidistant grid points 𝒢 to be 1 km 570 

apart) for the observed SMAP/Sentinel-1 pixels during the 20-day period and compare 571 

with the observed SMAP/Sentinel-1 product (Figure 10). We also compare the 572 

SMAP/Sentinel-1 observations with the SMAP product from which it is derived. We 573 

see that for the majority of the days the SM predictions agree well with the 574 

SMAP/Sentinel-1 product outperforming the original SMAP product even for the 575 

forecast period. This shows that fusing SMAP SM with SMOS (and USCRN-SCAN data) 576 

and accounting for the effects of physical covariates on SM distribution results in better 577 

predictive accuracy at 3 km support scale than just using the SMAP SM.  Since the 578 

spatio-temporal coverage of SMAP/Sentinel-1 is extremely limited, predictions using 579 

the data fusion scheme are useful as they help predict SM across the entire CONUS at a 580 

daily scale. 581 

 582 

4.2.3.3 SMAP and SMOS Scale 583 
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Since we use all of SMAP and SMOS data for the “observed” period (July 06-20, 2017) 584 

for estimating our parameters, we compare SM predictions with observed SMOS and 585 

SMAP data for the forecast period (Figure 11 (a)). We make predictions assuming an 586 

equidistant numerical grid spaced approximately 9 km apart and remove pixels which 587 

have less than 7 grid points lying inside the pixels. We find that the predictions 588 

satisfactorily agree with the observed SM with RMSE ranging from 0.039 v/v to 0.055 589 

v/v for SMAP, and 0.049 v/v to 0.067 v/v for SMOS while R ranging from 0.84 to 0.90 590 

for SMAP, and 0.76 to 0.87 for SMOS. As an illustration, the mean SM predictions as 591 

well as the prediction variance for July 21, 2017 are given in Figure 11 (b). It should be 592 

noted that since the multiscale predictions are derived from both SMOS and SMAP, 593 

their accuracy is affected by how well the two platforms agree with each other. To get a 594 

rough estimate of this, we bilinearly interpolated the SMOS pixels which overlap with 595 

the SMAP pixels for July 21-25, 2017 and found an RMSE of 0.051 v/v to 0.076 v/v 596 

while R varied from 0.74 to 0.86.  597 

 598 

The proposed data fusion scheme thus shows good potential for improving SM 599 

predictions across scales. Future research efforts should focus on applying the 600 

algorithm for bigger time periods and across different seasons using high performance 601 

computing systems. Improved formulations of the mean, bias and covariance functions 602 

as well as the inclusion of other physical covariates should be explored. The accuracy of 603 

the data fusion scheme at multiple scales can be improved by fusing SM estimates from 604 

other platforms such as the Cyclone Global Navigation Satellite System (CYGNSS) and 605 

the highly anticipated NASA–ISRO Synthetic Aperture Radar (NISAR) mission. The 606 

data fusion allows seamless integration of any number of platforms at varied scales; 607 

appropriate parametrization of the bias and error for individual platforms, however, is  608 
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  609 
Figure 11. (a) Comparison of soil moisture predictions and SMAP and SMOS observed soil moisture for July 
21-25, 2017. The red line denotes the 1:1 line. (b) Soil moisture predictions across Contiguous US along with the 
prediction variance. Predictions are unavailable for certain regions due to absence of covariate data. 
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necessary. As mentioned earlier, the proposed algorithm is general and can be 610 

potentially used to fuse other spatio-temporally correlated environmental variables 611 

which have measurements available from multiple platforms. 612 

5 Conclusions 613 

In this work, we propose a geostatistical framework called Vecchia-multiscale for fusing 614 

multiscale big data. Using simulated data, we found that certain orderings work better 615 

in approximating the exact likelihood at a fraction of the computational cost. We then 616 

apply Vecchia-multiscale to fuse real SM datasets and compute multiscale SM predictions 617 

and forecast five-day SM across scales. 618 

 619 

As the volume of environmental data are expected to dramatically increase in the 620 

future, further research into finding better orderings becomes critical. We chose our 621 

orderings based only on space and time; future work will focus on proposing 622 

physically-based orderings where, in addition to the mean and covariance, the ordering 623 

will also be covariate-driven. We applied Vecchia-multiscale to simulated data and real 624 

SM observations; further application to diverse (spatio-temporally correlated) 625 

environmental variables will vet the widespread utility of the algorithm. An advantage 626 

of the proposed approach is that it is not a “black-box” and its components can be 627 

readily modified based on the underlying physical variable and expert-knowledge. 628 

Note that this algorithm can only be applied under a Gaussian Process assumption. In 629 

cases where such an assumption is untenable, recent research indicates that the 630 

approximation can be further extended using Generalized Gaussian Processes (Zilber & 631 

Katzfuss, 2019). 632 

 633 
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We live in an exciting era where a deluge of environmental data presents an 634 

unprecedented opportunity for uncovering hidden patterns existing in nature and 635 

ultimately achieving the elusive mass and energy balance in Earth-System processes. 636 

Data-fusion algorithms harnessing the combined utility of RS and insitu data are critical 637 

to advance our understanding of global environmental processes at multiple scales and 638 

make data-driven predictions. Moreover, since the breakthrough in numerical modeling 639 

occurred when satellite data were assimilated in physical models, fusing multi-platform 640 

satellite data can enhance the utility of existing physical models and help take the next 641 

leap forward in understanding and predicting environmental processes. 642 
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Appendix 656 

A1. Parameter estimation and prediction for Vecchia-multiscale 657 

A1.1 Parameter estimation 658 

𝑓(𝑧(𝒜)) = 𝑓(𝑧(𝐴%)|𝜃) × ∏
#7"

(
𝑓(𝑧(𝐴#)|𝒛(𝑨𝟏:𝒊5𝟏), 𝜃)                                                                (A1) 659 

where 𝑨𝟏:𝒊5𝟏 = {𝐴%, 𝐴", … . 𝐴#5%}. If 𝑧(𝒜) ∼ 𝑁(𝜇4, 𝛴4), then it can be shown that the (𝑖, 𝑗)+, 660 

element of 𝛬—the inverse of Cholesky factor of 𝛴 (𝛬2𝛬 = 𝛴5%) — can be written as  661 

 662 

 𝜆#$ = − R!"
SH!|H':!K'
(                                                                                                                         (A2) 663 

 664 

where 𝑤#$  equals 𝛴%:#5%5% 𝐶(𝑨𝟏:𝒊5𝟏, 𝐴#) for 𝑗 = 1, . . . , 𝑖 − 1, equals −1 for 𝑗 = 𝑖, and equals  0 665 

for 𝑗 > 𝑖. Here  𝛴%:#5% = 𝐶(𝑨𝟏:𝒊5𝟏, 𝑨𝟏:𝒊5𝟏) + 𝜏"𝐼#5% and 𝜎4!|4':!K'
" = 𝐶(𝐴# , 𝐴#) −666 

𝐶(𝐴# , 𝑨𝟏:𝒊5𝟏)𝛴%:#5%5% 𝐶(𝑨𝟏:𝒊5𝟏, 𝐴#). Here 𝐼#5% represents the identity matrix of size 𝑖 − 1. We 667 

write 𝐶(𝑨𝟏:𝒊5𝟏, 𝐴#)$ ≈ (ℎ'"
3 )2𝐶 u𝒢'" , 𝒢'!v ℎ'!

3   and 𝐶(𝑨𝟏:𝒊5𝟏, 𝑨𝟏:𝒊5𝟏)$* ≈668 

	(ℎ'"
3 )2𝐶 u𝒢'" , 𝒢'%v ℎ'%

3 	for 𝑗, 𝑘 = 1, . . . , 𝑖 − 1 where 𝒢'& denotes the subset of the total grid 669 

points 𝒢 lying inside the pixel 𝐴0 and ℎ'&
3  is given by equation 7. 670 

 671 

We replace  𝑨𝟏:𝒊5𝟏 with its subset 𝑨𝒎𝒊 of maximum length 𝑚 as defined in Section 3.2. 672 

This approximation leads to a sparse 𝛬h because now 𝑤#$ = 0 for 𝑗 = 1, . . . , 𝑖 − 1 if 𝑗 ∉ 𝑚#, 673 

leading to fast computation and low storage for 𝑚 ≪ 𝑛.  674 
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 675 

If 𝜇(𝐴#) = 𝑋(𝐴#)2 	𝛽 where 𝑋(𝐴#) = {𝑋%(𝐴#), . . . , 𝑋D(𝐴#)} is a vector of covariates of length 676 

𝑝 for pixel 𝐴#. Then 𝜇'! = 𝑋'!𝛽  in equation 9 where 𝑋'! is the matrix of covariates 677 

associated with the points associated with 𝑦'!  in equation 7. Then 𝜇4 (equation 8) can be 678 

written as 𝑋�𝛽� where the 𝑖+, row of 𝑋� is given as {ℎ'!
3 𝑋'!

% , . . . , ℎ'!
3 𝑋'!

D , 𝛿(𝐴#)}. The parameter 679 

vector 𝛽� can be profiled out by using the profile-likelihood: 680 

−2𝑙𝑜𝑔(𝑓(𝑧(𝒜)|𝜃) = −2𝑙𝑜𝑔(𝑑𝑒𝑡(𝛬h)) + (𝛬h(𝑧 − 𝑋�𝛽�))2𝛬h(𝑧 − 𝑋�𝛽�) + 𝑛𝑙𝑜𝑔(2𝜋)                  (A3) 681 

 682 

The maximum likelihood estimate for 𝛽� is given as (Guinness, 2018; Stein et al., 2004): 683 

 𝛽�>TU = [(𝛬h𝑋�)2(𝛬h𝑋�)]5%(𝛬h𝑋�)2(𝛬h𝑧)                                                                                        (A4) 684 

 685 

A1.2 Prediction Algorithm 686 

We follow the prediction algorithm from Guinness (2018). Let 𝒜DBEV  denote a vector of 687 

length 𝑛DBEV comprising pixels where we want to want to make predictions 𝑦DBEV. Form 688 

the vector 𝒜IGWD = (𝒜,𝒜DBEV) of length 𝑛 + 𝑛DBEV = 𝑛IGWD. The corresponding 689 

observation-prediction vector is 𝑦IGWD = (𝑧, 𝑦DBEV). Let the covariance matrix of 𝑦IGWD 690 

be 𝛴IGWD. Writing 𝛴IGWD(ΛIGWD) as a 2 × 2 block matrix {𝛴#$
IGWD}#,$7%," ({Λ#$

IGWD}#,$7%,") and 691 

using standard rules of multivariate normality: 692 

𝐸[𝑦DBEV|𝑧] = 𝑋DBEV𝛽 + 𝛴"%
IGWD(𝛴%%

IGWD)5%(𝑧 − 𝑋�𝛽�) 693 

                   = −(𝛬""
IGWD)5%𝛬"%

IGWD𝑧 ≈ −(𝛬h""
IGWD)5%𝛬h"%

IGWD(𝑧 − 𝑋�𝛽�),                                                     (A5) 694 

where 𝛬hIGWD  is the sparse approximation of 𝛬IGWD calculated following A1.1.  695 
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 696 

To find the prediction variance 𝑉𝑎𝑟(𝑦DBEV|𝑧), we first simulate uncorrelated standard 697 

normals of length 𝑛IGWD; 𝑤∗ ∼ 𝒩(0, 𝐼(B9LM) where 𝐼(B9LM is the identity matrix of size 698 

𝑛IGWD.  We then simulate 𝑦IGWD∗ = {𝑧∗, 𝑦DBEV∗} = (𝛬hIGWD		)5%𝑤 which is computationally 699 

fast since 𝛬hIGWD   is a sparse triangular matrix. Then, −𝛬h""5%𝛬h"%(𝑧 − 𝑧∗) + 𝑦DBEV∗ 700 

approximately has a covariance matrix 𝛴""
IGWD − 𝛴"%

IGWD(𝛴%%
IGWD)5%𝛴%"

IGWD, which is equal to 701 

𝑉𝑎𝑟(𝑦DBEV|𝑧) based on the well-known properties of multivariate normality. We 702 

simulate −𝛬h""5%𝛬h"%(𝑧 − 𝑧∗) + 𝑦DBEV∗ five thousand times to approximate the prediction 703 

variance. 704 

References 705 

Akbar, R., Short Gianotti, D. J., Salvucci, G. D., & Entekhabi, D. (2019). Mapped Hydroclimatology of 706 
Evapotranspiration and Drainage Runoff Using SMAP Brightness Temperature Observations and 707 
Precipitation Information. Water Resources Research, 55(4), 3391–3413. 708 
https://doi.org/10.1029/2018WR024459 709 

Barré, H. M. J. P., Duesmann, B., & Kerr, Y. H. (2008). SMOS: The mission and the system. IEEE 710 
Transactions on Geoscience and Remote Sensing, 46(3), 587–593. 711 
https://doi.org/10.1109/TGRS.2008.916264 712 

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 713 
525(7567), 47–55. https://doi.org/10.1038/nature14956 714 

Camps-valls, G., Tuia, D., & Bruzzone, L. (2013). Advances in hyperspectral image classification. IEEE 715 
Signal Processing Magazine, January, 45–54. 716 

Cecinati, F., Rico-Ramirez, M. A., Heuvelink, G. B. M., & Han, D. (2017). Representing radar rainfall 717 
uncertainty with ensembles based on a time-variant geostatistical error modelling approach. Journal 718 
of Hydrology, 548, 391–405. https://doi.org/10.1016/j.jhydrol.2017.02.053 719 

Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B., Cosh, M. H., Dunbar, R. S., Dang, 720 
L., Pashaian, L., Asanuma, J., Aida, K., Berg, A., Rowlandson, T., Bosch, D., Caldwell, T., Caylor, K., 721 
Goodrich, D., al Jassar, H., … Yueh, S. (2017). Validation of SMAP surface soil moisture products 722 
with core validation sites. Remote Sensing of Environment, 191, 215–231. 723 
https://doi.org/10.1016/j.rse.2017.01.021 724 

Cosh, M. H., & Brutsaert, W. (1999). Aspects of soil moisture variability in the Washita ’92 study region. 725 
Journal of Geophysical Research: Atmospheres, 104(D16), 19751–19757. 726 
https://doi.org/https://doi.org/10.1029/1999JD900110 727 

Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239–252. 728 
https://doi.org/10.1007/BF00889887 729 

Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera, R., de Rosnay, P., Ryu, D., & 730 
Walker, J. P. (2012). Upscaling sparse ground-based soil moisture observations for the validation of 731 
coarse-resolution satellite soil moisture products. Reviews of Geophysics, 50(2). 732 
https://doi.org/https://doi.org/10.1029/2011RG000372 733 

Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A statistical-topographic model for mapping 734 
climatological precipitation over mountainous terrain. Journal of Applied Meteorology. 735 



Manuscript submitted to Remote Sensing of Environment 

 43 

https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2 736 
Das, N. N., Entekhabi, D., Dunbar, R. S., Kim, S., Yueh, S., Colliander, A., O’Neill, P. E., & Jackson, T. 737 

(2018). SMAP/Sentinel-1 L2 radiometer/radar 30-second scene 3 km EASE-grid soil moisture, 738 
version 2. NASA National Snow and Ice Data Center DAAC. 739 

Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). Hierarchical Nearest-Neighbor Gaussian 740 
Process Models for Large Geostatistical Datasets. Journal of the American Statistical Association. 741 
https://doi.org/10.1080/01621459.2015.1044091 742 

Diamond, H. J., Karl, T. R., Palecki, M. A., Baker, C. B., Bell, J. E., Leeper, R. D., Easterling, D. R., 743 
Lawrimore, J. H., Meyers, T. P., Helfert, M. R., Goodge, G., & Thorne, P. W. (2013). U.S. climate 744 
reference network after one decade of operations status and assessment. Bulletin of the American 745 
Meteorological Society, 94(4), 485–498. https://doi.org/10.1175/BAMS-D-12-00170.1 746 

Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., 747 
Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., 748 
McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., … Zyl, J. Van. (2010). The Soil 749 
Moisture Active Passive (SMAP) Mission. Proceedings of the IEEE, 98(5), 704–716. 750 
https://doi.org/10.1109/JPROC.2010.2043918 751 

Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S., & Namkhai, A. (2000). Temporal and 752 
spatial scales of observed soil moisture variations in the extratropics. Journal of Geophysical Research: 753 
Atmospheres, 105(D9), 11865–11877. https://doi.org/https://doi.org/10.1029/2000JD900051 754 

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte 755 
Carlo methods to forecast error statistics. Journal of Geophysical Research, 99(C5). 756 
https://doi.org/10.1029/94jc00572 757 

Fan, X., Liu, Y., Gan, G., & Wu, G. (2020). SMAP underestimates soil moisture in vegetation-disturbed 758 
areas primarily as a result of biased surface temperature data. Remote Sensing of Environment, 759 
247(November 2019), 111914. https://doi.org/10.1016/j.rse.2020.111914 760 

Fang, K., Shen, C., Kifer, D., & Yang, X. (2017). Prolongation of SMAP to Spatiotemporally Seamless 761 
Coverage of Continental U.S. Using a Deep Learning Neural Network. Geophysical Research Letters, 762 
44(21), 11,030-11,039. https://doi.org/10.1002/2017GL075619 763 

Gaur, N., & Mohanty, B. P. (2013). Evolution of physical controls for soil moisture in humid and 764 
subhumid watersheds. Water Resources Research. https://doi.org/10.1002/wrcr.20069 765 

Gaur, N., & Mohanty, B. P. (2016). Land-surface controls on near-surface soil moisture dynamics: 766 
Traversing remote sensing footprints. Water Resources Research. 767 
https://doi.org/10.1002/2015WR018095 768 

Gelfand, A. E. (2001). On the change of support problem for spatio-temporal data. Biostatistics, 2(1), 31–45. 769 
https://doi.org/10.1093/biostatistics/2.1.31 770 

Gelfand, Alan E., Diggle, P. J., Fuentes, M., & Guttorp, P. (2010). Handbook of Spatial Statistics. CRC Press. 771 
Ghil, M., & Malanotte-Rizzoli, P. (1991). Data Assimilation in Meteorology and Oceanography. Advances 772 

in Geophysics. https://doi.org/10.1016/S0065-2687(08)60442-2 773 
Girotto, M., De Lannoy, G. J. M., Reichle, R. H., Rodell, M., Draper, C., Bhanja, S. N., & Mukherjee, A. 774 

(2017). Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage 775 
depletion in India. Geophysical Research Letters, 44(9), 4107–4115. 776 
https://doi.org/10.1002/2017GL072994 777 

Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., & Nriagu, J. (2005). Geostatistical 778 
modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources 779 
Research, 41(7), 1–19. https://doi.org/10.1029/2004WR003705 780 

Guinness, J. (2018). Permutation and Grouping Methods for Sharpening Gaussian Process 781 
Approximations. Technometrics, 60(4), 415–429. https://doi.org/10.1080/00401706.2018.1437476 782 

Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, 783 
W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., 784 
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). 785 
SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. 786 
https://doi.org/10.1371/journal.pone.0169748 787 

Hu, G., Jia, L., & Menenti, M. (2015). Comparison of MOD16 and LSA-SAF MSG evapotranspiration 788 
products over Europe for 2011. Remote Sensing of Environment, 156, 510–526. 789 
https://doi.org/10.1016/j.rse.2014.10.017 790 

Joshi, C., & Mohanty, B. P. (2010). Physical controls of near-surface soil moisture across varying spatial 791 
scales in an agricultural landscape during SMEX02. Water Resources Research, 46(12), 1–21. 792 
https://doi.org/10.1029/2010WR009152 793 



Manuscript submitted to Remote Sensing of Environment 

 44 

Joshi, C., Mohanty, B. P., Jacobs, J. M., & Ines, A. V. M. (2011). Spatiotemporal analyses of soil moisture 794 
from point to footprint scale in two different hydroclimatic regions. Water Resources Research, 47(1). 795 
https://doi.org/https://doi.org/10.1029/2009WR009002 796 

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., 797 
Chen, J., De Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., 798 
Kimball, J., Law, B. E., Montagnani, L., … Zhang, K. (2010). Recent decline in the global land 799 
evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954. 800 
https://doi.org/10.1038/nature09396 801 

Kathuria, D., Mohanty, B. P., & Katzfuss, M. (2019a). A Nonstationary Geostatistical Framework for Soil 802 
Moisture Prediction in the Presence of Surface Heterogeneity. Water Resources Research, 55(1). 803 
https://doi.org/10.1029/2018WR023505 804 

Kathuria, D., Mohanty, B. P., & Katzfuss, M. (2019b). Multiscale Data Fusion for Surface Soil Moisture 805 
Estimation: A Spatial Hierarchical Approach. Water Resources Research, 55(12). 806 
https://doi.org/10.1029/2018WR024581 807 

Katzfuss, M., & Guinness, J. (2017). A general framework for Vecchia approximations of Gaussian 808 
processes. In arXiv. https://doi.org/10.1214/19-sts755 809 

Katzfuss, M., Guinness, J., Gong, W., & Zilber, D. (2020). Vecchia Approximations of Gaussian-Process 810 
Predictions. Journal of Agricultural, Biological, and Environmental Statistics. 811 
https://doi.org/10.1007/s13253-020-00401-7 812 

Kaufman, C. G., Schervish, M. J., & Nychka, D. W. (2008). Covariance tapering for likelihood-based 813 
estimation in large spatial data sets. Journal of the American Statistical Association. 814 
https://doi.org/10.1198/016214508000000959 815 

Klees, R., Zapreeva, E. A., Winsemius, H. C., & Savenije, H. H. G. (2007). The bias in GRACE estimates of 816 
continental water storage variations. Hydrology and Earth System Sciences, 11(4), 1227–1241. 817 
https://doi.org/10.5194/hess-11-1227-2007 818 

Koster, Randal D., Brocca, L., Crow, W. T., Burgin, M. S., & De Lannoy, G. J. M. (2016). Precipitation 819 
estimation using L-band and C-band soil moisture retrievals. Water Resources Research. 820 
https://doi.org/10.1002/2016WR019024 821 

Koster, Randal D., Crow, W. T., Reichle, R. H., & Mahanama, S. P. (2018). Estimating Basin-Scale Water 822 
Budgets With SMAP Soil Moisture Data. Water Resources Research, 54(7), 4228–4244. 823 
https://doi.org/10.1029/2018WR022669 824 

Koster, Randall D., Schubert, S. D., & Suarez, M. J. (2009). Analyzing the concurrence of meteorological 825 
droughts and warm periods, with implications for the determination of evaporative regime. Journal 826 
of Climate. https://doi.org/10.1175/2008JCLI2718.1 827 

Krige, D. G. (1952). A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand. 828 
Journal of the Chemical, Metallurgical and Mining Society of South Africa. 829 
https://doi.org/10.2307/3006914 830 

Lanfredi, M., Coppola, R., D’Emilio, M., Imbrenda, V., Macchiato, M., & Simoniello, T. (2015). A 831 
geostatistics-assisted approach to the deterministic approximation of climate data. Environmental 832 
Modelling and Software, 66, 69–77. https://doi.org/10.1016/j.envsoft.2014.12.009 833 

Lark, R. M. (2012). Towards soil geostatistics. Spatial Statistics, 1, 92–99. 834 
https://doi.org/10.1016/j.spasta.2012.02.001 835 

Li, S., Yu, Y., Sun, D., Tarpley, D., Zhan, X., & Chiu, L. (2014). Evaluation of 10 year AQUA/MODIS land 836 
surface temperature with SURFRAD observations. International Journal of Remote Sensing, 35(3), 830–837 
856. https://doi.org/10.1080/01431161.2013.873149 838 

Lievens, H., Reichle, R. H., Liu, Q., De Lannoy, G. J. M., Dunbar, R. S., Kim, S. B., Das, N. N., Cosh, M., 839 
Walker, J. P., & Wagner, W. (2017). Joint Sentinel-1 and SMAP data assimilation to improve soil 840 
moisture estimates. Geophysical Research Letters. https://doi.org/10.1002/2017GL073904 841 

Mao, H., Kathuria, D., Duffield, N., & Mohanty, B. P. (2019). Gap Filling of High-Resolution Soil Moisture 842 
for SMAP/Sentinel-1: A Two-Layer Machine Learning-Based Framework. Water Resources Research. 843 
https://doi.org/10.1029/2019WR024902 844 

Mohanty, B. P., Ankeny, M. D., Horton, R., & Kanwar, R. S. (1994). Spatial analysis of hydraulic 845 
conductivity measured using disc infiltrometers. Water Resources Research, 30(9), 2489–2498. 846 
https://doi.org/https://doi.org/10.1029/94WR01052 847 

Mohanty, B. P., Famiglietti, J. S., & Skaggs, T. H. (2000). Evolution of soil moisture spatial structure in a 848 
mixed vegetation pixel during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. 849 
Water Resources Research, 36(12), 3675–3686. 850 
https://doi.org/https://doi.org/10.1029/2000WR900258 851 



Manuscript submitted to Remote Sensing of Environment 

 45 

Mohanty, B. P., & Kanwar, R. S. (1994). Spatial variability of residual nitrate-nitrogen under two tillage 852 
systems in central Iowa: A composite three-dimensional resistant and exploratory approach. Water 853 
Resources Research, 30(2), 237–251. https://doi.org/https://doi.org/10.1029/93WR02922 854 

Mohanty, B. P., Kanwar, R. S., & Horton, R. (1991). A Robust-Resistant Approach to Interpret Spatial 855 
Behavior of Saturated Hydraulic Conductivity of a Glacial Till Soil Under No-Tillage System. Water 856 
Resources Research, 27(11), 2979–2992. https://doi.org/https://doi.org/10.1029/91WR01720 857 

Myneni, R., Knyazikhin, Y., Park, T. (2015). MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day 858 
L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 859 

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., & Sain, S. (2015). A Multiresolution 860 
Gaussian Process Model for the Analysis of Large Spatial Datasets. Journal of Computational and 861 
Graphical Statistics. https://doi.org/10.1080/10618600.2014.914946 862 

O’Neill, P. E., Njoku, E. G., Jackson, T. J., Chan, S., & Bindlish, R. (2018). SMAP Algorithm Theoretical 863 
Basis Document: Level 2 & 3 Soil Moisture (Passive) Data Products. Revision D. 864 

Pablos, M., Vall-llossera, M., Piles, M., Camps, A., Gonzalez-Haro, C., Turiel, A., Herbert, C. J., Chaparro, 865 
D., & Portal, G. (2019). Influence of Quality Filtering Approaches in BEC SMOS L3 Soil Moisture 866 
Products. https://doi.org/10.1109/igarss.2019.8900273 867 

Reich, B. J., Eidsvik, J., Guindani, M., Nail, A. J., & Schmidt, A. M. (2011). A class of covariate-dependent 868 
spatiotemporal covariance functions for the analysis of daily ozone concentration. Annals of Applied 869 
Statistics. https://doi.org/10.1214/11-AOAS482 870 

Reichle, R. H., & Koster, R. D. (2004). Bias reduction in short records of satellite soil moisture. Geophysical 871 
Research Letters, 31(19), 2–5. https://doi.org/10.1029/2004GL020938 872 

Reichle, Rolf H., McLaughlin, D. B., & Entekhabi, D. (2002). Hydrologic data assimilation with the 873 
ensemble Kalman filter. Monthly Weather Review, 130(1), 103–114. https://doi.org/10.1175/1520-874 
0493(2002)130<0103:HDAWTE>2.0.CO;2 875 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep 876 
learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195–877 
204. https://doi.org/10.1038/s41586-019-0912-1 878 

Risser, M. D., & Calder, C. A. (2015). Regression-based covariance functions for nonstationary spatial 879 
modeling. Environmetrics. https://doi.org/10.1002/env.2336 880 

Ryu, D., & Famiglietti, J. S. (2006). Multi-scale spatial correlation and scaling behavior of surface soil 881 
moisture. Geophysical Research Letters, 33(8). 882 
https://doi.org/https://doi.org/10.1029/2006GL025831 883 

Schaefer, G. L., Cosh, M. H., & Jackson, T. J. (2007). The USDA Natural Resources Conservation Service 884 
Soil Climate Analysis Network (SCAN). Journal of Atmospheric and Oceanic Technology, 24(12), 2073–885 
2077. https://doi.org/10.1175/2007JTECHA930.1 886 

Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water 887 
Resources Scientists. Water Resources Research, 54(11), 8558–8593. 888 
https://doi.org/10.1029/2018WR022643 889 

Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2017). Deep learning for 890 
precipitation nowcasting: A benchmark and a new model. Advances in Neural Information Processing 891 
Systems. 892 

Soil Survey Staff. (2020). Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United 893 
States. United States Department of Agriculture, Natural Resources Conservation Service. 894 
https://gdg.sc.egov.usda.gov/ 895 

Stein, M. L., Chi, Z., & Welty, L. J. (2004). Approximating likelihoods for large spatial data sets. Journal of 896 
the Royal Statistical Society. Series B: Statistical Methodology. https://doi.org/10.1046/j.1369-897 
7412.2003.05512.x 898 

Sun, Y., & Stein, M. L. (2016). Statistically and Computationally Efficient Estimating Equations for Large 899 
Spatial Datasets. Journal of Computational and Graphical Statistics. 900 
https://doi.org/10.1080/10618600.2014.975230 901 

Teuling, A. J., & Troch, P. A. (2005). Improved understanding of soil moisture variability dynamics. 902 
Geophysical Research Letters, 32(5). https://doi.org/https://doi.org/10.1029/2004GL021935 903 

Vecchia, A. V. (1988). Estimation and Model Identification for Continuous Spatial Processes. Journal of the 904 
Royal Statistical Society: Series B (Methodological). https://doi.org/10.1111/j.2517-6161.1988.tb01729.x 905 

Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., & Verdin, J. P. (2013). A comprehensive evaluation of 906 
two MODIS evapotranspiration products over the conterminous United States: Using point and 907 
gridded FLUXNET and water balance ET. Remote Sensing of Environment, 139, 35–49. 908 
https://doi.org/10.1016/j.rse.2013.07.013 909 



Manuscript submitted to Remote Sensing of Environment 

 46 

Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, 910 
L., Herbst, M., Martinez, G., & Vanderborght, J. (2014). On the spatio-temporal dynamics of soil 911 
moisture at the field scale. Journal of Hydrology, 516, 76–96. 912 
https://doi.org/https://doi.org/10.1016/j.jhydrol.2013.11.061 913 

Wang, B., Zou, X., & Zhu, J. (2000). Data assimilation and its applications. Proceedings of the National 914 
Academy of Sciences of the United States of America, 97(21), 11143–11144. 915 
https://doi.org/10.1073/pnas.97.21.11143 916 

Westermann, S., Langer, M., & Boike, J. (2012). Systematic bias of average winter-time land surface 917 
temperatures inferred from MODIS at a site on Svalbard, Norway. Remote Sensing of Environment, 918 
118, 162–167. https://doi.org/10.1016/j.rse.2011.10.025 919 

Wikle, C. K., Zammit-Mangion, A., & Cressie, N. (2019). Spatio-Temporal Statistics with R. CRC Press. 920 
Xiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized simulated annealing for global 921 

optimization: The GenSA package. R Journal. https://doi.org/10.32614/rj-2013-002 922 
Zhong, Z., & Carr, T. R. (2019). Geostatistical 3D geological model construction to estimate the capacity of 923 

commercial scale injection and storage of CO2 in Jacksonburg-Stringtown oil field, West Virginia, 924 
USA. International Journal of Greenhouse Gas Control, 80(March 2018), 61–75. 925 
https://doi.org/10.1016/j.ijggc.2018.10.011 926 

Zilber, D., & Katzfuss, M. (2019). Vecchia-Laplace approximations of generalized Gaussian processes for big non-927 
Gaussian spatial data. 928 

 929 



 1 

Supporting Information File for 
A Multiscale Spatio-Temporal Big Data Fusion Algorithm from Point to Satellite 

Footprint Scales 
Dhruva Kathuria1, Binayak P. Mohanty1, and Matthias Katzfuss2  

1Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA 
2Department of Statistics, Texas A&M University, College Station, Texas, USA. 

 
S1. Illustration of different permutations for Vecchia-Multiscale 
We illustrate the effect of different permutations (Figure S1 and S2) by applying the 
eight permutations to the hypothetical example in Figure 2 (a) comprising three 

datasets: areal datasets 𝑅! (64 green pixels) and 𝑅" (36 purple pixels), and point dataset 

𝑃! (40 blue triangles), making the total number of observations 𝑛	 = 	140. The numbers 

in columns (I) to (III) in Figure (S1) represent the ordering number in 𝒜 = {𝐴!, … , 𝐴!#$}  

assigned to individual data in 𝑃! (I),  𝑅! (II) and 𝑅" (III) for the different permutations. 

Column (IV) denotes the subvector 𝑨𝒎𝒊 (color-filled blue triangles, and color-filled 

green and purple pixels) for a randomly chosen pixel 𝐴& (color-filled red) for 𝑚	 = 	20. 
 
The Joint-Coordinate permutation (Figure S1 (a)-(c)) sorts the data based on the sum of 
coordinate values resulting in the data from the three platforms getting ordered from 

the lower-left to the upper right along the diagonal.  For any pixel 𝐴&, this results in 

𝑨𝟏:𝒊*𝟏  located close to 𝐴&. The subvector 𝑨𝒎𝒊 (selected from elements of 𝑨𝟏:𝒊*𝟏 closest to 

𝐴& in space) is thus located in the immediate neighborhood of 𝐴& (Figure S1 (d)). 
Middleout ordering is based on the same heuristic as Coordinate ordering and orders the 
locations based on increasing distance from the mean location of the study domain 

(Guinness, 2018). Thus, it also has 𝑨𝒎𝒊  located in the neighborhood of 𝐴& (Figure S1 (h)). 

 
The Joint-Maxmin ordering (Figure S1 (i)-(l)) selects the first pixel/point which is closest 
to the mean location of the study domain and then sequentially selects a successive 
pixel/point which maximizes the “minimum distance” to previously selected 
pixels/points (Guinness, 2018). This results in the pixels/points getting permuted such 

that for any 𝐴&, 𝑨𝟏:𝒊*𝟏 now consist of a good mix of both far and near pixels/points 

(Figure S1 (i)-(k)). The subvector 𝑨𝒎𝒊 now consist of both far and near data surrounding 
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𝐴& (Figure S1 (l)). Though Joint-Random (Figure S1 (m)-(p)) is not based on any heuristic, 
it can give similar results to Joint-Maxmin (Guinness, 2018). 
 
The corresponding “Separate-“ orderings for the four “Joint-“ orderings are given in 
Figure S2. The “Separate-“ orderings separate the point and areal data, apply the 
permutations separately to each and then form the final permutation by sorting the 
permuted point data followed by the permuted areal data (Figure 4, main text). Though 
the “Separate-“ orderings retain the heuristic of the corresponding “Joint-“ permutations 
separately for point and areal data, the “Separate-“ permutations introduce a constraint 

that the point data always lie in the beginning of the vector 𝒜. For instance, in Figure S2 

(Column I) since we have 40 point data, {𝐴!, … , 𝐴#$} always represent point data in 

“Separate-“ permutations. Now for any areal pixel 𝐴& (which for “Separate-“ 

permutations in this example represent {𝐴#!, … , 𝐴!#$}), 𝑨𝟏:𝒊*𝟏  will always consist of 

point data. This often leads to the subvector 𝑨𝒎𝒊  consist of point data which are near to 

𝐴& (Figure S2, Column IV).  
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Figure S1. Illustration of the “Joint-“ Permutations applied on the example from Figure 2 (a) in the 
main text consisting of 40 point data 𝑃" and 100 areal pixels in 𝑅" (64 pixels) and 𝑅# (36 pixels) . 
Numbers in columns (I) to (III) represent the ordering number in the vector 𝒜 = {𝐴", … , 𝐴"$%}  
assigned to data in 𝑃" (I),  𝑅" (II) and 𝑅# (III) for the four different “Joint-“ permutations. Column 
(d) denotes the subvector 𝑨𝒎𝒊 (equation 11, main text) comprising color-filled blue triangles, and 
color-filled green and purple pixels, for a randomly chosen pixel 𝐴' (color-filled red) for 𝑚	 = 	20. 
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Figure S2. Illustration of the “Separate-“ Permutations applied on the example from Figure 2 (a) in 
the main text consisting of 40 point data 𝑃" and 100 areal pixels in 𝑅" (64 pixels) and 𝑅# (36 pixels) . 
Numbers in columns (I) to (III) represent the ordering number in the vector 𝒜 = {𝐴", … , 𝐴"$%}  
assigned to data in 𝑃" (I),  𝑅" (II) and 𝑅# (III) for the four different “Separate-“ permutations. 
Column (d) denotes the subvector 𝑨𝒎𝒊 (equation 11, main text) comprising color-filled blue 
triangles, and color-filled green and purple pixels, for a randomly chosen pixel 𝐴' (color-filled red) 
for 𝑚	 = 	20. 
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S2. Simulation 
We use simulations for two (e.g, a variable varying across latitude and longitude) and 
three (e.g., a variable varying across latitude, longitude and time) dimensions in space 

in a region 𝒟 = [0,1] × [0,1] and [0,1] × [0,1] × [0,1]  respectively. We fix each 
dimension between 0 and 1 for generality. The objective of the simulations is to 

investigate that for a given value of 𝑚, which approximation (equation 11) resulting out 
of the eight permutations better approximates the exact likelihood (equation 10). Similar 
to the hypothetical example in Figure 2 (a) in the main text, we assume three data 

sources for each setting—two aggregate datasets (𝑅! and 𝑅") covering the entire region 

𝒟, and point dataset (𝑃!) in 𝒟. The number of pixels in 𝑅! and 𝑅" along with their 

resolutions as well as the number of point data 𝑃! are given in Table S1. The number of 

point data are chosen as 1) 5% of the areal data to represent scenarios where the point 

data is sparse compared to areal data, and 2) 25% of the areal data to represent 
scenarios where point data are considerable in number compared to areal data. We 

assume an equidistant numerical grid 𝒢 consisting of 11000 points for two dimensions 

and 1089 × 11 = 11979 points for three dimensions across  𝒟. 
 
As mentioned in the main text, evaluation of the exact likelihood requires quadratic 

complexity in the number of assumed grid points  𝑛𝒢 and cubic complexity in the 

number of observations 𝑛. Therefore for the simulations, the number of observations of 
each platform and the size of the numerical grid are chosen so that the computation of 

actual likelihood 𝑓(𝑧(𝒜)|𝜃) is feasible. 
 
We use a flexible class of covariance function called the Matern, with a range, 
smoothness and variance parameter, for simulating the covariance matrix. Other widely 
used covariance functions such as the Exponential and the Gaussian are special cases of 

the Matern. We do simulations for range =	 {0.2, 0.4, 0.6}, smoothness (nu) =

	{0.5, 1, 1.5}, variance = 	1 and measurement error variance (in 𝑅! and 𝑅")   =	 {0.05, 0.2}. 
This ensures that the simulations are carried out for a wide range of parameters 

resulting in a total of 72 simulations for each ordering. We perform 72 simulations for 
each of the eight orderings and take m = 5, 10, 20, 40, 60, 100, 120 and 180. 
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To control for simulation error, we use the Kullback-Leibler (KL) divergence, which 

measures how much information we lose using the approximation 𝑓
^
(𝑧(𝒜)|𝜃) (equation 

11, main text) over the exact likelihood 𝑓(𝑧(𝒜)|𝜃) (equation 10, main text), both using 

the true value of the parameters. A lower KL-divergence between 𝑓
^
(𝑧(𝒜)|𝜃) and 

𝑓(𝑧(𝒜)|𝜃) thus denotes a better approximation.  Plots of eight representative 
simulations (out of 72) comparing the (log) KL-Divergence of the approximations over 
the true likelihood are given in Figure S3. For both 2D and 3D, in general, the Separate-
Maxmin and Separate-Random perform the best while the Coordinate-based orderings 
perform the worst. There was no effect of measurement error on the relative 
performance of the orderings. Therefore, in general, we suggest adopting Separate-
Maxmin or Separate-Random when using Vecchia-multiscale. 
 
 

  

Table S1. Data setting for the simulations in Section S2. 
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Figure S3 Representative simulations comparing the (log) KL-Divergence of the approximations over the true 
likelihood for measurement error variance equal to 0.05. A lower KL-Divergence denotes a better approximation. 
For the majority of the simulation settings, the Separate-Maxmin and the Separate-Random lead to better 
approximation of the exact likelihood.   
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S3 Supporting Information for Section 4 in the main text 
 

 
 
 
  Figure S4 Histograms of point soil, SMAP and SMOS soil moisture data for July 06-20, 2017. On the original 

scale soil moisture exhibits considerable skewness but on the logit scale the soil moisture distribution becomes 
less skewed making the Gaussian assumption tenable. 
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  Figure S5 Overlapping SMOS and SMAP pixels for July 06-20, 2017. The SMOS pixels are bilinearly 

interpolated to the overlapping SMAP pixels for this exploratory analysis. The red line denotes the 1:1 line. 
The transformed scale results in a slightly better correlation (R) between the two datasets. On the transformed 
scale, it can also be seen that there is a bias between SMOS and SMAP datasets for the analyzed time period. 



 10 

 

Figure S6 Covariate plots for July 06, 2020 for Contiguous US (CONUS). All the four covariates exhibit 
considerable heterogeneity across CONUS. 


