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Abstract

Forests play a pivotal role in regulating climate and sustaining the hydrological cycle. The biophysical impacts of forest on

clouds, however, remain unclear due to the lack of direct observations. In this first global-scale observational study, we use

long-term satellite-derived cloud cover data to show that forests can have opposite effects on summer cloud cover. We find

enhanced cloud cover over most temperate and boreal forests, but inhibited cloud cover over Amazon, central Africa, and

Southeast US. These cloud effects mainly arise from convection processes associated with forests. The spatial variation in the

sign of cloud effects is driven by sensible heating where cloud enhancement (inhibition) is more likely to occur when sensible

heat in forest is larger (smaller) than nearby nonforest. Ongoing forest cover loss has led to opposite cloud cover changes, with

local cloud increase over forest loss hotspots in the Amazon (+0.78%), Indonesia (+1.19%), and Southeast US (+0.09%), but

cloud reduction in East Siberia (-0.20%) from 2002-2018. Our data-driven assessment informs the climate effects of local-scale

forest cover change and improves mechanistic understanding of forest-cloud interactions, the latter of which remains uncertain

in Earth system models.
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Abstract:

Forests play a pivotal role in regulating climate and sustaining the hydrological cycle. The biophysical 

impacts of forest on clouds, however, remain unclear due to the lack of direct observations. In this first 

global-scale observational study, we use long-term satellite-derived cloud cover data to show that forests 

can have opposite effects on summer cloud cover. We find enhanced cloud cover over most temperate 

and boreal forests, but inhibited cloud cover over Amazon, central Africa, and Southeast US. These cloud

effects mainly arise from convection processes associated with forests. The spatial variation in the sign of 

cloud effects is driven by sensible heating where cloud enhancement (inhibition) is more likely to occur 

when sensible heat in forest is larger (smaller) than nearby nonforest. Ongoing forest cover loss has led to

opposite cloud cover changes, with local cloud increase over forest loss hotspots in the Amazon 

(+0.78%), Indonesia (+1.19%), and Southeast US (+0.09%), but cloud reduction in East Siberia (-0.20%) 

from 2002-2018. Our data-driven assessment informs the climate effects of local-scale forest cover 

change and improves mechanistic understanding of forest-cloud interactions, the latter of which remains 

uncertain in Earth system models.  

Introduction

Forests regulate climate and sustain the hydrological cycle through biophysical processese1,2. These 

processes are tightly linked to land surface properties, such as albedo, roughness, and canopy conductance

that affect the exchange of energy and water between the land and atmosphere1,2. The direct biophysical 

impacts of forest on surface temperature have been extensively studied, revealing a latitudinal transition 

from tropical cooling to boreal warming3–5. However, less attention has been paid to its indirect impacts 

on clouds and precipitation, two physically linked key components in the hydrological cycle. How clouds 

and precipitation respond to land cover change has been poorly constrained and presents one of the major 

challenges in climate change assessment6.
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Global climate models (GCMs) have predicted a reduction in precipitation and a frequent decrease 

in cloud cover resulting from large-scale deforestation, with the greatest decrease in tropical regions7–9. 

Although these results are in line with the common perception that vegetation enhances clouds and 

precipitation10, these continental- or global-scale land clearing experiments implemented in models with a

relatively coarse resolution are not consistent with the ongoing small-scale land activities in the real 

world. Results from these GCM experiments are often complicated by mixing the local-scale intrinsic 

biophysical mechanism with the nonlocal feedbacks triggered by large-scale land cover change in the 

climate system, making it hardly comparable with observations11,12.  

In contrast to cloud and precipitation reduction simulated in the GCM experiments7,8,13, high-

resolution regional climate models14,15 and empirical analyses using satellite imagery 16,17 reported that 

small-scale deforestation increases rather than decreases clouds and precipitation in Amazon due to land 

surface heterogeneity18. These results revealed inhibited clouds over forest (e.g., West Africa19) at a 

realistic scale which seemingly contradicts the highly hypothetical GCM results20 and enhanced cloud 

observations over forest in other regions (e.g., western Europe21 and Central America22).

These inconsistent findings among modeling and observational studies highlight the large 

uncertainty in cloud and convection representations in climate models 23,24 as well as the complexity of 

forest–cloud interactions, which involve different mechanisms across different scales with varying 

regional importance25. The global pattern of forest impacts on cloud cover, and how it is shaped by the 

interplay of different mechanisms remain largely unresolved. In this study, we use satellite observations 

of high spatial resolution and long-term global coverage to assess the cloud effect of forests across the 

globe, exploring the possible mechanisms with data-driven approaches, and to quantify the cloud effects 

of forest loss in the recent two decades. 

Results

Potential effects of forest on cloud cover 

3

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74



Figure 1. Potential effects of forest on June-August (JJA) cloud cover. Potential effect is defined as the 

cloud differences of forest minus nonforest (ΔCloud). (a) Potential effects of forest on cloud cover based 

on MODIS data from 2002 to 2018 (overpass at 13:30 local time) and (b) their latitudinal pattern. (c,d) 

Potential effects of forest on cloud cover based on hourly MSG data from 2004 to 2013 (overpass at 

14:00 local time) and (e) timing of the maximum effect during a day.

Using a space-for-time approach, we define the potential cloud effect of forest as the multiyear 

mean cloud difference between unchanged forest and nearby nonforest pixels  (ΔCloud = Cloud forest- 

Cloudnonforest). The positive and negative ΔCloud denote (spatial) enhanced and inhibited cloud cover over 

forest, respectively. ΔCloud is estimated globally through a 9 by 9 cell moving window (0.45 × 0.45°) 

near locations that underwent forest cover change during the study period (see methods). This approach is

able to minimize cloud effects resulting from large-scale circulation/climate changes which affect both 

forest and nonforest. The climatological approach also effectively removes stochastic cloud differences 
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between forest and nonforest caused by individual meteorological events and wind direction changes. 

Here we primarily focus on boreal summer months (JJA) which maximize the cloud differences between 

forest and nonforest21, while results for other seasons are provided in the supplementary information.  

Forest exhibits a regionally varying effect on JJA cloud cover based on MODIS data (overpass at 

13:30 local time, Fig. 1a). Most temperate and boreal forests in Eurasia and North America, accounting 

for 63.21% of the grid boxes, show a cloud enhancement effect (positive ΔCloud, +0.0133 on average). In

contrast, forests in South Amazon, Central Africa, and Southeast US show a cloud inhibition effect 

(negative ΔCloud, -0.0115 on average). These cloud effects follow a latitudinal dependency with the 

largest effect in the tropical regions, likely due to strong turbulence fluxes contrast between forest and 

nonforest at low latitudes which is preferential for convection development. The cloud effects are 

diminished toward higher latitudes, regardless of sign (Fig. 1b). Our additional sensitivity tests indicate 

that the global pattern of ΔCloud still holds when estimated using alternative window sizes (see methods, 

Fig. S1) and splitted time periods (2002-2007, 2008-2013, 2014-2018, Fig. S2), suggesting the robustness

of results to scale of local window and interannual variability of cloud cover.

Similar spatial and latitudinal patterns can be seen from MSG data (at 14:00 local time), with cloud 

inhibition being stronger in central Africa while weaker in the Amazon regions, despite reduced spatial 

coverage (Fig. 1c,d). The hourly resolution of MSG cloud data reveals a pronounced diurnal cycle in the 

cloud effect (Figs. 1e, S3). Consistent with the daytime prevalence of convection, the maximum effect 

during the course of the day (the largest ΔCloud regardless of sign) occurs mostly at daytime (6AM to 

18PM, 70%), especially during afternoon (12 to 18PM, 48%) in tropical regions.

The MODIS and MSG cloud cover data provide a combined measure of cloud fraction but they do 

not separate different cloud types. By utilizing Sentinel-5P cloud data and a cloud classification scheme26,

we are able to estimate cloud effects of forest with respect to different cloud types (see methods). We find

that globally, cloud effects are dominated by convective clouds in 45.01% of grid boxes, largely 

contributed by shallow convective stratocumulus clouds (39.10%) (Fig. S4). Regionally, the convection 

dominance becomes more prominent, contributing to 68.13% of cloud effects in the Amazon. These 
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further confirm that cloud effects of forests shown in our study are primarily convection-driven, as also 

implied by MODIS and MSG data.   

In terms of seasonality, there are notable and region-specific variations in ΔCloud from MODIS 

data (Figs. S5, S6). In tropical forests, cloud inhibition is stronger during the dry season in the Amazon, 

whereas it is amplified during the wet season in Central Africa. In temperate forests, cloud inhibition in 

the Southeast US is larger in summer, while cloud enhancement in Europe is relatively stable during the 

snow-free period. 

Attribution of cloud effects of forest 

Figure 2. Attribution of cloud effects of forest to tree cover and elevation based on MODIS and MSG 

data. The five attribution categories include tree cover induced cloud increase (Tree+) and decrease 

(Tree-), orography induced cloud increase (Orography+) and decrease (Orography-), and other 

unexplained effects.

Estimating the cloud effect of forest could be confounded by orographic clouds because of the dual 

influences of topography on forest distribution and cloud formation. Forest tends to be located at a higher 

elevation and in more complex terrain than nonforest27. Although regions with complex topography are 

masked out in our analysis (see methods), the high elevation of forest per se could facilitate cloud 

formation through orographic lifting of moist air28, leading to increased cloud cover over forest (Fig. S7).

To address this issue, we decompose ΔCloud into contributions of tree cover and elevation (see 
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methods, Fig. S8). The attribution shows that the global pattern of ΔCloud is dominated by tree cover 

induced cloud effects (41% grid boxes for cloud enhancement and 22% for cloud inhibition), followed by 

elevation induced cloud effects (30%), and unexplained effects due to other factors (7%) (Fig. 2). This 

confirms that most of the observed cloud effects are robust features attributable to tree cover rather than 

topography and other factors.

The mechanisms of contrasting cloud effects of forest 

Figure 3. Potential effect of forest on sensible heat and its relationship with cloud effect of forest. (a) 

Potential effect of forest on cloud cover from MODIS and MSG data (duplicated from Fig 1a,b). (b) 

Potential effect of forest on sensible heat (ΔH) estimated from satellite data4, CLM5, and (c) 28 paired 

forest and nonforest flux sites. The connection lines in panel (c) indicate the location of flux tower 

clusters and one pair in the Amazon is not shown on the map. (d) The relationship between potential 

effect of forest on sensible heat and on cloud cover (ΔCloud) at paired flux towers. The cloud effects at  
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paired flux sites location are extracted from ΔCloud aggregated to 1° based on MODIS data. The fitted 

line is estimated by geometric mean regression29. The spearman's correlation coefficient (ρ) and its p-

value (p) are shown at the bottom.

While different biophysical processes are involved in the forest-cloud interaction, it is still unclear 

which factors determine the spatial occurrences of cloud enhancement and inhibition over different 

forests. The geographic variations in specific land cover types of global forest and nonforest vegetation 

show little spatial resemblance to ΔCloud (Fig. S9). In terms of biophysical differences, forest has 

reduced albedo, higher roughness, lower land surface temperature (LST), increased evapotranspiration 

and soil moisture than nonforest vegetation4,5. However, these differences are common to almost all 

forests and are unable to explain the contrasting cloud effects, as indicated by their mismatched spatial 

patterns with ΔCloud (Fig. S10).

We find that the sensible heat difference between forest and nonforest (ΔH) is an effective 

differentiator for the sign of cloud effect among other land surface properties30. This is obtained by 

analyzing the relationship between ΔCloud and ΔH derived from three independent datasets based on 

satellite4, simulation of Community Land Model (CLM) version 531, and 28 paired forest and nonforest 

flux sites32(Fig. 3a-c). Both satellite and CLM data indicate that cloud inhibition (negative ΔCloud) 

mainly occurs at locations where forests exhibit a smaller sensible heat flux than nonforest (negative ΔH),

including southern Amazon33, central Africa, and the southeast US (three circles in Fig. 3a,b). By contrast,

cloud enhancement (positive ΔCloud) in the rest of the world broadly corresponds to locations with 

higher sensible heating in forest (positive ΔH), despite few inconsistencies in southern Europe among the 

considered datasets. Such a spatial co-occurrence is further confirmed by the positive relationship 

between ΔH from paired flux sites and ΔCloud (Fig. 3d), suggesting that cloud enhancement (inhibition) 

is more likely to occur when forests have higher (smaller) sensible heat flux than nonforest .

The spatial patterns of ΔH reflect the biophysical and climatic controls on energy redistribution in 

forest and nonforest along latitude and moisture levelsl34,35. The small Bowen ratio in forest at low latitude

under humid climates channels most available energy into latent heat rather than sensible heat, resulting 

8

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168



in even smaller sensible heat compared to nonforest, while the large Bowen ratio at higher latitudes under

drier climates leads to the opposite effect. The collective evidence demonstrates the central role of 

sensible heat in convection triggering and cloud formation30. The higher sensible heat relative to nearby 

land is indicative of a preferable condition for convection and cloud development, though it is caused by 

different mechanisms for enhanced and inhibited cloud cover over forest, respectively.

Figure 4. Mechanisms of contrasting cloud effects of forests. (a) Clouds enhanced over forest through 

increased convection due to increased moisture supply and turbulence. (b) Clouds inhibited over forest 
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through suppressed convection due to divergence of mesoscale circulations. ABL: atmospheric boundary 

layer. LCL: lifting condensation level. LE: latent heat. H: sensible heat.

The mechanisms of enhanced cloud over forest are associated with several interconnected processes

conducive to the growth of moist convection (Fig. 4a). Compared with nonforest vegetation, forest 

usually exhibits high evapotranspiration5, which provides abundant water vapor supply for cloud 

formation and sustains moisture recycling36,37. The low albedo and high roughness of forest promote a 

greater fraction of incoming solar energy to be partitioned into turbulent fluxes, increasing turbulent 

mixing and convective instability in the boundary layer15,38,39. The differential roughness between forest 

and nonforest induces frictional convergence in downwind direction21,40. Enhanced sensible heating, 

which typically occurs in forest relative to nonforest vegetation32, serves as a major lifting mechanism to 

initiate convection and the growth of boundary layer30,38. 

The mechanisms of inhibited cloud cover over forest and enhanced cloud cover over nearby 

nonforest, are linked to the mesoscale circulation triggered by heat and moisture anomalies of 

heterogeneous landscape between forest and nonforest41 (Fig. 4b). Differential heating between forest 

(cooler) and nonforest (warmer) creates a thermally-driven mesoscale circulation analogous to a sea-

breeze. The rising airflow over nonforest initiates convective clouds while the subsidence branch over 

forest outweighs moist convection processes and inhibits cloud development. The warmer deforested 

areas with larger sensible heat flux, combined with increased atmospheric instability15 can reinforce 

mesoscale circulation and provide a favorable environment for cloud formation14,38,42. 

The development of mesoscale circulation also depends on the length scale of the land 

heterogeneity and synoptic conditions. Mesoscale circulation is typically generated at spatial scales of 

10~100km15,39 and gets intensified under weak synoptic conditions (e.g., stronger cloud inhibition in 

Amazon in the dry season when synoptic winds are weaker and LST gradient is larger)5,14,17. To 

investigate the sensitivity of cloud inhibition induced by mesoscale circulation to spatial scale, we re-

estimated ΔCloud using MODIS cloud data resampled to different spatial resolutions. We find that with 

reduced resolutions of cloud data, the spatial coverage of cloud inhibition shrinks from ~37% at 0.05° to 
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~24~28% at 1°, while cloud enhancement becomes more dominant (from 63% to ~76~72%) (Fig. S11, 

Tab. S3).  This implies that at coarser scales, at which mesoscale processes become less important (i.e., 

less cloud inhibition), observation- and model-based results tend to converge on cloud enhancement of 

forest. 

Cloud effects of forest loss in recent two decades
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Figure 5. Impacts of forest loss on JJA cloud cover based on MODIS data from 2002 to 2018. (a) The 

accumulated forest loss fraction from 2001 to 2018 and (b) the actual impact of forest loss (ΔCloud loss), 

defined as the mean cloud difference between forest loss location and unchanged forest from 2002 to 

2018. Four hotspots (Amazon, Indonesia, East Siberia, and Southeast US, row-wise), which experienced 

intensive forest loss are highlighted in panels c to r, including their forest loss fractions, mean ΔCloud loss 

during the study period, and regional and temporal trends of ΔCloudloss between 2002 and 2018 (column-

wise). Green dashed line in the last column (f,j,n,r) shows tree cover difference between forest loss 

location and forest (ΔTree). Note that the cloud impacts in selected hotspot regions are estimated from 

grid boxes with tree cover loss fraction > 0.05. The unit of Trend (in red) is %/year in the last column.

Forest cover loss is rapidly occurring globally in recent two decades, especially in tropical regions 

owing to continuous deforestation (Fig. 5a)43,44. These changes are expected to cause different cloud 

responses in forests with enhanced or inhibited cloud effects. We quantify the actual cloud impact of 

forest loss that has already occurred by comparing cloud fraction at locations that underwent net loss in 

tree cover with nearby unchanged forest since 2000 (Fig. 5b) in four hotspot regions of forest loss (Fig. 

5c,g,k,o).

During the study period, forest loss enhanced cloud cover in three of those hotspot regions: 

Amazon, Indonesia, and Southeast US, with mean cloud cover at forest loss location (tree cover loss 

>0.05) on average 0.011, 0.005, and 0.007 higher than nearby unchanged forest, respectively (Fig. 5 2nd 

column). Furthermore, enhanced cloud cover in these hotspots became increasingly stronger with the 

declining and more fragmented tree covert45, which translates into total cloud fraction increases of 0.78% 

(0.046%/year), 1.19% (0.070%/year), and 0.09% (0.005%/year) over the course of 17 years (2002 to 

2018) (3rd and 4th column in Fig. 5). Note that in the Amazon, forest loss legacy before 2001 had already

caused increased cloud cover (positive ΔCloud) at the beginning of the study period (Fig. 5f). However, 

the presence of enhanced clouds over deforested regions requires the retaining of nearby forest patches 

over which clouds are reduced. As the scale of deforestation increases with fewer forest patches left, the 

mesoscale circulation induced cloud enhancement over deforested locations will decrease and ultimately 
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transit to a cloud reduction regime13,42,46. Unlike other hotspots, East Siberia is a region where forest loss 

induced cloud cover reduction. The mean cloud cover is 0.004 lower over the forest loss location than 

nearby unchanged forest (Fig. 5p). The cloud reduction also exhibited a strengthening trend, resulting in a

total reduction in cloud cover fraction of -0.20% (-0.012%/year) from 2002 to 2018 (Fig. 5q, r). These 

results provide strong evidence that ongoing forest loss could emerge as an important driver for local 

cloud cover change, especially over areas with intensive forest loss. 

Discussion

This study offers the first global-scale observational evidence for contrasting cloud effects of forest 

and advances our mechanistic understanding of the forest and cloud interaction. The cloud effect  

estimated in our study reflects the local impact of forest on cloud cover and is, therefore, more 

representative of real-world small-scale forest cover change, without generating the large-scale climate 

feedbacks which are usually triggered in GCM experiments3,11. The local perspectives allow us to identify

the role of mesoscale circulation which is limited to small scales, a feature that has not been resolved by 

global climate models and is likely the cause of the discrepancy in clouds and precipitation response 

between climate model and observational studies, as also shown for soil moisture24. Although cloud 

processes are far more complicated than what is reflected in the cloud cover observation, our analysis 

provides a first-order approximation and benchmark for the forest and cloud interaction at fine-scale. 

These results can help constrain convection and cloud processes in climate models which are often 

parameterized and subject to large uncertainty.

Given the tight coupling of cloud and precipitation processes, the cloud impact of forest cover 

change may translate into precipitation47. Observational evidence exists in Amazon where the cloud 

increase in deforested areas has been accompanied by precipitation increase48,49. Although it is hard to 

directly detect precipitation impact of deforestation from observation8, the cloud impact derived from 

high-resolution satellite data could provide useful inference to potential precipitation change, especially in

tropical regions where convective rainfall is dominant50. However, distinct roles of different cloud types 
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(e.g., shallow cumulus clouds or deep convective clouds) in precipitation and radiative processes further 

complicate the inference from clouds to precipitation changes. Therefore, the extent to which forest loss 

induced cloud change translates to precipitation may depend on the region-, season-, and cloud type- 

specific cloud-precipitation interactions and requires further investigation.

Our results show ongoing forest cover loss has become an important driver of local cloud change 

over areas with intensive forest loss, which could potentially modify precipitation patterns and in turn, 

impose additional feedbacks to (either amplify or dampen) temperature change. Retaining forest patches 

could enhance cloud cover over nearby agricultural lands through mesoscale circulation (e.g., in Amazon)

- with positive benefits of reduced temperature and possibly increased rainfall. Conversely, the reduction 

in cloud cover over remaining forest patches may reduce the resilience of the forest to future climate 

change51. Moreover, the changing forest cover owing to either deforestation or increased tree vulnerability

under future warming52,53 will not only affect local climate and hydrology, but could also have remote 

impacts on distant regions through moisture recycling and transportation54 and other ecological and 

social-economic implications55. An accurate prediction of these impacts would benefit from improved 

understanding of forest and cloud interaction which could be facilitated by the cooperation of remote 

sensing of high spatial-temporal resolutions and climate models that can better characterize mesoscale 

cloud processes.

Data and Methods

Cloud cover and environmental datasets

The monthly mean MODIS cloud fraction at 0.05° used in this study was computed from the daily 

cloud mask data (“cloudy” label for the bits 0-1 of 'state_1km' band) included in the MODIS Surface 

Reflectance product (MYD09GA.006, overpass at local time of 13:30) of Aqua from 2002 to 2018, using 

reduceResolution function with “mean” aggregation method on Google Earth Engine 

(https://earthengine.google.com/). The 1km cloud mask was produced based on the MOD35_L2 cloud 

mask product which had been extensively validated56,57. Before computing cloud fractions, a snow/ice flag
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(the bit 12 of 'state_1km' band) was used to remove snow or ice pixels in the cloud record because the 

high reflectivity of snow/ice degrades the accuracy of cloud detection, especially druing winter in the 

northern hemisphere. Therefore, the estimated cloud effect would have larger uncertainty in boreal winter

than in summer.

To complement MODIS-based cloud analyses, we used the Meteosat Second Generation (MSG) 

hourly cloud fraction data from June, July and August (JJA) of 2004-2013 at a spatial resolution of 0.05°. 

The resulting cloud effects and timing statistics were converted to local time.

The cloud fraction from Sentinel-5P Near Real-Time (NRTI) data product was used in this analysis.

This dataset is available from 2018-07-05 at a spatial resolution of 0.01° and it has an overpass time of 

13:30 similar to MODIS. The Sentinel-5P cloud data, although having a short time span of two years, 

were useful to separate cloud effects of forest into different cloud types, with the help of a cloud 

classification scheme based on cloud top pressure and cloud optical depth information26. 

Environmental variables include evapotranspiration (ET, MOD16A2 V6), land surface temperature 

(LST, MYD11A1 V6) from MODIS, and soil moisture (SM) from the TerraClimate dataset. All these 

environmental variables were averaged into monthly means at 0.05° resolution.    

Elevation data are from SRTM Digital Elevation Data at 0.05° resolution. Land cover data include 

MODIS (MOD12C1) and European Space Agency (ESA) global land cover products which were 

aggregated to 0.05°.  

Defining forest cover change

To define forest/nonforest and forest cover change, we used the Global forest cover (GFC) product 

which provides global tree cover for the year 2000 (baseline), yearly forest loss from 2001 to 2018, and 

forest gain from 2000–2012 at 30m resolution44. The GFC data were aggregated to fractions at 0.05°. Net 

forest cover change was calculated as the sum of the loss and gain accumulated throughout the study 

period. Pixels with net forest cover change fraction smaller than 0.05 are considered to be "unchanged" 

and greater than 0.05 are considered to be "changed". Unchanged forest and unchanged nonforest were 

defined as pixels with baseline tree cover fraction greater or less than 0.5 and with net forest change < 
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0.05. For unchanged nonforests, pixels classified as water, snow/ice, and wetland were excluded using the

major composite of MODIS land cover from 2002 to 2005 with IGBP classification scheme. For 

"changed" forest pixels, forest loss was identified as those with a net forest loss > 0.15. Forest loss 

defined this way is expected to pose a stronger signal on clouds than that with a lower threshold, and thus 

improves the detectability of cloud impact against natural variability of cloud cover.

Estimating potential and actual impacts of forest loss on cloud cover

The potential effect of forest on cloud (ΔCloud) was quantified as the mean cloud difference 

between unchanged forest and nearby nonforest as:

ΔCloud = Cloudforest - Cloudnonforest          (1)

where Cloudforest and Cloudnonforest are multi-year or yearly mean cloud fractions averaged over unchanged 

forest and unchanged nonforest pixels, respectively. ΔCloud defined this way, with the reversed sign, 

represents the potential impact of forest loss on cloud cover at a given location. The methodology is 

designed to isolate the cloud effects of land surface conditions from those caused by meteorological 

conditions. It refers to local cloud impact (caused by land surface conditions) because effects from 

synoptic conditions and large-scale circulation changes/climate changes (meteorological conditions), 

which are shared by both forest and nonforest, are minimized through subtraction. If there is no effect of 

forest on cloud cover, the resulting ΔCloud would show random patterns with mixed positive and 

negative values, instead of any systematic patterns which indicate a cloud preference over forest or 

nonforest.

To implement Eq. 1, we used a moving window approach to search for comparison samples 

between forest and nearby nonforest pixels at locations underwent "forest change" (i.e., net forest change 

> 0.05) across the globe58. Each moving window was sized at 9 × 9 pixels (0.45° × 0.45°) and two 

adjacent windows were half-overlapped with a distance of 5 pixels (i.e., the center of two windows was 5-

pixels apart along latitudinal and longitudinal direction). To avoid cloud inhibition effects from water 

bodies such as river/lake59, water pixels and their one-pixel buffer zone were masked out in the window 

searching strategy for ΔCloud. Therefore, ΔCloud can be calculated using unchanged forest and nonforest
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pixels within each moving window. This window searching strategy ensures the proximity of forest and 

nonforest pixels to pixels underwent forest change, making the estimated potential effect to be more 

representative of the actual forest change impact. To test the sensitivity of ΔCloud to window size and 

time period, ΔCloud was also estimated using alternative window sizes: 11 × 11 (0.55° × 0.55°), 21 × 21 

(1.05° × 1.05°), 51 × 51 (2.55° × 2.55°) pixels and different time periods (2002-2007, 2008-2013, 2014-

2018). The resulting ΔCloud was similar to results with window size of 9 × 9 (0.45° × 0.45°) and among 

splitted time periods (Figs. S1 and S2).

A similar window searching strategy was applied to estimate the differences between forest and 

nonforest in LST (ΔLST), ET (ΔET), and soil moisture (ΔSM) (Fig. S9). 

The cloud impact estimated as the cloud differences between forest and nonforest could be 

confounded by their differences in topography, since topography is known to be an important factor for 

cloud formation. For example, forests tend to be located in areas with higher elevation and more complex 

terrain than nonforest. To minimize the topographic influence, we calculated standard deviation (s.d.) of 

elevation within each moving window and removed samples with s.d. > 100m from the analysis. This 

filtering effectively excluded comparison samples from complex terrain such as mountainous regions so 

that the retained samples come from relatively flat areas.

The actual effect of forest loss on cloud (ΔCloudloss) was quantified as cloud difference between 

forest loss (Cloudloss) and nearby unchanged forest pixels (Cloudforest) using the same window searching 

strategy as the potential effect (Eq.2).

ΔCloudloss = Cloudloss - Cloudforest        (2)

where ΔCloudloss is the actual impact of forest loss on cloud, Cloudloss and Cloudforest are the multiyear or 

yearly mean cloud cover averaged over forest loss and unchanged forest pixels, respectively. The actual 

impact (deforested vs. forest) shows good spatial resemblance to the potential effect (nonforest vs. forest, 

ΔCloud with the reversed sign), suggesting that potential effect is able to provide a priori prediction of 

possible cloud change induced by forest loss (R=0.44).  

To quantify the progressive tree cover changes caused by forest loss, we calculated tree cover 
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differences between forest loss and unchanged forest pixels following Eq. 3, 

ΔTree year=(Tree2000loss−Tree2000forest)+∑
2001

year

(Treeloss loss−Treeloss forest)   (3)

where ΔTreeyear is the tree cover difference between forest loss and unchanged forest pixels at a given 

year. It is the sum of the tree cover difference in the baseline year 2000 (Tree2000 loss - Tree2000forest) and 

the accumulated yearly forest loss differences from 2001 until a given year (the sigma term of Eq. 3). 

The comparison samples obtained from window searching strategy for potential and actual impacts 

were aggregated to 0.5° for display and further analysis.

Cloud effects of forest separated into different cloud types 

By using cloud top pressure and cloud optical depth from the daily Sentinel-5P NRTI data, nine 

cloud types were classified according to the ISCCP (International Satellite Cloud Climatology Project) 

cloud classification scheme26. The classified cloud types were 1-cirrus, 2-cirrostratus, 3-deep convection, 

4-altocumulus, 5-altostratus, 6-nimbostratus, 7-cumulus, 8-stratocumulus, and 9-stratus. Cloud types 1~3,

4~6, and 7~9 corresponded to low, mid- and high-clouds, respectively. Cloud types 3, 7, and 8 were 

convective clouds and the latter two were shallow convective clouds. The multiyear mean JJA total cloud 

fraction and fraction of each cloud type were calculated during the available time period and were 

aggregated to 0.05° from the original 0.01° resolution. We then applied the same moving window method

to estimate the cloud effects of forest for total clouds and for different cloud types, respectively. The 

sumed cloud effects of each cloud type equals the total cloud cover effects. We expected convective cloud

types (types 3, 7, and 8) to be influenced by forests, while other non-convective cloud types were not, so 

that their ΔCloud would show a more random pattern. The dominant cloud type for cloud effects of forest

was determined by the cloud type whose ΔCloud had the same sign with the total cloud effects and had 

the largest magnitude (Fig. S4). 

We noted that there were regional differences in the cloud effects estimated from Sentinel-5P and 

the magnitude of effect was also smaller compared to the other two datasets. For example, the southeast 

US in MODIS was dominated by negative ΔCloud (64.67%) whereas in Sentinel-5P it showed more 
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positive ΔCloud (57.09%) (Fig. S12). The large spatial coverage of positive ΔCloud in Europe in MODIS

and MSG was slightly reduced with Sentinel-5P. These regional differences might be linked to potential 

bias in cloud fractions of Sentinel-5P, because we found that cloud fractions of Sentinel-5P were 

systematically lower than that of both MODIS and MSG (figure not shown). However, the cloud effects 

of Sentinel-5P in Amazon were consistent with MODIS (72.01%) in terms of coverage, showing a 

prevailing cloud inhibition (72.68%) (Fig. S12). Cloud inhibition in central Africa (54.63%) was more in 

line with the widespread negative ΔCloud in MSG (66.43%) than in MODIS (44.02%). 

Given these differences in the cloud effects among datasets, the results from Sentinel-5P still 

provided strong support that convective clouds dominated the cloud effects of forests at both global and 

regional scales (Fig. S4). 

Attribution of cloud effect of forest

Since cloud effects of forest may result from contributions of both vegetation properties and 

orography, we used tree cover and elevation as indicators to represent each of their effects. Elevation was 

selected as an indicator of orographic lifting mechanism. We acknowledged that the reality is much more 

complicated than this highly simplified representation of orographic cloud effect, but for a global scale 

analysis, elevation could still provide a first-order approximation of orographic effect. 

To isolate potential cloud effect of forest into contributions of tree cover and elevation, we first 

estimated sensitivities of cloud cover to tree cover and elevation, respectively, following a linear 

regression model defined in Eq. 4. 

Cloud = Stree × tree + Sele × elevation + c                      (4)                                                                   

where Stree and Sele were the sensitivities of cloud cover to tree cover and elevation, respectively, and the 

intercept c was unused in this study. The sensitivity parameters were estimated for each moving window 

separately if it had nonzero tree cover. The estimated slope of cloud cover to elevation (Sele) was positive 

in the majority of the world (Fig. S8d), suggesting that a higher elevation indeed promotes cloud 

formation. Next, we calculated tree cover differences (Δtree) and elevation differences (Δele) between 

unchanged forest and nonforest pixels similarly as the potential effect. Then the cloud differences induced
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by tree cover (ΔCloudtree) and by elevation (ΔCloudele) can be obtained by multiplying their sensitivities 

by the corresponding differences as Eqs 5 and 6. The sensitivity and differences parameters were 

averaged to 0.5° resolution before used in Eqs. 5 and 6 (Fig. S8).

ΔCloudtree = Stree × Δtree                                             (5)

ΔCloudele = Sele × Δele                                                (6)

The reconstructed ΔCloud given by the sum of ΔCloudtree and ΔCloudele explained about 70% of the 

original ΔCloud.  

To attribute ΔCloud into tree cover and elevation-induced cloud changes, we compared the sign and

magnitude of original ΔCloud, ΔCloudtree, and ΔCloudele. If ΔCloudtree and ΔCloudele both have the same 

sign as ΔCloud, the one with greater magnitude is classified as the dominant factor. If only one of 

ΔCloudtree and ΔCloudele has the same sign as ΔCloud, the factor with the same sign is classified as the 

dominant factor. If none of ΔCloudtree and ΔCloudele have the same sign as ΔCloud, the dominant factor is 

classified as other. As a result, potential cloud effect can be attributed to five classes: tree cover induced 

cloud increase (Tree+) and decrease (Tree-), orography induced cloud increase (Orography+) and 

decrease (Orography-), and other.

Linking cloud effect with sensible heat flux 

Sensible heat data were from three independent sources: satellite estimate4, Community Land Model

version 5 simulation31, and 30 paired forest and nonforest flux sites32.

Satellite estimates provide changes in the combined sensible heat and ground heat fluxes (H+G) 

under different land cover conversions at 1° spatial resolution (a total of 45 pairs conversions for 

“HG_IGBPdet”). The combined fluxes of H+G were estimated as the residual of surface energy 

components as described in Ref4. Due to the small contribution of G to H+G, we referred “H+G” to “H” 

for simplicity in the following text and the main text. To obtain sensible heat differences between forest 

and nonforest (ΔH) that are compatible with ΔCloud, we extracted the dominant land cover type for 

unchanged forest (e.g., evergreen broadleaf) and nonforest pixels (e.g., crop) within each moving window

from the ESA land cover product. The dominant land cover types for forest and nonforest were upscaled 
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to 1° resolution with the "major" method (figure not shown for 1°, but a similar one for 0.5° is shown in 

Fig. S9). For each one-degree grid box with a dominant forest type (e.g., crop) and nonforest type (e.g., 

evergreen broadleaf), ΔH can be extracted from the corresponding sensible heat change value that 

matches the specific land conversion of that grid box (e.g., evergreen broadleaf to crop). 

CLM5 is the land component of the state of the art earth system model Community Earth System 

Model 2 60. The CLM5 simulation was conducted at the spatial resolution of 0.5° from 1997 to 2010, 

driven by a revised climatology GSWP3 as the atmospheric forcing 

(http://hydro.iis.utokyo.ac.jp/GSWP3/), with a satellite phenology, the land cover of 2000, and the 

separated soil columns configuration enabled61,62. The years 1997 to 2001 were spinup period and 

excluded from the analysis. We used the subgrid PFT-level (plant functional type) model outputs to 

calculate sensible heat differences between different land cover types within the same model grid. To 

match CLM5 model resolution, the dominant land cover types for forest and nonforest of each moving 

window were upscaled to 0.5° using the ESA land cover data (Fig. S9). Because CLM adopted a different

land classification scheme, we created a look-up table to convert CLM land cover to IGBP classification 

scheme (Table S1). The differences in sensible heat change (ΔH) between specific forest and nonforest 

types can be extracted from the corresponding sensible heat values of different land cover types in the 

model grid. 

A total of 30 paired flux sites were used in this study to calculate sensible heat differences between 

nonforest and forest (ΔH). Twenty eight site pairs were processed by Ref32 using FLUXNET data and two

additional Amazon site pairs were from the ORNL archive63 (Table S2). ΔH was calculated using the 

mean sensible heat flux during the daytime (8:00 to 16:00). ΔCloud for each site pair was extracted from 

the centered location of the line linking two sites. Unlike ΔCloud used in the main analysis which was 

aggregated to 0.5°, we here used ΔCloud aggregated to 1° without the elevation s.d. criteria and one-pixel

water buffer removal to increase available ΔCloud value for each site pair. When analyzing the 

relationship between ΔH and ΔCloud, two flux pairs were excluded because of the missing of matched 

ΔCloud (pair 29) and an outlier in ΔH (pair 22 with ΔH >200W/m2). 
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Scale-dependency of potential cloud effect of forest

To investigate how the potential cloud effect varies with spatial scale, we reprocessed the MODIS 

cloud cover and GFC data into different spatial resolutions to emulate the scale change (using “mean” for 

cloud cover and “major” method for forest cover). Specifically, the 0.05° cloud and GFC data used in the 

main analysis were aggregated to coarser resolutions (0.1°, 0.25°, 0.5° and 1°) and ΔCloud was re-

estimated with window searching strategy of slightly different configurations to accommodate the 

resolution change (Fig. S11). The specific parameters of window searching strategy under different 

resolutions are provided in Table S3, including raw data resolution, window size, window distance, and 

display resolution. For a given resolution, ΔCloud was estimated with two parameter combinations to 

ensure the robustness of the results.
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Supplmentary information

Figure S1. Potential effects of forest on June-August (JJA) cloud cover based on MODIS data at 0.05° 
resolution estimated using different window sizes: (a) 9×9 (0.45° × 0.45°), (b) 11×11 (0.55° × 0.55°), (c) 
21×21 (1.05° × 1.05°), and (d) 51×51 (2.55° × 2.55°).
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Figure S2. Potential effects of forest on June-August (JJA) cloud cover based on MODIS data estimated 
for different time-periods (a) 2002-2007 (b) 2008-2013 and (c) 2014-2018.
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Figure S3. Diurnal variations in the potential effects of forest on JJA cloud cover based on MSG data.
The red and blue texts show the averaged positive and negative ΔCloud over the domain, multiplied by
100 for display. 
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Figure S4. (a) The dominant cloud type for the cloud effects of forest in JJA based on Sentinel-5P and (b)
the percentage for each dominant type globally and for four selected regions defined in Fig. S12.
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Figure S5. (a) Months of the maximum potential cloud effect during snowfree season. Seasonal changes 
of ΔCloud in (b) Southeast US (lon: -97° to -75°; lat: 30° to 40°), (c) Europe (lon: 10° to 30°; lat: 47° to 
55°], (d) Amazon (lon: -70° to -50°; lat: -16° to -5°), and (e) Central Africa (lon:10° to 33°; lat: -15° to 
0°]). Months with snow cover are shown as shaded areas in Panels b-e. 
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Figure S6. Monthly variations in the potential effects of forest on cloud cover based on MODIS data. The 
presence of snow/ice is denoted as the dashed areas for each month.
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Figure  S7.  Schematic  of  orographic  clouds  which  confound  the  forest  effect  on  cloud  cover.  (a)
Orographic induced enhanced cloud cover and (b) inhibited cloud cover over forest.

33

672

673
674



Figure S8. Attribution of JJA ΔCloud to tree cover and elevation. (a,d) Sensitivities of cloud cover to tree 
cover (Stree, unit:fraction/fraction) and elelvation (Sele, unit:fraction/m) estimated using Eq. 4. (b,d) 
Differences between forest and nonforest in tree cover (ΔTree, unit:fraction) and elevation (Δele, unit:m). 
(c, f) Tree cover induced cloud differences estimated following Eq. 5 (ΔCloud tree) and elevation induced 
cloud differences (ΔCloudele) estimated following Eq. 6.
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Figure S9. Dominant land cover types for (a) forest and (b) nonforest pixels within the 9×9 moving 
window aggregated to 0.5° resolution. Land cover type information was from the ESA land cover data.
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Figure S10. Mean differences between forest and nonforest in LST (a), ET (c), and soil moisture (e) in
JJA from 2002 to 2018 and their latitudinal patterns (b,d,f). 
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Figure S11. Potential cloud effects of forest estimated using MODIS JJA cloud cover data resampled into
different spatial resolutions at (a,e) 0.1°, (b,f) 0.25°, (c,g) 0.5°, and (d,h) 1°. Each column shows ΔCloud
estimated using different parameter setups for window searching strategy (WinSize and WinDist,  see
Table S3). Dashed lines on the map show areas with complex topography (elevation sd. >100m) and are
excluded  in  the  calculation  of  percentage  of  negative  ΔCloud  (i.e.,  cloud  inhibition).  Note  that  the
percentage of negative ΔCloud for different resolutions was calculated without excluding the areas with
complex topography.
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Figure S12.  (a)  The potential  effect  of  forest  on cloud cover  based on Sentinel-5P data  and (b)  the
percentage of negative ΔCloud in four selected regions between Sentinel-5P and MODIS. The four black
rectangles in panel (a) denote four hotspots regions, Southeast US (lon: -97° to -75°; lat: 30° to 40°),
Amazon (lon: -70° to -40°; lat: -16° to -5°), Central Africa (lon:10° to 33°; lat: -15° to 10°]) and Europe
(lon: 10° to 80°; lat: 47° to 65°]. The dashed black horizontal line in panel (b) represents the 50% percent
line, with value greater (less) than 50% indicating cloud inhibition (enhancement) of forest.
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Table S1. Lookup table of converting CLM land classification scheme to IGBP scheme

CLM scheme* IGBP scheme

4,5 broadleaf evergreen forest

6,7,8 broadleaf deciduous forest

1,2 needleleaf evergreen forest

3 needleleaf deciduous forest

1-8 mixed forest

1-11 savannas

9-11 shrubland

12-14 grass

15 crop

*CLM land classification scheme: 1 needleleaf evergreen temperate tree, 2 needleleaf evergreen boreal 
tree, 3 needleleaf deciduous boreal tree, 4 broadleaf evergreen tropical tree, 5 broadleaf evergreen 
temperate tree, 6 broadleaf deciduous tropical tree, 7 broadleaf deciduous temperate tree, 8 broadleaf 
deciduous boreal tree, 9 broadleaf evergreen temperate shrub, 10 broadleaf deciduous temperate shrub, 11
broadleaf deciduous boreal shrub, 12 arctic c3 grass, 13 cool c3 grass, 14 warm c4 grass, 15 crop

Table S2. Paired forest and nonforest flux sites used in this study
Pair 
numbe
r

Nonforest 
site

Forest 
site

Nonfore
st site 
latitude

Nonfores
t site 
longitude

Forest 
site 
latitude

Forest 
site 
longitud
e

Nonforest 
land cover

1 FR-Gri FR-Fon 48.8442 1.9519 48.4764 2.7801 Cropland
2 NL-Hor NL-Loo 52.2404 5.0713 52.1666 5.7436 Grassland
3 DE-Gri DE-Tha 50.9495 13.5125 50.9636 13.5669 Grassland
4 DE-Kli DE-Tha 50.8929 13.5225 50.9636 13.5669 Grassland
5 CA-NS6 CA-NS2 55.9167 -98.9644 55.9058 -

98.5247
Open 
Shrubland

6 CA-NS6 CA-NS5 55.9167 -98.9644 55.8631 -98.485 Open 
Shrubland

7 CA-NS6 CA-NS1 55.9167 -98.9644 55.8792 -
98.4839

Open 
Shrubland

8 CA-NS6 CA-NS3 55.9167 -98.9644 55.9117 -
98.3822

Open 
Shrubland

9 CA-SF3 CA-SF1 54.0916 -106.005 54.485 -
105.818

Open 
Shrubland

10 CA-SF3 CA-SF2 54.0916 -106.005 54.2539 -
105.878

Open 
Shrubland

11 BE-Lon BE-Vie 50.5515 4.7461 50.305 5.998 Cropland
12 US-Wi6 US-Wi0 46.6249 -91.2982 46.6188 -

91.0814
Open 
Shrubland

13 US-Wi6 US-Wi3 46.6249 -91.2982 46.6347 -
91.0987

Open 
Shrubland

14 US-Wi6 US-Wi4 46.6249 -91.2982 46.7393 - Open 
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91.1663 Shrubland
15 AU-Rig AU-Whr -36.6499 145.5759 -

36.6732
145.029
4

Grassland

16 IT-CA2 IT-CA1 42.3772 12.026 42.3772 12.026 Cropland
17 IT-CA2 IT-CA3 42.3772 12.026 42.38 12.0222 Cropland
18 DE-RuS BE-Vie 50.8659 6.4472 50.3051 5.9981 Cropland
19 CZ-BK2 CZ-BK1 49.4944 18.5429 49.5021 18.5369 Grassland
20 US-Var US-Blo 38.4133 -120.951 38.8953 -

120.633
Grassland

21 IT-CA2 IT-Ro2 42.3772 12.026 42.3903 11.9209 Cropland
22 AT-Neu IT-Ren 47.1167 11.3175 46.5869 11.4337 Grassland
23 DE-Kli DE-Obe 50.8929 13.5225 50.7836 13.7196 Cropland
24 DE-Gri DE-Obe 50.9495 13.5125 50.7836 13.7196 Grassland
25 US-Dk1 US-Dk2 35.9712 -79.0934 35.9736 -

79.1004
Grassland

26 US-Dk1 US-Dk3 35.9712 -79.0934 35.9782 -
79.0942

Grassland

27 US-NC1 US-NC2 35.8118 -76.7119 35.803 -
76.6685

Open 
Shrubland

28 US-Fwf US-Fmf 35.4435 -111.772 35.1426 -
111.727

Grassland

29 STM_K77 STM_K8
3

-3.0202 -54.8885 -3.017 -
54.9707

Cropland

30 RON_FNS RON_RJ
A

-10.7618 -62.3572 -10.078 -
61.9331

Pasture

Table S3. Parameter sets of window searching strategy for cloud cover data with different spatial 
resolutions. Parameters include raw data resolution (RawRes), window size (WinSize), window distance 
(WinDist), resolution for display (DisRes), and percent of negative ΔCloud. There are two parameter 
combinations for each resolution. The percentage of negative ΔCloud for different resolutions was 
calculated based on Fig. S11, without excluding areas with complex topography

RawRes WinSize WinDist DispRes Negative ΔCloud percent
(%)

0.05° 9 5 0.5° 36.57

0.1° 9 5 0.5° 35.44

5 3 35.75

0.25° 9 5
1.25°

30.50

5 3 32.70

0.5° 9 5
2.5°

27.90

5 3 29.45

1° 9 5 5° 24.36

5 3 28.29
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