Sea surface height anomalies of the Arctic Ocean from ICESat-2: a first examination and comparisons with CryoSat-2

Marco Bagnardi¹, Nathan Timothy Kurtz², Alek Aaron Petty³, and Ron Kwok⁴

¹Goddard Space Flight Center ²NASA Goddard Space Flight Center ³University of Maryland, College Park ⁴Applied Physics Laboratory

November 22, 2022

Abstract

Accurately resolving spatio-temporal variations in sea surface height across the polar oceans is key to improving our understanding of ocean circulation variability and change. Here, we examine the first two years (2018-2020) of Arctic Ocean sea surface height anomalies (SSHA) from the photon-counting laser altimeter onboard NASA's ICE, Cloud, and Land Elevation Satellite-2 (ICESat-2). ICESat-2 SSHA estimates are compared to independent estimates from the CryoSat-2 mission, including available semi-synchronous along-track measurements from the recent CRYO2ICE orbit alignment campaign. There are documented residual centimeter-scale range biases between the ICESat-2 beams (in the current data release, r003) and we opted for a single-beam approach in our comparisons. We find good agreements in the along-track estimates (correlations > 0.8 and differences < 0.03 m) as well as in the gridded monthly SSHA estimates (correlation 0.76 and mean difference 0.01 m) from the two altimeters, suggesting ICESat-2 adds to the SSHA estimates from CryoSat-2.

Sea surface height anomalies of the Arctic Ocean from ICESat-2: a first examination and comparisons with CryoSat-2

3

4 M. Bagnardi^{1,2}, N. Kurtz¹, A. A. Petty^{1,3}, R. Kwok⁴

- ¹Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Beltsville, MD, United
 States.
- 7 ²ADNET Systems, Inc., Bethesda, MD, United States.
- ³Earth System Interdisciplinary Center, University of Maryland, College Park, MD, United
 States.
- ⁴Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA,
- 11 United States.
- 12
- 13
- 14 Corresponding author: Marco Bagnardi (marco.bagnardi@nasa.gov)
- 15

16 Key Points:

- We present the first (multi-year) examination of Arctic Ocean sea surface height
- 18 anomalies (SSHA) from the ICESat-2 laser altimeter.
- ICESat-2 SSHA estimates compare well with near-coincident (*CRYO2ICE*) radar
- 20 altimetry-derived SSHA estimates from CryoSat-2.
- ICESat-2 and CryoSat-2 show good agreement in the seasonal variability in SSHA
- 22 suggesting ICESat-2 adds to the time-series of Arctic SSHA.

23 Abstract.

24	Accurately resolving spatio-temporal variations in sea surface height across the polar
25	oceans is key to improving our understanding of ocean circulation variability and change. Here,
26	we examine the first two years (2018-2020) of Arctic Ocean sea surface height anomalies
27	(SSHA) from the photon-counting laser altimeter onboard NASA's ICE, Cloud, and Land
28	Elevation Satellite-2 (ICESat-2). ICESat-2 SSHA estimates are compared to independent
29	estimates from the CryoSat-2 mission, including available semi-synchronous along-track
30	measurements from the recent CRYO2ICE orbit alignment campaign. There are documented
31	residual centimeter-scale range biases between the ICESat-2 beams (in the current data release,
32	r003) and we opted for a single-beam approach in our comparisons. We find good agreements in
33	the along-track estimates (correlations > 0.8 and differences < 0.03 m) as well as in the gridded
34	monthly SSHA estimates (correlation 0.76 and mean difference 0.01 m) from the two altimeters,
35	suggesting ICESat-2 adds to the SSHA estimates from CryoSat-2.

36

37 Plain Language Summary

38 The polar oceans, with warming and dramatic declines in sea ice coverage, are experiencing 39 some of the most rapid environmental changes on Earth. These changes have direct impacts on 40 ocean circulation and freshwater distribution, with observable changes in sea surface height. 41 Measuring and monitoring basin-scale variability of sea level of the ice-covered oceans has 42 proven challenging because the surface of these oceans is only exposed within narrow openings 43 in the sea ice, requiring high spatial resolution and bespoke measurement techniques. This study 44 takes a first look at new high-resolution laser altimetry measurements of sea level over the Arctic 45 Ocean collected by NASA's ICESat-2 satellite since its launch in 2018. We compare the results

with those obtained using independent data from the CryoSat-2 satellite radar altimeter. By
looking at near-synchronous data from when the orbit of the two satellites coincide over the
Arctic Ocean, and by comparing sea surface height maps from both sensors during the two years
of overlap (2018-2020) between the two missions, we find good agreement between the sea
surface height estimates, providing additional confidence that ICESat-2 can be used to infer
regional and seasonal polar sea surface height variability.

52 **1 Introduction**

53 Satellite observations of the Arctic Ocean have shown significant changes in ocean 54 circulation, fresh water storage and energy balance since at least the 1980s, (Armitage et al., 55 2020; Morison et al., 2012, 2021; Polyakov et al., 2017; Proshutinsky et al., 2019; Timmermans 56 & Marshall, 2020). Routine and accurate profiling of the sea surface height (SSH) in the Arctic is 57 needed to continue these crucial time-series and provide more detailed insights into these 58 changes. While we can reliably monitor the sea surface height of the open oceans at low-to-mid 59 latitudes using satellite altimetry data (IPCC, 2019), continuous and widespread measurements at 60 high-latitude ice-covered seas have remained limited. The main challenges are the reduced 61 coverage due to the low inclination orbit of most satellite altimeters, sea surface sampling limited 62 to narrow openings in the sea ice cover, and the need to accurately discriminate between sea ice 63 and ocean surface altimetry returns.

Measurements of Arctic SSH from satellite altimetry started with low resolution radar data collected by the European Space Agency's (ESA) ERS and Envisat radar missions (1995– 2010; Giles et al., 2012; Peacock & Laxon, 2004). However, the orbit inclination of these satellites limited measurements to 81.5° latitude. NASA's ICESat satellite, which operated between 2003 and 2009 (Zwally et al., 2002), offered higher resolution lidar data that improved

69	lead classification and SSH estimates (Kwok & Morison, 2011) while its orbit inclination
70	resulted in more extensive coverage of the Arctic Ocean. Since 2010, ESA's CryoSat-2 satellite
71	has been acquiring unfocussed synthetic aperture radar (SAR) altimetry data over the polar
72	regions. CryoSat-2's high orbit inclination and continuous data collection have enabled basin-
73	scale mapping of seasonal and interannual SSH variability up to 88° latitude (Wingham et al.,
74	2006). The SSH data from CryoSat-2 have been compared with Arctic tide gauge measurements
75	and ocean mass variations (e.g., GRACE) and basin-scale, monthly, estimates of dynamic ocean
76	topography (DOT; Armitage et al., 2016, 2018; Kwok & Morison, 2016) have been produced.
77	In September 2018, NASA launched the Ice, Cloud, and Land Elevation Satellite-2
78	(ICESat-2) laser altimetry mission, which has since been providing year-round profiling of the
79	Earth's surface up to 88° latitude (Neumann et al., 2019). The novel photon-counting Advanced
80	Topographic Laser Altimeter (ATLAS) on ICESat-2 provides high-resolution surface height
81	measurements across its six-beam configuration. For the polar oceans, the data collected by
82	ICESat-2 are currently being used to produce routine estimates of sea ice height, type (e.g.,
83	lead/ice), and freeboard (Kwok et al., 2020). The ICESat-2 processing algorithms utilize specular
84	returns to discriminate open-water leads from sea ice, and the laser's spatial resolution (~11 m
85	diameter footprint; Magruder et al., 2020) is significantly higher than that of CryoSat-2 (380 m
86	along-track and 1650 m across-track pulse limited footprint; Scagliola, 2013). Also,
87	contamination by off-nadir specular returns from up to 15 km across-track can potentially bias
88	CryoSat-2 surface height retrievals (Armitage & Davidson, 2014). On the other hand, laser
89	altimetry measurements are often hindered by the presence of clouds, which are otherwise
90	penetrated by radar. Measurements of sea ice height and freeboard by ICESat-2 have been
91	validated against coincident laser profiles collected during targeted underflights by NASA's

92	Operation IceBridge (OIB) airborne mission (Kwok et al., 2019) and the sea ice classification
93	algorithm has been shown to agree well with coincident imagery (R. Kwok et al., 2021; Petty et
94	al., 2021). At the time of writing, sea surface height measurements have yet to be compared
95	against independent height data.
96	As of August 2020, the orbit of CryoSat-2 has been modified as part of the CRYO2ICE
97	campaign, such that every 19 orbits (20 orbits for ICESat-2) the two satellites are aligned for
98	hundreds of kilometers over the Arctic Ocean, acquiring data along near-coincident ground
99	tracks with a minimum time difference of approximately three hours. In this study, we present a
100	first comparison of semi-synchronous along-track SSHA retrievals from ICESat-2 and CryoSat-2
101	from several CRYO2ICE profiles. We examine SSHA from individual ICESat-2 beams and
102	assess inter-beam range biases. We produce gridded SSHA composite maps of the Arctic Ocean
103	and examine the relative agreement of the monthly, seasonal, and multi-year SSHA from the two
104	altimeters. Daily/monthly gridded SSHA measurements over both polar oceans are planned to be
105	released as an official ICESat-2 data product (ATL21) in 2021, and this study offers an
106	examination of this type of composite SSHA data over the Arctic.

107 **2 Data and Methods**

108 2.1 ICESat-2 data

The ICESat-2 photon-counting laser altimeter transmits laser pulses split into a six-beam configuration of three beam pairs (each having a strong and a weak beam), where beam numbers 1, 3, and 5 identify the strong beams, and 2, 4, and 6 the weak beams (Neumann et al., 2019). The 10 kHz pulse repetition rate leads to a 0.7 m along-track separation between subsequent laser pulses of the ~11 m lidar footprint (Magruder et al., 2020). Among the ICESat-2 data 114 products, the Level 3A sea ice products ATL07 (sea ice height and type,

115	https://nsidc.org/data/ATL07) and ATL10 (freeboard, https://nsidc.org/data/ATL10) provide
116	along-track measurements for six individual ground tracks (targeted at reference ground tracks,
117	RGTs), and up to 16 satellite passes per day over both the Arctic and the Southern Ocean. The
118	along-track surface heights are generated by aggregating 150 geolocated signal photon heights
119	from the primary science Level 2A ATL03 data product (Neumann et al., 2019). ATL10 data
120	coverage is limited to areas that have an ice concentration $> 50\%$ (15% for ATL07), as inferred
121	from passive microwave satellite measurements, and up to 25 km distance from land. A full
122	description of the ATL07/10 products can be found in the Algorithm Theoretical Basis
123	Document (ATBD, Kwok et al., 2020) and recent changes to the algorithm are further discussed
124	in (Kwok et al., 2021). In this study we use release 003 (r003) ATL10 data.
125	In ATL10, the SSHA represents the measured sea surface elevation relative to a multi-
126	year mean sea surface (MSS, see Section 2.3) after various geophysical and atmospheric
127	corrections have been applied (see Table S1). Note that we adjust the solid earth tide correction
128	included in each ICESat-2 segment's SSHA from r003 ATL10 data to correct a discrepancy in
129	the permanent tide system. The adjustment is described in the supporting information (Text S1).
130	The SSHA is provided for each beam at three different length-scales: (1) the
131	<i>height_segment_height</i> variable where $ssh_flag = 1$ or 2 (height segments classified as sea
132	surface after radiometric classification as specular returns and height filtering), provides SSHA
133	measurements calculated from the Gaussian fit to the height distribution of 150 photons within a
134	segment (~7 m mean along-track SSH segment length for strong beams); (2) <i>lead_height</i> ,
135	expresses the weighted mean height from consecutive segments forming an individual lead; (3)
136	<i>beam refsurf height</i> , represents the SSHA for a ~10-km along-track section, calculated as the

Confidential manuscript submitted to Geophysical Research Letters

137	weighted mean of all leads within a given section for each beam, or linearly interpolated from
138	two adjacent sections, and smoothed using a 3-point point smoother. In subsequent analyses we
139	use (1) but note that ATL21 data products will be formed using (3) to be consistent with the
140	reference sea surface heights used to calculate freeboards (ATL10 and ATL20). This choice does
141	not introduce significant differences in the gridded SSHA estimates (not shown) but allows us to
142	take advantage of higher spatial resolution and of non-interpolated data when comparing results
143	with CryoSat-2.

144 *2.2 CryoSat-2 data*

145 We use data acquired by the SIRAL Ku band SAR altimeter in the SAR mode, one of 146 CryoSat-2's three modes of operation. We use intermediate Level 2 (L2) ice products processed 147 at Baseline-D (Meloni et al., 2020) and available from ESA's CryoSat-2 Science Server (https://science-pds.cryosat.esa.int/). L2 data provide geolocated heigh measurements above the 148 149 reference ellipsoid (WGS84) computed from each echo at intervals of approximately 300 meters. 150 The data are already corrected for instrument effects, propagation delays, measurement 151 geometry, and other geophysical effects (e.g., atmospheric delays and tides, see Table S1). 152 Waveform retracking is also already applied in L2 data and determined using a model-fitting 153 method to specular lead waveforms described by Giles et al. (2007). Further details and 154 information can be found in the CryoSat-2 Baseline D Product Handbook (ESA, 2019) and in 155 Meloni et al. (2020). Data coverage is controlled by the operational geographical mode mask for 156 SAR data (https://earth.esa.int/web/guest/-/geographical-mode-mask-7107) and updated weekly 157 to account for changes in sea-ice extent.

158 2.3 Mean sea surface (MSS)

177

159	To consistently compute the SSHA for CryoSat-2 we remove a mean sea surface height
160	from each ellipsoidal elevation from L2 data (<i>height_sea_ice_lead_20_ku</i> , which includes all
161	instrumental and geophysical corrections) by bilinearly interpolating MSS values from a 2.5 km
162	grid (Kwok et al., 2020 – https://zenodo.org/record/4294048) to the interval centroids. The MSS
163	grid and the interpolation approach are the same as those used in the ICESat-2 sea ice data
164	products. The MSS includes the geoid component and is in the mean-tide system.
165	2.4 SSHA data binning and gridding
166	In along-track comparisons for the CRYO2ICE campaign (Figure 1, Section 3.1), we first
167	identify measurement overlaps by selecting ICESat-2 SSHA segments from a given beam that
168	fall within the theoretical CryoSat-2 pulse-limited across-track footprint (± 825 m across-track
169	from the centroid of each footprint; Scagliola, 2013). We then bin individual SSHA segments for
170	ICESat-2 and SSHA intervals for CryoSat-2 in coincident 10-km sections and calculate the
171	simple mean value from all measurements within each bin (shown as stars in Figure 1). For each
172	profile we calculate the mean (μ) and standard deviation (SD) of the differences from all bins,
173	and the correlation coefficient (R) between the two datasets.
174	To generate composite maps of the Arctic Ocean SSHA, along-track data from ICESat-2
175	and CryoSat-2 are first reprojected from the WGS 84 (EPSG:4326) to the NSIDC Sea Ice Polar
176	Stereographic North coordinate system (EPSG:3411). The SSHA data are then gridded to the 25-

178 data acquired within a given time period. Finally, we apply to both datasets a mask based on the

km SSM/I polar stereographic grid by calculating the mean value within each grid cell for all

179 NSIDC Arctic regional mask, in order to limit our assessment to the Beaufort, Chukchi, East

180 Siberian, Laptev, Kara, Barents, and Greenland seas, and the Central Arctic (see Figure S1 and181 black dashed outline in maps shown in Figure 2-4).

182 **3 Results and discussion**

183 *3.1 Along-track CRYO2ICE SSHA comparison*

There have been 77 nominal orbit overlaps between ICESat-2 and CryoSat-2 since the 184 185 start of the CRYO2ICE campaign on 4 August 2020 (ICESat-2 RGT 606) and 11 November 186 2020 (ICESat-2 RGT 739), the date of the last ICESat-2 r003 ATL10 dataset available at 187 NSIDC. For some overlaps the data products are not available and for many other overlaps, data 188 are missing/invalid (e.g., because of cloud cover in ICESat-2). From the subset of available data, 189 we find 4 overlaps that extend for at least 400 km with >1000 valid sea surface height 190 segments/intervals. Most overlaps over the Arctic Ocean, including those in our subset, are with 191 ICESat-2's beam 1 (gt11). Note that the first three overlaps in our subset (Figure 1a-c) occur 192 within summer, and while there are possible benefits from a higher lead fraction and increased 193 number of SSH segments/intervals, we recognize that the presence of melt ponds due to snow 194 melt on sea ice may interfere with the sea surface type retrieval algorithms, especially in the mid-195 August data when melt ponds are thought to be more prevalent (Kwok et al., 2020; Tilling et al., 196 2020).

Figure 1 shows the along-track SSHA estimates for the four selected *CRYO2ICE* overlaps
(12 August to 22 September 2020). Of the four examples, three (14, 15 August and 22
September, Figure 1b-d) show mean differences of 0.01 m and one (12 August, Figure 1a) of –
0.03 m. The standard deviations are 0.02–0.03 m and the correlation coefficients (*R*) vary
between 0.83 and 0.90. The relative differences between 10-km SSHA sections are shown in

202 Figure S2 together with differences between geophysical corrections (i.e., tides and inverted

203 barometer). Note that applying the geophysical corrections is key when doing these comparisons,

as the lack of time-coincidence can cause significant (up to 20 cm) differences (Figure S2).

The larger (> 0.20 m) SSHA excursion seen in Figure 1b and smaller but still significant short-scale variability in the other profiles may be localized geoid features (e.g., associated to deep ocean ridges) that are not represented properly in the current MSS, and unlikely to be ocean circulation features.

210 Figure 1: CRYO2ICE along-track SSHA comparisons. Red dots represent ICESat-2 sea 211 surface segments, red stars show the mean value for 10-km sections. Blue dots represent 212 CryoSat-2 sea surface intervals and blue stars the mean value for the same 10-km sections as for 213 ICESat-2. The RGT number identifies the ICESat-2 reference ground track number. The date of 214 acquisition of both datasets (separated by ~3 hours) is shown for each panel. For each overlap we 215 report the mean difference (μ), the standard deviation (SD) of differences between the two 216 datasets, and the correlation coefficient R from the least-squares regression. Map insets show the 217 CryoSat-2 ground track in green and the extent of the overlap with ICESat-2 in red. The black + 218 symbol marks the beginning of the profile (left side in main panels).

- 219
- 220

3.2 ICESat-2 beam comparison

221 Preliminary analyses by the ICESat-2 Project Science Office (PSO) have suggested that 222 the ATLAS beams have different range biases and that these can vary through time -i.e. the 223 height profiles from the 6 beams are not yet fully calibrated/reconciled and centimeter-level 224 differences between beams remain. To understand the inter-beam range variability from SSHA 225 estimates we calculate the monthly mean SSHA value over the Arctic since the start of the 226 mission for the three strong beams independently (Figure 2a). The monthly SSHA estimate from 227 beam 1 presents the largest differences with respect to the two other strong beams (up to ~ 0.07 228 m in July 2019) while differences between beam 3 and beam 5 are consistently ≤ 0.02 m. 229 Correlation coefficients are 0.76, 0.66, and 0.93 for beam 1 – beam 3, beam 1 – beam 5, and 230 beam 3 – beam 5, respectively. In Figure 2b-d we show the spatial distribution of the beam-to-231 beam differences for a given month (January 2019, gray bar in Figure 2a), which show that 232 differences exhibit no obvious spatial correlation. This remains valid for all months since the 233 start of the mission. The same beam-to-beam differences are also shown as histograms in Figure 234 2e-g, further demonstrating the clear inter-beam bias associated with beam 1 (mean of -0.03 m 235 when compared to beam 3 and 5) and that differences between beam 3 and 5 are normally 236 distributed around a mean of 0.00 m with a standard deviation of 0.05 m. The significant larger 237 differences with beam 1 are also consistent with the findings of Brunt et al. (2021) estimated

238	over the interior ice sheets of Antarctica (beam 1-3: 0.039 m; 1-5: 0.036 m; 3-5: 0.003 m),
239	suggesting that these are sensor- or pointing solution-related.
240	For all of our subsequent analyses (Section 3.3 and 3.4), and until range differences
241	between beams are fully characterized, we opt to use just a single strong beam when estimating
242	Arctic SSHA. Based on the results presented above we select the middle strong beam (beam 3)
243	since, despite its lower transmitted energy level (~80% of beam 1 and 5), the steeper incidence
244	angle results in a stronger backscatter in the presence of highly reflective surfaces (e.g., leads)
245	consistently increasing the number of specular lead returns compared to other strong beams
246	(Kwok et al., 2021). This is currently our recommended strategy for the initial production and

247 release of ICESat-2 ATL21 data.

248

249 Figure 2: ICESat-2 beam comparison. a) Monthly mean for the Arctic Ocean calculated using 250 data from each beam. The cyan dashed bars mark months for which data do not cover the entire month, October 2018-beginning of science data acquisition on 14 October- and July 2019-data 251 252 between 1 and 8 July are not available due to satellite safe mode operations. The gray bar marks 253 the month for which data are shown in panel b-g. Correlation coefficients (R) between beams are 254 shown at the top. **b-d**) Maps showing the differences between beams for the month of January 255 2019. The black dashed line marks the extent of the area of interest. e-g) histograms showing the distribution of the differences presented in panels b-d. The black dash lines mark the mean (μ) 256 257 and σ is the standard deviation.

258

3.3 Monthly and multi-year SSHA comparison

260 In Figure 3a we compare monthly SSHA means calculated using ICESat-2 beam 3 to 261 those calculated using CryoSat-2 Level-2 data. We limit this comparison to the Central Arctic, 262 the area outlined by the green dashed line in Figure 3b, where we expect consistent year-round 263 ice cover and to exclude effects introduced by season-dependent changes in sea-ice extent and 264 different data coverage near the coastal regions. Further details for each monthly comparison 265 (mean, number of valid grid cells, number of data points) are provided in Table S2. A decrease in 266 mean SSHA is shown by both sensors during fall-winter months and is followed by a mean 267 SSHA increase during spring-summer months. Differences across all months between the two 268 sensors have a mean of 0.01 m (SD = 0.02 m), and the correlation coefficient from a least-269 squares regression (*R*) is 0.76 (slope = 0.95, intercept = -0.02 m). We find that up to 0.03 m of 270 the observed monthly SSHA differences, especially during fall/winter, are caused by differences 271 in the inverted barometer correction applied to each dataset. Our comparisons between heights 272 from ICESat-2 with those from CryoSat-2 show a better agreement than has been shown by 273 Brunt et al. (2021), who compared absolute ice height over the flat interiors of the Antarctic ice 274 sheet and found differences > 0.3 m. This larger discrepancy, however, is likely due to the much 275 greater penetration depth of the Ku band radar in firn compared to sea water.

We then compare the Arctic SSHA calculated from data spanning the two-year mission overlap, from November 2018 through October 2020. The ICESat-2 mean 2018-2020 SSHA in shown in Figure 3b and that from CryoSat-2 is presented in Figure 3c. Both maps show a positive SSHA in the southern Beaufort Sea, a strong negative anomaly in the Chukchi/Siberian seas and a weaker negative SSHA in Central Western Arctic, a spatial pattern consistent with recent positive phase in the Arctic Oscillation (Armitage et al., 2018; Morison et al., 2021). In Figure 3d we show a histogram of the differences between ICESat-2 and CryoSat-2 SSHA, while 283 a map of the SSHA differences is presented in Figure 3e, which shows the ICESat-2 SSHA to be 284 generally higher in the more marginal seas (Barents, Kara, East Siberian, and Chukchi) and 285 slightly lower in the Central Arctic. The marginal seas are areas of large SSH variability where 286 the different acquisition times between the two satellites can capture different parts of these 287 cycles (see Figure S3 for the standard deviation of each dataset, showing higher values in the 288 marginal seas) and can therefore explain much of these differences. Increased data acquisition 289 from both missions will enable a more reliable comparison of the mean SSHA from ICESat-2 290 and CryoSat-2.

291

295 (red) and CryoSat-2 (blue), with shaded areas representing one standard deviation from the

mean. **b-c**) Multi-year mean SSHA estimated using data acquired between November 2018 and October 2020. **d**) Histogram showing the distribution of the differences between ICESat-2 and CryoSat-2, also shown in map view in panel **e**). In d) the black dash line marks the mean (μ) and σ is the standard deviation. The black dashed line in e) marks the extent of the area of interest (data outside this line are masked out).

- 301
- 302 *3.4 Seasonal SSHA variations from ICESat-2*

303 In Figure 4 we present seasonal maps of Arctic SSHA for three-month periods starting in 304 October 2018 and ending in September 2020. The top row (Figure 4a-d) can be directly 305 compared to the bottom row (Figure 4e-h) to assess year-to-year differences, while from left to 306 right we track the temporal progression during two entire freezing-melting seasons (2018–2019 307 and 2019–2020). Note that variations in spatial coverage are dictated by variations in sea ice 308 extent since ICESat-2 ATL10 data are only provided for areas that have an ice concentration > 309 50%. Comparisons to CryoSat-2 for each three-month period are presented in Figure S4, and 310 confirm similar SSHA spatio-temporal variations providing some confidence in the capability of 311 ICESat-2 to produce consistent estimates of Arctic SSHA. 312 A positive SSHA centered on the Beaufort Sea (a strengthened Beaufort Gyre) is clearly 313 visible during winter months but less apparent in 2020 (see Figure 4 c-d compared to Figure 4 g-314 h). Large variability in the Siberian and Chukchi seas also corresponds to areas characterized by 315 high short-term SSH variability.

Figure 4: Seasonal mean SSHA maps from ICESat-2. OND = October, November, December;
JFM = January, February, March; AMJ = April, May, June; JAS = July, August, September. The
black dashed line marks the extent of the area of interest (data outside this line are masked out).

320

321 **5 Summary and conclusions**

322 Here we have presented a first examination of Arctic sea surface height anomalies 323 (SSHA) from NASA's ICESat-2 laser altimeter during the first two years of the mission (2018-324 2020). We analyzed beam-to-beam differences and provided an independent assessment of inter-325 beam range biases for the ATLAS altimeter. We compared the ICESat-2 SSHA estimates with 326 L2 sea ice data obtained from ESA's CryoSat-2 radar altimeter. We provided a brief description 327 of the necessary steps to reconcile the SSHA data from the two altimetry missions by imposing 328 the same permanent tide system, MSS, and geophysical corrections. A careful reconciliation of 329 the data is needed in future efforts to blend data from ICESat-2 with those from CryoSat-2 (and 330 potentially other airborne and space-borne altimetry missions).

331	The strong agreement between both the semi-synchronous along-track estimates from the
332	CRYO2ICE overlaps and basin-scale gridded SSHA estimates between the two sensors suggests
333	that the higher resolution ICESat-2 data can be used to estimate monthly/seasonal SSHA and
334	perhaps resolve 10 km-scale spatial variability in SSHA. The multi-year record of overlap also
335	opens up the potential to produce a new, high-resolution, blended, estimate of the mean sea
336	surface of the Arctic Ocean (and indeed Southern Ocean) which could better resolve what we
337	believe to be anomalously large SSHA spatial deviations shown in the CRYO2ICE overlaps.
338	Finally, our results provide a first evaluation of the approach used for the production of ICESat-2
339	SSHA gridded data products for the polar oceans (ATL21). Future work will extend this analysis
340	to the Southern Ocean, pending CRYO2ICE orbit maneuvers for the Southern Hemisphere.

341

342 Acknowledgments, Samples, and Data

- 343 ICESat-2 ATL10 data products were obtained from NSIDC and are available at
- 344 <u>http://nsidc.org/data/atl10</u>. CryoSat-2 Level-2 data (SIR_SAR_L2) were obtained from ESA at
- 345 <u>https://science-pds.cryosat.esa.int/#</u>. The mean sea surface grid is available at
- 346 <u>https://zenodo.org/record/4294048</u>.
- 347

348 References

- 349 Armitage, T. W. K., Bacon, S., & Kwok, R. (2018). Arctic Sea Level and Surface Circulation
- Response to the Arctic Oscillation. *Geophysical Research Letters*, 45(13), 6576–6584.
- 351 https://doi.org/10.1029/2018GL078386
- 352 Armitage, T. W. K., Bacon, S., Ridout, A. L., Thomas, S. F., Aksenov, Y., & Wingham, D. J.
- 353 (2016). Arctic sea surface height variability and change from satellite radar altimetry and
- 354 GRACE, 2003-2014: ARCTIC SSH VARIABILITY. Journal of Geophysical Research: Oceans,
- 355 *121*(6), 4303–4322. https://doi.org/10.1002/2015JC011579
- 356 Armitage, T. W. K., & Davidson, M. W. J. (2014). Using the Interferometric Capabilities of the
- 357 ESA CryoSat-2 Mission to Improve the Accuracy of Sea Ice Freeboard Retrievals. *IEEE*
- 358 Transactions on Geoscience and Remote Sensing, 52(1), 529–536.
- 359 https://doi.org/10.1109/TGRS.2013.2242082
- 360 Armitage, T. W. K., Manucharyan, G. E., Petty, A. A., Kwok, R., & Thompson, A. F. (2020).
- 361 Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss. *Nature Communications*,
- 362 *11*(1), 761. https://doi.org/10.1038/s41467-020-14449-z

- 363 Brunt, K. M., Smith, B. E., Sutterley, T. C., Kurtz, N. T., & Neumann, T. A. (2021).
- 364 Comparisons of Satellite and Airborne Altimetry With Ground-Based Data From the Interior of
- 365 the Antarctic Ice Sheet. *Geophysical Research Letters*, 48(2).
- 366 https://doi.org/10.1029/2020GL090572
- 367 Giles, K.A., Laxon, S. W., Wingham, D. J., Wallis, D. W., Krabill, W. B., Leuschen, C. J.,
- 368 McAdoo, D., Manizade, S. S., & Raney, R. K. (2007). Combined airborne laser and radar
- altimeter measurements over the Fram Strait in May 2002. *Remote Sensing of Environment*,
- 370 *111*(2–3), 182–194. https://doi.org/10.1016/j.rse.2007.02.037
- 371 Giles, Katharine A., Laxon, S. W., Ridout, A. L., Wingham, D. J., & Bacon, S. (2012). Western
- Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. *Nature Geoscience*, 5(3), 194–197. https://doi.org/10.1038/ngeo1379
- 374 Kwok, R., Kacimi, S., Markus, T., Kurtz, N. T., Studinger, M., Sonntag, J. G., Manizade, S. S.,
- 375 Boisvert, L. N., & Harbeck, J. P. (2019). ICESat-2 Surface Height and Sea Ice Freeboard
- 376 Assessed With ATM Lidar Acquisitions From Operation IceBridge. *Geophysical Research*
- 377 *Letters*, 46(20), 11228–11236. https://doi.org/10.1029/2019GL084976
- 378 Kwok, R., Kacimi, S., Webster, M. A., Kurtz, N. T., & Petty, A. A. (2020). Arctic Snow Depth
- and Sea Ice Thickness From ICESat-2 and CryoSat-2 Freeboards: A First Examination. Journal
- 380 of Geophysical Research: Oceans, 125(3). https://doi.org/10.1029/2019JC016008
- 381 Kwok, R., & Morison, J. (2011). Dynamic topography of the ice-covered Arctic Ocean from
- 382 ICESat: DYNAMIC TOPOGRAPHY OF ARCTIC OCEAN. Geophysical Research Letters,
- 383 38(2), n/a-n/a. https://doi.org/10.1029/2010GL046063
- 384 Kwok, R., Petty, A. A., Bagnardi, M., Kurtz, N. T., Cunningham, G. F., Ivanoff, A., & Kacimi,
- 385 S. (2021). Refining the sea surface identification approach for determining freeboards in the
- 386 ICESat-2 sea ice products. *The Cryosphere*, *15*(2), 821–833. https://doi.org/10.5194/tc-15-821-
- 387 2021
- 388 Kwok, Ron, & Morison, J. (2016). Sea surface height and dynamic topography of the ice-
- covered oceans from CryoSat-2: 2011–2014. *Journal of Geophysical Research: Oceans*, 121(1),
 674–692. https://doi.org/10.1002/2015JC011357
- 390 6/4-692. https://doi.org/10.1002/2015JC01135/ 201 Kyyak Ban Betty A Cymningham C E Hanagak D W Iyan
- Kwok, Ron, Petty, A., Cunningham, G. F., Hancock, D. W., Ivanoff, A., Wimert, J. T., Bagnardi,
 M., & Kurtz, N. (2020). *Algorithm Theoretical Basis Document (ATBD) For Sea Ice Products*.
- Mi., & Kuitz, N. (2020). Algorithm Theoretical Basis Document (ATBD) For sea Ice Froducts
 Magruder, L. A., Brunt, K. M., & Alonzo, M. (2020). Early ICESat-2 on-orbit Geolocation
- Validation Using Ground-Based Corner Cube Retro-Reflectors. *Remote Sensing*, 12(21), 3653.
- 395 https://doi.org/10.3390/rs12213653
- 396 Meloni, M., Bouffard, J., Parrinello, T., Dawson, G., Garnier, F., Helm, V., Di Bella, A.,
- 397 Hendricks, S., Ricker, R., Webb, E., Wright, B., Nielsen, K., Lee, S., Passaro, M., Scagliola, M.,
- 398 Simonsen, S. B., Sandberg Sørensen, L., Brockley, D., Baker, S., ... Mizzi, L. (2020). CryoSat
- 399 Ice Baseline-D validation and evolutions. *The Cryosphere*, 14(6), 1889–1907.
- 400 https://doi.org/10.5194/tc-14-1889-2020
- 401 Morison, J., Kwok, R., Dickinson, S., Andersen, R., Peralta-Ferriz, C., Morison, D., Rigor, I.,
- 402 Dewey, S., & Guthrie, J. (2021). The Cyclonic Mode of Arctic Ocean Circulation. *Journal of* 403 *Physical Oceanography*. https://doi.org/10.1175/JPO-D-20-0190.1
- 404 Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen, R., & Steele, M.
- 405 (2012). Changing Arctic Ocean freshwater pathways. *Nature*, 481(7379), 66–70.
- 406 https://doi.org/10.1038/nature10705
- 407 Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M.,
- 408 Cavanaugh, J., Fernandes, S. T., Hancock, D. W., Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J.,

- 409 Luthcke, S. B., Magruder, L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., ... Thomas,
- 410 T. C. (2019). The Ice, Cloud, and Land Elevation Satellite 2 mission: A global geolocated
- 411 photon product derived from the Advanced Topographic Laser Altimeter System. *Remote*
- 412 Sensing of Environment, 233, 111325. https://doi.org/10.1016/j.rse.2019.111325
- 413 Peacock, N. R., & Laxon, S. W. (2004). Sea surface height determination in the Arctic Ocean
- 414 *from ERS altimetry*. 14.
- 415 Petty, A. A., Bagnardi, M., Kurtz, N., Tilling, R., Fons, S., Armitage, T., Horvat, C., & Kwok, R.
- 416 (n.d.). Assessment of ICESat-2 sea ice surface classification with Sentinel-2 imagery:
- 417 Implications for freeboard and new estimates of lead and floe geometry. Earth and Space
- 418 *Science*, *n/a*(n/a), e2020EA001491. https://doi.org/10.1029/2020EA001491
- 419 Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C.,
- 420 Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A.,
- 421 Morison, J., Rember, R., & Yulin, A. (2017). Greater role for Atlantic inflows on sea-ice loss in
- 422 the Eurasian Basin of the Arctic Ocean. *Science*, *356*(6335), 285–291.
- 423 https://doi.org/10.1126/science.aai8204
- 424 Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M. -L., Williams, W., Zimmermann,
- 425 S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G.
- 426 E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S. -H., Cho, K. -H.,
- 427 Tateyama, K., & Zhao, J. (2019). Analysis of the Beaufort Gyre Freshwater Content in 2003–
- 428 2018. Journal of Geophysical Research: Oceans, 124(12), 9658–9689.
- 429 https://doi.org/10.1029/2019JC015281
- 430 Scagliola, M. (2013). CryoSat footprints-Aresys Technical Note. SAR-CRY2-TEN-6331,
- 431 Aresys/ESA, Italy.
- 432 Tilling, R., Kurtz, N. T., Bagnardi, M., Petty, A. A., & Kwok, R. (2020). Detection of Melt
- 433 Ponds on Arctic Summer Sea Ice From ICESat-2. *Geophysical Research Letters*, 47(23).
- 434 https://doi.org/10.1029/2020GL090644
- 435 Timmermans, M., & Marshall, J. (2020). Understanding Arctic Ocean Circulation: A Review of
- 436 Ocean Dynamics in a Changing Climate. *Journal of Geophysical Research: Oceans*, 125(4).
 437 https://doi.org/10.1029/2018JC014378
- 438 Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-
- 439 Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L.,
- 440 Rostan, F., Viau, P., & Wallis, D. W. (2006). CryoSat: A mission to determine the fluctuations in
- Earth's land and marine ice fields. *Advances in Space Research*, 37(4), 841–871.
- 442 https://doi.org/10.1016/j.asr.2005.07.027
- 443 Zwally, H. J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., Bufton, J., Dezio,
- 444 J., Hancock, D., Harding, D., Herring, T., Minster, B., Quinn, K., Palm, S., Spinhirne, J., &
- 445 Thomas, R. (2002). ICESat's laser measurements of polar ice, atmosphere, ocean, and land.
- 446 Journal of Geodynamics, 34(3–4), 405–445. https://doi.org/10.1016/S0264-3707(02)00042-X
- 447 IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).

@AGUPUBLICATIONS

Geophysical Research Letters (GRL)

Supporting Information for

Sea Surface Height Anomalies of the Arctic Ocean From ICESat-2: A First Examination and Comparisons with CryoSat-2

M. Bagnardi^{1,2}, N. Kurtz¹, A. A. Petty^{1,3}, R. Kwok⁴

¹Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Beltsville, MD, United States.

²ADNET Systems, Inc., Bethesda, MD, United States.

³Earth System Interdisciplinary Center, University of Maryland, College Park, MD, United States.

⁴Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, United States.

Contents of this file

Text S1 Figures S1 to S4 Tables S1 to S2

Introduction

This supplement contains text, figures and tables in support of the main document.

Text S1 describes an adjustment needed to correct a discrepancy in the permanent tide system between geophysical corrections applied to ICESat-2 release 003 ATL10 data.

Figure S1 shows a map of the Arctic Ocean with the names of the main seas and the extent of the NSIDC Sea Ice Index Arctic regional mask used to define the area of interest.

Figure S2 is complementary to Figure 1 and shows the differences between SSHA estimates from ICESat-2 and CryoSat-2 for four *CRYO2ICE* overlaps. This figure also highlights the importance of geophysical corrections when comparing non-synchronous

SSHA measurements by showing the differences introduced by the ~3-hour time lag between the passes of the two satellites.

Figure S3 shows the variability (standard deviation) and number of data points (segment/interval count) associated with each dataset used to produce the multi-year (2018-2020) SSHA composite maps shown in Figure 3b – ICESat-2 – and Figure 3c – CryoSat-2.

Figure S4 shows SSHA differences between ICESat-2 and CryoSat-2 in three-month composites for the duration of the mission overlap. The figure is complementary to Figure 4 and used to assess the ability of ICESat-2 in tracking seasonal and inter-annual changes in SSHA.

Table S1 lists all the geophysical corrections that are applied to obtain SSHA estimates from ICESat-2 and CryoSat-2 and provides information on the tidal and atmospheric models used for each sensor.

Table S2 provides the statistics for monthly SSHA estimates for ICESat-2 and CryoSat-2 used to generate the time-series plot presented in Figure 3a. The table also provides the count of the total number of segments/intervals used to generate each monthly estimate, and the number of valid grid cell in each monthly SSHA composite.

Text S1: Permanent tide adjustment for ICESat-2

The ICESat-2 release 003 (r003) ATL03 photon heights used for the production of r003 ATL07/10 data products are corrected for the solid earth tide (SET) and include both the time-dependent (periodic) and the time-independent (permanent) components, so that ellipsoidal heights are in a tide-free system. However, the mean sea surface (MSS) grid used to estimate sea surface height anomalies (SSHA) in ATL07/10 (see Section 2.3) is in the mean-tide system (i.e., it includes the distortion of the geoid due to the permanent tide). While this inconsistency will be rectified in future ICESat-2 data releases (starting from r004 all data will be in a tide-free system), in this study we adjust the SET correction for ICESat-2 by reintroducing the time-independent component as follows:

 $SSHA_{mean-tide} = SSHA_{r003} + 0.060292 - 0.180873 \sin^2 \varphi$

where the degree-2 Love number, h2=0.609 is implicit in the equation (IERS2010 Conventions) and φ is the latitude in radians.

The approach described above makes sure that SSHA estimates from both ICESat-2 and CryoSat-2 are in the same permanent tide system (mean tide system), enabling SSHA comparative analyses.

Figure S1. Map of the Arctic Ocean showing the extent of the area of interest in blue.

Figure S2: *CRYO2ICE* differences between ICESat-2 and CryoSat-2. Black stars show the SSHA difference (ICESat-2 – CryoSat-2) calculated for 10-km sections presented in Figure 1. Red stars show differences in geophysical corrections (ocean tide, ocean long period tide, pole tide, solid earth tide, ocean loading, and inverted barometer) for the same 10-km segments. These differences are mainly due to the time difference between acquisitions (~3 hours), and to a minor extent to the different tidal/IB models, and do not include other sensor-specific corrections for instrumental and atmospheric effects (e.g., wet and dry troposphere) that are applied to SSHA estimates. The RGT number identifies the ICESat-2 reference ground track number. For each overlap we report the SSHA (in black) and geophysical corrections (in red) mean difference (μ). Map insets show the CryoSat-2 ground track in green and the extent of the overlap with ICESat-2 in red. The black + symbol marks the beginning of the overlap (left side of main panel).

Figure S3. Maps showing (top) the standard deviation of SSHA measurements and (bottom) the number of data segments/intervals in each grid cell for the entire mission overlap (November 2018 – October 2020). (left) ICESat-2 and (right) CryoSat-2.

Figure S4: Seasonal mean SSHA difference maps (ICESat-2 – CryoSat-2). OND = October, November, December; JFM = January, February, March; AMJ = April, May, June; JAS = July, August, September. The black dashed line marks the extent of the area of interest (data outside this line are masked out).

Correction	ICESat-2		CryoSat-2	
Solid Earth Tide	IERS 2010 conventions	Υ	Cartwright model	Y
Ocean Loading	GOT 4.8 ocean tide model	Υ	FES 2004 model	Y
Ocean Tides	GOT 4.8 ocean tide model	Υ	FES 2004 model	Y
Long Period Equilib. Tide	GOT 4.8 ocean tide model	Υ	FES 2004 model	Y
Solid Earth Pole Tide	IERS 2010 conventions	Υ	SSALTO	Y
Ocean Pole Tide	N/A	Ν		?
Inverted Barometer	From sea level pressure (ATL09)	Y	CNES SSALTO (ECMWF)	Y
Total column atm. delay	Luthcke & Petrov, ATBD ATL03a	Y	N/A	Ν
Dry troposphere	N/A	Ν	CNES SSALTO (ECMWF)	Y
Wet troposphere	N/A	Ν	CNES SSALTO (ECMWF)	Y
Ionosphere	N/A	Ν	GIM/Bent model	Y

Table S1. Geophysical and atmospheric corrections applied to each dataset. Y= yes, N=no, ?=unknown.

DATE	IS-2 SSHA MEAN	CS-2 SSHA MEAN	IS-2 SSHA GRID COUNT	CS-2 SSHA GRID COUNT	ICESAT-2 N. SEGMENTS	CRYOSAT-2 N. INTERVALS	MEAN (SD) OF DIFFERENCES IS-2 – CS-2
201811	-0.133	-0.128	3,084	4,291	651,527	870,650	-0.010 (0.061)
201812	-0.183	-0.173	3,218	4,356	484,112	883,514	-0.012 (0.065)
201901	-0.189	-0.173	3,170	4,402	546,014	808,559	-0.020 (0.066)
201902	-0.169	-0.190	2,756	4,408	520,729	686,661	0.015 (0.075)
201903	-0.165	-0.202	2,581	4,370	678,093	672,523	0.029 (0.054)
201904	-0.120	-0.159	3,131	4,312	964,540	707,937	0.033 (0.061)
201905	-0.148	-0.180	3,891	4,433	819,505	1,111,238	0.032 (0.049)
201906	-0.128	-0.128	3,748	4,421	1,476,440	2,352,078	0.008 (0.077)
201907	-0.072	-0.083	3,226	4,404	2,079,310	3,131,588	0.012 (0.049)
201908	-0.105	-0.119	3,859	4,403	2,830,539	2,607,746	0.016 (0.045)
201909	-0.129	-0.121	3,932	4,290	1,180,395	1,280,231	-0.007 (0.059)
201910	-0.090	-0.078	3,767	4,397	859,163	797,832	-0.011 (0.047)
201911	-0.113	-0.113	3,600	4,415	733,714	944,903	0.001 (0.050)
201912	-0.126	-0.132	3,798	4,416	646,454	959,979	0.005 (0.059)
202001	-0.110	-0.119	3,374	4,395	648,188	819,654	0.007 (0.062)
202002	-0.158	-0.176	2,998	4,377	573,857	680,526	0.016 (0.058)
202003	-0.144	-0.182	3,192	4,397	620,692	748,099	0.036 (0.056)
202004	-0.156	-0.204	3,583	4,388	982,488	897,103	0.047 (0.058)
202005	-0.110	-0.167	3,726	4,399	955,037	1,363,667	0.057 (0.066)
202006	-0.109	-0.135	4,071	4,443	2,200,551	2,602,271	0.026 (0.070)
202007	-0.138	-0.098	4,224	4,415	7,609,865	3,117,697	-0.039 (0.038)
202008	-0.102	-0.100	3,718	4,191	4,466,378	2,652,584	-0.001 (0.047)
202009	-0.140	-0.153	3,002	3,640	898,732	1,193,840	0.011 (0.056)
202010	-0.106	-0.137	3,411	4,130	563,092	1,940,856	0.031 (0.072)

Table S2. Monthly mean SSHA for the Central Arctic (see Figure 3a) from ICESat-2 and CryoSat-2. YYYYMM = year and month. Mean values are in meters. Grid cell counts are calculated as the total number of 25-km grid cells within the area of interest containing at least one data point.