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Abstract

In our previous study (Moon et al., 2020), we developed a Long Short Term Memory (LSTM) deep-learning model for geomag-

netic quiet days to perform effective long-term predictions for the regional ionosphere. However, their model could not predict

geomagnetic storm days effectively at all. This study developed an LSTM model suitable for geomagnetic storms using the new

training data set and re-designing input parameters and hyper-parameters. We collected 131 days of geomagnetic storm cases

from 1 January 2009 to 31 December 2019, and obtained the IMF Bz, Dst, Kp, and AE indices related to the geomagnetic

storm corresponding to each storm date. These indices and F2 parameters of Jeju ionosonde (33.43@N, 126.30@E) were used as

input parameters for the LSTM model. To test and verify the predictive performance and the usability of the LSTM model for

geomagnetic storms developed in this manner, we created and diagnosed the 0.5, 1, 2, 3, 6, 12, and 24-hour predictive LSTM

models. According to the results of this study, the LSTM storm model for 24-hour developed in this study achieved a predictive

performance during the geomagnetic storms about 32% (10%), 34% (17%), and 37% (5%) better in RMSE of foF2 (hmF2) than

the LSTM quiet model (Moon et al., 2020), SAMI2, and IRI-2016 models. We propose that the short-term predictions of less

than 3 hours are sufficiently competitive compared to other traditional ionospheric models. Thus, this study suggests that our

model can be used for short-term prediction and monitoring of the regional mid-latitude ionosphere.
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Figure S1-S8

Introduction

This supporting information provides the characteristics of the geomagnetic storm events applied to the new
LSTM algorithm. The figures (Figure S1-S8) below show detailed information of 61 trained storm events as
explained in the text. In particular, you can see what type of ionosphere storm by P/N ratio was in each
event.

Figure S1. Ionospheric storm types for foF2 of training events #1 to #15. The solid black line is the
observed data at the Jeju location during each event. The symbol lines indicate the 10-day average reference
lines during quiet periods. The red and blue areas indicated a positive and negative storm. If the P/N ratio
is greater than 1 in a specific event, the positive storm is the dominant one, and if it is less than 1, the
negative storm is the dominant event.

2
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Figure S2. The ionospheric storm types for training events #16 to #30. Same formats in Figure S1.
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Figure S3. The ionospheric storm types for training events #31 to #45. Same formats in Figure S1.

4



P
os

te
d

on
22

N
ov

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
50

63
73

.1
—

T
h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure S4. The ionospheric storm types for training events #46 to #61. Same formats in Figure S1.
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Figure S5. Ionospheric storm types for hmF2 of training events #1 to #15. Same formats in Figure S1.
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Figure S6. Ionospheric storm types for hmF2 of training events #16 to #30. Same formats in Figure S1.
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Figure S7. Ionospheric storm types for hmF2 of training events #31 to #45. Same formats in Figure S1.

8



P
os

te
d

on
22

N
ov

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
50

63
73

.1
—

T
h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure S8. Ionospheric storm types for hmF2 of training events #46 to #61. Same formats in Figure S1.
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Key Points: 

 We developed a new LSTM specialized for geomagnetic storm periods by training 

examples of past geomagnetic storm events. 

 Our LSTM storm model improves performance for foF2 (hmF2) by about 32%, 34%, and 

37% (10%, 17%, and 5%) compared to the LSTM quiet, SAMI2, and IRI-2016 models.  

 We propose that the prediction model less than 3 hours using the deep-learning method 

can effectively forecast the ionosphere state. 
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Abstract 

 In our previous study (Moon et al., 2020), we developed a Long Short Term Memory 

(LSTM) deep-learning model for geomagnetic quiet days (LSTM-quiet) to perform effective 

long-term predictions for the regional ionosphere. However, their model could not predict 

geomagnetic storm days effectively at all. This study developed an LSTM model suitable for 

geomagnetic storms using the new training data set and re-designing input parameters and hyper-

parameters. We collected 131 days of geomagnetic storm cases from 1 January 2009 to 31 

December 2019, provided by the Japan Meteorological Agency's Kakioka Magnetic Observatory, 

and obtained the IMF Bz, Dst, Kp, and AE indices related to the geomagnetic storm 

corresponding to each storm date from the OMNI database. These indices and F2 parameters 

(foF2 and hmF2) of Jeju ionosonde (33.43˚N, 126.30˚E) were used as input parameters for the 

LSTM model. To test and verify the predictive performance and the usability of the LSTM 

model for geomagnetic storms developed in this manner, we created and diagnosed the 0.5, 1, 2, 

3, 6, 12, and 24-hour predictive LSTM models. According to the results of this study, the LSTM 

storm model for 24-hour developed in this study achieved a predictive performance during the 

geomagnetic storms about 32% (10%), 34% (17%), and 37% (5%) better in RMSE of foF2 

(hmF2) than the LSTM quiet model (Moon et al., 2020), SAMI2, and IRI-2016 models. We 

propose that the short-term predictions of less than 3 hours are sufficiently competitive compared 

to other traditional ionospheric models. Thus, this study suggests that our model can be used for 

short-term prediction and monitoring of the regional mid-latitude ionosphere. 
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1 Introduction 

 In the 20
th

 century, when radio communication started to be used, it became essential to 

monitor and predict changes in peak frequency (foF2) and peak height (hmF2) of F2 layer 

among the various ionospheric parameters. Especially, the long-range high frequency (HF) 

communication is dominantly affected by reflection from the ionosphere F2 layer. Although 

numerous models have been developed to simulate and predict changes in the ionosphere of the 

F2 layer, it is relatively recent that the deep-learning technology began to be utilized in the 

ionospheric models. (e.g., Williscroft & Poole, 1996; Altinay et al., 1997; McKinnell & Poole, 

2000; Wintoft & Cander, 2000; Poole & Poole, 2002; Oyeyemi & Poole, 2005; Yue et al., 2006; 

Nakamura et al., 2007; Athieno et al., 2017; Wichaipanich et al., 2017; Gowtam & Ram, 2017; 

Hu & Zhang, 2018; Ram et al., 2018; Fan et al., 2019; Moon et al., 2020; Kim et al., 2020). 

 Ionospheric modeling studies using artificial neural network (ANN), the basic deep-

learning method, began in the mid-1990s. Williscroft & Poole (1996) developed a simple ANN 

model trained with foF2 observed over ten years in Grahamstown Ionosonde (33.3°S, 26.5°E), 

sunspot number, and Ap index. However, the model was limited to predict only noontime foF2 

daily. Altinay et al. (1997) developed a 1-hour prediction model for foF2 using a multi-layer 

perceptron layer model. Their ANN model was trained with the 10-year foF2 data observed by 

Poitiers ionosonde in central Europe and Kp indices. On average, their model predicted foF2 

within a factor of two for geomagnetic quiet days, using only the Kp index as a space 

environment index. Two studies developed ANN models utilizing data from Grahamstown 

Ionosonde for 24 years and predicted foF2 after 1, 2, 3, 4, and 25 hours only for geomagnetically 

quiet days (McKinnell & Poole, 2000; Poole & Poole, 2002). Later, Oyeyemi & Poole (2005) 

extended the ANN model using 59 global ionosonde data from 1964 to 1986, with more input 
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parameters, such as the day number (day of the year), hour, sunspot number, Ap index, the 

meridian angle, magnetic dip angle, magnetic declination angle, and solar zenith angle. Their 

model improved the prediction performance by 15~16%, but the performance for geomagnetic 

storms was not presented. Yue et al. (2006) developed an ANN model capable of long-term 

prediction of foF2 by training it with 19 ionosonde data located in the Asia/Pacific region. 

However, it was also a model that could only predict the foF2 parameter accurately during 

geomagnetic quiet days. More recently, Wichaipanich et al. (2017) presented a neural network 

(NN) model for foF2 by utilizing data from three ionosonde stations near the magnetic equator of 

Southeast Asia. The model showed better predictive performance for the RMSE of foF2 in 

Chiang Mai, Chumphon, and Kodotabang than the IRI model, but their results were also 

analyzed only on geomagnetically quiet days. All of these neural network models have focused 

on predicting the foF2 parameter only for geomagnetically quiet conditions.  

 There have also been studies that developed NN models including geomagnetic storm 

cases. Wintoft & Cander (2000) developed an NN model for foF2 prediction by using Slough 

ionosonde (51.5°N, 0.6°W) data and the AE index as an input parameter. The model calculated 

the hourly prediction values from 1 hour to 25 hours later. Nakamura et al. (2017) developed the 

foF2 predictive ANN model using the Kokubunji ionosonde (35.71°N, 139.49°E) data in Japan 

and the local K index as an input parameter. Athieno et al. (2017) developed a similar ANN 

model by using 21-year data from Resolute (74.7°N, 265.1°E) located at the polar cap region. 

The model was limited to hourly prediction and its input parameters included the day number, 

hour, polar cap index, Ap index, and F10.7 index values. Fan et al. (2019) used an Elman neural 

network (ENN) algorithm different from ANN and tested a short-term foF2 prediction during the 

geomagnetic storm. The ENN algorithm is more advantageous for time-series analysis in which 
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it stores the past state that it may compensate for the weak points of ANN. All of these models 

attempted to predict foF2 including geomagnetic storm cases, but hmF2 was not attended.  

 A very few studies dealt with both foF2 and hmF2 in the development of NN models. 

Gowtam & Ram (2017) developed an ANN-based model that can predict both foF2 and hmF2 by 

using GPS radio-occultation (RO) observation data from the Formosa Satellite Mission 3 

(FORMOSAT-3) - the Constellation Observing System for Meteorology, Ionosphere, and 

Climate (COSMIC) satellites. The model was trained with inputs neutral wind field information 

of the Horizontal Wind Model – 14 (HWM14) model, in addition to the usual input parameters, 

F10.7 and Ap index. However, the model results of their study were also limited to geomagnetic 

quiet days. Ram et al. (2018) improved the ANN-based model by using data from the 

Challenging Minisatellite Payload (CHAMP), the Gravity Recovery and Climate Experiment 

(GRACE) RO, and global ionosonde network together. Because these ANN-based models can 

not consider past sata for a specific period from the present, the prediction ability may not be 

appropriate for phenomena that are affected by the previous state further back than the specific 

period.  

 To overcome the disadvantage of the ANN algorithm, a technique is needed to 

memorize past data and reflect them in prediction, such as the long-short term memory (LSTM) 

algorithm. Hu & Zhang (2018) used a bi-LSTM technique to memorize data characteristics in 

both forward and backward directions, and developed a model for 1 hour hmF2 prediction. Our 

previous work (Moon et al., 2020) predicted both foF2 and hmF2 parameters using the LSTM 

model. Kim et al. (2020) assimilated the F2 parameter predicted from Moon et al. (2020) into a 

physics-based model to predict the mid-latitude ionosphere up to 24 hours. Although the LSTM 
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based model showed reasonably good predictive performance on geomagnetically quiet days, the 

model prediction was poor for geomagnetic storm days. The reason for poor prediction for 

geomagnetic storm days may be due to the fact that the training data for the LSTM model were 

obtained mostly for geomagnetic quiet days so that the model was biased to the quiet condition.  

 Therefore, in this study, we attempt to overcome the problems of the new LSTM model 

during geomagnetic storms reported in the previous study (Moon et al., 2020). For this purpose, 

we collected 69 geomagnetic storm events from 1 January 2009 to 31 December 2019, 

considering the period in which data on Jeju ionosonde (33.43˚N, 126.30˚E) in South Korea can 

be used. The new LSTM model was trained with geomagnetic activity input parameters, 

including the interplanetary magnetic field (IMF) Bz component, Dst, Kp, and AE indices. In 

this way, we have developed the new LSTM model that applies only to storm periods. In 

addition, we have re-modeled different LSTM models specialized for 0.5, 1, 2, 3, 6, 12, and 24-

hour prediction, considering that the performance of the LSTM model varies depending on the 

prediction target. 

 In this study, we present the results of the short-term prediction for foF2 and hmF2 

during the geomagnetic storms and discuss the limitations of rapidly changing ionosphere states. 

Section 2 provides a detailed description of the LSTM algorithm and data used in this study for 

the geomagnetic storm cases. Section 3 presents the LSTM model results, and section 4 discusses 

the limitations and possibilities of predicting the rapidly changes ionosphere during storm times. 

Finally, section 5 summarizes and concludes our study. 
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2 Methodology 

2.1 Long-Short Term Memory (LSTM) 

 Our model has a similar design to the LSTM model developed previously (Moon et al., 

2020). Figures 1 (a) and (b) show diagrams of the new LSTM model developed in this study. 

Figure 1 (a) shows the detailed calculation flow included in one LSTM cell. The LSTM model 

consists of three steps, and each part has its own characteristics (e.g., Hochreiter & Schmidhuber, 

1997). The first step here is the “forget gate layer” that controls what data is left behind from the 

previously calculated output (ℎ𝑡−1) and the current input data (𝑥𝑡). Here, the used sigmoid 

function (σ) receives the previous output and the present input and gives a weight by getting a 

value of 0 to 1. A value of σ closer to 0 means that the result of this function does not affect 

future results, and conversely, a value closer to 1 means the opposite. The sigmoid function (σ) 

expressed by Equation (1) is multiplied by the calculated value, 𝑓𝑡, by the LSTM cell state (𝐶𝑡−1) 

to determine which value to discard. 

𝑓𝑡 = σ(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                          (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                          (2) 

𝐶̃𝑡 = tanh⁡(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                        (3) 

 The second is the “input gate layer” step, which determines whether new information 

will be stored in the cell state. In this step, it decides which values (𝑖𝑡) to update by the sigmoid 

layer (Equation 2), and generates a new candidate value (𝐶̃𝑡) that can be added to the cell state 

(𝐶𝑡−1) through the nonlinear function tanh layer (Equation 3), where W is the weight and b is 

the bias. As shown in Equation 4, the new candidate value (𝐶̃𝑡) is multiplied by the updated 

information (𝑖𝑡)⁡and added to the existing cell state (𝑓𝑡 × 𝐶𝑡−1)⁡calculated in the previous step. 
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Here, this process solves the vanishing gradient problem raised in the Recurrent Neural Network 

(RNN) model by adding the updated value to the existing value. 

𝐶𝑡 = (𝑓𝑡 × 𝐶𝑡−1) + (𝑖𝑡 × 𝐶̃𝑡)                          (4) 

𝑜𝑡 = σ(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                         (5) 

ℎ𝑡 = 𝑜𝑡 × tanh⁡(𝐶𝑡)                            (6) 

 In the final step, the “output gate layer,” it decides what to output. In other words, it is 

the process of determining what value to output (𝑜𝑡) from the current state (ℎ𝑡−1) and input value 

(𝑥𝑡) in the sigmoid function (Equation 5). The updated cell state (𝐶𝑡) is normalized to a value 

between -1 and 1 through the tanh function and then is multiplied by the output value (𝑜𝑡) from 

the sigmoid function (Equation 6). Through this overall process in a one LSTM cell, we can 

obtain the result value (ℎ𝑡) at the current time t. This single-cell serves as one hidden layer, and 

the optimal number was found by adjusting from 2 to 50 in 2 intervals in this study. 

2.2 Training, Validation, and Test Data Sets 

 Previous studies (Moon et al., 2020; Kim et al., 2020) performed good predictions 

during geomagnetically quiet periods, but did not predict well during geomagnetic storms. It was 

pointed out that most of the long-term training data included geomagnetically quiet days. 

Actually, during the five-year training period used in Moon et al. (2020), there were only 57 

cases and 105 days of geomagnetic storms. For the new LSTM we collected measured data under 

geomagnetic storm condition for a longer period of time, and excluded data for quiet days. We 

searched for geomagnetic storm events on the Japan Meteorological Agency/Kakioka Magnetic 

Observatory website (kakioka-jma.go.jp/en/) during the period when Jeju ionosonde data were 

available (from 1 January 2010 to August 2017, for a total of 7.7 years). We were able to find a 
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total of 71 events (138 days) associated with available ionosonde data during this period, as 

shown in Table 1. We divided these events into a training and validation set at a ratio of 9:1 to 

check the performance of the model. In addition, we used Bz, AE, Dst, and Kp indices as 

geomagnetic indices corresponding to te events in Table 2. Since the ionosphde data are 

observed every 15 minutes, all indices have been interpolated every 15 minutes. 

 The test period (final prediction target) in this study is three days from 6 September to 8 

September 2017, the geomagnetic storm case used in the previous study (Moon et al., 2020; Kim 

et al., 2020). Figure 2 shows the space environment changes during the geomagnetic storm of 

test event #1 (see Figure 2 in Kim et al., 2020). Two more test events were analyzed to evaluate 

the performance of the LSTM model in this study. These events are detailed in Table 1. 

Ionosonde data observed during the three test periods were downloaded from the Korean space 

weather center's web-page (https://spaceweather.rra.go.kr/observation/service/iono), and the 

geomagnetic indices corresponding to each event period are obtained from the OMNI web 

(https://omniweb.gsfc.nasa.gov/ow.html). 

 

2.3 Optimal Hyper Parameter Options 

 When making predictions using the LSTM algorithm, it is important to control the 

hyper-parameters of the model. In other words, we had to find the optimal model state by 

adjusting the hyper-parameters. Among the many hyper-parameters, the number of hidden layers, 

which means LSTM cells described above, and the range of historical data used for prediction 

are important. In our LSTM algorithm, the range of historical data can be adjusted with a hyper-

parameter called lookback. Since each data point is every 15 minutes, when the lookback 
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parameter is 1, the past 15 minutes of data are reflected in the current state. If the lookback is 4, 

data from the past 1 hour would be remembered. 

 Another hyper-parameter, the batch size can set the data interval for updating the 

weights, and it can also be adjusted every 15 minutes. In this study, because we aim to predict a 

maximum of one day (data points = 96), the lookback and batch size are set and validated to 6 

hours (data points = 24), 12 hours (data points = 48), and 24 hours (data points = 96). Since we 

have to validate the prediction performance of 0.5, 1, 2, 3, 6, 12, and 24-hours, we set the value 

of lookahead (prediction target) to 2, 4, 8, 12, 24, 48, and 96. Then we calculated the root mean 

square error (RMSE) values for the validation data sets using the combination of each hyper-

parameter. The combination with the lowest value was chosen and adopted as the design of the 

final LSTM model. We performed all the steps for both foF2 and hmF2 models, respectively.

  

 Figure 3 and 4 show the RMSE values for the foF2 and hmF2 validation set of the 

prediction target model, respectively, according to each hyper-parameter combination. We have 

marked the best combination for each plot with the black arrow compared with different 

prediction targets. Also, we summarized the best options in the plots in Tables 3 and 4. Here, we 

were able to find some interesting aspects in the tables. For both foF2 and hmF2, the best options 

were determined based on a certain prediction target. In the case of foF2, the LSTM structure 

with 24 lookbacks, 24 batch sizes, and 30 hidden layers showed the best performance in the 

prediction target of 3 hours or less. On the other hand, 48 lookbacks, 24 batch sizes, and 32 

hidden layers were the best combinations for the 6 hours or more prediction target. For hmF2, 

the LSTM structure of 96 lookbacks, 24 batch sizes, and 44 hidden layers showed the best 
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performance in 3 hours or less, and 96 lookbacks, 48 batch sizes, and 46 hidden layers were the 

best options for 6 hours or more. In Tables 3 and 4, the optimal combinations corresponding to 

the short-term forecasting targets are indicated by a gray box and the long-term forecasting ones 

by a gold box, to improve readability. We trained the LSTM models using these selected best 

hyper-parameters and evaluated their performances during the testing periods.  

 

3 Results and Discussions 

 The LSTM models trained for geomagnetic storm events in this study are first compared 

with the LSTM quiet model (Moon et al., 2020). Then, we analyze the performance of the LSTM 

storm models in terms of short- and long-term predictions for foF2 and hmF2. Moreover, we 

discuss the possibility and limitation that the LSTM-storm models can be used for forecasting 

services in the regional ionosphere. 

3.1 Comparison of LSTM-Storm and LSTM-Quiet models 

 First, we compared the 24-hour prediction results of the LSTM storm model with those 

of the LSTM quiet-time model (Moon et al., 2020). Since the 24-hour prediction model results 

need to be compared, the LSTM model with the hyper-parameter corresponding to 24 hours in 

Tables 3 and 4 was used. In addition, we compare the performance of the SAMI2 model and the 

IRI-2016 model. The SAMI2 (physics-based model) and IRI-2016 (international reference 

ionosphere model) were used for standard comparison because they are widely used as 

ionospheric models around the globe. 
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The model predictions were made during a storm event (Test #1), which occurred on 

DOY 251 in 2017. During the storm, the Kp index rose up to 8, as presented in Figure 5, where 

the geomagnetic indices are shown for three days around the storm event. Figure 5 also displays 

the predicted foF2 and hmF2 values of the LSTM-storm models (LSTM-quiet models) with solid 

blue (red) lines, respectively. To compare with the observed values of Jeju Ionosonde, the 

SAMI2 and IRI-2016 model results are also shown with orange and green lines, respectively. It 

is evident from Figure 5 (a) that the LSTM storm model predicts the increased foF2 on day 251 

better than the LSTM-quiet model during the test storm period. However, on DOY of 249 and 

250, the predicted foF2’s of the LSTM storm model are significantly larger than the LSTM-quiet 

model, thus overestimating the observed values. The predicted foF2’s of the LSTM-quiet model 

seem to behave similarly for all three days (249, 250, and 251), regardless of the storm event on 

DOY of 251. It may be because the LSTM quiet model was mainly trained with foF2 data of 

quiet periods. On the contrary, the LSTM storm model trained with only storm period data 

predicts better the increased foF2 during the storm day but overestimates foF2’s during quiet 

days. In Figure 5 (b), the observed hmF2 elevated sharply on day 251, but none of the models 

predicts the sharp elevation of the F2 layer. The prediction of hmF2, especially for stormy 

nighttime, remains a challenge to data-based and physics-based models. 

We wondered if the storm-only LSTM model developed in this study predicted positive 

storm well for foF2 but not well for hmF2. We speculated that the answer to this would be found 

in the training data and confirmed how the deep-learning model results were biased according to 

the training data. As such, we closer looked into the training dataset of 61 storm events listed in 

Table 1. We then confirmed the patterns statistically whether the ionospheric storm developed 
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into a positive or negative storm for foF2 values. In addition, we checked whether the hmF2 

values were elevated or lowered during each event period.  

 In order to analyze each storm patterns, we characterized the 61 ionospheric storm 

patterns by setting a reference as the average value for a total of 10 days, that is ±5 days around 

each event date. Naturally, the 10 day period includes the geomagnetic quiet condition. The 

reference values of the ionospheric parameter have been utilized in various studies to distinguish 

the effects of a geomagnetic storm on the ionosphere. Szuszczewicz et al. (1998) set the 

reference with the average value for 3 days, and Adebiyi et al. (2014) and Lissa et al. (2020) did 

with the 5 days average values. The 7-day and 10-day average values were used by Fagundes et 

al. (2015) and Jin et al. (2017), respectively. It is expected that the longer the window size for the 

mean value is, the more suitable to make the quiet reference state. The above-mentioned studies 

also defined a positive ionospheric storm when the storm period value was higher than the 

reference value. In the opposite case is a negative storm. In the same way, we recorded a positive 

(negative) storm as the observed values higher (lower) than the reference line for the duration of 

all training events. For each storm event, we added all the time span for positive (negative) storm 

and computed the ratio of the added positive to negative storm spans, called the P/N ratio. In this 

way, if the P/N ratio of a storm event is larger (smaller) than1, it means that the positive 

(negative) storm is dominant. Using these factors, we were able to quantify how each training 

event could affect the entire training data set. In hmF2, we defined the rising (falling) of hmF2 to 

be positive (negative). 

In Figure 6, we present how the positive/negative spans are computed for foF2 and 

hmF2 data of the training storm event #1. The positive spans are in red, and the negatives in blue. 
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Besides, the geomagnetic Kp index is bar-plotted at the bottom of Figure 6 to check the time 

zone of the geomagnetic storm. Especially, bars with Kp of 4 or more are shown in gold. As 

shown in the dominant red color region, the foF2 values are mostly higher than the reference 

(dotted line) during the storm period of training event #1. For the hmF2, positive and negative 

spans are more or less evenly distributed. For both foF2 and hmF2, the P/N ratios are greater 

than 1, and we could surmise that the positive storm dominated in training event #1. The other 60 

training events all showed different ionospheric storm patterns, and we plotted these results in 

support information (Figure S1-S8). 

We expect that the distribution of the P/N ratios for the total of 61 storm events will 

affect the deep learning model developed in this study. Figure 7 (a) briefly summarizes the P/N 

ratios of 61 storm events, and histograms in Figure 7 (b) show what types of ionospheric storms 

affect the LSTM storm model. As can be seen from the histogram, the foF2 training dataset has 

about twice as many positive storms as the negative storm, whereas the hmF2 dataset has about 

half and half for positive and negative storms. It can be indirectly inferred that the LSTM storm 

model for foF2 is more specialized to positive storms, which may explain that the LSTM storm 

model predicts well the foF2 positive storm for test event #1, as in Figure 5(a). However, the 

LSTM storm model seems not trained well for the case of a positive hmF2 storm, explaining the 

failure of predicting the elevated hmF2 in Figure 5(b). 

 Figure 8 compares the model predictions for test event #2 (a-c) and #3 (d-f) in the same 

way as in Figure 5. As shown in Figure 8(c), test event #2 includes a geomagnetic storm on day 

111 of 2018, but there was little change in the ionosphere of the Jeju location. On this day, foF2 

was slightly higher than the previous day (day 110) in the nighttime but slightly lower in the 
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daytime. In the case of hmF2, it also did not change on the day of the geomagnetic storm. Test 

event #3 with a geomagnetic storm on the day 254 day of 2018 did not significantly change the 

ionosonde observations, similar to test event #2. As shown in Figure 8 (b) and (e), both the 

LSTM storm and quiet models seem to predict reasonably close values to the observations. In the 

absence of a positive storm, as in test event #1, the performance of the two models is practically 

the same. 

To quantitatively evaluate the performance of our model for the storm days in the three 

test events, we calculated three indices: correlation coefficient (CC), root means square error 

(RMSE), and mean absolute percentage error (MAPE). 

CC = 
∑ (𝑚𝑜𝑑𝑒𝑙−𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒−𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑛
1

√∑ (𝑚𝑜𝑑𝑒𝑙−𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛
1 ⁡∙⁡√∑ (𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒−𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛

1

                 (7)  

RMSE = √
∑ (𝑚𝑜𝑑𝑒𝑙−𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒)2𝑛
1

𝑛
                        (8) 

MAPE (%) = 
100⁡%

𝑛
× ∑ |

𝑚𝑜𝑑𝑒𝑙−𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒

𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒
|𝑛

1                    (9) 

Table 5 summarizes the skill scores of all the models compared in Figure 5 and 8. As in Table 5,  

the LSTM storm model predicted mostly the best among all the models for the three test events. 

Quantitatively, our prediction model shows better predictive performance for foF2 (hmF2) by 

about 32%, 34%, and 37% (10%, 17%, and 5%) compared to the LSTM quiet, SAMI2, and IRI-

2016 models.  Although more test events are needed to evaluate the statistically meaningful 

performance, we could not find events related to geomagnetic storms in the Jeju Ionosonde 

observation data since 2018. Especially, the LSTM storm model needs to be evaluated more for 

negative storm events that are lacking for the current study. 
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 Since ionospheric positive storms dominated the training data statistics of foF2, the 

LSTM storm model is expected to predict higher foF2 than the LSTM quiet model in all test 

events. However, the results of test events #2 and #3 overturned expectations. This may be 

because the LSTM algorithm remembers a specific feature of past data and uses it for prediction. 

In other words, the LSTM storm model may have recognized a feature for the positive storm 

from input data in the previous and current days, able to predict the increased foF2 for test event 

#1, but in the case of tests #2 and #3, it did not catch the feature for the positive storm so that it 

simply predict typical foF2s as the LSTM-quiet model does. It is important for a deep-learning 

model to be trained to catch features in the time window to predict the storm. However, it is not 

easy to collect training data because even with the same geomagnetic storm, ionospheric storms 

can appear differently depending on geographic location, season, and local time. Therefore, it 

may be better for regional ionosphere prediction to develop a deep-learning model using 

observed datasets from a specific local region rather than global datasets. 

 Furthermore, to use the LSTM storm model in a forecasting service, it is needed to know 

when the forecaster changes the LSTM quiet model to the storm model timely. This is a difficult 

issue because it requires predicting a geomagnetic storm. One practical solution to this issue is to 

use predicted Kp indices from global space weather services, where all the space weather data, 

including satellite data for solar wind, are collected and analyzed for the prediction. For example, 

Kp index greater than 4 is predicted over the next day, then the regional ionospheric forecaster 

adopts the LSTM storm model rather than the LSTM quiet model. We expect that the LSTM 

storm model developed in this study can be useful in this way. Besides, our research group plans 

to use these ideas for forecasting and surveillance work. 
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3.2 Performances of Short-term and Long-term Predictions 

In this section, we evaluated the performance of the LSTM storm model for 1, 2, 3, 6, 12, 

and 24-hour predictions. During the test event #1 period, the models predict foF2 and hmF2 for 

next target times. For example, the 1-hour prediction model computes the value for 1 hour later 

than the current time by using the observed data up to now. In other words, it is easy to 

understand that a 1-hour prediction model makes predictions every hour.  

Figure 9 shows the histogram, which includes the predictive ability of each model along 

with performance skill scores. The correlation coefficient is colored in gold, the slope plotted in 

1-to-1 correspondence is in red, and the RMSE is in blue. We additionally used the slope 

obtained by a 1-to-1 correspondence in order to intuitively know the relationship between the 

observed value and each model predicted value. It is evident from Figure 9 that RMSE’s for both 

F2 parameters increase with the prediction time except for the 0.5 hr prediction. On the contrary, 

the correlation coefficient and 1:1 slope decrease as the prediction time increases. It is congruent 

with what we initially predicted. What is unique here is that the 1-hour prediction model 

performs better than the 30-minute prediction model. The best RMSEs of the 1-hour prediction 

are 0.3 MHz and 17 km for foF2 and hmF2, respectively, which are encouraging results for the 

practical application of the model. 

For practical application, we regard the LSTM models up to 3 hr prediction as short-term 

prediction models and longer than 3 hours as long-term prediction models. As shown in Figure 9, 

the RMSE values of the short-term prediction models for foF2 are significantly less than 1 MHz, 

while that of the long-term models exceeds 1 MHz. The performance of the short-term models is 

comparable to other deep learning models (McKinnell & Poole, 2000; Athieno et al., 2017; Fan 
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et al., 2019), although it is not easy to compare with the RMSE from these models because they 

have been developed for targeting different local, date, local time, and space environment 

conditions. For hmF2, the short-term prediction models were not easy to significantly improve 

performance. Nevertheless, Based on the results presented in Figure 9 and Table 5, we argue that 

prediction models of less than 3 hours are sufficiently competitive. 

 

4 Conclusions and Summary 

In this study, we have developed a new LSTM model for predicting foF2 and hmF2 to 

overcome the weaknesses of the LSTM quiet model developed by Moon et al. (2020). We 

collected 61 geomagnetic storm events from 1 January 2010 to August 2017 (about 7.7 years) for 

the training dataset. Also, the space environment indices related to geomagnetic storms were 

used together as training sets. Optimal hyper-parameters were searched for the LSTM models 

with each prediction target time. Three test events were selected to evaluate the performance of a 

geomagnetic storm-specific LSTM model (LSTM storm model), and correlation coefficient, 

RMSE, and MAPE scores were calculated and diagnosed for each model (LSTM storm, LSTM 

quiet, SAMI2, and IRI). We also discussed the performances and predictability of short-term (up 

to 3 hours) and long-term (longer than 3 hours up to 24 hours) prediction models. 

Our results are summarized as follows: 

1. In ionospheric positive storm (test event #1), the LSTM storm model for foF2 (hmF2) 

showed better performance in terms of RMSE by 32 (10)%, 34 (17)%, and 37 (5)% than the 

LSTM quiet, SAMI2, and IRI-2016 models, respectively. 
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2. Even if the LSTM storm model is specialized for storm conditions, our model predicts 

well enough for geomagnetic storms with no change in the ionosphere (test event #2 and #3).  

3. We suggest that the deep-learning prediction model should be developed as the 

regional model using local observation data because it varies the region, date, local time, and 

space environment conditions. 

4. Although the performance degrades significantly with increasing prediction times, 

short-term predictions (up to 3 hours) show an RMSE of less than ~1MHz for foF2 and 25 km 

for hmF2. therefore, we propose that short-term prediction models are sufficiently competitive. 

This study used deep learning techniques to predict ionospheric storms during 

geomagnetic storm periods to overcome the limitations of previous learning techniques. Most 

significantly, this is the first attempt to develop a deep learning model by collecting only 

geomagnetic storm cases. Besides, our study is also meaningful in that it presents several 

possibilities for each prediction target model. Finally, we are confident that the results of this 

study will provide a means to find a way to respond to the risk factors from the ionospheric 

storm in the aspect of space weather. 
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Figure 1. Detailed schematic diagrams of the newly developed LSTM model. (a) one LSTM cell 

(b) system architectures of the overall model. 𝑋𝑡⁡𝑎𝑛𝑑⁡ℎ𝑡⁡are the input and output values. A 

LSTM cell includes sigmoid (σ) layers and hyperbolic tangent functions (tanh).  
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Figure 2. The IMF Bz, SYM-H, Kp, F10.7, GOES X-ray data, and ionospheric parameters 

(NmF2, hmF2) observed by ionosonde at Jeju station during the geomagnetic storm periods (The 

shaded box indicates the period of the storm test set, from 06 September through 08 September 

in 2017). The blue arrows in the second panel indicate the durations of three geomagnetic storms. 

The red arrows and numbers in the fifth panel represent the solar flare events (> M class). It is 

taken from Figure 2 of the Kim et al. (2020). 
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Figure 3. Optimal hyper-parameters for foF2 values using each option. The best options for each 

prediction model are indicated by black arrows. (btch = batch size, lb = lookback) 
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Figure 4. Same formats in Figure 3 for hmF2 values using each option. The best options for each 

prediction model are indicated by black arrows. (btch = batch size, lb = lookback) 
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Figure 5. (a)-(b) Prediction results of foF2 and hmF2 at Jeju location of each model for test #1 

storm case. The black line indicates the Jeju ionosonde observations, and red (blue) ones mean 

the LSTM storm (quiet) model values. The orange (green) lines are the SAMI2 and IRI-2016 

model. The LSTM quiet model is taken from the results of Moon et al. (2020). (c) The IMF Bz, 

AE, Kp and Dst indices. The blue arrow in the panel (c) indicate the storm period, and the 

vertical red ones in the panel (a) and (b) show the ionospheric positive storm and elevated F2 

layer, respectively. 
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Figure 6. Ionosonde observations (foF2 and hmF2) for training events #1 in 2010 and the 10 

days averaged reference line for the quiet condition. The black (dotted) line means the 

observations (reference). The red (blue) colored regions indicate the positive (negative) storm. 

Also, we marked the bar-plot in the bottom figure for the geomagnetic activity and colored bars 

in gold which indicate the Kp of 4 or higher. 
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Figure 7. (a) The positive and negative (P/N) ratios of each training event. The black triangle 

(green circle) symbols indicate the foF2 (hmF2) values. A value greater than 1 (= dashed line) 

means a positive event, and a value of less than 1 means a negative event. (b) The event 

proportions as the plotted histogram of 61 storm events. The positive storm colored red, and the 

negative one colored blue. 
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Figure 8. Prediction results at Jeju location of each model for test #2 (a-c) & #3 (d-f) storm cases. 

Same formats in Figure 5.  
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Figure 9. The performance skill scores for (a) foF2 and (b) hmF2 of each LSTM prediction 

model. The gold, red, and blue histograms mean the correlation coefficient, 1:1 slope, and the 

RMSE values, respectively.  
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Table 1. The list of geomagnetic storm events.  

Data type 
Event 

No. 

Begin 

(yyyy-mm-dd hr) 

Main phase 

(yyyy-mm-dd hr) 

Last phase 

(yyyy-mm-dd hr) 

End 

(yyyy-mm-dd hr) 

Max 

K index 

Training 1 2010-04-05 08.4 2010-04-05 09.3 2010-04-06 07.7 2010-04-08 14 7 

Training 2 2010-08-03 17.7 2010-08-03 20.8 2010-08-04 00.8 2010-08-05 05 6 

Training 3 2011-02-18 01.5 2011-02-18 04.8 2011-02-18 08.7 2011-02-18 18 6 

Training 4 2011-03-01 05.2 2011-03-01 09.5 2011-03-01 14.6 2011-03-02 21 6 

Training 5 2011-03-10 06.5 2011-03-10 23.5 2011-03-11 07.0 2011-03-12 03 5 

Training 6 2011-04-06 09.5 2011-04-06 10.4 2011-04-06 18.4 2011-04-07 00 5 

Training 7 2011-05-28 06.5 2011-05-28 06.8 2011-05-28 11.9 2011-05-30 00 5 

Training 8 2011-06-04 20.7 2011-06-04 21.8 2011-06-05 00.9 2011-06-06 03 5 

Training 9 2011-08-05 17.8 2011-08-05 21.6 2011-08-06 03.5 2011-08-06 15 6 

Training 10 2011-09-09 12.7 2011-09-09 14.3 2011-09-10 01.5 2011-09-11 01 5 

Training 11 2011-09-17 03.7 2011-09-17 08.3 2011-09-17 14.9 2011-09-18 01 6 

Training 12 2011-09-26 12.5 2011-09-26 15.3 2011-09-27 00.5 2011-09-28 17 6 

Training 13 2011-10-05 07.5 2011-10-05 08.9 2011-10-05 14.5 2011-10-06 01 5 

Training 14 2011-10-24 18.5 2011-10-24 21.8 2011-10-25 01.2 2011-10-25 21 6 

Training 15 2011-11-01 09.1 2011-11-01 09.4 2011-11-01 13.3 2011-11-02 00 5 

Training 16 2012-01-22 06.2 2012-01-22 10.3 2012-01-22 12.5 2012-01-23 09 5 

Training 17 2012-01-24 15.0 2012-01-25 08.6 2012-01-25 10.3 2012-01-25 18 5 

Training 18 2012-03-07 04.3 2012-03-07 05.5 2012-03-07 09.0 2012-03-08 00 5 

Training 19 2012-03-08 11.0 2012-03-08 15.4 2012-03-09 08.2 2012-03-10 19 7 

Training 20 2012-03-12 09.2 2012-03-12 11.3 2012-03-12 12.7 2012-03-13 00 6 

Training 21 2012-04-23 03.3 2012-04-23 21.1 2012-04-24 01.1 2012-04-26 16 5 

Training 22 2012-07-14 18.2 2012-07-15 05.5 2012-07-15 09.5 2012-07-17 12 6 

Training 23 2012-09-30 11.5 2012-09-30 14.0 2012-10-01 01.2 2012-10-01 16 5 

Training 24 2012-10-08 05.3 2012-10-08 05.5 2012-10-08 12.1 2012-10-10 00 6 

Training 25 2012-10-13 03.4 2012-10-13 03.5 2012-10-13 11.0 2012-10-14 22 5 

Training 26 2012-10-31 15.6 2012-10-31 04.4 2012-11-01 12.2 2012-11-02 00 5 

Training 27 2012-11-13 23.2 2012-11-13 23.0 2012-11-14 09.6 2012-11-14 19 5 

Training 28 2013-01-17 13.2 2013-01-17 14.0 2013-01-18 0.00 2013-01-18 06 6 

Training 29 2013-03-01 08.0 2013-03-01 08.0 2013-03-01 10.8 2013-03-02 09 5 

Training 30 2013-03-17 06.0 2013-03-17 06.6 2013-03-17 12.5 2013-03-18 12 6 

Training 31 2013-04-30 09.8 2013-05-01 05.9 2013-05-01 13.2 2013-05-02 12 5 

Training 32 2013-10-02 01.9 2013-10-02 05.0 2013-10-02 06.0 2013-10-03 03 6 

Training 33 2013-10-08 20.4 2013-10-08 23.7 2013-10-09 02.0 2013-10-10 18 5 

Training 34 2013-11-07 04.7 2013-11-07 04.7 2013-11-07 11.9 2013-11-07 17 5 

Training 35 2013-11-09 03.5 2013-11-09 03.6 2013-11-09 11.0 2013-11-11 19 5 

Training 36 2013-12-07 22.5 2013-12-08 03.0 2013-12-08 08.6 2013-12-08 22 6 

Training 37 2013-12-25 04.9 2013-12-25 07.8 2013-12-25 12.6 2013-12-25 21 5 

Training 38 2014-02-07 17.0 2014-02-07 17.1 2014-02-08 00.0 2014-02-10 00 5 

Training 39 2014-02-18 13.9 2014-02-18 15.3 2014-02-19 09.0 2014-02-19 23 6 

Training 40 2014-02-20 03.3 2014-02-20 03.8 2014-02-20 13.1 2014-02-21 00 6 
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Data type 
Event 

No. 

Begin 

(yyyy-mm-dd hr) 

Main phase 

(yyyy-mm-dd hr) 

Last phase 

(yyyy-mm-dd hr) 

End 

(yyyy-mm-dd hr) 

Max 

K index 

Training 41 2014-02-27 16.8 2014-02-27 16.9 2014-02-28 00.0 2014-02-28 12 5 

Training 42 2014-08-27 03.0 2014-08-27 04.2 2014-08-27 16.2 2014-08-30 15 5 

Training 43 2014-09-12 15.9 2014-09-12 22.0 2014-09-13 03.7 2014-09-14 00 5 

Training 44 2014-11-10 02.3 2014-11-10 10.4 2014-11-10 17.5 2014-11-10 24 5 

Training 45 2015-01-07 06.3 2015-01-07 08.4 2015-01-07 11.0 2015-01-08 18 6 

Training 46 2015-03-17 04 8 2015-03-17 07.0 2015-03-17 23.0 2015-03-21 15 7 

Training 47 2015-05-12 22.0 2015-05-13 05.3 2015-05-13 06.8 2015-05-14 01 5 

Training 48 2015-06-08 05.0 2015-06-08 05.6 2015-06-08 08.0 2015-06-09 00 6 

Training 49 2015-07-23 03.0 2015-07-23 03.7 2015-07-23 08.8 2015-07-23 16 5 

Training 50 2015-09-08 22.3 2015-09-09 00.0 2015-09-09 09.7 2015-09-10 03 5 

Training 51 2015-09-11 04.2 2015-09-11 07.5 2015-09-11 09.6 2015-09-11 19 6 

Training 52 2015-09-20 06.0 2015-09-20 06.7 2015-09-20 11.1 2015-09-20 21 6 

Training 53 2015-10-07 04.4 2015-10-07 04.7 2015-10-07 09.3 2015-10-10 02 6 

Training 54 2015-10-18 06.1 2015-10-18 07.4 2015-10-18 10.0 2015-10-18 20 6 

Training 55 2015-11-03 01.6 2015-11-03 08.0 2015-11-03 12.4 2015-11-04 21 6 

Training 56 2015-11-06 18.3 2015-11-06 23.5 2015-11-07 08.2 2015-11-07 21 6 

Training 57 2015-12-14 13.3 2015-12-14 17.0 2015-12-14 19.1 2015-12-15 19 6 

Training 58 2015-12-19 16.3 2015-12-19 04.7 2015-12-21 02.1 2015-12-22 02 6 

Training 59 2015-12-31 00.8 2015-12-31 08.2 2015-12-31 14.1 2016-01-01 16 6 

Training 60 2016-01-20 03.2 2016-01-20 08.1 2016-01-20 16.0 2016-01-21 08 5 

Training 61 2016-02-16 08.3 2016-02-16 08.5 2016-02-18 00.0 2016-02-19 01 5 

Validation 62 2016-03-06 13.3 2016-03-06 14.4 2016-03-07 08.3 2016-03-08 04 5 

Validation 63 2016-03-14 17.2 2016-03-14 19.9 2016-03-15 07.4 2016-03-15 14 5 

Validation 64 2016-04-14 07.7 2016-04-14 09.8 2016-04-14 12.1 2016-04-14 22 5 

Validation 65 2016-09-29 04.4 2016-09-29 06.7 2016-09-29 09.3 2016-09-29 21 6 

Validation 66 2016-10-12 22.2 2016-10-13 07.2 2016-10-13 15.9 2016-10-14 22 5 

Validation 67 2017-03-27 03.4 2017-03-27 05.4 2017-03-27 10.3 2017-04-01 18 5 

Validation 68 2017-08-31 05.6 2017-08-31 07.1 2017-08-31 11.8 2017-08-31 21 6 

Test #1 69 2017-09-06 23.7 2017-09-07 05.1 2017-09-08 00.7 2017-09-09 07 7 

Test #2 70 2018-04-20 00.3 2018-04-20 04.1 2018-04-20 09.9 2018-04-21 20 6 

Test #3 71 2018-09-10 10.5 2018-09-10 12.3 2018-09-11 09.7 2018-09-11 21 5 
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Table 2. Detailed structures of the training, validation, and test data sets in our newly LSTM model. 

 Training Validation Test 

Target 

Observed 

Dst, Kp, AE, Bz 

indices,  

hmF2 & foF2 of Jeju 

ionosonde 

hmF2, foF2 hmF2, foF2 

Period 
05 Apr 2010 ~ 

18 Feb 2016 
06 Mar 2016 ~ 

31 Aug 2017 

#1: 06 Sep 2017 ~ 08 Sep 2017  

#2: 20 Apr 2018 ~ 21 Apr 2018 

#3: 10 Sep 2018 ~ 11 Sep 2018 

Data 

points 
117 days = 11,232 

(89.3 %) 
14 days = 1,344 

(10.7 %) 
7 days = 672 

Storm 

event 
61 7 3 
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Table 3. The selected optimal hyper-parameters for foF2 values. The gray (gold) background boxes 

indicate the best options for short-term (long-term) prediction. 

Prediction 

target 
15 min 30 min 1 hr 2 hr 3 hr 6 hr 12 hr 24 hr 

Look ahead 1 2 4 8 12 24 48 96 

Look back 24 24 24 24 24 48 48 48 

Batch size 24 24 24 24 24 24 24 24 

Hidden layer 30 30 30 30 30 32 32 32 

RMSE (MHz) 0.38 0.54 0.74 1.00 1.13 1.25 1.23 1.27 
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Table 4. The selected optimal hyper-parameters for hmF2 values. The gray (gold) background boxes 

indicate the best options for short-term (long-term) prediction. 

Prediction 

target 
15 min 30 min 1 hr 2 hr 3 hr 6 hr 12 hr 24 hr 

Look ahead 1 2 4 8 12 24 48 96 

Look back 96 96 96 96 96 96 96 96 

Batch size 24 24 24 24 24 48 48 48 

Hidden layer 44 44 44 44 44 46 46 46 

RMSE (km) 17.49 21.99 26.03 29.37 30.42 29.92 30.10 29.87 
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Table 5. The performance skill scores of three test events. (The units of foF2 and hmF2 are MHz and km, 

respectively. The gray boxes mean the best model.) 

 Model 

Scores 

LSTM quiet LSTM storm SAMI2 IRI-2016 

foF2 hmF2 foF2 hmF2 foF2 hmF2 foF2 hmF2 

Test 

#1 

CC 0.84 0.54 0.95 0.61 0.91 0.56 0.88 0.61 

RMSE 1.21 35.39 0.82 31.70 1.25 37.99 1.30 33.46 

MAPE 14.57 8.71 12.65 8.00 13.61 9.06 14.36 7.73 

Test 

#2 

CC 0.81 0.34 0.81 0.29 0.81 0.2 0.78 0.28 

RMSE 1.09 41.18 1.07 29.42 1.12 34.15 1.14 33.17 

MAPE 18.5 11.74 19.8 9.47 22.2 11.12 21.65 10.81 

Test 

#3 

CC 0.91 0.87 0.95 0.87 0.89 0.90 0.91 0.91 

RMSE 0.57 21.62 0.47 30.59 0.56 21.81 0.69 22.24 

MAPE 12.02 6.75 8.60 10.59 11.76 7.26 12.38 7.81 
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