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Abstract

Scarcity of available records is a major hindrance in hurricane hazard assessment. In addition, frequency analysis on maximum

intensities of all historical storms is incapable of analyzing very rare phenomena. Ensemble generation is crucial for circumventing

these difficulties, targeted at this study. We will show here that ensembles like Sandy can be statistically generated even by

removing its trajectory from historical records. We began with historical compilations of NOAA National Climatic Data Center

(NCDC) tropical cyclone (TC) database. TC reaching a hurricane strength and making landfall in or passing close to the

United States were identified. The geographical area influenced by these hurricanes was discretized and the parameters of

Markov chains and multivariate distributions were derived for each discretized area. Synthetic tracks were generated using

repetitive random draws from the spatiotemporal distribution of historical genesis and storm motion, conditioned by Markov

chains for each 6-hour displacement. The proposed algorithm is validated in macro and micro scales. In macro scale, tracks

coming within the specified radius of an area of interest were counted for a given hurricane scale. The results revealed that the

general pattern of hits conforms well to historical observations. In micro scale, the model was evaluated for Miami and New

York City with quite different hurricane climatology. The track generator produces a history of potential wind and translational

speeds for both of these regions as well.
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Key Points:6

• The track generator produces the general pattern of hurricane hits, conforming7

to historical records.8

• Ensembles can be generated in large numbers in areas that rarely experience se-9

vere storms, with the history of strengths and speeds.10

• Ensembles of unique trajectories like hurricane Sandy can be reconstructed even11

by removing their trajectories from historical records.12
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Abstract13

Scarcity of available records is a major hindrance in hurricane hazard assessment. In ad-14

dition, frequency analysis on maximum intensities of all historical storms is incapable15

of analyzing very rare phenomena. Ensemble generation is crucial for circumventing these16

difficulties, targeted at this study. We will show here that ensembles like Sandy can be17

statistically generated even by removing its trajectory from historical records. We be-18

gan with historical compilations of NOAA National Climatic Data Center (NCDC) trop-19

ical cyclone (TC) database. TC reaching a hurricane strength and making landfall in or20

passing close to the United States were identified. The geographical area influenced by21

these hurricanes was discretized and the parameters of Markov chains and multivariate22

distributions were derived for each discretized area. Synthetic tracks were generated us-23

ing repetitive random draws from the spatiotemporal distribution of historical genesis24

and storm motion, conditioned by Markov chains for each 6-hour displacement. The pro-25

posed algorithm is validated in macro and micro scales. In macro scale, tracks coming26

within the specified radius of an area of interest were counted for a given hurricane scale.27

The results revealed that the general pattern of hits conforms well to historical obser-28

vations. In micro scale, the model was evaluated for Miami and New York City with quite29

different hurricane climatology. The track generator produces a history of potential wind30

and translational speeds for both of these regions as well.31

1 Introduction32

Tropical cyclones (TCs), are one of the most catastrophic hydro-meteorological nat-33

ural disasters in coastal environments (Varlas et al., 2018). These deadly disasters are34

associated with strong winds, heavy rainfall and large storm surges and account for a35

significant fraction of damage, injury and loss of life from natural hazards (Hoque et al.,36

2016; Puotinen, 2007). Since 1980, land falling hurricanes in the continental U.S. have37

caused two thirds of the global total damages from natural hazards (Mohleji & Pielke Jr,38

2014; Weinkle et al., 2018). For example, in 2005, Hurricane Katrina known to be the39

most devastating disaster in the U.S. produced the highest flooding in the history of the40

U.S., resulting in more than USD120 billion in terms of damages and causing approx-41

imately 2000 mortalities. Similarly, damages and fatalities associated with Hurricanes42

Sandy in 2012; Harvey, Irma, and Maria in 2017, and Florence and Michael in 2018 have43

highlighted the power of hurricanes to cause destruction on even one of the most advanced44

societies (Emanuel et al., 2006; Freeman & Ashley, 2017; Garner et al., 2017; Lin et al.,45

2012, 2016; Reed et al., 2015; Shuckburgh et al., 2017). Being the costliest natural catas-46

trophes in the US with nearly US 5 bilion dollars damage per year (Burroughs, 2007),47

a qualitatively appropriate assessment and an accurate prediction of tropical cyclone ac-48

tivity can never be overemphasized (Pielke Jr et al., 2008; Woodruff et al., 2013; Mei et49

al., 2019).50

TCs are strong atmospheric perturbations which depending on their location and51

intensity, would range from hurricanes, typhoons, and tropical storm to cyclonic storms,52

tropical depressions and cyclones (NOAA, 2015). TCs usually form between 5 and 30-53

degree latitude away from the equator; the lower limit satisfies the minimum Coriolis force54

required to develop TCs (Gomes et al., 2015). As the TCs develops, there would be a55

transition point where it converts to an extratropical system in which the source of move-56

ment instead of latent heat relies on the so called ”baroclinic instability” referring to the57

temperature contrast as a result of interaction of cold and warm air masses (Georgiev58

et al., 2016). Extratropical cyclones are usually accompanied with extreme rainfall and59

strong winds (Hawcroft et al., 2012)60

TC activities can be characterized by various metrics, including annual frequency,61

tracks, maximum speed wind (MSW), translational velocity as well as life time duration62

(Emanuel, 2005). These characteristics are also the components for TC forecasting which63

directly affect specific hazards (e.g, surge inundation) experienced at vulnerable popu-64

lations at locations with high exposure. Thus, the ability to conduct an accurate haz-65
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ard assessment is of paramount importance, especially for vulnerable communities. Coastal66

regions suffer from this vulnerability the most as tropical cyclones normally weaken when67

moving landward with a cut-off from their original energy source; thus, due to lower trans-68

lation speed, result in a longer passage time through a region, resulting in greater rain-69

fall totals (Workgroup, 2015; Lam et al., 2017; Lai et al., 2020) and storm surge flood-70

ing. To mitigate these effects in vulnerable regions and improve preparedness, TC haz-71

ard assessments must be acceptably accurate and reliable (Villarini et al., 2019), which72

means sufficient observational data are an inevitable initiative.73

For TCs, the scarcity of observational data, rarity of extreme events for each spe-74

cific area of the North Atlantic which is the focus of this paper, and their often poor qual-75

ity, has lead statistical analysis, on which hazard assessments heavily rely, to deal with76

these challenges by considering the uncertainties that lie within the track and intensity77

of a TC (Coles & Simiu, 2003; Hallegatte et al., 2007). Therefore, when considering the78

possibility of highly destructive events occurring in the future, the hazard assessment79

should be addressed through the use of probabilistic models which allow for the avail-80

able information to be used in predicting potential catastrophic consequences. Accord-81

ingly, to grasp a reasonable understanding of the internal variability of TCs, hazard as-82

sessment methods usually rely on large ensembles of model simulations to make up for83

any shortness of data in characterizing cyclones tracks, intensities, and their consequen-84

tial damaging effects (Done et al., 2014; Loridan et al., 2015; Mei et al., 2019).85

Ensemble techniques are a relatively new approach, and proven to be vital, to prob-86

abilistic analysis. They are usually based on large sets of synthetic storm tracks and in-87

tensities generated from the statistics of historical tracks to lengthen the dataset needed88

for proper statistical analysis of the return periods of landfalling TCs (Vickery, 2005; Gneit-89

ing & Raftery, 2005; Yonekura & Hall, 2011; Bloemendaal et al., 2020). Ensemble mem-90

bers are stochastic realizations which mainly contribute to normalizing uncertainties as-91

sociated with initial conditions.92

Hurricane Risk Analysis is still an ongoing challenge aiming to reach a comprehen-93

sive approach to overcome data scarcity, shortness of data series, and other problematic94

estimations that rise from the uncertain nature of hurricanes. In most studies the statis-95

tics of the generated storms are either based on limited number of storms in a short pe-96

riod of time (Wooten & Tsokos, 2008), or not based on historical observations, but rather97

randomly generated in specific defined intervals (Gomes et al., 2015). While more recent98

studies tend to make up for the shortness of historical data through statistic resampling99

to generate track data, still, these generations are based on the average climate condi-100

tions of those limited years and therefore, cannot capture multi-decadal variability on101

longer time scales (Bloemendaal et al., 2020). Here, by extending the statistical anal-102

ysis period between 1851 and 2017, we present an algorithm that can predict the path103

of storms that are likely to occur in the future and calculate the probability of such oc-104

currence. The model results can be used as input to hydrodynamic models to assess flood105

risk in different areas of the US Atlantic coast.106

The outline of this paper is as follows. First, the extraction of 2162 historical records107

over a 166-year period is explained, followed by a three step process (multivariate dis-108

tribution, Markov chain, and transition) of hurricane ensemble (Section 2). Then, sta-109

tistical assessments are presented in macro (the east coast of the U.S) and mini (for New110

York and Miami) scales in section 3.The paper ends with section 4, summarizing the main111

conclusions of this study and proposing future research direction.112

2 Methodology113

2.1 Hurricane data114

Our algorithm begins with statistical compilations of historical records of North115

Atlantic hurricanes. Over the 166-year period 1851 through 2017, a total of 2162 trop-116

ical cyclones have been documented over the North Atlantic Basin. The geometry and117
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intensity information of these tropical cyclones were extracted from the archive of NOAA118

National Climatic Data Center (NCDC) using ’rnoaa’ R package (Edmund et al., 2014).119

These information so called ”best track” data consist of a set of key variables, includ-120

ing latitude and longitude of trajectory (Lat and Lon), maximum sustained wind (MSW),121

and central pressure deficit (∆P ), which are frequently available at 6-hour intervals. These122

data were screened to remove missing values and adjust all time intervals to 6-hour. Cen-123

tral pressure deficit before 1975 has many missing values. However, the records of MSW124

is much more complete and we found a significant correlation (93%) between MSW and125

central pressure deficit, which allows for an acceptable approach to measure hurricane126

intensity only through MSW. Due to the destructive potential of hurricanes, reliable haz-127

ard assessment of these dynamical energy-deriven systems are of our interest. Accord-128

ing to Saffir-Simpson scale (Taylor et al., 2010), the term hurricane is assigned to trop-129

ical cyclones that have MSW greater than 64 knots (118.5 km/h). Therefore, in order130

to synthesize storms that could pose a significant risk to coastal areas, tropical cyclones131

reaching hurricane strength during their life cycle were selected. Of the 503 hurricanes132

selected in this fashion, only 264 hurricanes made landfall in and/or passed close enough133

to the East Coast. The statistics of these 264 hurricanes were used to synthesize storm134

tracks and intensities that could potentially threaten the East Coast. Ancillary features135

including life cycle duration (D), translational velocity (V), and azimuth (φ) were char-136

acterized for these hurricanes based on their 6-hour positions through Equations 1 to 3,137

respectively.138

Dj = T j
n − T

j
1 (1)

V j
i =

distm(lonji−1, lat
j
i−1, lon

j
i , lat

j
i )

T j
i − T

j
i−1

(2)

φji = bearing(lonji−1, lat
j
i−1, lon

j
i , lat

j
i ) (3)

where Dj is the life cycle duration of jth hurricane. V j
i , φji , lon

j
i and latji represent trans-139

lational velocity, azimuth, longitude, latitude of jth hurricane at ith interval, respectively.140

T j
i is the time of jth hurricane at ith interval of its life cycle. T j

1 and T j
n represent the141

time of beginning and end of jth hurricane, respectively. distm() and bearing() calcu-142

lates the distance and bearing between two geographic points, corresponding to func-143

tions available at ’geosphere’ R package.144

2.2 Study site145

The formation of these hurricanes takes place in the Caribbean Sea, Gulf of Mex-146

ico, and westward off the coast of Africa between 5◦N and 30◦N latitude. The geograph-147

ical area influenced by these 264 hurricanes, enclosed by 8◦N and 45◦N latitude and 15◦W148

and 100◦W longitude, was discretized into regions of A to H shown in Figure 1. Such149

a discretization was made for three reasons. First, the mutual correlation of hurricane150

features varies from region to region and therefore, dividing this area into smaller regions151

makes it possible to better model the mutual correlation of explanatory variables. Sec-152

ond, transformation of variables in this case is easier for further statistical analysis. Third,153

hurricanes may transition to extratropical state by passing 30◦N latitude. Statistical mod-154

eling of this transition is provided by dividing the area at this latitude.155
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Figure 1. Geographical area influenced by the hurricanes that made landfall in the United

States or passed close enough

2.3 Hurricane ensemble156

2.3.1 Multivariate distribution157

All hurricane features were classified based on their geographical position and as-158

signed to each region. Following this classification, the data of each region was divided159

into genesis and storm motion data. The parameters of normal multivariate distribution160

for these two sets of data, then, were estimated separately.161

The prerequisite for making a multi-variate normal distribution of several variables162

is the normality of the distribution of involving variables. However, most of these vari-163

ables do not follow normal distribution, in particular, MSW is extremely right-skewed.164

Therefore, these variables need to be transformed into normal distribution. For this pur-165

pose, using ’bestNormalize’ R package, various normalizing transformations including166

Box-Cox, Yeo-Johnson, ordered quantile normalization, Lambert WxF transformations167

and other commonly used transformations such as exponential and lognormal transfor-168

mations were implemented on data sets and the best one was selected based on the good-169

ness of fit statistic. To overcome the limitations of applying some normalizing transfor-170

mations on negative data, the longitude values were transformed to positive ones and171

the azimuth values, which had been defined between the range of −π and +π, were trans-172

formed to the range of 0◦ to 360◦. After normalizing the explanatory variables the mu-173

tual correlations of them were calculated in the form of covariance matrix, which was174

used along with mean vector to make the multivariate normal distributions of genesis175

in each region. With a similar process, normal multivariate distributions were made for176

the storm motion data in each zone for all variables except life cycle duration that was177

already set with the genesis.178

2.3.2 Markov chain179

MSW, translational velocity and azimuth were considered as sequential states of180

a random process whose states were determined in the next step based on their states181

in the previous steps. These variables vary in ranges from 0 to 165 knots, 0 to 42 m/s,182

and 0 to 360◦, respectively, and differ from region to region. For defining variable states,183

MSWs were discretized at 10 knots, translational velocities at 2 m/s and azimuths at184

20◦, categorizing into 17, 18, and 22 possible states, respectively.185

If X = {x1, x2, x3, . . . , xn} is a sequence of observations of a random process over186

time, and S = {s1, s2, . . . , sn} is the states of this random process such that X ∈ S,187

then, based on the Markov chain formulation, the probability that the observation in nth188

step being in sn state is determined as follows:189

P (xn = sn|x1 = s1, x2 = s2, . . . , xn−1 = sn−1) = P (xn = sn|xn−1 = sn−1) (4)

According to Equation 4, the state of the process in nth step depends only on the190

previous step, referred as lag-1 Markov model. Let si and sj represent any two states;191

the conditional probabilities that the process moves to state sj at time n, given it is in192

the state of si at time n− 1, are determined as follows:193

pij = P (xn = sj |xn−1 = si) (5)
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where pij is the probability that the process moves from state si to state sj in one time194

step.195

In each discretized geographical area shown in Figure 1, transition probabilities were196

trained on historical records by counting transition between the different states and cal-197

culating their respective relative frequencies.198

2.3.3 Transition199

Like any other element of the climate system, TCs go through different stages in200

the course of a life cycle. They may lose their tropical characteristics after moving into201

a non-tropical environment and become extratropical. Such a transition from a tropi-202

cal to an extratropical cyclone leads to a sudden change in the structure of the cyclone.203

Drastic variations in MSW, direction, and position are a result of this structural change.204

Figure 2 shows the position of such transitions, where each pair of the same color rep-205

resents a hurricane in tropical (TS) and extratropical (ET) stages.206

Figure 2. Historical recorded transition points. (same coloured points indicates a transition

from tropical state (TS) to extratropical state (ET) for a hurricane)

According to this figure, Hurricane transition often occurs above 30◦N latitude, i.e.207

regions H and I. Thus, unlike other regions where the storm is generally in the tropical208

state, in these two regions the storm either remains in the same stage; that is, TS →209

TS and ET → ET , or transitions into extratropical system i.e. TS → ET . Hence,210

we considered the transitional probabilities in these two regions based on the storm stage.211

Accordingly, bi-conditional Markov chains were established for MSW, translational ve-212

locity, and azimuth by the previous stage of these variables and the hurricane stage.213

To characterize the hurricane features right after the transition point, we proceeded214

by statistical analysis on the set of such points (35 transitions in zone H and 60 tran-215

sitions in zone I) in the ”best track” archive (Figure 2). In doing so, we collected storm216

positions, MSW, translational velocity, and azimuth right before (TS) and after (ET)217

the transition point (LatTS , LonTS , MSWTS , VTS , φTS , LatET , LonET , MSWET , VET ,218

φET ). By transforming these variables into normal distribution and considering their mu-219

tual covariance, a multivariate normal distribution was made of them . In our algorithm,220

whenever the state transitional matrix dictates a transition along the storm track, based221

on the position and characteristics of the storm in the previous step (the step in which222

the storm is in a tropical state) the intensity and direction of storm in the next step (the223

step in which the ensemble is in a extratropical state) were determined followed by the224

new position of the storm center.225

2.3.4 Algorithm flowchart226

Figure 3 shows a flowchart for the track generator. The algorithm starts generat-227

ing ensembles through Monte Carlo simulation. Based on the probability of occurrence,228

the region in which the storm is generated is randomly selected.229

Following the identification of the region in which the storm is formed, its initial230

position and features are characterised based on random draw from the multivariate dis-231

tribution of historical genesis points derived from that region. To sample from the mul-232

tivariate normal distributions, the Gibbs sampler (Geman & Geman, 1984; Gelfand &233

Smith, 1990) and the algorithm proposed by Li and Ghosh (2015) were used. The taken234

sample, next, inversely transformed for generation of ensemble genesis. Therefore, at t=0,235

all the six variables, including the duration of life cycle are initialized. The number of236
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Figure 3. Flowchart for track generator

6-hour time steps the ensemble takes (Nstep) is obtained by dividing the duration of life237

cycle by 6 hours. The next position of the ensemble (t=1), then, is determined by the238

displacement vector obtained from the azimuth and the translational velocity multiplied239

by time step. Subsequently, the state transition vectors are generated for MSW, trans-240

lational velocity, and azimuth based on the transitional probabilities of historical storm241

motion within the same region. At this stage, the only vectors of transition approved are242

the ones with their first state (s1) corresponding to the state of the genesis point. The243

next position of the ensemble, then, is determined by the displacement vector obtained244

from the azimuth and the translational velocity multiplied by time step. Other charac-245

teristics are determined by conditional sampling from the multivariate normal distribu-246

tion given the state vector of variables and the position of ensemble, and this process is247

repeated until the ensemble leaves the region of origin. By entering into the neighbor-248

ing region, the parameters of Markov chains and normal multivariate distributions are249
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updated and the state transition vectors are reconstructed for that region. At this stage,250

only transition vectors are accepted whose initial state in current region (s1
cr) is in line251

with the final state of the abandoned region (sn
ar); that is, if an ensemble leaves a re-252

gion at a speed of 3.5 m/s indicating state 2, the possible realizations of translational253

velocity needs to start with state 2, for example {2,3,3,4,5, . . . }; otherwise, the gener-254

ated sequence is rejected.255

In a similar fashion, the ensemble proceeds in each region based on the updated256

6-hour displacement vector and moves into the neighboring regions. Only when the en-257

semble enters into the regions of H and I (Lat≥ 30◦), it may transition to extratropi-258

cal cyclone. Therefore, in these regions, the trajectory and characteristics of the ensem-259

ble may abruptly change due to this transition. After a transition, the next position and260

characteristics of the ensemble are determined based on conditional sampling from the261

multivariate normal distribution already made of transition pairs (Figure 2) in best track262

archive given the position and characteristics of the ensemble in the tropical state. The263

ensemble, then, continues its course after the turning point. This process is repeated un-264

til the termination of life cycle period and then the next ensemble is generated.265

To illustrate the capability of our track generator, we evaluated the generated tracks266

by comparing their statistics with that of historical records on a macro and micro scale.267

The results of this evaluation are presented in the next section.268

3 Results269

3.1 Ensemble patch statistics270

7174 hurricane ensembles were generated based on the algorithm presented in Fig-271

ure 1. A comparison between the statistics of the ensemble patch and the observed statis-272

tics of historical hurricanes is made in Figure 4.273

Figure 4. Histogram and distribution of hurricane explanatory variables for ensembles and

”best track” data

Dashed lines in this figure illustrate the average of explanatory variables. The rel-274

ative error of the mean values (M) and the standard deviation (SD) of these variables275

is less than 10%. The non-parametric Kolmogorov-Smirnov (K-S) test was applied to276

test whether the ensemble patch come from the same population as observations. The277

test statistic (maximum absolute difference between the empirical cumulative probabil-278

ity distribution of ensemble patch and historical records) values of these variables are279

0.11, 0.03, 0.04, 0.01, 0.04, and 0.05, respectively. The proximity of the mean values and280

standard deviation of the ensemble patch and observational data as well as the proxim-281

ity of the K-S test values to zero indicate that the ensemble patch is a proper represen-282

tative of the underlying distribution.283

The difference in the upper tail of latitude distribution (Figure 4-a) and the higher284

test statistic are due to the fact that ensembles were not recorded over 46◦N degrees lat-285

itude as the boundary between the United States and Canada in our algorithm. The two286

variables whose generation of distribution tails are of high significance for storm hazard287

assessment are MSW and translational velocity. In the former, the production of the up-288

per tail, i.e. stronger storms, and in the latter, the production of the lower tail, i.e. slow-289

moving storms, is crucial for hazard assessment. Figure 5 illustrates the quantile-quantile290

plot of the ”best track” data and the ensembles’ MSW. According to this figure, the points291

fall along a line in the middle of the graph and in the extremities, demonstrating the model’s292
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set of MSW plausibly come from ”best track” data. The same is true for the transla-293

tional velocity.294

Figure 5. ”Best track” data and synthetic hurricanes MSW Q-Q plot

In addition to the consistency of the statistics of individual variables to historical295

records, the compatibility of their mutual correlations for generation of realistic storm296

paths and hazard is inevitable. Figure 6-a and b reveal that the correlations among the297

explanatory variables are mutually consistent between the ensemble patch and the ”best298

track” data. The strongest correlation in historical records and ensembles is between lat-299

itude and the azimuth of hurricane movement, which is due to the variations of Cori-300

olis force with latitude. Both the ensemble patch and the observations show no corre-301

lation between MSW and the longitude of hurricane trajectory. In addition, the corre-302

lation between MSW and translational velocity is very insignificant according to ”best303

track” data, which is also apparent in the ensemble patch. Based on the historical records,304

the mutual correlation of azimuth with MSW and translational velocity is also negligi-305

ble, which the ensemble patch agrees well with.306

Figure 6. mutual correlations between explanatory variables. a) Ensemble patch b) ”Best-

track” data

3.2 Macro Scale Assessment307

When developing TC track ensembles, there is a need to ensure that the propor-308

tion of simulated events making landfall in a given area and with a given intensity matches309

what has been observed or can be extrapolated from historical records. To carry out such310

an evaluation, a filter was applied to the track generator to select tracks coming within311

500 km (typical hurricane size) of an area of interest. Ensembles passing within this spec-312

ified distance were counted for a given Saffir-Simpson scale and the annual probabilities313

of occurrence were estimated. Figure 7 provides a comparison between the observed and314

simulated annual activities of different hurricane categories along the U.S. Atlantic coast.315

According to this figure, the ensemble patch, quite similar to historical record, show316

more intense hurricane activity in the southern United States, including areas located317

near the North Carolina/South Carolina border, and the central east coast of Florida.318

Miami observes about 86 hurricanes of category 1 (Figure 7-a), 64 hurricanes of cate-319

gory 2 (Figure 7-c), 43 hurricanes of category 3 (Figure 7-e), 24 hurricanes of category320

4 (Figure 7-g), and 5 hurricanes of category 5 (Figure 7-i) per century, (that is, the cen-321

ters of these hurricanes track through a circle of radius 500 km centered in this location).322

Correspondingly, 77, 51, 40, 23, and 5 hurricanes hit this area in our statistical model,323

representing underestimated annual hazard rates for lower categories and a good esti-324

mator for the stronger ones.325

At the other extreme, New York City has experienced storms of category 1, 2, 3,326

and 4 with average annual rate of 0.345 (Figure 7-a), 0.110 (Figure 7-c), 0.036 (Figure327

7-e), and 0.006 (Figure 7-g), respectively. In addition, category 5 hurricanes have not328

been reported near this region. Again, the model underestimates the annual occurrence329

for the weaker storms but provides a good approximation for the stronger ones. Annual330

rates of 0.097, 0.018, 0.011, 0.005 were observed for the categories of 1 to 4, respectively,331

through our model. Quite similar to historical records, hurricanes of category 5 fails to332

be generated in our track generator within this specified radius.333
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Figure 7. Heat maps for annual probability of Hurricane hits within 500 km. a) Historical

recorded category 1. b) Ensemble patch category 1. c) Historical recorded category 2. d) En-

semble patch category 2. e) Historical recorded category 3. f. Ensemble patch category 3. g.

historical recorded category 4. h) Ensemble patch category 4. i) Historical recorded category 5. j)

Ensemble patch category 5.

The underestimation of annual occurrence for low-category storms is likely due to334

the application of lag-1 Markovian model, resulting in some of our ensembles getting off335

the domain before reaching hurricane strength. Examining patterns on partial autocor-336

relation of MSW time series with 5% significant limits, we observed that 87 out of the337

total hurricanes have a significant correlation at lag 2 (this number is 41 hurricanes for338

translational velocity and only 15 hurricanes for azimuth).339

3.3 Micro scale assessment340

The track generator was tested in micro scale for Miami and New York City, which341

are completely different in terms of hurricane climatology and frequency. Miami is an342

example of a city that observes a relatively high incidence of hurricanes per century and343

many of these storms have not moved into the extratropical stage. Figures 8-a and 8-344

b show historical tracks and ensembles passing within 100 km of Miami, respectively. There345

are only 26 tracks passing within 100 km of Miami during the period in question includ-346

ing hurricanes King (1950), Cleo (1964), David (1979), Andrew (1992), Ivan (2004), Ka-347

trina (2005), Floyd (1999), Gordon (2000), and Irene (2011), versus 1311 storms out of348

7177 storms that were statistically generated in our model (Figure 8-b). For compari-349

son with ”best track” data, the hurricane types and position of storm centers around Mi-350

ami are illustrated in Figure 9.351

Figure 8. Hurricanes passing within 100 km of Miami. a) ”Best track” data. b) Synthetic

tracks

Figure 9-a shows that about 70% of historical storms moved into this area with the352

strength of a hurricane. This area has experienced hurricane categories of 1 to 4. Sim-353

ilarly, this number slightly increases to 75%, 9-b, which represents a high agreement with354

the existing records. In addition to generation of history of potential storms, our model355

shows that storms with hurricane category of 5 are also likely to pass within this spec-356

ified distance (Figure9-b) with a probability of only 1.5%.357

Figure 9. Hurricane position and category within 100 km of Miami. a) ”Best track” data. b)

Synthetic tracks

Unlike Miami which has a relatively rich record of storms, and most of which have358

not undergone strong interactions with extratropical systems, New York City has only359
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had a handful of storms in its history, and many of those have been affected by inter-360

actions with extratropical systems. In this case, historical records are not sufficient to361

reasonably estimate storm hazard, however, due to the occurrence of rare but very de-362

structive storms in this area, hurricane hazard assessment is still of interest. Hurricane363

positions and categories within 100 kilometers of New York City are shown in Figure 10-364

a. The most extreme of these storms are hurricanes Able (1952), Diane (1955), Donna365

(1960), Agnes (1972), Belle (1976), Bertha (1996), Floyd (1999), Gordon (2000), and Irene366

(2011). Figure 10-b illustrates the patch of ensemble within this specified region. Ac-367

cording to this figure, 225 of the 7177 ensembles generated move into this area, which368

has experienced a limited number of storms in the past.369

Figure 10. Hurricanes passing within 100 km of New York City. a) ”Best track” data. b)

Synthetic tracks

According to Figure 11-a, the strongest hurricane this city has observed within the370

radius of 100 km, is hurricane of category 2. Only about 20 percent of the historical storms371

entered into this area with hurricane strength. Similarly, in Figure 11-b, a low propor-372

tion of ensembles have entered this area with hurricane strength. According to this fig-373

ure, the model was well able to generate storms with the history of categories observed374

in this area. A hurricane of category 3 is also formed in the offshore of this region, show-375

ing the capability of the model in generating extremely low probable but intensive haz-376

ards.377

Figure 11. Hurricane position and category within 100 km of New York City. a) ”Best track”

data. b) Synthetic tracks

We excluded hurricane Sandy from the ”best track” data and rebuilt our model378

by re-estimating the parameters of Markov chains and multivariate distributions to il-379

lustrate the capability of our model for reconstruction of unique trajectories.380

Unlike most hurricanes on a northward track along the US coast curve east and381

out to sea before they reach New York, Sandy took unusual path, turned sharply west382

and came at a perpendicular angle to the coast of New York City. It was this shift that383

helped push the storms massive surge directly at the south-facing parts of the city. Sim-384

ilarly, while most of our ensemble members are well out to sea, a small number of en-385

sembles bend toward the west. Out of 7177 ensembles, we found only two tracks that,386

had a similar track to Sandy,, moving westward and landfalling near New York City. Fig-387

ure 12 shows these two tracks alongside Sandy trajectory.388

Figure 12. Sandy-like cyclone trajectories

According to this figure, our algorithm prevents the two ensembles from moving389

out to sea, creating a curved trajectory with a turning between 35◦N and 40◦N latitude.390

Ensemble No. 979, similar to Sandy, approaches the shore as a category 1 hurricane .391

Ensemble No. 3264, although similar to Sandy, shifted westward and made landfall near392

New York City, did not reach hurricane strength. The behavior of any of the ensembles393

after transitioning, although different from Hurricane Sandy, is not inconsistent with his-394
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torical observations. Historical records indicate that the behavior of storms after reach-395

ing a transition is very uncertain and chaotic and storms may transition into a stronger396

storm or higher category (hurricane Sandy), weaker storm or lower category (ensemble397

No. 979), and remains in the same state or category (ensemble No. 3264).398

Both of our Sandy-like trajectories show smaller displacements before their turn-399

ing point, which is a pattern commonly observed in North Atlantic tropical cyclone paths.400

In other words, the trajectory points of the storm’s path before turning westward, are401

more tightly spaced, fitting the trend observed by our model.402

As mentioned earlier, hurricane hazard is driven by multiple factors rather than403

a single one. In addition to wind intensity, which has been the cornerstone of hurricane404

risk and damage models in most previous studies, translational velocity is an important405

agent in determining the severity of hurricane hazard in coastal areas and presenting even406

a greater influence than the wind intensity. Here, to demonstrate the capability of our407

model to reasonably make synthetic storms, the distribution of these two variables within408

100 km distance from New York City and Miami is illustrated as a box plot in Figures409

13-a and 13-b, respectively.410

Figure 13. Box plot of MSW and translational velocity within 100 km of Miami and New

York City

The lower, upper, and middle quartiles of MSW generated within 100 km of New411

York City and Miami are slightly less than the corresponding quartiles of ”best track”412

data at this distance, indicating the presence of bias in the model, which could be due413

to the use of lag-1 Markov chain. However, the model produces a history of local poten-414

tial wind speed. The upper, middle, and lower quartiles of ”best track” data are 40, 52.5,415

and 60 knots for New York City, and 70, 85, 110 knots for Miami. The corresponding416

quartiles for the model are: 35, 45, 50 knots for New York City, and 55, 75, and 95 for417

Miami. The maximum difference in quartiles belongs to the upper and lower quartiles418

of Miami, which are equal to 15 knots.419

According to Figure 13-b, the upper, middle, and lower quartiles of historical records420

for translational velocity are 6.3, 10.1, and 12.4 m/s for New York City, and 4.7, 5.4, 6.2421

m/s knots for Miami, respectively. The corresponding quartiles for the model are: 5.5,422

9.2, 12.5 m/s for New York City, and 3.0, 4.4, and 6.1 m/s for Miami, sequentially. Sim-423

ilar to MSW, where model quartiles are slightly lower than historical records, the quar-424

tiles of translational speed are lower than the corresponding values of historical hurri-425

canes in the regions of interest, which again reveals a bias in the model.426

Contrary to the MSW, where the upper tail increases hazard intensity, slower mov-427

ing storms have proven to result in higher risks when reaching the coast (Gomes et al.,428

2015). According to this figure, our track generator demonstrates its capability to syn-429

thesize slow-moving storms such as those normally observed in these regions. Both his-430

torical record and the model show slower-moving storms with stronger wind surround-431

ing the area of Miami than New York City, causing more intense episodes of inundation432

and destruction in Miami.433

Computing the K-S test statistic in two dimensional space implies that the MSW-434

translational speed sets of ensemble patch are drawn from the same underlying joint dis-435

tribution as historical records. The values of K-S test statistic are 0.23 and 0.31 for Mi-436

ami and New York City, respectively, which are lower than their corresponding critical437

values of 0.25, and 0.32.438
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4 Conclusion439

Frequency analysis on local storm intensities is not capable of storm hazard assess-440

ment for areas such as New York City, that have experienced only a limited number of441

severe storms in history, due to insufficient observations. Ensemble generation is crit-442

ical for circumventing this difficulty, taken into account in this study. The soundness of443

our algorithm for generating hurricane ensembles was evaluated by statistical compar-444

ison with historical record. Such a comparison joined by K-S test suggests that the statis-445

tics of generated ensembles are generally in good agreement with the observed statistics446

of the historical record.447

In macro scale test of our algorithm, the hurricane activity of ensemble patch within448

500 km radius of US counties conforms broadly to the trend of historical record, suggest-449

ing the proposed algorithm is a viable approach for hurricane hazard assessment. In mi-450

cro scale our algorithm was tested on Miami and New York City with quite different hur-451

ricane climatology. The results illustrate the capability of our model in generating count-452

less severe storms in data-sparse regions. Our track generator produces a history of lo-453

cal potential maximum sustained wind and translational speed from the underlying dis-454

tribution in these two regions. This is important because storms with similar intensity455

and different translational speeds have different effects in one area; that is, a large cat-456

egory 2 hurricane may cause a greater hazard than category 4.457

Our results also show that unique trajectories similar to Hurricane Sandy can be458

statistically reconstructed even by excluding their trajectory from historical records. Among459

the ensembles generated, two tracks were found that followed the unique trajectory of460

Hurricane Sandy after crossing the latitude of 30◦N, curved sharply west rather than east461

and out to sea.462

The outlined methodology in this paper can be used for hurricane hazard assess-463

ments and risk modeling in hurricane-prone regions. We recommend interested researchers464

in the area of Tc risk assessment to either (i) re-generate storm events with high poten-465

tial of occurrence in areas with both high and low hurricane frequencies; or (ii) to use466

such dataset to compare the statistics of surge ensembles with an observed record of a467

near gauge to see weather the record is a good representative of storm surge hazard in468

the region. We plan to do this in future work.469

Acknowledgments470

The author would like to appreciate Ravi Varadhan, Alan Genz et al, Ting Fung et al,471

Giorgio Alfredo Spedicato, Ryan Andrew Peterson, and Robert J. Hijmans for their valu-472

able ”condMVNorm”, ”mvtnorm”, ”tmvmixnorm”, ”markovchain”, ”bestNormalize”,473

”geosphere” R packages, respectively. All data used in this research is publicly available474

at NOAA’a best-track archives.475

References476

Bloemendaal, N., Haigh, I. D., de Moel, H., Muis, S., Haarsma, R. J., & Aerts, J. C.477

(2020). Generation of a global synthetic tropical cyclone hazard dataset using478

storm. Scientific Data, 7 (1), 1–12.479

Burroughs, W. J. (2007). Climate change: a multidisciplinary approach. Cambridge480

University Press.481

Coles, S., & Simiu, E. (2003). Estimating uncertainty in the extreme value analysis482

of data generated by a hurricane simulation model. Journal of engineering me-483

chanics, 129 (11), 1288–1294.484

Done, J. M., Bruyère, C. L., Ge, M., & Jaye, A. (2014). Internal variability of north485

atlantic tropical cyclones. Journal of Geophysical Research: Atmospheres,486

119 (11), 6506–6519.487

Edmund, H., Chamberlain, S., & Ram, K. (2014). rnoaa: Noaa climate data from r.488

[Computer software manual]. Retrieved from https://github.com/ropensci/489

–13–



manuscript submitted to Water Resources Research

rnoaa (R package version 0.1.9.99)490

Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30491

years. Nature, 436 (7051), 686–688.492

Emanuel, K., Ravela, S., Vivant, E., & Risi, C. (2006). A statistical deterministic493

approach to hurricane risk assessment. Bulletin of the American Meteorological494

Society , 87 (3), 299–314.495

Freeman, A. C., & Ashley, W. S. (2017). Changes in the us hurricane disaster land-496

scape: the relationship between risk and exposure. Natural hazards, 88 (2),497

659–682.498

Garner, A. J., Mann, M. E., Emanuel, K. A., Kopp, R. E., Lin, N., Alley, R. B., . . .499

Pollard, D. (2017). Impact of climate change on new york citys coastal flood500

hazard: Increasing flood heights from the preindustrial to 2300 ce. Proceedings501

of the National Academy of Sciences, 114 (45), 11861–11866.502

Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating503

marginal densities. Journal of the American statistical association, 85 (410),504

398–409.505

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and506

the bayesian restoration of images. IEEE Transactions on pattern analysis and507

machine intelligence(6), 721–741.508

Gneiting, T., & Raftery, A. E. (2005). Weather forecasting with ensemble methods.509

Science, 310 (5746), 248–249.510

Gomes, M. P., Pinho, J. L., do Carmo, J. S. A., & Santos, L. (2015). Hazard assess-511

ment of storm events for the battery, new york. Ocean & Coastal Management ,512

118 , 22–31.513

Hallegatte, S., Hourcade, J.-C., & Dumas, P. (2007). Why economic dynamics mat-514

ter in assessing climate change damages: illustration on extreme events. Eco-515

logical economics, 62 (2), 330–340.516

Hoque, M. A.-A., Phinn, S., Roelfsema, C., & Childs, I. (2016). Assessing tropical517

cyclone impacts using object-based moderate spatial resolution image analysis:518

a case study in bangladesh. International Journal of Remote Sensing , 37 (22),519

5320–5343.520

Lai, Y., Li, J., Gu, X., Chen, Y. D., Kong, D., Gan, T. Y., . . . Wu, G. (2020).521

Greater flood risks in response to slowdown of tropical cyclones over the coast522

of china. Proceedings of the National Academy of Sciences, 117 (26), 14751–523

14755.524

Lam, J. S. L., Liu, C., & Gou, X. (2017). Cyclone risk mapping for critical coastal525

infrastructure: Cases of east asian seaports. Ocean & Coastal Management ,526

141 , 43–54.527

Li, Y., & Ghosh, S. K. (2015). Efficient sampling methods for truncated multivariate528

normal and student-t distributions subject to linear inequality constraints.529

Journal of Statistical Theory and Practice, 9 (4), 712–732.530

Lin, N., Emanuel, K., Oppenheimer, M., & Vanmarcke, E. (2012). Physically based531

assessment of hurricane surge threat under climate change. Nature Climate532

Change, 2 (6), 462–467.533

Lin, N., Kopp, R. E., Horton, B. P., & Donnelly, J. P. (2016). Hurricane sandys534

flood frequency increasing from year 1800 to 2100. Proceedings of the National535

Academy of Sciences, 113 (43), 12071–12075.536

Loridan, T., Khare, S., Scherer, E., Dixon, M., & Bellone, E. (2015). Parametric537

modeling of transitioning cyclone wind fields for risk assessment studies in the538

western north pacific. Journal of Applied Meteorology and Climatology , 54 (3),539

624–642.540

Mei, W., Kamae, Y., Xie, S.-P., & Yoshida, K. (2019). Variability and predictability541

of north atlantic hurricane frequency in a large ensemble of high-resolution542

atmospheric simulations. Journal of Climate, 32 (11), 3153–3167.543

Mohleji, S., & Pielke Jr, R. (2014). Reconciliation of trends in global and regional544

–14–



manuscript submitted to Water Resources Research

economic losses from weather events: 1980–2008. Natural Hazards Review ,545

15 (4), 04014009.546

Pielke Jr, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., & Musulin,547

R. (2008). Normalized hurricane damage in the united states: 1900–2005.548

Natural Hazards Review , 9 (1), 29–42.549

Puotinen, M. (2007). Modelling the risk of cyclone wave damage to coral reefs using550

gis: a case study of the great barrier reef, 1969–2003. International Journal of551

Geographical Information Science, 21 (1), 97–120.552

Reed, A. J., Mann, M. E., Emanuel, K. A., Lin, N., Horton, B. P., Kemp, A. C., &553

Donnelly, J. P. (2015). Increased threat of tropical cyclones and coastal flood-554

ing to new york city during the anthropogenic era. Proceedings of the National555

Academy of Sciences, 112 (41), 12610–12615.556

Shuckburgh, E., Mitchell, D., & Stott, P. (2017). Hurricanes harvey, irma and maria:557

how natural were thesenatural disasters’? Wthr , 72 (11), 353–354.558

Taylor, H. T., Ward, B., Willis, M., & Zaleski, W. (2010). The saffir-simpson hurri-559

cane wind scale. Atmospheric Administration: Washington, DC, USA.560

Varlas, G., Katsafados, P., Papadopoulos, A., & Korres, G. (2018). Implementation561

of a two-way coupled atmosphere-ocean wave modeling system for assessing562

air-sea interaction over the mediterranean sea. Atmospheric Research, 208 ,563

201–217.564

Vickery, P. J. (2005). Simple empirical models for estimating the increase in the565

central pressure of tropical cyclones after landfall along the coastline of the566

united states. Journal of applied meteorology , 44 (12), 1807–1826.567

Villarini, G., Luitel, B., Vecchi, G. A., & Ghosh, J. (2019). Multi-model ensem-568

ble forecasting of north atlantic tropical cyclone activity. Climate Dynamics,569

53 (12), 7461–7477.570

Weinkle, J., Landsea, C., Collins, D., Musulin, R., Crompton, R. P., Klotzbach,571

P. J., & Pielke, R. (2018). Normalized hurricane damage in the continental572

united states 1900–2017. Nature Sustainability , 1 (12), 808–813.573

Woodruff, J. D., Irish, J. L., & Camargo, S. J. (2013). Coastal flooding by tropical574

cyclones and sea-level rise. Nature, 504 (7478), 44–52.575

Wooten, R. D., & Tsokos, C. P. (2008). A markovian analysis of hurricane transi-576

tions. Neural, Parallel and Scientific Computations, 16 (1), 1.577

Workgroup, N. L. S. (2015). Guidance for considering the use of living shorelines.578

Silver Spring, Maryland: National Oceanic and Atmospheric Administration,579

36p.580

Yonekura, E., & Hall, T. M. (2011). A statistical model of tropical cyclone tracks in581

the western north pacific with enso-dependent cyclogenesis. Journal of Applied582

Meteorology and Climatology , 50 (8), 1725–1739.583

–15–



Figure 1.





Figure 2.



 TS

 ET

 TS

 ET

 TS

 ET

 TS

 ET
 TS

 ET

 TS

 ET

 TS

 ET

 ET

 TS
 ET

 TS

 ET

 TS

 ET

 TS

 ET

 TS

 ET

 ET

 TS

 ET TS

 TS

 ET

 TS

 ET

 TS

 ET

 TS
 ET

 TS

 ET

 TS TS

 ET

 TS

 ET

 TS

 ET

 TS

 ET

 ET

 TS

 ET

 ET

 TS

 TS
 ET

 TS

 ET

 TS

 ET

 TS

 ET
 TS

 ET
 TS

 ET

 ET

 TS

 ET
 TS

 ET

 ET

 ET

 TS

 ET

 ET

 TS

 ET

 ET

 ET

 TS

 ET

 TS

 ET

 TS

 ET

 ET

 ET

 TS

 ET

 TS

 ET

 TS

 TS  ET

 TS

 TS

 ET
 TS

 ET

 TS  ET

 TS

 ET

 TS

 ET

 ET

 TS

 ET

 ET

 TS
 TS  ET

 TS

 ET

 ET

 ET

 TS

 ET
 TS

 ET

 TS  ET

 TS

 ET

 TS

 ET

 TS

 ET  ET

 TS
 ET

 TS
 ET

 ET

 TS

 ET

 TS

 ET

 TS

 ET

20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

 hurricane type 1

 hurricane type 2

 hurricane type 3

 hurricane type 4

 tropical cyclone



Figure 3.



Lat

Ø D

Ensemble 
genesis

start

Normalized historical genesis
feature

t=0

Burn in region 

Sampling form multivariate
normal distribution

Inverse Transformation

Nstep=Duration/ 6hr

Displacement vector

Next point

  Markov state generation  

Transitional
probablity

t>1

t=t+1

Truncating the multivariate by S

Conditional sampling from truncated
multivariate given current position

Inverse Transformation

Displacement vector

Next point

Normalized historical
storm transition features

Yes

t< Nstep

Same regionTransition

Transition

Yes

No

Conditional sampling given ensemble
features in tropical state (TS)

Yes

Yes

Normalized historical
storm motion features

No

Update Markov chains and
multivariate parameters

Inverse Transformation

A B C

D E F

St
ag

e 
2

H
ur

ric
an

e 
M

ot
io

n
kth Ensemble

LatTS MSWTSLonTS

Lat MSW

V Ø

Lon

S1 S2 Sn P(St|St-1)

No
Yes

No

Scr
1 ϵ Genesis  

No

No

scr
1=sar

n
Yes

No

VTS ØTS

LatEt MSWETLonET VET ØET

t=1

Lon MSW

V

k=k+1

St
ag

e 
1

H
ur

ric
an

e 
G

en
es

is
 

Yes



Figure 4-1.



M=24.62
SD=7.56

M=27.03
SD=9.20

0.00

0.01

0.02

0.03

0.04

0.05

20 40 60

latitude

d
e
n
s
it
y

Best track data
Model

(a)



Figure 4-2.



M=−75.22

SD=14.9

M=−75.62

SD=15.79

0.00

0.01

0.02

0.03

−80 −40 0

longitude

d
e
n
s
it
y

Best track data
Model

(b)



Figure 4-3.



M=63.10
SD=28.10

M=60.79
SD=27.81

0.00

0.01

0.02

0.03

0 50 100 150

MSW (knots)

d
e
n
s
it
y

Best track data
Model

(c)



Figure 4-4.



M=5.88

SD=3.31

M=5.90

SD=3.60

0.00

0.05

0.10

0.15

0 10 20 30 40

translational speed (m/s)

d
e
n
s
it
y

Best track data
Model

(d)



Figure 4-5.



M=213.94
SD=119.91

M=207.84
SD=124.92

0.000

0.003

0.006

0.009

0 100 200 300

azimuth

d
e
n
s
it
y Best track data

Model

(e)



Figure 4-6.



M=225.54

SD=95.66

M=232

SD=105.69

0.000

0.001

0.002

0.003

0.004

0.005

0 200 400 600

duration (hour)

d
e
n
s
it
y

Best track data
Model

(f)



Figure 5.



40

80

120

160

40 80 120 160

best track data (knots)

m
o
d
e
l 
(k

n
o
ts

)

hurricane type 1

hurricane type 2

hurricane type 3

hurricane type 4

hurricane type 5

tropical cyclone



Figure 6.



−0.5 −0.1 0.1 −0.5

0 0.3 0.2

0 0.2

−0.1

latitude

longitude

MSW

translational_speed

azimuth

(a)

[−1,−0.5]

(−0.5,0]

(0,0.5]

(0.5,1]

−0.4 −0.1 0.2 −0.5

0 0.2 0.2

−0.1 0.2

−0.1

latitude

longitude

MSW

translational_speed

azimuth

(b)

[−1,−0.5]

(−0.5,0]

(0,0.5]

(0.5,1]



Figure 7-1.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.00

0.25

0.50

0.75

1.00

(a)



Figure 7-2.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.2

0.4

0.6

(b)



Figure 7-3.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.0

0.2

0.4

0.6

(c)



Figure 7-4.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.1

0.2

0.3

0.4

0.5

(d)



Figure 7-5.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.0

0.1

0.2

0.3

0.4

(e)



Figure 7-6.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.1

0.2

0.3

0.4

(f)



Figure 7-7.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.00

0.05

0.10

0.15

0.20

0.25

(g)



Figure 7-8.



20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

0.00

0.05

0.10

0.15

0.20

(h)



Figure 7-9.
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Figure 7-10.
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Figure 8.
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Figure 9.
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Figure 10.



New York City

20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

(a)

New York City

20

30

40

50

−100 −90 −80 −70 −60

longitude

la
ti
tu

d
e

(b)



Figure 11.
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Figure 12.
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Figure 13-1.
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Figure 13-2.
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