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Abstract

The characterisation of multiphase flow properties is essential for predicting large-scale fluid behaviour in the subsurface.

Insufficient representation of small-scale heterogeneities has been identified as a major gap in conventional reservoir simulation

workflows. Capillary heterogeneity has an important impact on small-scale flow and is one of the leading causes of anisotropy and

flow rate dependency in relative permeability. We evaluate the workflow developed by Jackson et al. (2018) for use on rocks with

complex heterogeneities. The workflow characterises capillary heterogeneity at the millimetre scale. The method is a numerical

history match of a coreflood experiment with the 3D saturation distribution as a matching target and the capillary pressure

characteristics as a fitting parameter. Coreflood experimental datasets of five rock cores with distinct heterogeneities were

analysed: two sandstones and three carbonates. The sandstones exhibit laminar heterogeneities. The carbonates have isotropic

heterogeneities at a range of length scales. We found that the success of the workflow is primarily governed by the extent to which

heterogeneous structures are resolved in the X-ray imagery. The performance of the characterisation workflow systematically

improved with increasing characteristic length scales of heterogeneities. Using the validated models, we investigated the flow

rate dependency of the upscaled relative permeability. The findings showed that the isotropic heterogeneity in the carbonate

samples resulted in non-monotonic behaviour; initially the relative permeability increased, and then subsequently decreased with

increasing flow rate. The work underscores the importance of capturing small-scale heterogeneities in characterising subsurface

fluid flows, as well as the challenges in doing so.
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Key Points:6

• Successful capillary heterogeneity characterisation in carbonates depends on the7

extent to which key features are resolved in X-ray imagery8
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Abstract13

The characterisation of multiphase flow properties is essential for predicting large-14

scale fluid behaviour in the subsurface. Insufficient representation of small-scale hetero-15

geneities has been identified as a major gap in conventional reservoir simulation work-16

flows. Capillary heterogeneity has an important impact on small-scale flow and is one17

of the leading causes of anisotropy and flow rate dependency in relative permeability. We18

evaluate the workflow developed by Jackson et al. (2018) for use on rocks with complex19

heterogeneities. The workflow characterises capillary heterogeneity at the millimetre scale.20

The method is a numerical history match of a coreflood experiment with the 3D satu-21

ration distribution as a matching target and the capillary pressure characteristics as a22

fitting parameter. Coreflood experimental datasets of five rock cores with distinct het-23

erogeneities were analysed: two sandstones and three carbonates. The sandstones ex-24

hibit laminar heterogeneities. The carbonates have isotropic heterogeneities at a range25

of length scales. We found that the success of the workflow is primarily governed by the26

extent to which heterogeneous structures are resolved in the X-ray imagery. The per-27

formance of the characterisation workflow systematically improved with increasing char-28

acteristic length scales of heterogeneities. Using the validated models, we investigated29

the flow rate dependency of the upscaled relative permeability. The findings showed that30

the isotropic heterogeneity in the carbonate samples resulted in non-monotonic behaviour;31

initially the relative permeability increased, and then subsequently decreased with in-32

creasing flow rate. The work underscores the importance of capturing small-scale het-33

erogeneities in characterising subsurface fluid flows, as well as the challenges in doing so.34
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1 Introduction35

Subsurface multiphase fluid flow is central to a number of scientific and engineer-36

ing processes of major societal importance including energy resource use, environmen-37

tal contaminant remediation, and climate change mitigation. Despite this, there are long-38

standing difficulties with the characterisation and predictive modelling of subsurface flow.39

For example, at many CO2 storage sites worldwide, carbon dioxide injected underground40

has migrated away from injection points at much faster rates than had been predicted41

with reservoir simulations (Arts et al., 2004; Chadwick et al., 2009; Hosseini et al., 2013;42

Lu et al., 2013; Birkholzer et al., 2015; Global CCS Institute, 2019; Onoja & Shariatipour,43

2019), see Aminu et al. (2017). These observations suggest that flow simulations are miss-44

ing some of the leading order mechanisms governing fluid flow.45

One gap in conventional reservoir simulation workflows is the field scale represen-46

tation of the impact of small-scale heterogeneity in multiphase flow properties, the rel-47

ative permeability and capillary pressure characteristics (Jackson & Krevor, 2020). Rel-48

ative permeability is one of the key parameters controlling fluid behaviour (S. Krevor49

et al., 2019). It is strongly influenced by rock heterogeneity that arises from sedimen-50

tary structures like crossbedding in sandstones or shell fragments in carbonates (Corey51

& Rathjens, 1956; Huppler, 1970; Kortekaas, 1985; Hove et al., 1990; Hamon & Roy, 2000;52

Dawe et al., 1992; Chang & Yortsos, 1992). Field scale simulations typically use relative53

permeability curves measured in the laboratory using cm-scale rock cores, however cap-54

illary pressure heterogeneity has a particularly important impact on flow at these length55

scales. Capillary heterogeneity is one of leading causes of anisotropy and flow rate de-56

pendency in observed relative permeability and has significant impacts on upscaled prop-57

erties (Woods & Farcas, 2009; Yamamoto, 2009; Green & Ennis-King, 2010; Perrin &58

Benson, 2010; S. C. Krevor et al., 2011; S. Krevor et al., 2015; Benham et al., 2020; Jack-59

son & Krevor, 2020).60

The ratio of viscous to capillary forces over length scales of centimeters to meters61

controls the importance of capillary heterogeneity. A continuum scale capillary number62

is often used to describe this such as the number defined by Virnovsky et al. (2004),63

Nc =
H

L

∆P

∆Pc
, (1)64

where H [m] is a length scale associated with the heterogeneity, e.g. a layer thickness,65

L [m] is a length scale in the direction of flow, ∆P [Pa] is the pressure differential across66

L, and ∆Pc [Pa] is a contrast in capillary pressure imposed by the heterogeneities. At67

high capillary numbers the role of heterogeneities diminishes and a single relative per-68

meability characteristic controls the flow in the rock. This is known as the viscous-limit.69

As capillary forces become significant, heterogeneities control the fluid behaviour and70

flow rate dependent and anisotropic relative permeability functions are needed to rep-71

resent the impact of these heterogeneities on large-scale flow. In the subsurface, flow is72

more prevalently characterised by the capillary-controlled flow regime and capillary het-73

erogeneity is one of the dominant fluid distribution mechanisms over centimeter to me-74

ter length scales for oil-brine and gas-brine systems (Chang & Yortsos, 1992; Ringrose75

et al., 1993; Chaouche et al., 1994; Huang et al., 1995). Hence, upscaled equivalent func-76

tions are required to represent the larger scale manifestations of small-scale heterogeneities77

(Jackson et al., 2018; Jackson & Krevor, 2020).78

An approach to characterise capillary heterogeneity within cores has been devel-79

oped, which combines experimental and numerical methods (Krause et al., 2011, 2013).80

The workflow uses a numerical history match of a coreflood experiment with the 3D sat-81

uration distribution as a matching target and the capillary pressure characteristics as82

a fitting parameter. The authors applied their method to two sandstone samples and suc-83

cessfully predicted the sub-core scale saturation distribution, with a correlation R2 >84

0.93. Subsequently, this approach was applied to a wider range of samples, mainly sand-85
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stones, and developed to improve the observational basis and strengthen the iterative86

matching procedure (Berg et al., 2013; Krause et al., 2013; Pini & Benson, 2013a, 2013b;87

Kong et al., 2015; Krause & Benson, 2015; Jackson et al., 2018; Reynolds et al., 2018;88

Hosseinzadeh Hejazi et al., 2019).89

Uncertainty surrounding the impact of heterogeneity and the resulting relative per-90

meability anisotropy and rate dependency in more complex systems, for instance reser-91

voir sandstones or carbonates, remains. Reservoir sandstones can be significantly affected92

by diagenic and compactional processes, which lead to substantial porosity and perme-93

ability variations (Worden et al., 2018; Heidsiek et al., 2020). These often cluster into94

complex sedimentary structures such as cross-bedding or flute casts. Carbonate rocks95

are also characterised by heterogeneity, though on a larger range of scales. On a core to96

field scale, they exhibit facies and diagenetic distribution patterns, often at sub-seismic97

resolution (Petrovic et al., 2018). At the pore-scale, variations in pore network topol-98

ogy and wettability add further complexity to spatial porosity and permeability distri-99

butions, the latter manifesting as isotropic heterogeneity at larger scales (Rebelle et al.,100

2009). These complex rock types comprise a major reservoir resource and techniques for101

rock characterisation capturing the impact of these heterogeneities is important for field102

studies (Al-Kharusi & Blunt, 2008; Sayers, 2008).103

In this work, we evaluate the ability of the history matching workflow described104

by Jackson et al. (2018) to characterise capillary heterogeneity in rocks with more com-105

plex heterogeneities. We apply the method to five reservoir samples with distinct types106

and length scales of heterogeneity: two sandstones and three carbonates. For the sand-107

stones we use experimental dataset of Reynolds et al. (2018) and for the carbonate rocks,108

the dataset of Manoorkaar et al. (2021). The sandstones exhibit distinctly-orientated pla-109

nar bedding, whereas the carbonates are characterised by isotropic cementation of vary-110

ing length scale. The investigation also allowed us to compare the rate dependency of111

relative permeability in different rocks and draw conclusions on the varying flow behaviour.112

–4–
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2 Methods113

In this section we first describe the rock samples analysed in this study. We then114

discuss the details of the numerical simulations including the simulator used and the work-115

flow followed to build the numerical models. Lastly, the history match to characterise116

the capillary heterogeneity is described.117

2.1 Rock Samples118

Previously acquired experimental datasets using five rock cores were studied, with119

experimental methods and data reported in Reynolds and Krevor (2015); Reynolds et120

al. (2018); Manoorkaar et al. (2021). These datasets comprise observations from core-121

floods performed on two sandstones and three carbonate rock samples. Steady-state ex-122

periments were performed with the co-injection of nitrogen and DI water or CO2 and123

brine at high (HR) and low (LR) flow rates to obtain flow parameters in the viscous-limit124

(VL) and capillary-limit (CL) flow regimes, with 3D X-ray images taken throughout us-125

ing a medical X-ray CT scanner.126

The five rock samples cover a range of depositional facies and exhibit distinct het-127

erogeneity types and lengthscales, Figure 1 and 2. The Bentheimer sandstone is a shallow-128

marine deposit widely used for experimental studies due to its homogeneity (Peksa et129

al., 2015). Our sample exhibits a simple porosity heterogeneity orientated as a single layer130

parallel to the flow direction and serves as a nearly homogeneous benchmark. The Bunter131

sandstone is a geological unit from a previously proposed CCS site in the Southern North132

Sea. It was deposited in a predominantly alluvial environment and exhibits character-133

istics of early diagenetic processes such as grain dissolution and cementation (Brook et134

al., 2003). As such, our sample features noticeable heterogeneity in porosity and perme-135

ability, which can be grouped into distinct layers perpendicular to the axis of flow.136

The three carbonate samples, Indiana limestone, Estaillades limestone, and Edwards137

Brown dolomite, exhibit varying degrees of cementation resulting in distinct lengthscales138

of isotropic heterogeneity. The Indiana limestone, quarried from the Salem Formation139

in Indiana (USA) is formed of mainly calcite cemented grain stone (El-Maghraby, 2012).140

Out of the five rock samples, it has the smallest scale porosity heterogeneity (≈ 1mm)141

and appears relatively homogeneous in the porosity profile. The Estaillades, a calcite-142

rich limestone, originates from a quarry in Southeast France and is characterised by in-143

tergranular macropores and intragranular micropores (Lai et al., 2015; Al-Menhali et al.,144

2016). The sample has an order of magnitude larger scale of heterogeneity (≈ 1 cm) as145

shown in Figure 1. The Edwards Brown dolomite, sampled from the Upper Cretaceous146

formation in Texas (USA) (Manoorkaar et al., 2021), has a multi centimetre length low-147

porosity region towards the outlet of the core. Table 1 summarises the experimental and148

modelling parameters for the samples.149
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Bentheimer

Bunter

Edwards

Estaillades

Indiana

Figure 1. Porosity profiles for the five cores displaying the range of heterogeneity types and length-

scales.

Table 1. Summary of the experimental and core characterisation parameters for the five samples.

Parameters Bentheimer Bunter Indiana Estaillades Edwards Brown
Nonwetting phase, nw N2 CO2 N2 N2 N2

Wetting phase, w DI Water Brine DI Water DI Water DI Water
Qtot high/low (ml min−1) 40/7 20/0.2 0.5/5 0.5/20 0.5/5
Number of fractional flows high/low 10/6 8/6 13/13 13/10 10/16
Pressure, P (MPa) 15.5 13.1 10 10 10
Temperature, T (°C) 50 53 20 20 20
nw density, ρnw (kg m−3) 115 604 115 115 115
w density, ρw (kg m−3) 997 1022 998 998 998
nw viscosity, µnw (µPa s) 22.1 45.9 19.7 19.7 19.7
w viscosity, µw (µPa s) 550 582 1070 1070 1070
IFT, γ (mNm−1) 62 34.7 62 62 62
Experimental core length, L (m) 0.198 0.151 0.148 0.148 0.148
Experimental core radius, r (m) 0.019 0.019 0.019 0.019 0.019
Raw voxel ∆x, ∆y (m) 0.00023 0.00023 0.00017 0.00017 0.00017
Raw voxel ∆z (m) 0.005 0.003 0.001 0.001 0.001
Digital core dimensions [x,y,z] 11x11x41 11x11x52 9x9x74 9x9x74 9x9x74
Upscaled voxel ∆x, ∆y (m) 0.0032 0.00277 0.00246 0.00246 0.00246
Upscaled voxel ∆z (m) 0.005 0.003 0.002 0.002 0.002
Digital core length, L (m) 0.195 0.150 0.144 0.144 0.144
Digital core radius, r (m) 0.018 0.015 0.011 0.011 0.011
Entry pressure, Pe (kPa) 3.51 1.62 2.96 9.30 9.18
Pore distribution, λ (-) 2.3 1.43 0.86 1.45 0.48
Porosity, φ (-) 0.21 0.25 0.14 0.24 0.23
Permeability, Kabs (D) 1.86 2.20 0.024 0.14 0.046
Chierici krw, A/L (-) 3/0.75 3/0.9 4.37/1.01 5.26/0.8 15.7/1.06
Chierici krg, B/M (-) 5/0.65 3.75/0.4 3.30/0.83 1.21/1.22 2.66/0.54
krg(Swirr/ krw(Sgc (-) 1/1 1/1 1/1 1/1 1/1
Swirr, Sgc (-) 0.08/0.0 0.082/0.0 0.0/0.0 0.07/0.0 0.0/0.0
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Figure 2. Porosity maps through the centre of each rock sample showing the 2D structure of the

porosity heterogeneities.
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2.2 Numerical Modelling150

The flow simulations were performed using a fully-implicit, isothermal black oil fluid151

simulator (CMG ™IMEX). The simulator uses the finite difference method to solve the152

governing equations.153

The grid dimensions used in the flow simulations of each core are given in Table154

2. The simulations of each core used the rock and fluid properties given in Table 1 to-155

gether with 3D porosity data obtained from medical CT images, processed following the156

standard method detailed in Withjack (1988).157

The viscous-limit relative permeability data were obtained from data measured dur-158

ing high flow rate experiments. The parameters obtained by Jackson et al. (2018) were159

used for the sandstone cores whilst the data for the carbonate cores were obtained by160

history matching using the 1D Simulator SENDRA. The history match used the slice-161

average saturations, pressure drops, and fluid injection rates. For the Indiana limestone162

and the Edwards Brown dolomite, SENDRA failed to converge to a solution with an ac-163

ceptable residual error. Thus, Matlab’s “fmincon” function, a gradient-based constrained164

optimisation tool, was applied to the experimentally measured viscous-limit relative per-165

meabilities. All viscous-limit relative permeabilities were assumed to be uniform through-166

out the rock domain and were modelled using the Chierici functional form (Chierici, 1984):167

krg = krg(Swirr)e−BRmw , krw = krw(Sgc)e
−AR−L

w , Rw =
Sw − Swirr

1 − Sgc − Sw
, (2)168

169

where krg and krw are the gas and water relative permeabilities, respectively. Sw,170

Swirr and Sgc refer to the water saturation, irreducible water saturation and critical gas171

saturation, respectively. A, B, M and L are the Chierici parameters that control the shape172

of the curves.173

An average, or intrinsic, capillary pressure characteristic was obtained from obser-174

vations made using mercury injection porosimetry (MIP). The data was fit with the Brooks-175

Corey model (Brooks & Corey, 1964):176

Pc(Sw) = Pe(
1 − Swirr

Sw − Swirr
)

1
λ , (3)177

where Pc [Pa] is the capillary pressure as a function of water saturation (Sw [-]), Pe [Pa]178

is the entry pressure, Swirr [-] is the irreducible water saturation and λ [-] is the pore179

size distribution factor. The values of Pe, Swirr and λ from Jackson et al. (2018) were180

used in the sandstone workflow. For the carbonates, the MIP data was cropped prior181

to fitting due to the large pressures (>1000kPa) reached during mercury injection. There-182

after, the capillary pressure at Sw = 1.0 was taken as Pe, and Swirr and λ were obtained183

by minimising the misfit between the MIP data and Equation 3.184

Fictitious inlet and outlet slices were used to mimic the experimental conditions.185

The following parameters were assigned to these end slices:186

1. Linearly varying relative permeabilities: krw = Sw, krg = −Sw + 1187

2. Zero capillary pressure: Pc = 0188

3. A large permeability: Kendslice ≈ 7 ×Kabs189

4. A constant porosity: φendslice = φcore,avg190

Injection ’wells’ were defined in the centre of the inlet slice — two injected gas and191

two injected water. Two fluid sink locations – modelled as production wells – were placed192

–8–
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in the centre of the outlet slice. The supplementary material of Jackson et al. (2018) pro-193

vides a more detailed discussion on the choice of these boundary conditions.194

The grid size for the digital models was guided by the representative elementary195

volume (REV) of the rock structure, the experimental saturation precision and the run196

time of the simulations. With respect to the concept of REV, the focus of this study was197

to evaluate the impacts of heterogeneity. Thus we are not identifying a length scale at198

which an average property can be taken to be representative of the entire core. The rel-199

evant issue for this work is to verify that the voxel scale chosen is large enough such that200

a continuum property has meaning. This can be estimated by comparing the pore struc-201

ture of each rock type to the voxel size.202

For the Indiana limestone, a pore on average has a volume of 22µm3 (using the me-203

dian pore-throat radius, r50, from MIP data presented in Lai et al. (2015)). From the204

voxel dimensions (Table 1) the coarsened voxel size of the CT images is 1.21×1010µm3.205

An estimated 1.69 × 109µm3 of pores is present within each voxel. This translates to206

≈ 7.5×107 pores. Following the same workflow, the number of pores within each voxel207

is estimated as ≈ 2.1×108 and ≈ 3.1×106 for the Estaillades limestone and Edwards208

Brown dolomite, respectively.209

We note the importance of additionally considering the REV of the capillary pres-210

sure characteristic as this might be different from the REV of the pore structure. How-211

ever, quantifying this poses a challenge. Previous work using micrometre resolution X-212

ray imaging and pore network models has identified that correlation length scales of cap-213

illary pressure characteristics and porosity are of a similar order of magnitude (Jackson214

et al., 2020; Zahasky et al., 2020). We assume, based on the above estimates, that the215

voxel scale allows for the capillary pressure characteristic to also be considered a valid216

continuum property.217

The uncertainty in the experimental saturation data was also considered in the nu-218

merical modelling approach. We estimated the uncertainty in the saturation values ob-219

tained from the experiments following from the analysis presented in Pini et al. (2012).220

X-ray CT images at centimetre scale resolution are significantly affected by random noise.221

Averaging data over repeat scans taken during the experiment and processing the im-222

ages through coarsening can reduce the image noise. Figure S1 in the supplementary ma-223

terial shows the reduction in voxel scale uncertainties from image coarsening and aver-224

aging over repeated scans. Table 2 summarises the final saturation uncertainties asso-225

ciated with the coarsening schemes used in this work. The voxel saturation uncertain-226

ties for all samples fall below 0.05. We used a grid size of 9×9×74 in the workflow de-227

scribed in Section 2.3.1. Additional coarsening (9×9×37) was applied to speed up the228

simulations in the extended approach outlined in Section 2.3.2.229

Table 2. Uncertainty in the saturations for the five rock samples after specific coarsening schemes were

applied to the raw CT images. For the carbonates, 9×9×74 and 9×9×37 are the digital core dimensions

used in the capillary heterogeneity characterisation workflow and history match, respectively.

Rock Sample Grid size σS=0,vox σS=1,vox

Bentheimer 11×11×41 0.027 0.038
Bunter 11×11×52 0.036 0.051

Indiana
9×9×74 0.011 0.016
9×9×37 0.008 0.011

Estaillades
9×9×74 0.012 0.001
9×9×37 0.017 0.012

Edwards Brown
9×9×74 0.020 0.029
9×9×37 0.014 0.020

–9–
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2.3 History Match of the Numerical Models230

The approach of Jackson et al. (2018) was used to history match the numerical mod-231

els for all of the experimental datasets. With some of the carbonate rocks, particularly232

the Indiana and Estaillades limestone, the approach was either unsuccessful or only par-233

tially successful. In these cases an extended approach was used, principally characterised234

by use of the simulation relative permeability property as a tuning parameter, to achieve235

a satisfactory history match. While this allowed for a more satisfactory match of the ex-236

perimental data at a specific flow rate condition (either high or low flow rate), it did not237

result in a model that could predict the impact of varying flow rate away from the con-238

ditions at which the model was calibrated. We summarise the approach of Jackson et239

al. (2018) and the extended approach here.240

2.3.1 Approach of Jackson et al. (2018)241

The 3D saturation maps of the rock cores obtained during the corefloods were used242

to infer the heterogeneity in capillary pressure characteristics. It was assumed that the243

capillary pressure was heterogeneous on a grid block scale. An initial guess was made244

based on an inversion of the saturation maps, followed by an iterative process whereby245

capillary pressure characteristics were updated based on the comparison between sim-246

ulated 3D saturation maps and the observations. The workflow is briefly described be-247

low and summarised by the schematic in Figure 3. For further detail, please see Jackson248

et al. (2018) on which this work was directly based. This in turn built directly on the249

work of a number of studies: Krause et al. (2011, 2013); Pini and Benson (2013a); Reynolds250

and Krevor (2015); Reynolds et al. (2018).251

For the initial guess, capillary pressure in each slice was assumed to be constant.252

The average saturation in that slice was assumed to map to the Brooks-Corey fit of the253

capillary pressure characteristic curve measured during routine core analysis (Equation254

3). Voxel scale variation in the saturation within the slice was assumed to be caused by255

the capillary heterogeneity within the slice. From this a scaling factor κ was assigned256

to each voxel, adjusting the local capillary pressure characteristic curve, to minimise the257

mismatch between the slice-average and voxel-specific values:258

Pc,ijk(Sijk) = κijk · Pc,avg(Sijk), (4)259

260

Θ =

Nv∑
i

Nf∑
j

√
(κijkPc,avg(Sexp

ijk ) − Pc,ijk(Sexp
ijk ))2

√
S(κijkPc,avg) − Sexp

ijk , (5)261

262

where Pc,ijk is the individual voxel capillary pressure, Pc,avg is the average capil-263

lary pressure curve, Sexp
ijk is the experimental voxel saturation, κijk is the individual voxel264

scaling parameter, Nv is the total number of voxels, Nf is the total number of fractional265

flows and S(κijkPc,avg) represents the saturation of the average capillary pressure curve266

after it has been scaled (using the slice-average capillary pressure). Through this, a 3D267

map of the initial scaling factor was built. The scaling was then used to populate the268

capillary pressure characteristics of numerical simulations of corefloods using the CMG269

™IMEX fluid simulator. The capillary heterogeneity was introduced alongside the poros-270

ity profile, the core-average characteristic capillary pressure behaviour and the viscous-271

limit relative permeability.272

The iterative calibration of the capillary pressure characteristics followed from this273

initial guess. After the first simulation, 3D saturation and capillary pressure maps were274

–10–
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extracted and directly compared to the experimentally measured values. A deviation from275

the experimental observations (both Pc and Sw) was assumed to stem from an incorrect276

scaling parameter assigned to the voxel. The scaling factor κ was then updated, min-277

imising the mismatch between the experiment and simulation. The objective function278

becomes the following, where the slice-average Pc values have been replaced by the sim-279

ulation values:280

Θ =

Nv∑
i

Nf∑
j

√
(κijkPc,avg(Sexp

ijk ) − Pc,ijk(Ssim
ijk ))2

√
S(κijkPc,avg) − Sexp

ijk , (6)281

282

where Sexp
ijk has been replaced with the simulation voxel saturation, Ssim

ijk . Now, S(κijkPc,avg)283

represents the saturation of the average capillary pressure curve after it has been scaled284

using the individual simulated voxel capillary pressure rather than the experimental slice-285

average capillary pressure. Please see Figure 3 for a diagram summarising this workflow.286

Figure 3. Flowchart summarising the workflow and iterative calibration scheme followed to charac-

terise the capillary heterogeneity in a core.

The iterative calibration scheme is said to have converged when the error between287

the experiment and simulation voxel saturations stabilised i.e. when the relative change288

in R2 between iterations falls below 2%. As shown in Figure 4, the sandstones gener-289

ally exhibit an earlier convergence compared with the carbonates. The R2 stabilised af-290

ter three iterations. The error in the voxel saturations reaches a plateau after four it-291

erations for the Estaillades and Edwards Brown, whereas the Indiana is associated with292

convergence issues. During the calibration scheme, the κ values assigned to the Indiana293

core were changed significantly to minimise the error in the voxel saturations. With each294

–11–
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iteration, the range of κ values increased. Beyond five iterations, the κ values reached295

physically unrealistic values (κ > 700). Thus, we decided to terminate the optimisa-296

tion scheme after five iterations as displayed in Figure 4. This issue is discussed in more297

detail in Section 3.2.1. The R2 associated with the final calibrated models are summarised298

in Table 3.299

Bentheimer

Bunter

Edwards

Estaillades

Indiana

Figure 4. R2 values for the experiment and simulation voxel saturations for the five rock samples

plotted against the number of simulation runs. The sandstones generally exhibit an earlier convergence

compared to the carbonates.

Table 3. R2 values associated with the final calibrated models for each rock type. Nr stands for the

number of iterations.

Rock Sample Nr R2

Bentheimer 4 0.701
Bunter 4 0.738
Indiana 5 0.401
Estaillades 5 0.750
Edwards Brown 5 0.430
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2.3.2 Extended Approaches Using Relative Permeability as a Match-300

ing Parameter301

The viscous-limit relative permeability curves used as input to the simulation are302

a major control on the results and ideally are measured with very little uncertainty in303

the observation. However, coreflood experiments are challenging and the measurements304

can be affected by sources of error. With respect to the high rate experiment, it may be305

difficult for true viscous-limit flow conditions to be achieved in the laboratory for any-306

thing other than permeable, relatively homogeneous cores. For highly heterogeneous rocks307

the highest flow rate achievable may result in a relative permeability measurement still308

impacted by capillary heterogeneity (Krause & Benson, 2015). This means that it may309

not serve as a suitable input for the predictive simulation. Furthermore, as discussed in310

Berg et al. (2021), the extraction of relative permeability from coreflood experiments us-311

ing Darcy’s Law corresponds to significant non-uniqueness and uncertainty. In this work,312

possibly related to this issue, the observations from the carbonate rocks were difficult313

to match following the conventional workflow. Thus we explored improvement in the history-314

matched simulation by additionally using the core-averaged input viscous-limit relative315

permeability as a fitting parameter, with the observed relative permeability at the low316

flow rate as an additional matching target. The modified workflow is summarised by the317

following steps:318

1. Initially, a large range of Chierici parameters, A and B, was explored, centred around319

the Chierici values obtained from the high rate experimental dataset.320

2. The viscous-limit input curve was modelled with the new Chierici parameters and321

the iterative optimisation procedure was followed. Four iterations were run for each322

parameter combination to obtain the calibrated, digital 3D model.323

3. Thereafter, this model was used in simulations of the low rate experiment. The324

root mean square errors for the relative permeabilities, core-average saturations325

and voxel saturations were calculated for each dataset.326

4. Using the errors from step 3), the parameter space was constrained. The history327

match was repeated with a smaller range of A and B values.328

5. These steps were repeated until an optimal solution was found that minimised the329

error in the simulated and experimental observations at the low flow rate.330

This workflow, which used the observed relative permeability at the low flow rate331

as an additional matching target, resulted in an unsatisfactory prediction of the voxel332

saturations and relative permeabilities at high rate. Therefore, we performed an addi-333

tional history match for each carbonate sample, which also incorporated the high rate334

experimental data. The procedure used the errors in both, the low and high rate rela-335

tive permeabilities and voxel saturations, to guide the history match. The updated work-336

flow followed these steps:337

1. Initially, a large range of Chierici parameters, A and B, was explored. Each com-338

bination of A and B was subsequently tested.339

2. The viscous-limit input curve was modelled with the new Chierici parameters and340

the iterative optimisation procedure was followed. Four iterations were run for each341

parameter combination to obtain the calibrated, digital 3D model.342

3. Thereafter, this model was used in simulations of the low rate and high rate ex-343

periments. The root mean square errors for the relative permeabilities, core-average344

saturations and voxel saturations were calculated for the low and high rate datasets.345

4. Using the errors from step 3), the parameter space was constrained. The history346

match was repeated with a smaller range of A and B values.347

5. These steps were repeated until an optimal solution was found that minimised the348

mismatch between the simulated and experimental observations at the low and349

high flow rates.350
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3 Results and Discussion351

To evaluate the matching procedure, the voxel-scale fluid saturations were compared352

between the experiments and the simulations. In the initial approach, the high flow rate,353

viscous-limit relative permeability was input into the simulations. The evaluation of the354

predictive capability was based on the predicted observations at the low flow rate, which355

reflect the impact of the heterogeneities inverted from the experimental saturation data.356

In the extended numerical approach, with the carbonate rocks, the input relative per-357

meability was used as a tuning parameter for matching the experimental data. Thus, rather358

than predicting the low rate relative permeabilities, they were used as an additional match-359

ing target.360

3.1 Bentheimer and Bunter Sandstone Rocks361

Following the workflow from Section 2.3.1, digital models for the two sandstones362

were generated, Figure 5. The predictive capability is assessed in Figure 6. The relative363

permeabilities from the simulations align well with the experimental data for both sam-364

ples, although the Bentheimer generally exhibits a closer match. In the Bentheimer sam-365

ple, the gas relative permeability is raised relative to the viscous-limit curve, whereas the366

water relative permeability is lowered. This is as expected: the parallel layering allows367

for the two phases to arrange themselves optimally, discussed in previous work such as368

Krause and Benson (2015) and Rabinovich et al. (2016). In comparison to this, both rel-369

ative permeabilities are lowered relative to the viscous-limit curves in the Bunter sand-370

stone. This indicates that the perpendicular layering restricts the flow of the phases. These371

results also demonstrate the replicability of the digital models: using identical modelling372

parameters in the unaltered iterative calibration workflow allowed us to regenerate the373

findings presented in Jackson et al. (2018).374
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(a)

(b)

Figure 5. 3D digital model displaying the kappa values obtained after 4 iterations for (a) Bentheimer

sandstone and (b) Bunter sandstone. The Bentheimer sandstone exhibits layers parallel to the axis of

flow, whereas the Bunter sandstone is characterised by heterogeneities aligned perpendicular to the axis

of flow. Digital core dimensions for the Bentheimer and Bunter sandstones respectively: L = 0.195m, r=

0.018m and L = 0.150m, r= 0.015m.
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(a) (b)

Figure 6. Computed relative permeabilities for (a) the Bentheimer and (b) Bunter sandstone samples

obtained from numerical simulations using the iteratively calibrated digital models as input. As shown,

the relative permeabilities from the simulations align well with the experimental data for both samples.

VL stands for the viscous-limit relative permeabilities used as input to the simulations. Exp LR and HR

refer to the low and high rate relative permeabilities respectively, obtained from the coreflood experiment.

Sim LR refers to the relative permeabilities obtained from the simulation of the low rate experiment.

3.2 Carbonate Rocks375

Numerical models incorporating capillary heterogeneity were created for the car-376

bonates, Figure 7. The matching procedure and predictive capability using the conven-377

tional approach, where the experimental viscous-limit relative permeability is constrained,378

are assessed using Figure 8. The results, when the viscous-limit relative permeability is379

used as a fitting parameter and the low rate relative permeabilities are an additional match-380

ing target, are presented in Figure 9 and Table 4. Each sample is discussed individually381

(Sections 3.2.1 to 3.2.3). Within each section we first discuss the match using the con-382

ventional approach followed by a discussion of the results when the viscous-limit rela-383

tive permeability is used as a fitting parameter.384

Table 4. Comparison of the viscous-limit relative permeability Chierici parameters, A and B, as ob-

tained from the high rate experiment (Sendra was used for the Estaillades, Matlab’s ”fmincon” tool was

used for the Indiana and the Edwards Brown), compared to the results from the history match.

Name Source of parameters A B

Indiana
HR experiment 4.37 3.30
History match 1.00 0.45

Estaillades
HR experiment 5.26 1.21
History match 4.75 0.70

Edwards Brown
HR experiment 15.7 2.66
History match 14.00 2.00
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(a)

(b)

(c)

Figure 7. 3D digital model displaying the values of κ obtained after 5 iterations for (a) Indiana

limestone, (b) Estaillades limestone and (c) Edwards Brown dolomite. The characteristic length scale

of the capillary heterogeneities significantly differs between the samples, where the Indiana limestone is

characterised by the finest scaled variations in κ. Digital core dimensions: L = 0.144m, r= 0.011m.

–17–



manuscript submitted to Water Resources Research

(a) (b)

(c) (d)

(e) (f)

Figure 8. An evaluation of the history match and predictive ability of models of carbonate rocks

generated with the high flow rate relative permeability curve as input after 5 iterations. Left: voxel sat-

uration correlation plot comparing the experiment and the simulation for the (a) Indiana, (c) Estaillades

and (e) Edwards Brown. The colours correspond to the individual fractional flows. Right: Computed

relative permeabilities obtained from numerical simulations using the iteratively calibrated digital models

as input and compared to the experimental measurements for the (b) Indiana, (d) Estaillades and (f)

Edwards Brown. The Edwards Brown and Indiana are associated with the best and worst predictions of

the experimental relative permeability, respectively. VL stands for the viscous-limit relative permeabilities

used as input to the simulations. Exp LR and HR refer to the low and high rate relative permeabilities re-

spectively, obtained from the coreflood experiment. Sim LR refers to the relative permeabilities obtained

from the simulation of the low rate experiment.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. History match results for the carbonates when the viscous-limit relative permeability was

additionally used as a fitting parameter and the observed relative permeability at low flow rate was an

additional matching target after 4 iterations. Left: voxel saturation correlation plot comparing the exper-

iment and the simulation. The colours correspond to the individual fractional flows. Right: Computed

relative permeabilities obtained from numerical simulations using the iteratively calibrated digital models

as input and compared to the experimental measurements. Top: Indiana, Middle: Estaillades, Bottom:

Edwards Brown. The adapted workflow resulted in a closer match of the voxel saturations and a bet-

ter prediction of the experimental relative permeability for all samples. VL stands for the viscous-limit

relative permeabilities used as input to the simulations. Exp LR and HR refer to the low and high rate

relative permeabilities respectively, obtained from the coreflood experiment. Sim LR refers to the relative

permeabilities obtained from the simulation of the low rate experiment.
–19–



manuscript submitted to Water Resources Research

3.2.1 Indiana Limestone385

As shown in Figure 7, the Indiana limestone displays finer-scaled variations in κ386

compared to the Estaillades limestone. Overall, this sample exhibits a large range in en-387

try pressures, where some regions have entry pressures 600 times larger than the core-388

average. The Indiana limestone has the smallest scale of heterogeneity (≈ 1mm) and it389

displays the poorest match (Figure 8a). The simulation results in a homogeneous sat-390

uration distribution in comparison to the experiment. The majority of voxels have gas391

saturations SN2
< 0.4, which is reflected by the horizontal trend in the voxel scatter392

plot. In the experiment, the core exhibited a heterogeneous saturation distribution where393

small regions were associated with anomalously high gas saturations. These are not re-394

produced in the simulation as can be seen by the significant deviation at high satura-395

tions (SN2 > 0.4). This is also shown in the 3D saturation maps, Figure S2 in the sup-396

plementary material.397

This mismatch results in a poor prediction of the relative permeability (Figure 8b).398

Both, krg and krw are underpredicted. The experimental krw curve has almost 100 times399

larger relative permeability compared with the simulation. The simulated krg curve plots400

closely to the input viscous-limit curve. This suggests that we did not capture key fea-401

tures of the heterogeneity in the imagery, which was responsible for the shift in the rel-402

ative permeabilities observed in the experiment with varying flow rates. A large core-403

average pressure drop in the simulation is responsible for the low krg. This could have404

been caused by the connectivity of the heterogeneity. If some areas of the core are as-405

signed high Pe, they inhibit the flow and cause a large pressure drop. The κ distribu-406

tion supports this hypothesis: the optimisation resulted in a large range of κ values, with407

some reaching nearly 700 (i.e. Pe is 700 times the 2.96kPa core-average), which would408

significantly hinder fluid invasion into these parts of the core. Comparing different it-409

erations shows that the range of κ values significantly increases with each iteration: from410

0-8 to 0-280 between iteration 1 and iteration 4. This large change in κ barely had an411

impact on the trend produced by the saturation correlation plot: it remained horizon-412

tal. This shows that even a significant change in the entry pressure distribution did not413

affect the outcome. Hence, the iterative optimisation fails to match the experimental ob-414

servations.415

Conducting the history match using the viscous-limit relative permeabilities as fit-416

ting parameters resulted in a significant improvement in the match of the low flow rate417

saturation data, Figure 9a. The capillary-limit relative permeabilities plot notably closer418

to the experimental data, Figure 9b. Additionally, the voxel saturation correlation fol-419

lows a linear trend, which suggests the iterative matching was successful using the up-420

dated viscous-limit curves. However, the updated models are now unable to predict the421

saturations or relative permeabilities measured during the high rate experiment. Addi-422

tionally, the history match produced a model associated with close to no rate dependency:423

the updated viscous-limit curves (solid black lines) plot very near the simulated low rate424

relative permeabilities (dashed grey lines). Thus, the shift observed in the experiment425

with changing flow rate is not reproduced in the history matched simulation. It is thus426

possible that, unlike the sandstone rock samples, features of the Indiana limestone that427

are controlling the multiphase flow properties are not resolved in the imagery. There-428

fore, while we can obtain a satisfactory match in the fluid saturation distribution, this429

inversion does not result in a physically representative model of the rock core. Motivated430

by the unsatisfactory prediction of the high rate relative permeabilities, the history match431

was repeated, this time letting the error of the low and high rate datasets guide the match.432

However, we were unable to obtain a combination of Chierici parameters that minimised433

the errors in both datasets. A figure illustrating this can be found in the supplementary434

material. These findings suggest that there are features in the rock core that have not435

been sufficiently resolved in the imagery that control the fluid distribution and core-average436

relative permeability.437
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3.2.2 Estaillades Limestone438

The length scale of heterogeneity for the Estaillades Limestone is between that of439

the Indiana limestone, with smaller heterogeneities, and the Edwards, which has multi-440

centimetre scale heterogeneity. The Estaillades limestone is associated with the least vari-441

ation in entry pressures with a range 0.5 < κ < 0.2, Figure 7b. It exhibits a gradual442

distribution of κ and these can be clustered into relatively large regions within the core.443

The voxel saturation plot displays a linear correlation between the experiment and444

the simulation (Figure 8c). The iterative calibration partially matches the saturation dis-445

tribution captured in the CT scans, although they are systematically over estimated. Analysing446

3D saturation maps of specific fractional flows underpins this: the saturation distribu-447

tion pattern is well-reproduced, with a high-saturated region close to the inlet and a low448

gas saturation two-thirds into the core (see Figure S3 in the supplementary materials).449

The digital model fails to predict the experimental low rate relative permeabilities (Fig-450

ure 8d): krg is significantly underpredicted. The prediction of water relative permeabil-451

ity fits the experimental data better, but the curve is shifted to lower water saturations.452

This is consistent with the voxel saturation correlations. The experimental data displays453

a raised krg relative to the viscous-limit krg, suggesting that the heterogeneity enhances454

gas flow. This is not reproduced in the simulation. The offset in krg is not caused by some455

areas of the core being assigned very high Pe, the range of κ values is small. The sen-456

sitivity to boundary conditions was also tested by setting Pc in the end slice to a finite457

value. However, the results were unaffected by this. For a detailed discussion, see Sec-458

tion S4 in the supplementary material.459

The history match using the input relative permeability as a fitting parameter was460

applied to the Estaillades dataset. As shown in Figure 9c and d this resulted in a sig-461

nificant improvement in the match to both the saturation and low flow rate relative per-462

meability. However, similarly to the Indiana limestone, the predictive capability of the463

model was lost. It does not reproduce the observations made at high flow rate. When464

using both high and low flow rate experimental datasets in the workflow, the history match465

failed to find a suitable combination of Chierici parameters that minimised the errors466

in both datasets, similarly to the Indiana limestone. This suggests that the optimisa-467

tion procedure successfully calibrates to the saturation map and relative permeability468

at a given flow rate, but fails to result in a physical representation of the rock sample469

that can replicate the rate dependency of the relative permeability observed in the lab-470

oratory.471

3.2.3 Edwards Brown Dolomite472

The initial matching procedure results in a relatively large spread of voxel satu-473

rations, implying that the workflow is not able to match individual voxel saturations well474

(Figure 8e). However, the spatial distribution is reproduced - a high number of voxels475

plot closely to the 1:1 trendline. This is also observed in 3D saturation maps, Figure S4476

in the supplementary material. The numerical model accurately predicts the capillary-477

limit relative permeabilities, significantly better than the other two carbonate samples.478

Overall, this suggests that the model captures the controlling heterogeneity within the479

Edwards Brown dolomite. The low rate experiment exhibited a raised krg compared with480

the viscous-limit curve, which is reproduced in the simulation.481

To improve the voxel saturation correlation, we applied the history match work-482

flow to this dataset (Figure 9e and f). Similarly to the Indiana limestone and Estaillades483

limestone, whilst the match in the voxel saturations significantly improved, the predic-484

tive capability of the high rate experiment was lost. Additionally, the shift in the capillary-485

limit relative permeabilities from the viscous-limit curves observed experimentally, also486

diminished - the low rate relative permeabilities now plot near the viscous-limit input487

curves. Once incorporating both datasets into the numerical approach, the workflow failed488
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to minimise the errors in both datasets, as was observed for the other two carbonate cores.489

With the Indiana and Estaillades, the use of the viscous-limit relative permeability did490

not improve the predictive ability of the numerical model. A notable finding with the491

Edwards is that using the simulation relative permeability as a tuning parameter can492

lead directly to the loss of predictive capability in the simulation.493

3.3 Evaluation of the Workflow Applicability494

From the analysis presented in Section 3.2, it emerges that the Indiana limestone495

resulted in the worst voxel saturation correlation and prediction of the relative perme-496

ability. By testing the boundary conditions of the numerical simulations, we ruled out497

the end-effect as the root cause of the mismatch. Instead, we found that the workflow498

severely broke down when applied to this sample and the optimisation failed to assign499

κ values that replicate the experimental Sw −Pc observations. In comparison to this,500

the Estaillades limestone displayed a good match in the voxel saturations with an R2
501

of 0.75. This demonstrates that the workflow successfully calibrated the assigned κ val-502

ues. However, the digital model failed to predict the experimental relative permeabil-503

ity measured at low flow rate. Instead, the model resulted in notably reduced gas con-504

nectivity. The voxel saturation correlation for the Edwards Brown was poor (R2 = 0.43)505

suggesting that the workflow failed to replicate the voxel-based observations. However,506

the digital model successfully predicted the low rate relative permeability and the trend507

in the rate dependency observed experimentally was reproduced. We explored various508

possibilities responsible for the breakdown of the workflow, which are discussed in the509

following. First, we focus on the assumptions inherent to the routine rock characterisa-510

tion, we then evaluate the optimisation and history matching procedures and lastly dis-511

cuss scaling-related issues.512

3.3.1 Complex Pore Structure513

The workflow developed by Jackson et al. (2018) models the capillary pressure char-514

acteristics using the Brooks-Corey model. Carbonates are associated with complex, of-515

ten bimodal, pore systems and the flow behaviour significantly changes when transition-516

ing from the invasion of macro to micropores (Cantrell & Hagerty, 1999, 1999; Prodanović517

et al., 2015). The Brooks-Corey functional form is unable to closely model a bimodal pore518

distribution, thus could be a source for the mismatch observed in the carbonate sam-519

ples. Particularly the Estaillades limestone exhibited a significant amount of microporos-520

ity, hence became the focus. The Estaillades MIP data was re-fitted using functional forms,521

which follow the observed bimodal trend more closely. Thereafter the iterative calibra-522

tion was repeated and the results were compared. However, no visible impact was ob-523

served, suggesting the source of mismatch lies elsewhere.524

The modelling of the viscous-limit relative permeabilities is also associated with525

uncertainties. Applying the fully numerical approach to the carbonates (Section 2.3.2)526

eliminated some factors as the root causes of the mismatch. For instance, the assump-527

tion of reaching viscous flow conditions during the high rate corefloods. However, an-528

other important consideration is the use of only a single set of viscous-limit relative per-529

meabilities. Microporosity, exhibiting flow behaviour distinct from other regions within530

a rock, could be characterised by a different set of relative permeabilities. To explore this,531

more detailed data collection is required. For instance, small plugs corresponding to dis-532

tinct facies could be cut from core samples. Coreflood experiments could be performed533

on each of those small samples to infer multiphase flow characteristics associated with534

a particular facies.535
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The permeability of the rock core was inferred using Leverett J-function scaling.536

As discussed in Sarwaruddin et al. (2001), the Leverett J-function is dependant on ad-537

ditional factors including the pore size distribution and the irreducible water saturation.538

Thus, scaling of the capillary pressure following this method should be limited to rock539

types displaying a homogeneous pore structure (Sarwaruddin et al., 2001). For the rea-540

sons discussed previously, these parameters are likely non-uniform in a carbonate core541

sample, suggesting that this scaling method is unsuitable. This could have been a fac-542

tor causing the mismatch between the experiment and simulation observations in the car-543

bonates. To infer the permeability in complex pore structures such as carbonates, pore-544

based modelling, for instance Lattice Boltzmann or positron emission tomography (PET)545

methods (Zahasky & Benson, 2018), should be used instead.546

The complex pore structure in the carbonates could also enable combined drainage547

and imbibition to occur during the drainage coreflood experiments. In that case, bas-548

ing the modelling effort solely on drainage behaviour would not suffice. To explore this549

aspect further, carbonate coreflood experimental observations at the pore scale would550

be required.551

3.3.2 Optimisation and History Match552

Non-uniqueness is a well-known issue in history matching and so we evaluated whether553

this was a source of uncertainty in the workflow and could explain the poor matches to554

some of the experimental data. Rather than converging to a global minimum, the op-555

timisation procedure could have converged to a local minimum. By using multiple datasets556

(low and high flow rate experimental data) and Sw−Pc observations from all fractional557

flows, the simulations were better constrained, reducing the potential impact of non-uniqueness.558

A further indication that non-uniqueness was unlikely to be the cause of the poor matches559

was the good matches obtained to the sandstone observations.560

Grid convergence issues could also have impacted the simulation outcomes. To eval-561

uate this, a locally-refined grid was implemented in the simulation of one of the carbon-562

ate samples. The resultant voxel saturation correlation displayed no improvement, hence563

grid convergence was eliminated as a major control on the modelling results.564

At this stage, it is also worth comparing the method developed by Jackson et al.565

(2018) with previous heterogeneity characterisation studies. The workflow applied herein566

uses coreflood datasets obtained at two distinct flow rates, which provide detail on the567

flow rate dependency by covering a large range of experimental conditions. Furthermore,568

Sw−Pc from all fractional flows (max. 16 for the Edwards Brown) are incorporated into569

the calibration effort of the capillary pressure heterogeneity. Thus, the optimisation and570

characterisation is guided by high volume of data to ensure the physical properties of571

the rock sample are replicated. In comparison to this, previous workflows were primar-572

ily based on observations made at one flow rate, and often incorporated Sw−Pc voxel573

measurements from one fractional flow (Krause et al., 2011; Hosseinzadeh Hejazi et al.,574

2019; Ni et al., 2019). While this results in a close match between the experiment and575

simulation observations in a distinct flow regime, it likely does not provide sufficient char-576

acterisation of flow rate dependency and would thus fail to predict relative permeabil-577

ities at arbitrary flow rates.578

3.3.3 Scaling579

The success of the workflow correlates with the characteristic length scale of the580

heterogeneity in each sample. The Indiana limestone with mm-large heterogeneity led581

to the poorest result. This is followed by the Estaillades limestone, which is characterised582

by cm-large porosity variations. The Edwards Brown dolomite was the only carbonate583

sample that resulted in a digital model with good predictive capability - its heterogene-584
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ity was clearly resolved by the imagery. Thus, a factor likely responsible for the break-585

down of the calibration is the extent to which key features are resolved by the medical586

CT scanner. For the Indiana and Estaillades limestone samples, the CT images fail to587

provide sufficient detail to infer the capillary heterogeneity, which ultimately results in588

poor voxel saturation correlations and unsuccessful predictions of the relative permeabil-589

ities.590

Furthermore, the small-scale variations in permeability and porosity, as exhibited591

by the Indiana and Estaillades limestone samples, could have formed large capillary pres-592

sure gradients over short length scales. Consequently, the assumption of capillary pres-593

sure equilibrium, which formed the basis of the characterisation workflow, would have594

broken down. This also could have significantly impacted the modelling of these two sam-595

ples.596

3.4 Rate-Dependant Behaviour of Relative Permeability597

Using the iteratively calibrated models for the Bentheimer sandstone, Bunter sand-598

stone and Edwards Brown dolomite, simulations can be run at varying flow rates to in-599

vestigate the rate dependency of relative permeability in detail. As the workflow failed600

to sufficiently characterise the heterogeneity in the Indiana and Estaillades limestone sam-601

ples, they were disregarded. Conducting the rate dependency analysis using numerical602

simulations allows us to remove laboratory constraints; it is possible to model a wider603

range of flow rates numerically than can be examined in the laboratory.604

To quantify the relative importance of viscous and capillary forces for each of the605

total flow rates used, the capillary number (Equation 1) was calculated for each exper-606

iment. For a detailed discussion on the values used in Equation 1, see Jackson et al. (2018)607

and Manoorkaar et al. (2021) for the sandstones and carbonates, respectively. Similarly608

to Jackson et al. (2018), we used the pressure drop at fN2
= 0.5 for the calculations.609

The results are shown in Figure 10.610

The trend in the rate dependency varies strongly between the sandstones and the611

carbonates. The perpendicular layering in the Bunter sandstone generally reduces the612

permeabilities of both phases, and as the total rate is increased, the relative permeabil-613

ities also increase. There is a clear relationship between total rate and resultant perme-614

ability, which is indicated by the colour shading of the lines in Figure 10b. In compar-615

ison to this, the Bentheimer sandstone, with parallel layering, allows for the phases to616

align optimally, leading to a raised gas relative permeability relative to the viscous-limit617

curve. This can be partly seen in Figure 10a.618

The carbonate sample displays a different trend. Of key interest is that, distinct619

from the sandstones, the variation in relative permeability is non-monotonic with vary-620

ing flow rate. From the lowest flow rate, the relative permeability initially increases in621

the wetting and non-wetting fluid phases before decreasing again towards the viscous-622

limit curve. This is related to the nature of the heterogeneity: rather than exhibiting pla-623

nar bedding, the Edwards Brown is characterised by an isotropic heterogeneity. This non624

monotonic behaviour was hypothesised in the simulations of Virnovsky et al. (2004). Ad-625

ditionally, the observed rate dependency is weaker than in the sandstones. This is be-626

cause of the size of the heterogeneity: the Edwards Brown is characterised by a large ce-627

mented region. Ultimately, this controls the fluid behaviour even in the high rate exper-628

iment. At varying rates, the shift in relative permeabilities is stronger for krw than krg.629

For example, the simulation at qtot = 0.05 ml/min results in a significant reduction in630

the water relative permeability (darkest-shaded line), whereas the gas relative perme-631

ability plots closely to the viscous-limit curve. This suggests that the relative strength632

of capillary forces has a stronger impact on the water flow compared with the gas.633
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(a)

(b)

(c)

Figure 10. Equivalent relative permeabilities for the (a) Bentheimer sandstone, (b) Bunter sandstone

and (c) Edwards Brown dolomite samples at varying flow rates. The tabulated data is presented in Ta-

bles S1-S3 in the supplementary material. VL stands for the viscous-limit relative permeability used as

input to the simulations. The samples display contrasting rate dependency behaviour due to a range of

heterogeneity characteristics.
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4 Conclusions634

We have applied the capillary heterogeneity characterisation workflow presented635

in Jackson et al. (2018) to five samples with varying degrees of heterogeneity. This al-636

lowed us to test the applicability of the workflow to carbonate samples with more com-637

plex heterogeneities. Additionally, a direct comparison of the rate dependency of rela-638

tive permeability in various rock types could be made.639

The workflow successfully characterised the heterogeneity in the two sandstones,640

where a good match in the experiment and simulation measurements was observed. In641

contrast to this, the successful application of the workflow to the carbonates was found642

to correlate with the size of the heterogeneous features. The Indiana limestone with small643

variations (≈ 1 mm) in porosity, permeability and entry pressure led to the poorest match.644

The simulations could not match the saturation distribution, significantly underpredicted645

the gas relative permeability, and displayed near to no rate dependency. The Estaillades646

carbonate with larger features allowed for a match in the saturation distribution but an647

underprediction of the relative permeability, and an incorrect estimate of the impact of648

flow rate. The Edwards Brown with large heterogeneities that were clearly resolved by649

the imagery exhibited a good agreement in the relative permeabilities. This supports the650

hypothesis that the iterative calibration is dependent on the amount of controlling rock651

structure that can be resolved with the medical CT scanner.652

To improve the predictions, we tested a fully empirical approach whereby the in-653

put viscous-limit relative permeabilities were used as fitting parameters. This approach654

improved the matches of saturation distributions at a target flow rate, but failed to re-655

sult in predictive capability for the impact of flow rate on saturation distribution or rel-656

ative permeability in all three carbonates. Notably, it led to the loss of predictive capa-657

bility achieved with the initial iterative approach on the Edwards Brown. This finding658

emphasizes the importance of considering the physical mechanisms controlling the fluid659

behaviour in the creation of a numerical model of the rock cores. The purely numeri-660

cal approach to matching the experiments led to a complete loss of the predictive capa-661

bilities of the models.662

For the samples with a successful model, the Bentheimer sandstone, Bunter sand-663

stone and Edwards Brown dolomite, we investigated the flow rate dependency of the up-664

scaled relative permeability. We found that parallel layering as present in the Bentheimer665

sample allows for the phases to distribute optimally within the pore space, thereby rais-666

ing the gas relative permeability. Perpendicular bedding in the Bunter sandstone hin-667

ders optimal flow of either phases, hence reducing the relative permeabilities. The isotropic668

heterogeneity in the Edwards Brown resulted in non-monotonic behaviour; initially rel-669

ative permeability was increased, and subsequently decreased with increasing flow rate.670

The work both underscores the importance of capturing small-scale heterogeneities671

in characterising subsurface fluid flows, as well as the challenges in doing so. Where im-672

agery can sufficiently resolve heterogeneous features, the 3D history match procedure can673

be performed entirely within the realm of Darcy based reservoir simulators. For rocks674

where smaller scale features evidently place controls on the upscaled flow further tech-675

niques may be required such as the use of pore-network or other pore-scale flow mod-676

els (Zahasky et al., 2020).677
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1. Coarsening of the CT Images

Figure S1 assesses the impact of repeat scans and image coarsening on the resultant11

experimental saturation uncertainty in the saturations for the carbonate samples. The12

uncertainty was obtained following from the analysis presented in Pini, Krevor, and Ben-13

son (2012). As shown, the voxel scale uncertainties are significantly reduced from image14

coarsening and averaging over repeated scans.15

2. 3D Saturation Maps

To evaluate the success of the optimisation workflow, voxel-scale fluid saturations of16

the experiment and the simulation were compared. Figure S2 to S4 present 3D saturation17

maps for the three carbonate samples at distinct fractional flows.18

3. Modified Modelling Approach: Error Minimisation

Figure S5 demonstrates the results of the history match when including the low and19

high rate experimental observations as additional fitting targets as applied to the Indiana20

limestone. The workflow was unable to find a combination of Chierci parameters that21

minimised the errors in both, the low and high rate observations. As displayed, the22

smallest error in krw is achieved at low B values for the low rate experiment (S5a) and23

at high B values for the high rate experiment (S5c). This disagreement is visible for the24

other parameters as well. This issue was also encountered for the other two carbonate25

samples.26
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4. Impact of the End Effect

The impact of the end effect on the observed rate dependency might have influenced27

the results. As presented in Jackson, Agada, Reynolds, and Krevor (2018), once end28

effects are reduced in the digital cores, the severity of rate dependency in the sandstones29

significantly reduces, more for the Bentheimer than for the Bunter. This showed that it30

is not just the capillary heterogeneity but also the end effect that is causing the apparent31

rate dependence. To investigate this for the carbonates, we decided not to shorten the32

digital cores as was done for the sandstones in Jackson et al. (2018). This is because33

the heterogeneous feature, specifically for the Edwards Brown, is located close to the34

outlet. Therefore, shortening the core will remove it. Instead, we set Pc to a finite, but35

constant value in the end slice, which should also reduce the end effect. Interestingly,36

the resultant relative permeabilities were unchanged relative to the original results, which37

indicate that the simulations are not strongly impacted by end effects caused by boundary38

conditions. This can be explained by the size and orientation of the heterogeneities39

compared with those in the sandstones. The Bunter sandstone displayed a minimal change40

in rate dependency after the core was shortened: the perpendicular layers in the Bunter act41

to compartmentalise the core, meaning that the impact of boundary effects on the core are42

localised to the few end slices. In comparison to this, the impact of the end effect prevails43

all the way through the core in the Bentheimer sandstone with a parallel heterogeneity.44

Therefore, digitally reducing the end effect significantly altered the relative permeability45

curves. In the carbonates, the vug-matrix systems could act as to compartmentalise the46

core similar to the Bunter sandstone.47
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5. Rate Dependency Analysis

Using the iteratively calibrated models for the Bentheimer sandstone, Bunter sandstone48

and Edwards Brown dolomite, simulations were run at varying flow rates to investigate49

the rate dependency of relative permeability in detail (Section 3.4 in the main text). The50

relative permeabilities obtained from these simulations are presented in Tables S1 to S351

at three distinct flow rates.52
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Figure S1. Uncertainty in the saturations as a function of the number of repeat scans for the three carbonate

samples. Six repeat scans were available for the Edwards Brown dataset and five for the other two samples. The colours

represent the uncertainty for specific coarsening schemes as indicated. The solid and dashed lines refer to the uncertainty

at Sw = 0.0 and Sw = 1.0, respectively.
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Figure S2. 3D saturation maps of the Indiana limestone for the simulation (left) and experiment (right) at two

different fractional flows: fN2 = 0.612 (top) and fN2 = 1.0 (bottom). Digital core dimensions: L = 0.144m, r= 0.011m.

The simulation displays a severe mismatch of the experimental voxel saturations.
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Figure S3. 3D saturation maps of the Estaillades limestone for the simulation (left) and experiment (right) at two

different fractional flows: fN2 = 0.612 (top) and fN2 = 1.0 (bottom). Digital core dimensions: L = 0.144m, r= 0.011m.

The Estaillades exhibits the closest match of the voxel saturations compared to the other two carbonates.
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Figure S4. 3D saturation maps of the Edwards Brown dolomite for the simulation (left) and experiment (right)

at two different fractional flows: fN2 = 0.612 (top) and fN2 = 1.0 (bottom). Digital core dimensions: L = 0.144m, r=

0.011m. The general saturation distribution trend is well reproduced, but individual voxels display a significant mismatch.
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(a) (b)

(c) (d)

(e) (f)

Figure S5. Mean-squared error between the simulation and experiment relative permeabilities and voxel saturations

for the Indiana limestone. The errors are calculated using a range of A and B parameters as input. Figures (a), (c) and

(e) are the errors for the low rate experiment and Figures (b), (d), (f) are the errors for the high rate experiment. The

combination of Chierici parameters that minimises the errors significantly differs between both datasets.
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Table S1. Relative Permeabilities for the Bentheimer sandstone at varying total flow rates. Data is displayed

graphically in Figure 10 and was obtained from numerical simulations.

Capillary Number 0.170 13.41 144.85

fg Sw krw krg Sw krw krg Sw krw krg

0.14 0.7210 0.0771 0.0005 0.6893 0.1620 0.0011 0.6612 0.1256 0.0008

0.4 0.6478 0.0489 0.0013 0.6294 0.1092 0.0029 0.6108 0.0867 0.0023

0.71 0.5853 0.0236 0.0024 0.5671 0.0664 0.0067 0.5621 0.0604 0.0061

0.86 0.5417 0.0097 0.0030 0.5143 0.0400 0.0125 0.5139 0.0412 0.0128

0.94 0.5208 0.0049 0.0033 0.4803 0.0273 0.0181 0.4787 0.0284 0.0189

0.99 0.4908 0.0006 0.0035 0.3934 0.0073 0.0409 0.3912 0.0076 0.0430

Table S2. Relative Permeabilities for the Bunter sandstone at varying total flow rates. Data is displayed graphically

in Figure 10 and was obtained from numerical simulations.

Capillary Number 0.130 13.31 72.24

fg Sw krw krg Sw krw krg Sw krw krg

0.1 0.7131 0.0464 0.0004 0.7781 0.3482 0.0031 0.7765 0.3487 0.0031

0.31 0.6677 0.0331 0.0012 0.6966 0.2129 0.0075 0.6970 0.2172 0.0077

0.63 0.6152 0.0176 0.0024 0.6126 0.1107 0.0149 0.6118 0.1191 0.0160

0.85 0.5677 0.0074 0.0033 0.5431 0.0527 0.0236 0.5365 0.0588 0.0263

0.98 0.5145 0.0013 0.0040 0.4539 0.0129 0.0396 0.4419 0.0145 0.0447

0.995 0.4899 0.0003 0.0042 0.3972 0.0034 0.0533 0.3836 0.0039 0.0612
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Table S3. Relative Permeabilities for the Edwards Brown dolomite at varying total flow rates. Data is displayed

graphically in Figure 10 and was obtained from numerical simulations.

Capillary Number 0.007 0.129 5.904

fg Sw krw krg Sw krw krg Sw krw krg

0.024 1.0000 0.9601 0.0004 0.9232 0.3555 0.0002 0.9003 0.2609 0.0001

0.110 0.8823 0.0995 0.0002 0.8964 0.2299 0.0005 0.8652 0.2253 0.0005

0.200 0.8698 0.0856 0.0004 0.8839 0.1858 0.0009 0.8466 0.1987 0.0009

0.450 0.8505 0.0557 0.0008 0.8586 0.1239 0.0019 0.8386 0.1357 0.0020

0.740 0.8301 0.0259 0.0014 0.8260 0.0767 0.0040 0.8386 0.0642 0.0033

0.830 0.8233 0.0170 0.0015 0.8080 0.0623 0.0056 0.8219 0.0417 0.0037

0.960 0.7979 0.0041 0.0018 0.7529 0.0286 0.0126 0.7678 0.0116 0.0051

1.000 0.7940 0.0002 0.0019 0.6635 0.0035 0.0323 0.7021 0.0020 0.0183
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