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Abstract

Biot’s equations describe the physics of hydro-mechanically coupled systems establishing the widely recognized theory of poroe-

lasticity. This theory has a broad range of applications in Earth and biological sciences as well as in engineering. The numerical

solution of Biot’s equations is challenging because wave propagation and fluid pressure diffusion processes occur simultaneously

but feature very different characteristic time scales. Analogous to geophysical data acquisition, high resolution and three di-

mensional numerical experiments lately re-defined state of the art. Tackling high spatial and temporal resolution requires a

high-performance computing approach. We developed a multi-GPU numerical application to resolve the anisotropic elastody-

namic Biot’s equations that relies on a conservative numerical scheme to simulate, in a few seconds, wave fields for spatial

domains involving more than 1.5 billion grid cells. We present a comprehensive dimensional analysis reducing the number of

material parameters needed for the numerical experiments from ten to four. Furthermore, the dimensional analysis empha-

sizes the key material parameters governing the physics of wave propagation in poroelastic media. We perform a dispersion

analysis as function of dimensionless parameters leading to simple and transparent dispersion relations. We then benchmark

our numerical solution against an analytical plane wave solution. Finally, we present several numerical modeling experiments,

including a three-dimensional simulation of fluid injection into a poroelastic medium. We provide the Matlab, symbolic Maple,

and GPU CUDA C routines to reproduce the main presented results. The high efficiency of our numerical implementation

makes it readily usable to investigate three-dimensional and high-resolution scenarios of practical applications.
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Yury Alkhimenkov123, Ludovic Räss45, Lyudmila Khakimova36, Beatriz3

Quintal12, Yury Podladchikov123
4

1Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland5
2Swiss Geocomputing Centre, University of Lausanne, Lausanne, Switzerland6

3Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia7
4Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland8

5Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland9
6Skoltech Center for Hydrocarbon Recovery, Skolkovo Institute of Science and Technology, Moscow,10

Russia11

Key Points:12

• We present the dimensional analysis of Biot’s equations13

• We perform three dimensional numerical simulations of poroelastic wave propa-14

gation15

• We propose a multi-GPU implementation resolving over 1.5 billion grid cells in16

a few seconds with near ideal parallel efficiency17

Corresponding author: Yury Alkhimenkov, yury.alkhimenkov@unil.ch

–1–



manuscript submitted to JGR: Solid Earth

Abstract18

Biots equations describe the physics of hydro-mechanically coupled systems establish-19

ing the widely recognized theory of poroelasticity. This theory has a broad range of ap-20

plications in Earth and biological sciences as well as in engineering. The numerical so-21

lution of Biots equations is challenging because wave propagation and fluid pressure dif-22

fusion processes occur simultaneously but feature very different characteristic time scales.23

Analogous to geophysical data acquisition, high resolution and three dimensional numer-24

ical experiments lately re-defined state of the art. Tackling high spatial and temporal25

resolution requires a high-performance computing approach. We developed a multi-GPU26

numerical application to resolve the anisotropic elastodynamic Biots equations that re-27

lies on a conservative numerical scheme to simulate, in a few seconds, wave fields for spa-28

tial domains involving more than 1.5 billion grid cells. We present a comprehensive di-29

mensional analysis reducing the number of material parameters needed for the numer-30

ical experiments from ten to four. Furthermore, the dimensional analysis emphasizes the31

key material parameters governing the physics of wave propagation in poroelastic me-32

dia. We perform a dispersion analysis as function of dimensionless parameters leading33

to simple and transparent dispersion relations. We then benchmark our numerical so-34

lution against an analytical plane wave solution. Finally, we present several numerical35

modeling experiments, including a three-dimensional simulation of fluid injection into36

a poroelastic medium. We provide the Matlab, symbolic Maple and GPU CUDA C rou-37

tines to reproduce the main presented results. The high efficiency of our numerical im-38

plementation makes it readily usable to investigate three-dimensional and high-resolution39

scenarios of practical applications.40

1 Introduction41

Majority of the most powerful supercomputers on the world host hardware accel-42

erators to sustain calculations at the petascale level and beyond. Graphical processing43

units (GPUs) are amongst widely employed hardware accelerators, initiating a revolu-44

tion in high-performance computing (HPC) in the last decade. The three-dimensional45

calculations targeting billions of grid cells – technically impossible resolutions decades46

ago – became reality. This major breakthrough in HPC and supercomputing comes how-47

ever with the cost of developing and re-engineering scientific codes to efficiently utilise48

the available computing power. Increasing the low-level parallelism is the key. In Earth49

sciences, HPC and GPU-accelerated applications target in particular forward and inverse50

seismic modeling and geodynamics – fields where high spatial and temporal resolutions51

as well as large spatial domains are required. We here develop a multi-GPU implemen-52

tation for applications in seismic modeling in porous media.53

Understanding seismic wave propagation in fluid-saturated porous media enables54

more accurate interpretation of seismic signals in Earth sciences. The two phase medium55

is represented by an elastic solid matrix (skeleton) saturated with a compressible viscous56

fluid. The dynamic response of such an isotropic two phase medium results in two lon-57

gitudinal waves and one shear wave, as predicted by Frenkel (Frenkel, 1944) (see also Pride58

and Garambois (2005)). The wave of the first kind (fast wave) is a true longitudinal wave59

where the solid matrix motion and the fluid particle velocity are in-phase. The wave of60

the second kind (slow wave) is a highly attenuated wave where the solid matrix motion61

and the fluid particle velocity are out-of-phase. Depending on the medium’s properties,62

the slow wave may propagate as a longitudinal wave, or it may diffuse and attenuate quickly.63

Maurice Anthony Biot performed systematic studies of solid-fluid deformation in porous64

media based on the Hamiltonian principle of least action. He first investigated a static65

loading known as the theory of consolidation (Biot, 1941; Biot & Willis, 1957). The math-66

ematical description of the macroscopic coupled solid-fluid deformation in a porous medium67

is analogous to the theory of thermoelasticity (Biot, 1941; Zimmerman, 2000). Biot later68

developed the theory of poroelasticity or Biot’s theory for wave propagation in fluid-saturated69
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media (Biot, 1956b, 1956a). Biot summarized these results in Biot (1962b, 1962a) and70

provided a final set of unknown fields, parameters, as well as, a guidance to expand poroe-71

lasticity to include viscoelasticity and non-linear effects (Biot, 1965). Fluid flow in porous72

media in Biot’s theory is assumed to be laminar, described by Darcy’s law (Biot, 1956b),73

and is usually referred to as the low frequency Biot’s theory. If the fluid flow is accel-74

erated, viscous boundary layers form in the pores and a slight modification of Biot’s equa-75

tions is needed to account for this high frequency effect (Biot, 1956a). We focus in this76

study on the low frequency Biot’s theory (Biot, 1956b). A detailed analysis of the cou-77

pled solid-fluid deformation in a porous media can be found in various recent studies,78

e.g. Bourbié et al. (1987); Wang (2000); Cheng (2016). Approximations based on this79

theory are widely used in biology and medical imaging, and in Earth sciences (e.g., Carcione80

(2014)), they are used in seismic exploration, seismic monitoring of geological CO2 se-81

questration and nuclear waste disposal, geothermal energy production and hydrogeol-82

ogy.83

One of the main application of Biot’s equations in Earth sciences is the estimation84

of seismic dispersion and attenuation in porous media due to wave-induced fluid flow.85

Several wave attenuation mechanisms related to fluid flow arise from Biot’s theory (Pride86

et al., 2004; Müller et al., 2010). The first attenuation mechanism introduced by Biot87

is the global fluid flow, which occurs at the wavelength scale of a propagating wave. In88

this mechanism, the dissipation is caused by the relative fluid motion between the solid89

matrix and the fluid (Biot, 1956b). The second mechanism is the wave-induced fluid flow90

at the mesoscopic scale. This scale is defined as much larger than the sizes of individ-91

ual pores but much smaller than the wavelength of a propagating wave (White et al.,92

1975; Pride et al., 2004). In this mechanism, the dissipation is caused due to fluid-pressure93

gradients arising between mesoscopic heterogeneities in the medium. For example, fluid-94

pressure gradients appear between highly permeable structures such as fractures and the95

embedding solid matrix of much lower permeability. Wave-induced fluid flow at micro-96

scopic scale also occurs and is referred to as squirt flow, in which fluid-pressure gradi-97

ents take place between compliant and stiff pores (Mavko & Nur, 1975; Dvorkin et al.,98

1995). Other mechanisms involve different kinds of wave scattering and wave mode con-99

versions at interfaces. Possible non-linear viscous and plastic effects are small for most100

of the applications in applied seismic and are then neglected under the linear approx-101

imation assumption.102

The aforementioned analytical approaches for wave-induced fluid flow at global and103

mesoscopic scales mainly exist for simple geometries. For more complex geometries, a104

numerical approach is needed to estimate seismic dispersion and attenuation. In prin-105

ciple, it can be done numerically in two ways. One approach relies on direct modeling106

of wave propagation in porous media and estimation of dispersion and attenuation of a107

propagating wavelets (Masson et al., 2006; Caspari et al., 2019). The other approach is108

based on a quasi-static numerical modeling and estimation of effective frequency-dependent109

elastic properties. The modeled frequency-dependent properties are used to retrieve dis-110

persion and attenuation of seismic waves (Masson & Pride, 2007; Rubino et al., 2009;111

Quintal et al., 2011; Hunziker et al., 2018).112

During the last three decades a significant number of studies targeted numerical113

simulations of wave propagation in poroelastic media. A detailed review of early stud-114

ies is given in Carcione et al. (2010). Different methods have been used, based on com-115

bined finite-volumes/differences on structured grids (Zhu & McMechan, 1991; Dai et al.,116

1995; Carcione & Quiroga-Goode, 1995; Özdenvar & McMechan, 1997; Zeng et al., 2001;117

Masson et al., 2006; Wenzlau & Müller, 2009; Chiavassa et al., 2010; Chiavassa & Lom-118

bard, 2011; Blanc et al., 2013), pseudo-spectral methods (Özdenvar & McMechan, 1997),119

discontinuous Galerkin methods (de la Puente et al., 2008; Dupuy et al., 2011; Ward et120

al., 2017; Zhan et al., 2019; Shukla et al., 2019, 2020), spectral element methods (Morency121

& Tromp, 2008), finite-volume methods (Lemoine et al., 2013; Lemoine, 2016). Most of122
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these studies implemented the corresponding equations as a first-order hyperbolic sys-123

tem and used explicit time integration schemes as it is convenient for the elastic wave124

propagation, except for (Özdenvar & McMechan, 1997; Morency & Tromp, 2008), where125

a second-order system was considered. Moczo et al. (2019) and Gregor et al. (2021) in-126

vestigated the accuracy of the discrete characterization of material heterogeneities and127

subcell-resolution for the finite-difference modeling of Biots equations.128

A major challenge in the numerical modeling of Biot’s equations relies in the treat-129

ment of the dissipation term in the equations of motions. This term is represented by130

a parabolic operator coupled to viscosity, permeability and density and affects the nu-131

merical stability of the entire system of equations. The diffusion process exhibit a much132

larger characteristic time scale then the wave propagation process, which makes Biot’s133

equations “stiff”, thus challenging to solve. A straightforward explicit time integration134

of a “stiff” system is possible but requires very small time steps and is computationally135

inefficient. Various studies discuss stability conditions in the scope of poroelastic wave136

propagation and report a series of issues (Carcione & Quiroga-Goode, 1995; Masson et137

al., 2006; Chiavassa & Lombard, 2011). A more detailed discussion regarding the sta-138

bility of discrete schemes of Biot’s equations can be found in Alkhimenkov et al. (2020).139

We here propose a multi-GPU numerical implementation of the anisotropic elas-140

todynamic Biot’s equations building upon three key ideas: Concise numerical implemen-141

tation, high numerical resolution and high computational efficiency. A concise numer-142

ical implementation means that we designed a simple and short numerical code ensur-143

ing it is suitable for parallel GPU devices. We use a variant of a conservative staggered144

space-time grid discretization (Virieux, 1986), which is equivalent to a finite volume ap-145

proach (Dormy & Tarantola, 1995). High numerical spatial resolution up to 6 billion grid146

cells permits us to resolve very complex geometries. High computational efficiency al-147

lows our numerical model to simulate, in a few seconds only, wave fields in domains in-148

volving over 1.5 billion grid cells. We further explore several aspects of Biot’s equations,149

namely, wave propagation in poroelastic isotropic and anisotropic media, fluid diffusion,150

dimensional and dispersion analyses and numerical stability. The resulting code is im-151

plemented in CUDA C, which is suitable for programmable Nvidia GPU devices. The152

choice of a rectangular grid is determined by the usage of GPUs, so that the numerical153

implementation is straightforward. We provide the Matlab, symbolic Maple and GPU154

CUDA C routines to reproduce the main presented results. These routines are available155

for download from Bitbucket at https://bitbucket.org/yalkhimenkov/fastbiot gpu3d156

v1.0 (last access: 8 February 2021). The routines archive (v1.0) (Alkhimenkov et al.,157

2021) is available from a permanent DOI repository (Zenodo) at http://doi.org/10158

.5281/zenodo.4519367 (last access: 8 February 2021).159

The novelties of the present article are summarized as following:160

1. We present a dimensional analysis, reducing the number of needed material pa-161

rameters from ten to four.162

2. We perform a dispersion analysis as a function of dimensionless parameters.163

3. We achieve a close-to-ideal parallel efficiency (98% and 96%) on a weak scaling164

tests up to 128 GPUs and an effective memory throughput efficiency of 90% for the 3D165

anisotropic poroelastic wave propagation code.166

4. We achieve a very fast execution time (seconds) using high-resolution models167

involving more than 1.5 billion grid cells.168

2 Elastodynamic Biot’s equations in isotropic media169

2.1 Constitutive equations170

We describe the elastodynamic Biot’s equations for an isotropic medium saturated
with a single phase fluid. We use a classical velocity-stress formulation for the Biot’s equa-
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Table 1: List of Principal Notation

Symbol Meaning Unit

σs, σf solid and fluid stress Pa
ps, pf solid and fluid pressure Pa
τs, τf solid and fluid stress deviator Pa
vs, vf solid and fluid particle velocity m/s
ρs, ρf solid and fluid density kg/m3

Kg,Kf elastic solid and fluid bulk modulus Pa
Gd, Gd elastic solid and drained shear modulus Pa
Kd,Ku elastic drained and undrained bulk modulus Pa
η fluid shear viscosity Pa·s
k permeability m2

φ porosity -

Table 2: Shorthand notations

Symbol Meaning

p̄ = (1− φ)ps + φpf , total pressure
σ̄ = (1− φ)σs + φσf , total stress
τ̄ = (1− φ)τ̄ + φτf , total stress deviator

qDi = φ(vfi − vsi ), Darcy’s flux
ρt = (1− φ)ρ+ φρ, total density
α Biot-Willis coefficient
B Skempton’s coefficient
δij Kronecker delta

tions. The equations describing a two phase continuum mainly differ from the single phase
continuum formulation (see Appendix A) by the presence of both solid and fluid par-
ticle velocities and as well as both solid and fluid pressure fields. Furthermore, the scalar
parameters linking stresses and particle velocities in the single phase continuum become
a symmetric coefficient matrix in the two phase continuum. The set of equations describ-
ing a two phase continuum (solid and fluid) was formulated in the theory of poroelas-
ticity (Biot, 1956b, 1962a). The symmetric coefficient matrix is positive definite, which
directly follows from the elastic potential energy. Biot’s equations can be written in a
symmetric form by separating volumetric and deviatoric parts of the stress tensor. Lists
of symbols are given in Tables 1 and 2. The constitutive equations are (Biot, 1962a; Pride
et al., 2004; Wang, 2000; Yarushina & Podladchikov, 2015)∇kvsk

∇kqDk

 = − 1

Kd

 1 −α

−α α

B



∂p̄

∂t
∂pf
∂t

 (1)

and
∂τ̄ij
∂t

= 2G

(
1

2
(∇jvsi +∇ivsj )−

1

3
(∇kvsk)δij

)
, (2)

linking the stress-strain relations for the solid and fluid phases with the conservation of171
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mass (equation (1)) and representing the deviatoric stress-strain relation for the solid172

phase (equation (2)). The constitutive equations (1)-(2) are written for the total pres-173

sure p̄ and fluid pressure pf , as it was originally suggested in Biot (1962a). The poros-174

ity φ in Darcy’s flux qDi is constant in time but can be different spatially throughout the175

model domain.176

For an isotropic material saturated with a single fluid, in which the solid frame con-
sists of a single isotropic mineral, the Biot-Willis coefficient is

α = 1−Kd/Kg = (1−Kd/Ku) /B, (3)

where Ku is the undrained bulk modulus

Ku = Kd + α2M, (4)

M is the fluid storage coefficient

M =
(
φ/Kf + (1− φ)/Kg −Kd/K

2
g

)−1
(5)

or
M = BKu/α, (6)

and the Skempton’s coefficient B reads

B =
1/Kd − 1/Kg

1/Kd − 1/Kg + φ(1/Kf − 1/Kg)
. (7)

2.2 Dynamic equations177

The conservation of linear momentum (Newton’s second law or dynamic equations)
can be written in a symmetric form (Biot, 1962a; Pride et al., 2004; Wang, 2000; Yarushina
& Podladchikov, 2015)∇j (−p̄δij + τ̄ij)

η

k
qDi +∇i pf

 =

 ρt −ρf

−ρf ρa




∂vsi
∂t

−∂q
D
i

∂t

 , (8)

where ρa = ρfT/φ, T is the tortuosity and i, j, k = 1, .., 3. The off-diagonal parame-178

ter fluid density ρf can be considered as the added mass coefficient. Equation (8) is anal-179

ogous to that of a single phase media (equation (A11)), the only difference being the sub-180

stitution of the scalar density by a coefficient matrix with same dimensions.181

Equations (1)-(8) are the elastodynamic Biot’s equations for an isotropic medium182

saturated with a single phase fluid. The experiments to obtain poroelastic parameters183

are given in Appendix B. We emphasize that the matrices of coefficients in equations184

(1) and (8) are symmetric. This symmetry combined with the non-dimensional analy-185

sis make it possible to derive the dispersion relations in a simple explicit form using sym-186

bolic calculations (Maple).187

3 Dimensional analysis of the elastodynamic Biot’s equations188

Dimensional analysis of PDEs unveils the impact of various physical parameters189

on the considered physical system. The original Biot’s equations (1)-(8) contain many190

material parameters making it difficult to understand how they affect the response of191

a poroelastic continuum. For enhanced clarity, we present a dimensional analysis of the192

elastodynamic Biot’s equations. This analysis reduces the number of material param-193

eters from ten to four, isolating the governing independent physical quantities.194
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For conciseness, we present our physical system as a one dimensional example to
express the total stress tensor as a combination of the volumetric and deviatoric stresses
(the entire analysis can be applied to three-dimensional continuum)

∂σ̄

∂t
= −∂p̄

∂t
+
∂τ̄

∂t
(9)

We introduce the compliance sd11

[
Pa−1

]
and the total density ρt

[
kg/m

3
]

to express equa-

tions (1), (2) and (8) in a dimensionless form. Compliance sd11 relates to the drained bulk
modulus Kd and the shear modulus G

sd11 = 1/(Kd + 4/3G), (10)

which has dimensions of
[
Pa−1

]
. We first extract sd11 and ρt out of the parentheses in

equations (1), (2) and (8) (leaving only dimensionless parameters inside). We reformu-
late the system using equation (9) as

sd11


1 −α

−α αa



−∂σ̄
∂t

∂pf
∂t

 = −


∂vs

∂x

∂qD

∂x

 (11)

and

ρt


1 −ρf

ρt

−ρf
ρt

ρa
ρt




∂vs

∂t

−∂q
D

∂t

 =


∂σ̄

∂x

η

k
qD +

∂pf
∂x

 , (12)

where

αa =
α

B

(
1 +

4/3G

Ku

)
, (13)

is a dimensionless parameter (the apparent Biot-Willis coefficient).195

We then substitute

σ̄ −→ 1

sd11

˜̄σ, pf −→
1

sd11

p̃f , (14)

vs −→ L∗x
τ∗
ṽs, qD −→ L∗x

τ∗
q̃D, (15)

x −→ L∗xx̃, t −→ τ∗t̃, (16)

where L∗x [m] is the characteristic length, τ∗ [s] is the characteristic time and the super-
script ˜ refers to the dimensionless quantities. The resulting system of equations reads

1 −α

−α αa



−∂

˜̄σ

∂t̃

∂p̃f

∂t̃

 = −


∂ṽs

∂x̃

∂q̃D

∂x̃

 (17)

and

(I1)
2


1 −ρft

−ρft ρat




∂ṽs

∂t̃

−∂q̃
D

∂t̃

 =


∂ ˜̄σ

∂x̃

I2 q̃
D +

∂p̃f
∂x̃

 , (18)

where ρft ≡ ρf/ρt, ρat ≡ ρa/ρt,

I1 =
√
ρtsd11

L∗x
τ∗
≡ 1

Vd

L∗x
τ∗
, (19)

–7–



manuscript submitted to JGR: Solid Earth

Vd =

√
1

ρt sd11

(20)

and

I2 =
ηsd11

k

(L∗x)2

τ∗
≡ 1

D

(L∗x)2

τ∗
, (21)

D =
k

ηsd11

. (22)

The four dimensionless parameters α, αa, ρft and ρat define the coupling between the
solid and fluid phase. The two key dimensionless parameters I1, I2 denote the ratio be-
tween advection and diffusion time scales and relate to hyperbolic (advection) and parabolic
(diffusion) processes, respectively. The pore fluid pressure transport time scale

τ∗d =
(L∗x)2

D
(23)

refers to the characteristic time scale of diffusive processes. The elastic travel time scale

τ∗a =
L∗x
Vd

(24)

refers to the characteristic time scale of advection processes. In order to further reduce
the number of parameters, we set I1 = 1. From equation (19), L∗x = τ∗Vd, therefore,
equation (21) becomes

I2 =
η

kρt
τ∗, (25)

where τ∗ is a free parameter. We further choose τ∗ as

τ∗ =

(
η

kρt

)−1

. (26)

Equation (25) becomes

I2 =
η

kρt
τ∗ =

η

kρt

(
η

kρt

)−1

≡ 1 (27)

Taking into account that I1 = 1 and I2 = 1, we reformulate equation (18) as
1 −ρft

−ρft ρat




∂ṽs

∂t̃

−∂q̃
D

∂t̃

 =


∂ ˜̄σ

∂x̃

q̃D +
∂p̃f
∂x̃

 . (28)

Equations (17) and (28) are the dimensionless elastodynamic Biot’s equations for196

an isotropic medium saturated with a single fluid featuring only four dimensionless pa-197

rameters: α, αa, ρft and ρat.198

3.1 Dispersion analysis of the elastodynamic Biot’s equations199

We perform dispersion analysis to understand the behavior of the dimensionless200

elastodynamic Biot’s equations (17)-(18). For simplicity, we only consider longitudinal201

waves. A single harmonic plane wave solution is202

W = Ae−i(ωt−kl), (29)

where A is the amplitude, i is the imaginary unit, ω = 2πf is the real angular fre-203

quency (f is the frequency), k is the complex wave number and l is the propagation di-204

rection. This solution is substituted into the system (17)-(18), which gives205
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

iω iω α ik 0

−iω α −iω αa 0 ik

−ik 0 −iω(I1 )2 −iω(I1)2ρft

0 −ik iω(I1)2ρft iω(I1)2ρat − I2


(30)

The dispersion relation for longitudinal waves is

k4 − a2k
2 + a0 = 0, (31)

where

a2 = (1 + ρatαa − 2ρftα) (I1)2 ω2 + iω αaI2 (32)

a0 = (I1)4
(
ρ2
ft − ρat

) (
α2 − αa

)
ω4 − i ω3

(
α2 − αa

)
(I1)2I2 (33)

Equation (31) is bi-quadratic with respect to k, the four roots (±k1 and ±k2) are the
complex functions of the non-dimensional angular frequency ω

k1,2 = ±

√
a2 ∓

√
a2

2 − 4a0

2
(34)

The non-dimensional fast and slow wave phase velocities are

Ṽ1 = ω/Re(k1), Ṽ2 = ω/Re(k2) (35)

The inverse quality factors are defined as

1

Q1
=

Im(k2
1)

Re(k2
1)
,

1

Q2
=

Im(k2
2)

Re(k2
2)
. (36)

If I2 ≡ 0, the fast and slow waves become the real and non-dispersive functions of the206

angular frequency ω. Since I2 ≡ 0 eliminates q̃D in (18), the system of equations (17)-207

(18) becomes fully hyperbolic without the diffusive term. I2 and the Biot-Willis coef-208

ficients α and αa control the imaginary part of the wave numbers ±k1 and ±k2; they thus209

control dispersion and attenuation of the coupled system of equations. Setting αa ≡ 0210

and
(
α2 − αa

)
≡ 0 provides an alternative way to achieve real roots in (34).211

Setting I1 = 1 and I2 = 1 and using the characteristic length (L∗x = τ∗Vd) and
time (τ∗ = η/(kρt)) scales permits to further simplify the dispersion relations (31)-(33)
to

k4 +
(
(2ρftα− ρatαa − 1) ω2 − iω αa

)
k2 +

(
ρ2
ft − ρat

) (
α2 − αa

)
ω4 − i ω3

(
α2 − αa

)
= 0,
(37)

which results in a bi-quadratic equation with respect to k. The four roots (±k1 and ±k2)212

are the complex functions of the angular frequency ω. The dispersion relation (37) is the213

most important result of the dimensional analysis and relates to the final set of non-dimensional214

elastodynamic Biot’s equations (equations (17) and (28)).215

Figure 1a shows the non-dimensional phase velocities and inverse quality factors
based on the system of equations (17) and (28) for a homogeneous medium, which are
typical for Biot’s mechanism. The properties of the medium are given in Table 3. The
non-dimensional phase velocity Ṽ1 exhibits some dispersion (less than 10%) and atten-
uation. The non-dimensional phase velocity Ṽ2 behaves as a diffusion mode at low fre-
quencies, having zero velocity. At higher frequencies, Ṽ2 behaves as a true propagating
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Table 3: Poroelastic properties of carbonate.

Rock properties Carbonate

with independent units
Kd (GPa) 26

ηk = η/k (Pa·s/m2) 0.001/10−12 = 1 · 109

ρs (kg/m3) 2700

nondimentional
φ 0.3
T 1.9

with dependent units
Gd (GPa) 15/13 ·Kd

Kf (GPa) 0.0865 ·Kd

ρf (kg/m3) 0.4 · ρs
Ks (GPa) 1.42 ·Kd

wave. The low frequency limit of Ṽ1 corresponds to the non-dimensional undrained phase
velocity Ṽ LF1 ,

Ṽ LF1 =
1

Vd

√
Ku + 4/3Gd

ρt
. (38)

The high frequency limit of Ṽ1 corresponds to the non-dimensional undrained phase ve-216

locity Ṽ HF1 which is larger than Ṽ LF1 . We calculate Ṽ HF1 from the dispersion relations217

under the assumption of ω → +∞. The explicit formula is given in the following sec-218

tion.219

Multiplying non-dimensional phase velocities (Ṽ1 and Ṽ2) by the drained velocity
Vd (equation (20)) permits to recover the dimensional form of the dispersion curves (Fig-
ure 1b). We retrieve the dimensional angular frequency ωd = ω ω∗, where ω is the non-
dimensional angular frequency (the y-axis in Figure 1a) and ω∗ is the transformation fre-
quency

ω∗ =
1

τ∗
≡ η

kρt
. (39)

We highlight that the introduced transformation frequency ω∗ is similar to Biot’s char-
acteristic frequency

ωc =
ηφ

kρfT
. (40)

We detail a dimensional analysis where the transformation frequency coincides with Biot’s220

characteristic frequency in Appendix C.221

Figure 2 illustrates the advantage of the non-dimensional equations over their di-222

mensional analog. The inverse quality factor 1/Q1 for the non-dimensional elastodynamic223

Biot’s equations (Figure 2b) collapsed into the one curve considering the dimensional equa-224

tions (Figure 2a).225

The roots k1 and k2 of the dispersion relation (37) are the functions of the four ma-226

terial parameters and the non-dimensional angular frequency ω, i.e. k1 = f(α, αa, ρft, ρat)227

and k2 = f(α, αa, ρft, ρat). Let us analyze the solutions (35) and (36) as a function228

of the material parameters and ω. The non-dimensional phase velocities (Ṽ1 and Ṽ2) and229

the corresponding quality factors (1/Q1 and 1/Q2) as a function of the non-dimensional230

frequency ω and the Biot-Willis coefficient α are shown in Figure 3. According to (17),231
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α controls the coupling between solid and fluid phases, low values of α (0−0.3) corre-232

spond to weak coupling and high values of α (0.7−1.0) correspond to strong coupling.233

We vary α in the range of [0.05, 0.95] while the other parameters remain the same. Ṽ1234

non-linearly depends on α in the whole frequency range, as α increases, Ṽ1 also increases235

(Figure 3a). 1/Q1 linearly depends on α, as α increases, 1/Q1 only slightly decreases (Fig-236

ure 3b). Ṽ2 and 1/Q2 are almost independent of α (Figures 3c, 3d). At low frequencies,237

Ṽ2 is almost zero and the quality factor 1/Q2 is very high (Figure 3c-d), which corresponds238

to the diffusive regime of Ṽ2. At high frequencies, Ṽ2 is significant and the quality fac-239

tor 1/Q2 is almost zero, which corresponds to the regime where the slow wave behaves240

as a true longitudinal wave. The characteristic frequency where the transition from the241

diffusive to propagation regimes occurs is not affected by α.242

Figure 4 is similar to Figure 3 but instead of α, the variations of ρft are shown. We243

vary ρft in the range of [0.1,
√
ρat] while the other parameters remain the same. The non-244

dimensional parameter ρft controls the coupling between solid and fluid phases in the245

dynamic equations (18). Ṽ1 and 1/Q1 non-linearly depend on ρft (Figures 4a and 4b),246

while at low frequencies (ω ∈ [10−4, 10−1]), Ṽ1 is independent on ρft (Figure 4a). Ṽ2247

and 1/Q2 are almost independent on ρft in the whole frequency range (Figures 4c, 4d).248

Figure 1: Phase velocities and the corresponding inverse quality factors 1/Q obtained via
the dispersion analysis. (a) Dispersion relations for the non-dimensional elastodynamic
Biot’s equations, Ṽ1 is the wave of the first kind (non-dimensional), Ṽ2 is the wave of the
second kind (non-dimensional). (b) Dispersion relations for the dimensional elastodynamic
Biot’s equations. V1 dim and V2 dim correspond to dimensional velocities, V1 non-dim
and V2 non-dim correspond to non-dimensional velocities, which were re-scaled by the di-
mensional characteristic velocity Vd and the transformation frequency ω∗. ωc is the Biot’s
characteristic frequency. The material parameters are those from Table 3.
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Figure 2: The inverse quality factors 1/Q of the the wave of the first kind. (a) 1/Q for
the non-dimensional elastodynamic Biot’s equations having different viscosities and per-
meabilities, all collapsed into one curve. (b) 1/Q for the dimensional elastodynamic Biot’s
equations for the same data set of viscosities and permeabilities. The material parameters
are those from Table 3, except for viscosities and permeabilities.

Figure 3: Non-dimensional phase velocities (Ṽ1 and Ṽ2) and the corresponding quality
factors (1/Q1 and 1/Q2) as a function of the non-dimensional Biot-Willis coefficient α and
the non-dimensional angular frequency ω. The material parameters are those from Table
3.
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Figure 4: Non-dimensional phase velocities (Ṽ1 and Ṽ2) and the corresponding quality
factors (1/Q1 and 1/Q2) as a function of the non-dimensional parameter ρft and the
non-dimensional angular frequency ω. The material parameters are those from Table 3.
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4 Numerical implementation of the elastodynamic Biot’s equations249

We solve the first order velocity-stress formulation of the elastodynamic Biot’s equa-250

tions (1)-(8) on a rectangular time-space grid. We base our approach on a conservative251

staggered space-time grid discretization (Virieux, 1986); for Darcy’s flux, we use a semi-252

implicit discretization (Alkhimenkov et al., 2020). A conservative staggered space-time253

grid discretization is equivalent to a finite volume approach (Dormy & Tarantola, 1995)254

(see also LeVeque (1992)). This approach follows from the early Marker and Cell (MAC)255

method which is a classical method in computational fluid dynamics (Harlow & Welch,256

1965; McKee et al., 2008). Field variables are located either at the cell center or corners257

and fluxes are computed at the cell boundaries resulting in a conservative staggered grid258

formulation. Other similar methods were developed such as the standard staggered grid259

scheme (Virieux & Madariaga, 1982; Virieux, 1986; Levander, 1988), the rotated stag-260

gered grid scheme (Saenger et al., 2000) and the Lebedev scheme (Lebedev, 1964; Davy-261

dycheva et al., 2003; Lisitsa & Vishnevskiy, 2010). The elastodynamic Biot’s equations262

using the standard staggered grid scheme were solved by Masson et al. (2006). Moczo263

et al. (2007) provides a review on staggered finite-difference methods for wave propaga-264

tion in elastic media.265

4.1 The first order elastodynamic Biot’s equations with a volumetric-266

deviatoric split267

Numerically solving the elastodynamic Biot’s equations (1) and (8) requires the co-268

efficient matrices in (1) and (8) to be inverted. This formulation leads to a system of equa-269

tions describing poroelastic wave propagation in three-dimensional media and can be solved270

explicitly:271


∂p̄

∂t
∂pf
∂t

 = −Ku

 1 B

B
B

α


∇kvsk
∇kqDk

 , (41)

∂τ ij
∂t

= 2G

(
1

2
(∇ivsj +∇jvsi )−

1

3
(∇kvsk)δij

)
(42)

and 
∂vsi
∂t

−∂q
D
i

∂t

 =
1

Θ

ρa ρf

ρf ρt


∇j (−p̄δij + τ̄ij)

ηf
k
qDi +∇i pf

 , (43)

where Θ = ρtρa−ρ2
f . Note that the coefficient matrices in equations (41) and (43) are272

symmetric by analogy equations (1) and (8). Symmetry combined to non-dimensional273

analysis is a requirement that allows us to derive a time stepping condition in the ex-274

plicit form.275

4.2 Discretization276

The numerical implementation consists of a time evolution operator to perform time
steps within a time loop and space operators to relate fields at old and new times. We
rely on a rectangular time-space grid. The time discretization is tl = l∆t and the spa-
tial grid is xi = i∆x, yj = j∆y, zk = k∆z. The particle velocity vector field and the
Darcy’s flux are defined at half-integer spatial nodes and integer time nodes:

(vsx)li+1/2,j,k, (vsy)li,j+1/2,k, (vsz)
l
i,j,k+1/2, (qDx )li+1/2,j,k, (qDy )li,j+1/2,k, (qDz )li,j,k+1/2 . (44)

The total and fluid pressure scalar fields are defined at integer spatial nodes and half-277

integer time nodes: (p̄)
l+1/2
i,j,k , (pf )

l+1/2
i,j,k . The stress deviator tensor fields are defined as278

–14–



manuscript submitted to JGR: Solid Earth

(τ̄xy)
l+1/2
i+1/2,j+1/2,k, (τ̄xz)

l+1/2
i+1/2,j,k+1/2, (τ̄yz)

l+1/2
i,j+1/2,k+1/2. A schematic representation of spa-279

tial positions is shown in Figure 5. The proposed discrete scheme is second order accu-280

rate in space and time. The material parameters are constant inside the finite volumes281

and may be discontinuous between them. The discrete operators for Biot’s equations (41)-282

(43) are given in Appendix E.283

Figure 5: A sketch representing (a) the finite volume, where the solid particle velocities
preserve mass balance and (b) the spatial positions of different fields in the X-Z plane.
Darcy’s fluxes obey the same behavior.

4.3 Stiffness of Biot’s equations284

Wave propagation and fluid pressure diffusion in poroelastic media occur simulta-285

neously but feature very different time scales. This phenomenon is called stiffness of the286

Biot’s equations (e.g., Carcione and Quiroga-Goode (1995)). Stiffness of an equation is287

a serious issue for numerical solutions because the discrete time step may drop to val-288

ues hindering the numerical simulation to complete. A simple solution exist to circum-289

vent this issue for Biot’s equations (Masson et al., 2006; Alkhimenkov et al., 2020), briefly290

reported here. The one-dimensional discrete version of (43) is291


−

[qD]l+1
i+1/2 − [qD]li+1/2

∆t
=
ρf
Θ

[σ̄]
l+1/2
i+1 − [σ̄]

l+1/2
i

∆x
+
ρt
Θ

(
[pf ]

l+1/2
i+1 − [pf ]

l+1/2
i

∆x
+
ηf
k

(
χ [qD]l+1

i+1/2 + (1 − χ) [qD]li+1/2

))
[vs]l+1

i+1/2 − [vs]li+1/2

∆t
=
ρa
Θ

[σ̄]
l+1/2
i+1 − [σ̄]

l+1/2
i

∆x
+
ρf
Θ

(
[pf ]

l+1/2
i+1 − [pf ]

l+1/2
i

∆x
+
ηf
k

(
χ [qD]l+1

i+1/2 + (1 − χ) [qD]li+1/2

)) .

(45)

292

The weight parameter χ plays the key role in the numerical solution of Biot’s equa-293

tions. The case χ = 0 corresponds to a fully explicit scheme; calculating [qD]l+1/2 (45)294

only requires [qD]l−1/2. In this case, the stable time step becomes very small due to the295

stiffness of Biot’s equations. The opposite end-member χ = 1 corresponds to an im-296

plicit scheme where the stiffness no longer affects the time step stability; calculating [qD]l+1/2
297

(45) requires [qD]l+1/2. Since Biot’s equations do not contain spatial derivatives of the298

Darcy’s flux qDx in (45), the implicit scheme χ = 1 can be achieved in an iterative fash-299

ion (i.e., updates in the iteration loop are explicit). The one dimensional code for χ =300

1/2 is shown in Figure 7. The weight parameter χ plays the key role in the stability and301

convergence rate of the numerical scheme which is explored in the next section.302
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4.4 Von Neumann stability analysis303

The von Neumann stability method analyzes a time evolution of a discrete numer-
ical solution of a given PDE. The method provides the stability of linear schemes with
constant coefficients. We here summarize the von Neumann stability analysis’ main re-
sults (Alkhimenkov et al., 2020) for Biot’s poroelastic equations’ discrete scheme (see also
Masson et al. (2006)). For that let us introduce the matrices of coefficients

ζij =

ζ11 ζ12

ζ21 ζ22

 =

Ku + 4/3G αM

αM M

 (46)

and

%ij =

%11 %12

%21 %22

 =
1

Θ

ρa ρf

ρf ρt

 , (47)

the parameter Θ is already defined in (43). The determinants of these matrices are

det(ζij) = ζ11ζ22 − ζ2
12, det(%ij) = %11%22 − %2

12, (48)

and the Hadamard product (element-wise multiplication) of ζij and %ij is

hij ≡ (ζ ◦ %)ij =

ζ11%11 ζ12%12

ζ21%21 ζ22%22

 . (49)

The parameter A is defined as

A = h11 + h22 − 2h12 (50)

By using (48) and (50), the fast wave phase velocity in the high-frequency limit V HF1

can be calculated as

V HF1 =

(
A−

√
A2 − 4det(ζij)det(%ij)

2det(ζij)det(%ij)

)−1/2

. (51)

The matrices ζij and %ij and ηk ≡ η/k fully describe the dimensional elastody-304

namic Biot’s equations (41)-(43). The main issue with the numerical modeling of the Biot’s305

equations is the treatment of the parabolic operator in (E14) and (E15). If ηk = 0, then306

the system (41)-(43) corresponds to the two coupled hyperbolic equations, having two307

longitudinal waves. The stability analysis shows that the Courant-Friedrichs-Lewy (CFL)308

condition for such system is ∆t 6 ∆x/V HF1 (Alkhimenkov et al., 2020), where V HF1309

is given by expression (51).310

If ηk 6= 0 and χ = 0, then the parabolic operator D̄χ[qDf ] in (E14) and (E15) af-
fects stability and the system of equations becomes stiff. If ηk reaches a certain value,
the stable time step ∆t dramatically decreases as a function of ηk (Figure 6a). The in-
crease in porosity φ also reduces ∆t but this reduction is small compared to the reduc-
tion due to the increase of ηk. However, for the χ = 1/2 scheme or χ = 1 scheme, the
parameter ηk does not affect the the stable time step ∆t (Figure 6b). In this case, the
parabolic operator D̄χ[qDf ] is calculated implicitly, thus, the CFL condition is not affected
by ηk. The χ = 1/2 or χ = 1 schemes are stable in one space dimension under the
CFL condition

∆t 6
∆x

V HF1

, (52)
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where the expression for V HF1 is given by equation (51), which is the same as for the in-311

viscid case. The χ = 1/2 scheme is more preferable than the χ = 1 scheme, since the312

χ = 1/2 scheme provides a second order accuracy, which is explored below.313

For any considered above schemes, the matrices ζij and %ij must be positive def-314

inite as well in order to preserve hyperbolicity of the system (Alkhimenkov et al., 2020).315

The positive definiteness of the matrix in equation (41) and %ij also follows from physics,316

for example, from the classical irreversible thermodynamics (Jou et al., 2001; Yarushina317

& Podladchikov, 2015). Note, that the positive definiteness of the matrix in equation (41)318

is a more restrictive condition than the positive definiteness of ζij (46) and are the same319

if the shear modulus G is zero.320

Figure 6: The von Neumann stability analysis for the elastodynamic Biot’s equations
(41)-(43) as a function of ηk = η/k and porosity φ. Panel (a) corresponds to the χ = 0
scheme and panel (b) corresponds to the χ = 1/2 scheme. The stability of the χ = 1
scheme is identical to that one of the χ = 1/2 scheme. The material parameters are those
from Table 3.

The extension of the CFL condition (52) to the two, three and n-dimensions is straight-
forward

∆t 6
1

V HF1

√
n∑
i=1

1

∆x2
i

. (53)

If ∆xi = ∆x, then

∆t 6
∆x√
nV HF1

. (54)

The conditions (52)-(54) can be generalized to a fourth-order accurate in space, second-321

order accurate in time numerical scheme using the coefficients of the fourth-order ap-322

proximation to the first derivative (Levander, 1988; Masson et al., 2006).323

4.5 Sources, initial and boundary conditions324

We initialize the majority of our simulations with a Gaussian perturbation,

FG = A0 e
−(x/lx)2−(y/ly)2−(z/lz)2 , (55)
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where x, y and z are the arrays of spatial coordinates, lx, ly and lz are the parameters325

controlling the shape (width) of the Gaussian and A0 defines its amplitude. We set lx,326

ly and lz as a certain fraction of the domain extend.327

Depending on the model configuration, we implemented two types of sources in the
right-hand side of the total pressure (isotropic media) or total stress (anisotropic media)
equation (see Appendix D for the full set of equations). The first type of source is the
Morlet wavelet

FM (t) = Re
[
(πfb)

−1/2 e(2πifc(t−t0)) e−(t−t0)2/fb
]

= (πfb)
−1/2 cos (2πfc(t− t0)) e−(t−t0)2/fb

(56)
and the second type of source is the Ricker wavelet

FR(t) = (1− 2 (π(t− t0)fc)
2
e−(π(t−t0)fc)2 , (57)

where fc is the the source peak frequency, t is time, t0 is the wavelet delay and fb is the328

time-decay parameter of the Morlet wavelet. The Morlet wavelet features a distinct nar-329

row bandwidth in the frequency domain which significantly reduce the wavelet shape changes330

during the pulse propagation in a lossy medium. The disadvantage results in a signif-331

icant time spread in time domain. We use reflecting boundary conditions in our simu-332

lations.333

The one-dimensional time loop implementation of the proposed scheme (E8)-(E15)334

in MATLAB (R2018a) using the Gaussian initial condition (55) is shown in Figure 7.335

Figure 7: The one dimensional code using the proposed scheme with χ = 1/2 in MAT-
LAB. The initial condition of the Gaussian form is set to the fluid pressure. zeta ij

are the matrix coefficients ζij in equation (46), varrho ij are the matrix coefficients %ij
in equation (47), etaf k corresponds to η/k, chi corresponds to χ, lamx stands for lx,
stress xx stands for σ̄xx, Prf stands for pf , Qx stands for qDx , Vx stands for vsx.

5 Multi-GPU implementation336

Graphical processing units (GPUs) are many-core processors originally designed337

to refresh screen pixels at very high frame-rates for computer games. Nowadays, GPUs338

are widely used in high-resolution numerical modeling due to their ability to efficiently339

execute a large number of operations simultaneously. Several studies focused on the im-340

plementation of wave propagation solvers using GPUs (Komatitsch et al., 2010; Michéa341

& Komatitsch, 2010; Mehra et al., 2012; Weiss & Shragge, 2013; Rubio et al., 2014). The342

CUDA extension to the C language (CUDA, 2020) makes it possible to write C-style codes343

that are executed in parallel on GPUs. A brief description of the GPU architecture is344

given in Appendix F.345
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5.1 Computing systems346

We calculated our results on various computing systems depending mainly on the347

targeted numerical resolution. We performed most of our simulations on an Nvidia DGX-348

1 - like node hosting 8 Nvidia Tesla V100 Nvlink (32 GB) GPUs, 2 Intel Xeon Silver 4112349

(2.6GHz) CPUs and 768 GB DDR4 RAM. The second computing system hosts a sin-350

gle Nvidia Tesla V100 PCIe (16 GB) GPU, 2 Intel XEON E5-2620V2 4112 (2.1GHz) CPUs351

and 64 GB DDR3 RAM. The third computing system is composed of 32 nodes, each fea-352

turing 4 Nvidia GeForce GTX Titan X Maxwell (12 GB) GPUs, 2 Intel XEON E5-2620V3353

4112 (2.4GHz) CPUs and 128 GB DDR4 RAM.354

5.2 Code implementation on a single GPU355

The CUDA C code structure (Figure 8a) is similar to the MATLAB one (Figure 7).356

The time loop calls two kernels – or GPU functions – to sequentially update all stresses357

and the fluid pressure and then update the fluid and solid particle velocities. Darcy’s fluxes358

qDx , qDy , qDz are time-dependent fields present in both equations (E14) and (E15) exhibit-359

ing history or time dependence that require them to be stored from previous iteration.360

We perform the update relying on a pointer swap at every iteration to prevent race con-361

ditions and to avoid copying the array itself, which would significantly deprecate the per-362

formance. To reduce redundant memory accesses, we locally precompute and store cor-363

responding field variables. In the compute StressPrF() kernel, we store the derivatives364

of the velocities vsi and Darcy fluxes qDi . In the Update QV() kernel, we store derivatives365

of stresses σ̄ij and fluid pressure pf .366

5.3 The multi-GPU code implementation367

The single GPU code enables thousands of threads to simultaneously compute physics368

on every grid points of the computational domain in a shared (GPU) memory approach.369

To overcome the on-GPU DRAM memory limitation and leverage the simultaneous util-370

isation of multiple GPUs we implemented a distributed memory parallelisation using the371

message passing interface (MPI) standard. The parallelisation among multiple GPUs re-372

quires the exchange of the internal boundary values of the solid particle velocities vs and373

the Darcy’s fluxes qD (represented by black lines in Figure 9). Global boundary condi-374

tions are applied if the local sub-domains coincide with the global domain boundaries.375

We rely on CUDA-aware non-blocking MPI messages for internal boundary condition376

updates among neighbouring GPUs. The CUDA-awareness implies that GPU device point-377

ers can directly be exchanged with MPI bypassing a local CPU copy on both sender and378

receiver side.379

We implemented an overlap among computation and MPI communication to avoid380

a drop in performance with an increase in the number of MPI processes (Räss, Omlin,381

& Podladchikov, 2019). Only minimal changes are required to implement this compu-382

tation/communication overlap and fully hide the MPI boundary exchange latency (Fig-383

ure 8b). We divided the local computational domain on each GPU in two parts, a bound-384

ary points region (1 in Figure 9) and an inner points region (2 in Figure 9). We then use385

CUDA Streams to perform an asynchronous kernel call in an iterative fashion using two386

distinct execution pipelines (Räss, Omlin, & Podladchikov, 2019). The first update ker-387

nel call computes the boundary flagged nodes only and executes on the high priority stream.388

Then, the MPI boundary updates starts on the same high priority stream (the update sides3389

function). In the meanwhile, the update kernel call is executed a second time within the390

istep loop, now flagging and computing the remaining inner points. A wise definition391

of the number of grid points to include (i.e. the boundary width) enables optimal per-392

formance results.393
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The Nvidia visual profiler (nvvp) is an informative tool to visualize the execution394

timeline of a GPU process (Figure 10). We compare multi-GPU codes without (Figure 10a)395

and with (Figure 10b) computation/communication overlap running on a 8 GPUs (in-396

formation shown only for two GPUs). The visual timeline depicts the qD and vs bound-397

ary points update on the high priority CUDA stream 21 followed by the MPI message398

sending and receiving among GPUs (the time line is shown by red box in Figure 10b).399

During the same time, the qD and vs inner points update happens on the lower prior-400

ity CUDA stream 22. The update kernel is executed two times (green boxes in Figure 10b).401

The cumulative time of the sequential executions is identical to the un-split execution402

time (Figures 10a-b).403

Figure 8: Time loop computations for (a) a single GPU CUDA C code and (b) a multi-
GPUs CUDA C code implementation. compute StressPrf corresponds to the update of
all stresses σ̄ij and fluid pressure pf . update QV corresponds to the update of velocities vsi
and Darcy fluxes qDi . swap(...) stands for a pointer swap of Darcy’s fluxes between old
and new values.
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Figure 9: Schematic representation of a domain decomposition on four GPUs. First, the
computation of the boundary points (1) of the local domains using streams is performed,
then the computation of the inner points (2) of the local domains is carried out together
with the non-blocking MPI messages to exchange the boundary values (represented by red
boundary lines) among neighboring GPU units.

Figure 10: The Nvidia visual profiler (nvvp) output for various GPU code implementa-
tions: (a) single GPU (without computation/communication overlap), (b) mulit-GPUs
(without computation/communication overlap) and (c) multi-GPUs (with computa-
tion/communication overlap). All implementations share the same compute StressPrf

kernel. The update QV kernel is (a) executed once per time step updating both bound-
ary and inner points, (b) executed once per time step and followed by internal bound-
ary exchange using MPI, (c) executed in a serial fashion, first updating the boundary
points, then internal boundary exchange occurs using MPI while the inner points are
asynchronously computed in the second call of the update QV kernel. The computa-
tion/communication overlap referred to as computational split involves 48, 16 and 16 grid
cells in in x-, y- and z- directions, respectively.
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5.4 Performance benchmark404

We assess the solver’s performance and realize the weak scaling tests in a similar
fashion as proposed by Räss, Duretz, and Podladchikov (2019); Duretz et al. (2019); Räss
et al. (2020). These studies highlight the memory-bounded nature (in opposition to compute-
bounded) of a waste majority of PDE solver implementations nowadays on many-core
(e.g., GPU) hardware; Memory transfers are limiting the performance of an application,
while floating point (arithmetic) operations are not performance relevant. We therefore
focus on the memory access efficiency in our numerical calculations. The effective mem-
ory throughput (MTPeffective) metric (Omlin, 2016; Omlin et al., 2020) evaluates how
efficiently data is transferred between the memory and the computation units, in giga-
bytes per second (GB/s):

MTPeffective =
nx × ny × nz × nt × nIO × np

109 × tnt

, (58)

where nx, ny, nz are the number of grid cells, nt is the number of iterations, nIO is the405

number of read and write memory accesses (the least value needed to solve the problem406

for the chosen numerical scheme), np is the floating-point arithmetic precision (either407

4 or 8 bytes) and tnt
is the time (in seconds) needed to perform the nt iterations. The408

closer the value of MTPeffective gets to the memory copy only value, the better the per-409

formance is. We carried out all the performance tests on the anisotropic Biot 3D imple-410

mentation using the χ = 1/2 scheme and scalar material properties (see Appendix D411

for the full set of equations). In that case nIO = 42. We used a numerical spatial res-412

olution of 5763 grid cells on a Tesla V100 32GB Nvlink GPU, allocating 29 GB on-chip413

DRAM memory. We used a numerical spatial resolution of 511 × 511 × 127 grid cells414

on the Titan X (Maxwell) 12GB GPU allocating 5 GB on-chip DRAM memory. The max-415

imum global domain spatial resolution on 128 Titan X (Maxwell) 12GB GPUs involved416

4.5 billion grid cells.417

5.4.1 Benchmark results for a single GPU implementation418

Figure 11 depicts the effective memory throughput (MTP) of the Biot 3D numer-419

ical application as a function of the number of threads per blocks in x-, y- and z- direc-420

tion on a Tesla V100 32GB Nvlink GPU. The MTPref corresponds to the reference MTP,421

i.e. the best combination of threads per blocks (32, 2, 16) for a given resolution of 5763;422

the MTP of all simulations (MTPeffective) are normalized by MTPref. The maximal per-423

formance drop from the reference MTP is about 17 %. It is interesting, that the (32, 2, 8)424

combination uses only 512 threads out of the 1024 available but shows almost the same425

performance as combinations involving 1024 threads. Good performance with under-utilization426

of the threads per block resources is known and may result by the increase in the num-427

ber of concurrent blocks launched allowing for optimal scheduling.428

Figure 12 shows memory access efficiently between the GPU global memory and429

the computation units as a function of on-chip RAM memory. Our 3D numerical appli-430

cation achieves on average 90% of the “ideal” memory copy only efficiency (copying two431

3D arrays without performing any calculations, 740 GB/s) on a single Tesla V100 32 GB432

NVlink GPU. The average performance is 660 GB/s. A huge drop in the memory ac-433

cess performance at low on-chip RAM memory utilization reflects computations with-434

out enough data to saturate the memory bandwidth.435

We additionally assessed the effective memory throughput of our 3D routine on a436

Tesla V100-SXM2 16 GB accessed on the Amazon Elastic Compute Cloud environment437

(Amazon EC2); our 3D routine perform on average at 740 GB/s (memory copy at 795438

GB/s) validating the benchmark results obtained on our local GPU cluster. The discrep-439

ancy we observe may be caused by different versions of Nvidia drivers and compilers.440
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Figure 11: The effective memory throughput as a function of the number of threads
per blocks (in x-, y- and z- direction). The MTP of all simulations (MTPeffective) are
normalized by MTPref (corresponds to Block (32, 2, 16)). The bold color corresponds to
thread-block combinations of 512 threads out of the 1024 available.

Figure 12: The memory access efficiently as a function of the allocated on-chip DRAM
memory. The blue curve corresponds to the “ideal” memory copy efficiency (copying
two 3D arrays without performing any calculations), red and yellow curves represent the
memory copy efficiency involving all the physics, which is on average 90% of the “ideal”
memory copy efficiency.

5.4.2 Benchmark results for a multi-GPU implementation441

We further investigate the influence of the boundary width on the performance (Fig-442

ure 13). The split among computation domains allowing for overlap of computation and443

communication affects the performance. Considering too few or too many boundary points444

hinders optimal kernel execution as too few resources may be used in the first or the sec-445

ond sequential call. The code execution on a single Tesla V100 GPU with boundary width446

ratios of 0.2-0.8 returns equivalent performance as the execution without the computa-447

tional split. The performance of the code on 8 Tesla V100 GPUs including MPI com-448

munication shows a 2% performance drop compared to the single GPU process. We achieved449

the best performance using approximately a ratio of 0.3 between boundary and inner points.450

This splitting allows for enough data to keep all threads busy during the boundary point451

calculation (the first kernel execution) and provides sufficient time to hide the MPI mes-452

sage sent during the update of the inner points (the second kernel execution).453

We performed a weak scaling test using the 1-8 Tesla V100 32 GB NVlink GPUs454

and the 1-128 Titan X 12 GB GPUs (Figure 14). The parallel efficiency of 1-8 GPUs is455
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98% and on average 96% on 16-128 Titan X GPUs with a standard deviation of 2%. A456

standard deviation was calculated as a result of ten simulations. We globally achieved457

a performance of about 5280 GB/s on 8 Tesla V100 32 GB NVlink GPUs. Such perfor-458

mance implies that only 95 seconds are needed to perform 1000 (double-precision) ex-459

plicit time iterations of a model involving 1.5 billion grid cells (11523).460

Figure 13: The impact of the boundary width on the memory access efficiency. All the
performance results are normalized by MTPref of the non-MPI code implementation.

Figure 14: The MPI weak scaling tests of the anisotropic Biot 3D implementation. We
show the parallel efficiency of the two Nvidia hardware accelerators, the 1-8 Tesla V100
32 GB NVlink GPUs (Volta) and the 1-128 Titan X 12 GB GPUs (Maxwell). All the
performance results are normalized by the single-MPI code performance.
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5.5 Validation of the numerical solver461

5.5.1 Comparison against an analytical solution462

We perform a direct comparison of our numerical solver against analytically de-463

rived non-dimensional phase velocities and the inverse quality factors of 1D Biot’s equa-464

tions in homogeneous poroelastic media. Biot’s mechanism, often called global flow, is465

the unique cause leading to wave attenuation and velocity dispersion. We validated our466

numerical solver in 1D but the plane wave analysis is multidimensional as plane wave467

characteristics are identical in 1D, 2D and 3D. In the numerical simulation, we use the468

proposed scheme (E8)-(E15) with χ = 1/2, the Morlet wavelet as a source function (56)469

and quantify velocity and the inverse of the quality factor of a propagating wavelet in470

the time domain. We obtain excellent agreement between numerical and analytical re-471

sults (Figure 15).472

Figure 15: A comparison between numerically calculated dimensional phase velocities
(up) and 1/Q (down) against an analytical solution of Biot’s equations. Each red cir-
cle corresponds to a numerical simulation. The phase velocity V1 is normalized by the
velocity in the high frequency limit V HF1 and the dimensional angular frequency ωd is
normalized against Biot’s frequency ωc. The material parameters are those from Table 3.

5.5.2 Convergence analysis473

We performed a grid convergence analysis to validate the numerical implementa-
tion of the solver. We evaluate the magnitude of the phase velocity truncation errors (eV )
as functions of decreasing spatial discretization steps ∆x. We calculate the truncation
errors by subtracting numerically calculated fields from analytical fields and character-
ize the magnitude of the truncation errors by their L1 norms, using the velocity estima-
tion (Räss et al., 2017)

eV = ||Va − Vn||1 , (59)

where Va corresponds to the analytical velocity obtained via the dispersion analysis and474

Vn corresponds to the numerically estimated velocity.475

Figure 16a shows the truncation error magnitudes of the estimated velocity in a476

lossless (η/k = 0) and lossy (η/k 6= 0) media using the χ = 1/2 scheme (E8)-(E15).477

The source has the form of a Ricker wavelet (57) and the central frequency of the source478
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corresponds to a very low frequency (much lower than the frequency of 1/Q maximum).479

Our numerical solutions for velocity exhibits second-order spatial and temporal accu-480

racy. The truncation error magnitudes decrease by a factor k as the grid spacing is re-481

duced by the same factor. We obtain similar results for a very high frequency source (much482

higher central frequency than the frequency of 1/Q maximum).483

Figure 16b shows the truncation error magnitudes of the estimated velocity in a484

lossy medium for the scheme (E8)-(E15) with χ = 1/2 and χ = 1.0. Here, the central485

frequency of the source corresponds to the frequency of 1/Q maximum. In this analy-486

sis, we use the numerically estimated velocity of a very high resolution simulation. The487

χ = 1/2 scheme exhibits second-order accuracy in space and in time. In contrast, the488

χ = 1.0 scheme shows only about 1.8 order accuracy. Only the χ = 1/2 scheme ex-489

hibits second-order spatial and temporal accuracy across all frequencies while the χ =490

1.0 scheme exhibit second-order spatial and temporal accuracy only at low or high fre-491

quencies where attenuation (and dispersion) is very low. For schemes with χ other than492

1/2 (we used χ = 0.6, 0.7, 0.8, 0.9), tests show that the accuracy is lower than second-493

order. Therefore, the scheme with χ = 1/2 is used for the numerical solution of Biot’s494

equations in the rest of the manuscript.495

Figure 16: The truncation error magnitudes of the numerically estimated velocities. (a)
the low frequency source and (b) fc of the source is close to the frequency of 1/Q1 maxi-
mum. The material parameters are those from Table 3.

6 Numerical experiments496

We here present a series of simulations based on Biot’s equations in two and three497

dimensions. We discuss some basic aspects of poroelasticity, namely, wave propagation498

in homogeneous poro-acoustic and poro-elastic media, in isotropic and anisotropic poroe-499

lastic media and at low- and high- frequency regimes.500

6.1 Wave propagation in 2D poroelastic media501

6.1.1 Poro-acoustic and poro-elastic media502

We examine the difference between poro-elastic and poro-acoustic wave propaga-503

tion at low and high frequencies in two dimensions. The material properties are those504

of an isotropic sandstone (Table 4). For the poro-acoustic material, we set the shear mod-505

ulus c55 to zero. A 2D square domain of 9.35m×9.35m is used. We define 32 threads506

per blocks in x− and z− directions with 128 blocks in x− and z− directions, which re-507

sult in 4095 × 4095 grid resolution having ≈ 16 · 106 grid cells. We apply a Gaussian508
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Table 4: Properties of anisotropic poroelastic rocks used for numerical simulations. VTI
corresponds to a vertical transverse isotropic medium.

sandstone (VTI) glass-epoxy (VTI) sandstone (isotropic)

Rock properties

Ks (GPa) 80 40 40

ρs (kg/m3) 2500 1815 2500

c11 (GPa) 71.8 39.4 36

c12 (GPa) 3.2 1.2 12

c13 (GPa) 1.2 1.2 12

c33 (GPa) 53.4 13.1 36

c55 (GPa) 26.1 3.0 12

φ (-) 0.2 0.2 0.2

k1 (m2) 600 · 10−15 600 · 10−15 600 · 10−15

k3 (m2) 100 · 10−15 100 · 10−15 600 · 10−15

T1 (-) 2 2 2

T3 (-) 3.6 3.6 3.6

Kf (GPa) 2.5 2.5 2.5

ρf (kg/m3) 1040 1040 1040

η (kg/m·s) 10−3 10−3 10−3

distribution (55) with lx = 0.08, ly = 0.08 and A0 = 1 at the center of the model do-509

main to the solid particle velocity (Vz) as an initial condition for the poro-acoustic and510

low frequency poro-elastic simulations. For the high frequency poro-elastic simulations511

we also apply the Gaussian distribution to the fluid pressure pf .512

Figure 17 shows the total pressure (p̄) and solid particle velocity (Vx) fields for poro-513

acoustic and poro-elastic simulations. In total, 5000 time steps were performed and the514

total physical simulation time was approximately t = 9 · 10−4 seconds. The simula-515

tions were performed on a single Tesla V100 PCIe GPU. The running time was approx-516

imately 55 seconds for each simulation. For a performance comparison, a few simulations517

were executed on a single Tesla V100 Nvlink GPU, and the running time was approx-518

imately 51 seconds. Note, that the 2D codes performance is not optimized as it is done519

for 3D codes. For optimized 2D codes, the performance might be much higher. In the520
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poro-acoustic simulations (Figure 17a-b), the initial condition corresponds to the low fre-521

quency regime and only the fast (longitudinal) wave V1 can be observed. Also note that522

the 2D poro-acoustic medium can not unload the initial condition applied to the solid523

particle velocity field, which is represented by non-zero amplitudes at the center of the524

model (Figure 17b). In the poro-elastic simulations (Figure 17c-d), the initial condition525

corresponds to the low frequency regime and only two waves can be observed — the fast526

(longitudinal) wave V1 and the shear wave Vs. In the poro-elastic simulations (Figure 17e-527

f), the initial condition of a Gaussian shape with lx = 8 ·10−4 and ly = 8 ·10−4 corre-528

sponds to the high frequency regime. Three waves can be clearly observed — the fast529

(longitudinal) wave V1, the shear wave Vs and the slow (longitudinal) wave V2 (Figure 17e-530

f).531

6.1.2 Anisotropic poroelastic media532

In this section, we reproduce similar two dimensional results shown in de la Puente533

et al. (2008); Lemoine et al. (2013), so the present simulations can be qualitatively com-534

pared to the previous works. The material properties of anisotropic rocks are similar to535

those of de la Puente et al. (2008); Lemoine et al. (2013) (Table 4). We apply a Gaus-536

sian distribution to σzz and pf with lx = 0.08, ly = 0.08 and A0 = 1 to the center of537

the numerical model. Other parameters are the same as in the previous 2D simulations.538

The simulations were performed on a single Tesla V100 Nvlink GPU. The running time539

was approximately 51 seconds for both (glass-epoxy and sandstone-VTI) models, 5000540

time steps were performed. The total physical simulation time was t = 6.15·10−04 sec-541

onds for the anisotropic sandstone and t = 7.061 · 10−04 seconds for the glass-epoxy542

model. The results of the solid-particle velocity fields Vx and Vz are shown in Figures 18543

and 19. In analogy to de la Puente et al. (2008); Lemoine et al. (2013), we show numer-544

ical results for inviscid models (η = 0) and viscid models (η 6= 0). Simulations in in-545

viscid media mimic the high frequency regime, therefore, fast, quasi-shear and slow waves546

can be observed (Figure 18a-b and Figure 19a-b). Simulations in viscid media correspond547

to the low frequency regime, therefore, only fast and quasi-shear waves are observed (Fig-548

ure 18c-d and Figure 19c-d).549

6.2 Wave propagation in 3D anisotropic poroelastic media550

We simulate a wave propagating in 3D for the anisotropic poro-elastic material whose551

properties are of the glass-epoxy (Table 4), the properties in the x−direction are dupli-552

cated to the y−direction. The simulations were performed on eight Tesla V100 Nvlink553

GPUs. A three dimensional cubic domain of 9.35m× 9.35m× 9.35m is used. The to-554

tal resolution is 1022×1022×1022 grid cells in x-, y- and z- dimensions, respectively,555

which results in ≈ 1·109 grid cells. We apply a Gaussian distribution to the fluid pres-556

sure pf (fluid injection) with lx = 0.18, ly = 0.18, lz = 0.18 and A0 = 1010 at the557

center of the numerical model. The running time was approximately 73 seconds for all558

simulations, 1050 time steps were performed. The total physical simulation time was 6.8·559

10−4 seconds. This model configuration corresponds to the low frequency regime.560

Figure 20 shows the solid particle velocity field V = Vx + Vy + Vz. The velocity561

field is projected into several slices, also the isosurfaces of the wave amplitudes of ±3·562

10−3 are shown. Figure 21a shows the solid particle velocity field Vx for the same model563

(Figure 20) while Figure 21b shows Vx of the 100 times smaller model (the size is 0.09353m),564

which corresponds to the high frequency regime. The initial condition was scaled accord-565

ingly, lx = 0.018, ly = 0.018, lz = 0.018 (A0 is the same) and the total physical simu-566

lation time was also scaled to 6.8·10−6 seconds. The behavior of fast and quasi-shear567

waves is similar in Figures 21a and 21b but the slow P-wave behavior is different. In Fig-568

ure 21a, the slow P-wave degenerated into a diffusion mode representing viscous fluid569

flow in porous media while in Figure 21b the slow P-wave behaves as a true propagat-570

ing wave.571
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Figure 17: Numerical simulation of a propagating waves. (a), (c), (e) show the total pres-
sure field p̄, (v), (d), (f) show the particle-velocity field V x. Plots (a) and (b) correspond
to the poro-acoustic medium, (c) and (d) correspond to the poro-elastic medium (low
frequency regime) and (e), (f) correspond to the poro-elastic medium (high frequency
regime). The total physical simulation time is approximately t = 9 · 10−4 seconds. The
material properties are those of an isotropic sandstone (Table 4).
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Figure 18: Snapshots showing particle-velocity fields Vx and Vz in the epoxy-glass
medium (Table 4). Panels (a) and (b) correspond to the inviscid medium (η = 0), panels
(c) and (d) correspond to the viscid medium (η 6= 0). The total physical simulation time
is t = 7.061 · 10−04 seconds.
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Figure 19: Snapshots showing particle-velocity fields Vx and Vz in the sandstone-VTI
medium (Table 4). Panels (a) and (b) correspond to the inviscid medium (η = 0), panels
(c) and (d) correspond to the viscid medium (η 6= 0). The total physical simulation time
is t = 6.15 · 10−04 seconds.
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Figure 20: Snapshots showing the total solid particle velocity field V = Vx + Vy + Vz in
the medium having the properties of the glass-epoxy (Table 4). The velocity field is pro-
jected into X − Z and Y − Z slices. Red and blue isosurfaces denote the wave amplitudes
of ±0.4. The anisotropic nature of the model is clearly visible due to the non-symmetric
velocity field pattern. The total physical simulation time is 6.8 · 10−4 seconds.

Figure 21: Snapshots showing the solid particle velocity field Vx in the medium having
the properties of the glass-epoxy (Table 4). Panel (a) shows Vx of the same model as in
Figure 20, red and blue isosurfaces denote the wave amplitudes of ±0.4, the total physical
simulation time is 6.8 · 10−4 seconds. Panel (b) shows Vx of the 100 times smaller model,
which corresponds to the high frequency regime, The total physical simulation time is
6.8 · 10−6 seconds. Red and blue isosurfaces denote the wave amplitudes of ±3.0.
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7 Conclusions572

We developed a multi-GPU solver for the anisotropic elastodynamic Biot’s equa-573

tions in 1D, 2D and 3D using the CUDA C programming language leveraging the par-574

allel processing power of GPUs. We implement a simple approach to circumvent the stiff-575

ness of Biot’s equations by using an implicit scheme for Darcy’s flux while keeping ex-576

plicit updates in the iteration loop. We achieve a close-to-ideal parallel efficiency (98%577

and 96%) on weak scaling tests up to 128 GPUs by overlapping MPI communication and578

computations. We also achieve an effective memory throughput of 90% of the memory579

copy throughput. Our multi-GPU implementation of Biot’s equations permits to tackle580

high spatial resolution and exhibits fast execution times. We perform 1000 explicit time581

steps in 95 seconds for a model involving 1.5 billion grid cells (11523) on 8 Tesla V100582

32GB Nvlink GPUs using double-precision arithmetics. We analyze the stability and ac-583

curacy of the three different numerical schemes and suggest the best out of three. We584

benchmark the numerical solver against an analytical solution of Biot’s equations and585

present a comprehensive dimensional analysis of Biot’s equations to reduce the number586

of material parameters from ten to four. Our numerical application to resolve Biot’s equa-587

tions enables practical applications in geophysics, engineering, biophysics and the fur-588

ther understanding the underlying hydro-mechanically coupled processes in 3D.589
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Appendix A Equations describing a single phase continuum material590

A1 Stress-strain relations591

For a single phase linear elastic continuum material, the stress-strain relation (Hooke’s592

Law) is593

σσσ = CCC : εεε (A1)

or using index (Einstein) notation594

σij = Cijkl εkl, (A2)

where σσσ is the second rank stress tensor, εεε is the second rank strain tensor, CCC is the fourth595

rank stiffness tensor, : denotes the double dot product and i, j, k, l = 1, .., 3. Bold596

symbols denote tensors and italic (non-bold) symbols denote tensor components. For small597

deformations, the strain tensor is defined as598

εεε =
1

2

(
∇⊗ uuu+ (∇⊗ uuu)

T
)

(A3)

or

εkl =
1

2
(∇luk +∇kul) , (A4)

where uuu is the displacement, ⊗ denotes the tensor product, ∇ denotes the nabla oper-
ator and the superscript T corresponds to the transpose operator. For larger strains,
an incremental formulation is preferable. Therefore, the relation between displacements
and the time derivative of strain is

∂σij
∂t

= cijkl
1

2
(∇lvsk +∇kvsl ) , (A5)

where the particle velocity is defined as vsi = ∂ui/∂t. Note, that in the case of small
linear deformations, the definition (A1)-(A4) coincides with the definition (A5). For large
deformations the definition (A1)-(A4) is not longer valid due to the absence of second-
order terms of the finite strain tensor while the definition (A5) still holds. In this arti-
cle, we only use the incremental formulation (A5). In isotropic media, the stress and strain
tensors can be separated into volumetric and deviatoric parts. Equation (A5) can be rewrit-
ten as

∂σij
∂t

= K∇kvk δij + 2G

(
1

2
(∇jvi +∇ivj)−

1

3
∇kvkδij

)
. (A6)

Equation (A6) can be simplified, once pressure and deviatoric stresses are introduced,

∂σij
∂t

= −∂p
∂t
δij +

∂τij
∂t

, (A7)

where pressure p is
∂p

∂t
= −K∇kvk (A8)

and the deviatoric stress tensor τij is expressed as

∂τij
∂t

= 2G

(
1

2
(∇jvi +∇ivj)−

1

3
∇kvkδij

)
. (A9)

A2 Dynamic equations599

The conservation of linear momentum for a single phase material is

ρ
∂vi
∂t

= ∇j σij . (A10)
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Equation (A10) can also be called equation of motion or elastodynamic force balance law.
By separating the stress tensor into deviatoric and volumetric parts, equation (A10) can
be written as

ρ
∂vi
∂t

= ∇j (−pδij + τij) (A11)

In summary, the constitutive equations (A8)-(A9) and the conservation of linear momen-600

tum (A11) fully describe the behavior of a single phase material. Depending on the ini-601

tial conditions (or the source terms) and the material parameters, the response of a sin-602

gle phase material may include one fast (longitudinal) wave and one shear wave.603

Appendix B Poroelastic parameters604

Three experiments permit to determine the poroelastic parameters required for Biot’s
equations (Makhnenko & Podladchikov, 2018). The drained bulk modulus Kd can be
measured under drained experiments. In such experiments the pore fluid is allowed to
leave the rock during loading and that pore fluid pressure is maintained at a constant
level (pf = const, see equation (1))

Kd =
1

∇kvsk
∂p̄

∂t

∣∣∣∣
(pf=const)

(B1)

The undrained bulk modulus Ku can be obtained under undrained experiments. In such
experiments the fluid content inside the rock does not change during loading, meaning
that fluid does not flow through the boundaries of the considered element (∇kqDk = 0,
see equation (1))

Ku =
1

∇kvsk
∂p̄

∂t

∣∣∣∣
(∇kqDk =0)

(B2)

The Biot-Willis parameter α can be obtained under unjacketed experiments, in which605

an increase in the total pressure p̄ is equal to the increase in fluid pressure pf : (dp̄ =606

dpf , see equation (1)). For more information about how to measure poroelastic constants607

in rock samples, we refer to R. W. Zimmerman (1990).608

Appendix C An alternative dimensional analysis of Biot’s equations609

In (12), instead of the base quantity ρt, an alternative choice is possible, namely,
ρa. In this case, equation (12) reads

ρa


ρt
ρa

−ρf
ρa

−ρa
ρt

1




∂vs

∂t

−∂q
D

∂t

 =


∂σ̄

∂x

η

k
qD +

∂pf
∂x

 , (C1)

where

αa =
α

B

(
1 +

4/3G

Ku

)
. (C2)

In the resulting system, equation (17) is still the same, while equation (18) becomes610

(I1)
2


ρta −ρfa

−ρfa 1




∂ṽs

∂t̃

−∂q̃
D

∂t̃

 =


∂ ˜̄σ

∂x̃

I2 q̃
D +

∂p̃f
∂x̃

 , (C3)

where ρfa ≡ ρf/ρa, ρta ≡ ρt/ρa,

I1 =
√
ρasd11

L∗x
τ∗
, (C4)
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and

I2 =
ηsd11

k

(L∗x)2

τ∗
≡ 1

D

(L∗x)2

τ∗
, (C5)

D =
k

ηsd11

. (C6)

The alternative four dimensionless parameters α, αa, ρfa and ρta now define the cou-

pling between the solid and fluid phases. If we similarly set I1 = 1, then L∗x = τ∗/
√
ρasd11

and I2 becomes

I2 =
η

kρa
τ∗. (C7)

Thus, we choose the new τ∗ as

τ∗ =

(
η

kρa

)−1

≡
(

ηφ

kρfT

)−1

, (C8)

we end up with I2 = 1 and the transformation frequency now is equivalent to the Biot’s
characteristic frequency (40). Indeed, the dimensional angular frequency ωd is calculated
as ωd = ω ω∗, where ω is the non-dimensional angular frequency and ω∗ is the trans-
formation frequency (analogous to (39))

ω∗ =
1

τ∗
≡ ηφ

kρfT
, (C9)

which is exactly the Biot’s characteristic frequency ωc (40). This is the main advantage611

of the new dimensional analysis. The disadvantage is that the drained wave velocity Vd612

formula disappears in (C4), which makes the interpretation of I1 in terms of usual phys-613

ical quantities less transparent. By using this new dimensional analysis, Figures 1-4 will614

remain almost the same with the only slight shift of the transition frequency closer to615

ω = 1. This shift in ω is defined by the ratio between ρt and (ρfT/φ).616

Appendix D Elastodynamic Biot’s equations for anisotropic media617

D1 Arbitrary anisotropic media618

Elastodynamic Biot’s equations in arbitrary anisotropic media can be written in
the first order form. The stress-strain relations are

∂σ̄ij
∂t

= cuijkl∇kvsl + αijM∇kqDk , (D1)

∂pf
∂t

= −M
(
αij∇ivsj +∇mqDm

)
, (D2)

where cuijkl is the 4-th order undrained stiffness tensor and αij is the Biot-Willis param-619

eter represented by a second order tensor. The conservation of linear momentum reads620

∂vsi
∂t

= %11∇iσ̄ij + %12

(
∇i pf +

η

ki
qDi

)
, (D3)

∂qDi
∂t

= −%21∇iσ̄ij − %22

(
∇i pf +

η

ki
qDi

)
, (D4)

where

%ij =

%11 %12

%21 %22

 =
1

Θ

ρa ρf

ρf ρt

 , (D5)

Θ = ρtρa−ρ2
f and ki denotes permeability in i− direction, respectively. In (D1)-(D5),621

∂t represents a time derivative, vi and qDi are vector fields, σij is a tensor field, pf is a622

scalar field. All the material parameters, namely, cuijkl, αij , M , %ij , η, ki are constant623

in time but may vary in space.624
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D2 Orthorhombic media625

An orthorhombic medium is described by nine elastic components of the stiffness626

tensor. We use the shortened Voigt notation as a shortcut. The stress-strain relations627

are628

∂σ̄xx
∂t

= cu11∂xv
s
x + cu12∂yv

s
y + cu13∂zv

s
z + α1M

(
∂xq

D
x + ∂yq

D
y + ∂zq

D
z

)
, (D6)

∂σ̄yy
∂t

= cu12∂xv
s
x + cu22∂yv

s
y + cu23∂zv

s
z + α2M

(
∂xq

D
x + ∂yq

D
y + ∂zq

D
z

)
, (D7)

∂σ̄zz
∂t

= cu13∂xv
s
x + cu23∂yv

s
y + cu33∂zv

s
z + α3M

(
∂xq

D
x + ∂yq

D
y + ∂zq

D
z

)
, (D8)

∂σ̄yz
∂t

= cu44

(
∂zv

s
y + ∂yv

s
z

)
, (D9)

∂σ̄xz
∂t

= cu55 (∂zv
s
x + ∂xv

s
z) , (D10)

∂σ̄xy
∂t

= cu66

(
∂yv

s
x + ∂xv

s
y

)
, (D11)

∂pf
∂t

= −α1M∂xv
s
x − α2M∂yv

s
y − α3M∂zv

s
z −M

(
∂xq

D
x + ∂yq

D
y + ∂zq

D
z

)
, (D12)

∂i represents a spatial derivative in i− direction. The relation between the drained stiff-
ness matrix cij and the undrained stiffness matrix cuij is

cuij = cij + αiαjM, (D13)

where αi = (α1, α2, α3, 0, 0, 0) and αj = (α1, α2, α3, 0, 0, 0)T are the Biot-Willis coef-
ficients,

αi = 1−

 3∑
j=1

cij

 /(3Kg), (D14)

for i = 1, 2, 3. For example,

α1 = 1− c11 + c12 + c13

3Kg
, (D15)

α2 = 1− c21 + c22 + c23

3Kg
, (D16)

α3 = 1− c13 + c23 + c33

3Kg
(D17)

and M is the solid-fluid coupling modulus, defined as

M =
(
φ/Kf + (1− φ)/Kg −K∗/K2

g

)−1
, (D18)

K∗ =
1

9

3∑
i=1

3∑
j=1

cij = [c11 + c22 + c33 + 2(c12 + c13 + c23)] /9 (D19)
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The modulus K∗ is usually called the generalized bulk modulus, which, in fact, repre-
sents the Voigt average of the bulk modulus for an orthorhombic symmetry system. The
conservation of linear momentum reads

∂qDx
∂t

= %21 (−∂xσ̄xx − ∂yσ̄xy − ∂zσ̄xz)− %22

(
∂xpf +

η

k1
qx

)
, (D20)

∂qDy
∂t

= %21 (−∂xσ̄xy − ∂yσ̄yy − ∂zσ̄yz)− %22

(
∂ypf +

η

k2
qy

)
, (D21)

∂qDz
∂t

= %21 (−∂xσ̄xz − ∂yσ̄yz − ∂zσ̄zz)− %22

(
∂zpf +

η

k3
qz

)
, (D22)

∂vsx
∂t

= %11 (∂xσ̄xx + ∂yσxy + ∂zσ̄xz) + %12

(
∂xpf +

η

k1
qx

)
, (D23)

∂vsy
∂t

= %11 (∂xσ̄xy + ∂yσ̄yy + ∂zσ̄yz) + %12

(
∂ypf +

η

k2
qy

)
, (D24)

∂vsz
∂t

= %11 (∂xσ̄xz + ∂yσ̄yz + ∂zσ̄zz) + %12

(
∂zpf +

η

k3
qz

)
, (D25)

where %ij is given by (D5).629

Appendix E Discretization of Biot’s equations630

For a given function gni,j,k = g(tl, xi, yj , zk), the following operators for the time
evolution are introduced

D1
t [g] =

∂g

∂t
=
g
l+1/2
i,j,k − g

l−1/2
i,j,k

∆t
, (E1)

D2
t [g] =

∂g

∂t
=
gl+1
i+1/2,j,k − g

l
i+1/2,j,k

∆t
, (E2)

D̄χ[g] = χgl+1
i+1/2,j,k + (1− χ)gli+1/2,j,k, (E3)

where χ ∈ [0; 1] is the weight parameter. The following operators for the spatial deriva-
tives are introduced

D1
x[g] =

∂g

∂x
=
g
l+1/2
i+1,j,k − g

l+1/2
i,j,k

∆x
, D1

y[g] =
∂g

∂y
=
g
l+1/2
i,j+1,k − g

l+1/2
i,j,k

∆y
, D1

z [g] =
∂g

∂z
=
g
l+1/2
i,j,k+1 − g

l+1/2
i,j,k

∆z
,

(E4)

D2
x[g] =

∂g

∂x
=
gli+1/2,j,k − g

l
i−1/2,j,k

∆x
, D2

y[g] =
∂g

∂y
=
gli,j+1/2,k − g

l
i,j−1/2,k

∆y
, D2

z [g] =
∂g

∂z
=
gli,j,k+1/2 − g

l
i,j,k−1/2

∆z
,

(E5)
The following averaging operators for the material parameters are introduced

([g]1)i+1/2,j,k = (gi,j,k + gi+1,j,k) /2, (E6)

([g]2)i+1/2,j+1/2,k = 4 (1/gi,j,k + 1/gi+1,j,k + 1/gi,j+1,k + 1/gi+1,j+1,k)
−1
. (E7)

For simplicity, equations only in x- direction are shown in the discrete form. A few
additional operators are introduced

∇ · vs = D2
x[vsx] +D2

y[vsy] +D2
z [v

s
z], ∇ · qD = D2

x[qDx ] +D2
y[qDy ] +D2

z [q
D
z ]. (E8)
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The discretized system of equations is

D1
t [p̄] = −Ku∇ · vs −KuB∇ · qD, (E9)

D1
t [pf ] = −KuB∇ · vs −KuB/α∇ · qD, (E10)

D1
t [τ̄xx] = 2G

(
D2
x[vsx]− 1/3∇ · vs

)
, (E11)

discretization of τ̄yy and τ̄zz is in analogy to that of τ̄xx. The stress deviator tensor field
is discretized as

D1
t [τ̄xy]i+1/2,j+1/2,k = [G]2

(
D2
x[vsy] +D2

y[vsx]
)
, (E12)

discretization of τ̄xz and τ̄yz is in analogy to that of τ̄xy. The total stress tensor field ∇·
σ̄xx is

∇·σ̄xx = D1
x[τ̄xx]−D1

x[p̄]+
[τ̄xy]

l+1/2
i+1/2,j+1/2,k − [τ̄xy]

l+1/2
i+1/2,j−1/2,k

∆y
+

[τ̄xz]
l+1/2
i+1/2,j,k+1/2 − [τ̄xz]

l+1/2
i+1/2,j,k−1/2

∆z
.

(E13)
The Darcy’s flux and the particle velocity vector fields in the discrete form are

D2
t [q

D
x ] =

1

[Θ]1

(
−[ρf ]1∇ · σ̄xx − [ρt]1D

1
x[pf ]− [ρt]1

[ηf ]1
[k]1

D̄χ[qDf ]

)
, (E14)

D2
t [v

s
x] =

1

[Θ]1

(
[ρa]1∇ · σ̄xx + [ρf ]1D

1
x[pf ] + [ρf ]1

[ηf ]1
[k]1

D̄χ[qDf ]

)
. (E15)

Appendix F The GPU architecture631

GPUs feature a hierarchic structure. The basic computational unit is the Thread.632

Threads are organized in Blocks of Threads that constitute the Grid. A GPU function633

(CUDA kernel) executes in as many concurrent instances as the total amount of Threads,634

i.e the Threads per Block times the amount of Blocks. We assign each data unit (grid635

cell) of our computational domain to a specific Thread; the identical numerical opera-636

tion performed on each data unit (grid cell) will thus be executed simultaneously in the637

entire computational domain (Figure F1).638

Figure F1: Schematic chip representation for both the central processing unit (CPU) and
graphical processing unit (GPU) architectures. The GPU architecture consist of thou-
sands of arithmetic and logical units (ALU). On the CPU, most of the on-chip space is
devoted to controlling units and cache memory, while the number of ALUs is significantly
reduced.
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