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Abstract

Flash droughts are characterized by an abrupt onset and swift intensification. Global surface soil moisture (θRS) from NASA’s

Soil Moisture Active Passive (SMAP) satellite can facilitate a near-real-time assessment of emerging flash droughts at 36-km

footprint. However, a robust flash drought monitoring using θRS must account for the i) short observation record of SMAP, ii)

non-linear geophysical controls over θRS dynamics, and, iii) emergent meteorological drivers of flash droughts. We propose a

new method for near-real-time characterization of droughts using Soil Moisture Stress (SMS, drought stress) and Relative Rate

of Drydown (RRD, drought stress intensification rate) - developed using SMAP θRS (March 2015-2019) and footprint-scale

seasonal soil water retention parameters and land-atmospheric coupling strength. SMS and RRD are nonlinearly combined

to develop Flash Drought Stress Index (FDSI) to characterize emerging flash droughts (FDSI [?] 0.71 for moderate to high

RRD and SMS). Globally, FDSI shows high correlation with concurrent meteorological anomalies. A retrospective evaluation

of select droughts is demonstrated using FDSI, including a mechanistic evaluation of the 2017 flash drought in the Northern

Great Plains. About 5.2% of earth’s landmass experienced flash droughts of varying intensity and duration during 2015-2019

(FDSI [?] 0.71 for >30 consecutive days), majorly in global drylands. FDSI shows high skill in forecasting vegetation health

with a lead of 0-2 weeks, with exceptions in irrigated croplands and mixed forests. With readily available parameters, low data

latency, and no dependence on model simulations, we provide a robust tool for global near-real-time flash drought monitoring

using SMAP.
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Abstract16

Flash droughts are characterized by an abrupt onset and swift intensification. Global sur-17

face soil moisture (θRS) from NASA’s Soil Moisture Active Passive (SMAP) satellite can18

facilitate a near-real-time assessment of emerging flash droughts at 36-km footprint. How-19

ever, a robust flash drought monitoring using θRS must account for the i) short observation20

record of SMAP, ii) non-linear geophysical controls over θRS dynamics, and, iii) emer-21

gent meteorological drivers of flash droughts. We propose a new method for near-real-time22

characterization of droughts using Soil Moisture Stress (SMS, drought stress) and Relative23

Rate of Drydown (RRD, drought stress intensification rate) — developed using SMAP θRS24

(March 2015-2019) and footprint-scale seasonal soil water retention parameters and land-25

atmospheric coupling strength. SMS and RRD are nonlinearly combined to develop Flash26

Drought Stress Index (FDSI) to characterize emerging flash droughts (FDSI ≥ 0.71 for27

moderate to high RRD and SMS). Globally, FDSI shows high correlation with concurrent28

meteorological anomalies. A retrospective evaluation of select droughts is demonstrated29

using FDSI, including a mechanistic evaluation of the 2017 flash drought in the Northern30

Great Plains. About 5.2% of earth’s landmass experienced flash droughts of varying in-31

tensity and duration during 2015-2019 (FDSI ≥ 0.71 for >30 consecutive days), majorly32

in global drylands. FDSI shows high skill in forecasting vegetation health with a lead of33

0-2 weeks, with exceptions in irrigated croplands and mixed forests. With readily available34

parameters, low data latency, and no dependence on model simulations, we provide a robust35

tool for global near-real-time flash drought monitoring using SMAP.36
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1 Introduction37

Flash droughts are characterized by three S’s: Speed, Severity and Spread, i.e., rapid in-38

tensification of drought to severe levels over a large area (Christian et al., 2019; Otkin et39

al., 2017). These fast-evolving droughts are associated with large-scale agricultural losses40

(Jencso et al., 2019; Jin et al., 2019), expansive wildfires (Christian et al., 2020) and poten-41

tial challenges for seasonal and sub-seasonal climate predictions (Pendergrass et al., 2020).42

The frequency and intensity of flash droughts are reported to be on the rise (Touma et43

al., 2015; Yuan et al., 2019), accompanied by a global increase in the drought recovery pe-44

riod (Schwalm et al., 2017). Hence, near-real-time identification and early-warning of flash45

droughts have implications for global food and water security.46

Flash droughts are triggered by anomalously high temperatures (heatwave flash drought)47

or lack of precipitation (precipitation-deficit flash droughts) (Christian et al., 2019; Otkin48

et al., 2017), however, a rapid decrease of soil moisture (SM) is common to the development49

of both types of flash droughts (Liu et al., 2020; Mo & Lettenmaier, 2015, 2016). NASA’s50

Soil Moisture Active Passive (SMAP) satellite provides global observations of SM, termed51

θRS , at 36-km footprint with minimal error (within ± 0.04 m3/m3) since 31st March 201552

(Entekhabi et al., 2010). The use of SMAP observations for monitoring flash droughts holds53

promise due to its accuracy, global coverage, and short revisit time (2-3 days). While L-band54

microwave retrievals by SMAP are limited to the soil surface (∼5 cm), significant informa-55

tion may be inferred from these observations about basin-scale water balance (Koster et56

al., 2018), evapotranspiration (Purdy et al., 2018), land-surface hydrological fluxes (Sadeghi57

et al., 2020), irrigation (Lawston et al., 2017), land-atmosphere interaction (McColl et al.,58

2017), and rootzone soil moisture dynamics (Pablos et al., 2018; Reichle, de Lannoy, et al.,59

2017) etc. Persistent stress in the surface SM is often indicative of severe SM deficit in60

the deeper soil profiles due to strong interconnection between the soil layers (except in arid61

regions where surface and rootzone may hydrologically decouple) through advective and62

diffusive soil hydrologic processes (Hirschi et al., 2014; Pollacco & Mohanty, 2012; Sehgal et63

al., 2017; Sehgal & Sridhar, 2019).64

In the absence of long-term (climatological length) observations, SMAP observations65

are used to enhance existing drought monitoring capabilities using hydrological modeling66

and/or data assimilation. For example, Sadri et al. (2020) combined SM observations from67

SMAP and SMOS and developed a global drought monitor using a parametric distribution of68

monthly SM observations. Mladenova et al. (2019) assimilated SMAP observations into the69

United States Department of Agriculture Foreign Agricultural Service (USDA-FAS) Palmer70

model to enhance existing global drought monitoring capabilities. Previously, Sadri et al.71
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(2018) proposed using θRS to bias-correct SM simulations from the Variable Infiltration72

Capacity (VIC) model to estimate drought severity across Contiguous U.S (CONUS).73

Alternatively, several studies rely on the development of a SM-based index to estimate74

the (plant) available water content using soil water retention parameters (SWRPs), like75

field capacity and wilting point (Hunt et al., 2009; Mozny et al., 2012; Sridhar et al., 2008;76

Bachmair et al., 2018; Mart́ınez-Fernández et al., 2015, 2016). The relative fraction of77

available water content compared to the maximum (plant) available water (the difference78

between field capacity or critical point and wilting point) is used as an indicator of drought79

stress. The SWRPs for these studies are often estimated using either laboratory tests or,80

are estimated using soil texture (and mineral/carbon composition) information based on81

pedotransfer functions (PTF). One recent application of θRS for drought monitoring is82

provided by Mishra et al. (2017), who developed a soil moisture deficit index using SWRPs83

from PTFs by Saxton and Rawls (2006). A similar approach is adopted by other studies84

using SMAP for drought monitoring in several parts of the world (Ajaz et al., 2019; Bai85

et al., 2018; Liu et al., 2017). Using SWRPs for soil moisture stress estimation does not86

require long-term SM records or model simulations to estimate SM anomalies, and hence,87

can be applied across the globe without any explicit dependence on complex models and88

uncertainty related to model parameter estimation and/or calibration.89

While PTFs are a convenient tool to estimate SWRPs using minimal information about90

soil texture/ composition at point or field-scale, their application at continuous and large91

spatial scales suffer critical limitations. PTFs are developed using limited measurements92

made at smaller extents, fine support scale, and/or irregular spacing. The spatial depen-93

dencies in the input variables of the PTFs do not translate correctly to the output over large94

spatial scales with heterogeneous land-surface and soil properties (Chakraborty et al., 2020;95

Pachepsky & van Genuchten, 2011). Hence, an extrapolation of PTFs beyond respective96

geographic region of their development may yield erroneous results (Hodnett & Tomasella,97

2002; Santra et al., 2018). In addition, global soil databases required for application of these98

PTFs at regional/ global extent are based on limited soil profiles and coarse resolution soil99

maps which lack local coverage in several regions of the world (Shangguan et al., 2014). At100

large spatial scales, multiple biophysical controls like topography, vegetation, hydroclimate,101

etc. exert dominant control over footprint-scale SM dynamics rather than soil characteristics102

(Crow et al., 2012; Gaur & Mohanty, 2013, 2016, 2019; Laio et al., 2001). These biophysi-103

cal controls moderate the transition of RS footprint between energy-limited (no stress) and104

moisture-limited (stressed) regimes (Akbar et al., 2018; Sehgal et al., 2020), thus governing105

the response of SM to meteorological anomalies. Hence, the SWRPs used for estimating106

SM stress for the RS-footprint must capture the “effective” footprint-scale SM dynamics107
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as a result of subgrid-scale soil-atmosphere-plant processes, land-surface heterogeneity, and108

their temporal variability.109

The current methods on flash drought characterization are broadly limited to two cat-110

egories: i) Stress-based and ii) Change-based approach (Y. Liu et al., 2020). The stress-111

based method uses standardized matrices like Standardized Evaporative Stress Ratio (SESR)112

(Christian et al., 2019; Nguyen et al., 2019) to quantify flash droughts. The change-based113

approach is based on the rate of intensification of drought severity using matrices like SM114

percentile (Liu et al., 2020; Mahto & Mishra, 2020) or composite drought severity esti-115

mates like U.S. drought monitor (L. G. Chen et al., 2019; Otkin et al., 2018). However,116

a robust operational flash drought monitoring framework must combine the stress-based117

approach with the change-based assessment to provide early identification of impending118

flash droughts using the current hydrologic state and the prevailing rate of intensification119

of hydrologic anomalies in near-real-time.120

To address the aforementioned limitations of i) limited θRS records ii) non-linear con-121

trols on θRS dynamics and the iii) urgent need to combine both change-based and stress-122

based matrices for characterizing flash drought severity, we propose a new global meteoro-123

logical drought indicator, Flash Drought Stress Index (FDSI), as a combination of footprint-124

scale Soil Moisture Stress (SMS, state of moisture deficit) and Relative Rate of Drydown125

(RRD, rate of intensification of moisture deficit). FDSI follows a non-linear relationship with126

θRS , governed by the footprint-scale SM drydown parameters (thresholds of soil hydrologic127

regimes and the rate of transition from wet- to dry phase). FDSI distinctively identifies128

flash droughts based on moderate-to-high SMS coupled with moderate-to-high RRD. De-129

pendence on footprint-specific, seasonal drydown parameters yield FDSI sensitivity to the130

subpixel-scale land-surface heterogeneity and dominant geophysical controls (topography,131

vegetation, soil etc.) on soil moisture dynamics at SMAP-footprint scale. The advantage of132

temporally variable, footprint-scale SWRPs over static PTF-based parameters in estimating133

SMS is examined in the study at a global extent.134

We demonstrate the application of the proposed index at a regional/ continental scale135

for different parts of the world in capturing select drought events. The 2017 flash drought in136

the American Northern Great Plains (NGPs) is mechanistically evaluated in terms of RRD,137

SMS and FDSI, to highlight the advantages of the proposed approach in early detection138

and classification of flash droughts using data and parameters derived from θRS . The study139

examines the timescales and strength of relationship between the drivers (meteorology) and140

response (vegetation health) of variability in FDSI globally to enhance the interpretability141

of the index for diverse applications.142
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2 Dataset143

2.1 Satellite SM data from SMAP144

We use global surface SM observations (θRS) from Soil Moisture Active Passive (SMAP,145

level 3, version 5) from 31st March 2015 to 19th March 2019 for this study. SMAP uses146

an L-band microwave radiometer at 1.41 GHz to retrieve global surface (0-5 cm) SM with147

2-3 days revisit at the radiometer footprint of ∼40-km) gridded at 36-km (nested) Equal-148

Area Scalable Earth grid version-2 (Entekhabi et al., 2010; O’Neill, 2018). Quality-flagged149

data, including pixels with high water fraction (>1%), high radio frequency interference and150

vegetation water content (VWC), snow cover, flooding, large and highly variable slopes, or151

urban areas, is omitted from the analysis due to high retrieval uncertainty. We use a custom152

selective filtering of θRS based on VWC (≥7 kg/m2) to exclude pixels from deciduous,153

evergreen and mixed forests (Chan et al., 2013). This prevents conservative filtering of154

SMAP retrievals over croplands and grasslands, thus, increasing the spatial coverage of θRS155

while not drastically compromising the retrieval accuracy (Akbar et al., 2018). We use both156

descending (6 A.M.) and ascending overpass (6 P.M.) retrievals to benefit from a higher157

temporal sampling frequency. Both AM/PM retrievals offer accurate measurements within158

the mission accuracy target of ±0.04 m3/m3 unbiased root mean squared error for unfrozen159

land surfaces due to improved land surface temperature correction approach implemented in160

the recent versions of SMAP products (Jackson et al., 2018; O’Neill, 2018). To remove the161

influence of diurnal variability, quality screened SMAP observations used in the study are162

linearly interpolated to a uniform daily sampling frequency (6 A.M. local time). Hyper-arid163

regions (based on classification by UNEP (1997)) like the Arabian peninsula and Sahara164

desert removed from the analysis due to small dynamic range, high noise and dry-bias in165

SMAP retrievals (Burgin et al., 2017; Kolassa et al., 2018; Reichle et al., 2015). While166

newer versions of SMAP level 3 SM are available during the development of this study, we167

use version 5 for consistency with the global SWRPs developed by Sehgal et al. (2020).168

2.2 Footprint-scale soil moisture drydown parameters169

Assuming the net lateral fluxes to be negligible for a large SMAP footprint (36-km)170

of a uniform support depth (∼5cm), the loss in θRS after precipitation can be attributed171

to infiltration (I), evapotranspiration (ET), and drainage (D). The functional relationship172

between [θRS ] v/s [−∆θRS/∆t] is called SM drydown curve, where [−∆θRS/∆t] is the rate173

of loss of SM between time t and t-1, and −∆θRS = θRS
t− θRSt−1 (negative sign indicates174

net loss of SM). The SM drydown curve can be approximated as a piecewise-linear curve,175

where each piece/limb represents a distinct hydrologic regime i.e., i) gravity-drainage (G),176

ii) energy-limited wet phase (W), iii) moisture-limited transitional phase (T) and iv) dry177
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Figure 1. A schematic of soil moisture drydown pathway. Three parameters used in development

of FDSI are θWT , θTD and m2.

phase (D) in the order of decreasing θRS . Depending on the seasonal availability of moisture178

and energy, several smaller subsets of the complete drydown curve are commonly observed179

GW, W, WT, WTD, TD, T, D at the RS-footprint scale (Akbar et al., 2018; Sehgal et180

al., 2020). Mathematically, a SM drydown curve at RS-footprint is governed by a subset of181

seven parameters comprising of the transition points between consecutive hydrologic regimes182

(θGW , θWT , θTD), the slope of falling-rate losses — the gravity-drainage and transitional183

phase (m1 and m2 respectively) and the constant-rate loss during wet and dry phase (lW184

and lD). A typical SM drydown curve observed at RS-footprint is shown in Figure 1.185

The rate of transitions from energy-limited to the moisture-limited regime is given by186

m2 and indicates the land-atmospheric coupling strength for the pixel. The footprint-scale187

SWRPeff are given by θGW , θWT , θTD which are assumed to be analogous to the field188

capacity, critical point (SM at the intersection of phase I and phase II ET) and wilting189

point respectively as defined at the field scale (Laio et al., 2001; Rodriguez-Iturbe et al.,190

1999; Rodriguez-Iturbe, 2000). Seasonal (December-February, March-May, June-August,191

September-November) estimates of three parameters, namely, θWT , θTD andm2 from Sehgal192

et al., 2020 are used in the development of FDSI in this study.193

2.3 Meteorological and vegetation drought indices194

Two indices, namely Vegetation Health Index (VHI, Kogan (1997, 2002, 2018) and195

Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al. (2010)196
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are used for global-scale performance evaluation of FDSI. Use of VHI and SPEI facilitates197

comparison of FDSI with both the drivers (evapotranspiration and precipitation) and re-198

sponse (vegetation conditions) to drought stress across different spatial and temporal scales.199

2.3.1 SPEI200

SPEI is a popular multiscale drought index based on precipitation and atmospheric201

evaporative demand. Calculation of SPEI is based on the estimates of accumulated water202

deficit/surplus at different time scales based on climatic water balance and adjustment203

to a log-logistic probability distribution. Due to its multiscale nature (1- to 48-months)204

and dependence on evapotranspiration and precipitation, SPEI is considered suitable to205

characterize the hydrological, agricultural, and ecological impacts of droughts (Begueŕıa et206

al., 2010; Vicente-Serrano et al., 2012). The relationship of SPEI with various hydrological207

variables, vegetation dynamics and other drought indices is widely studied (Bachmair et208

al., 2018; Peña-Gallardo et al., 2019; Touma et al., 2015; M. Zhao et al., 2017; Ziese et209

al., 2014). For this study, we use global monthly SPEI at 1-month accumulation timescale210

(SPEI-1) as an indicator of transient meteorological drought from April 2015-December211

2018 at 0.5°(50-km) spatial resolution (SPEIbase-version 2.6, Begueŕıa and Vicente Serrano212

(2020)).213

2.3.2 VHI214

Estimation of VHI is based on a combination of the Normalized Difference Vegetation215

Index (NDVI) and brightness temperature (TB, 10.3-11.3-µm infrared) (Gitelson et al.,216

1998; Kogan, 2002) to provide a balanced estimation of vegetative stress due to increased217

land-surface temperature and decreasing SM. VHI assumes a decrease in the vegetation218

cover with to an increase in land-surface temperature and depleting SM leading to reduced219

evapotranspiration (Karnieli et al., 2006; Lambin & Ehrlich, 1996). Application of VHI220

has been demonstrated for the assessment of crop yield/loss (Kogan et al., 2012; Kogan,221

2018), agricultural drought (Bachmair et al., 2018; Bhuiyan et al., 2017; Wu et al., 2020),222

impacts of irrigation practices (Ambika & Mishra, 2019; Sahoo et al., 2020), impacts of oil223

spill on vegetation (Hester et al., 2016), etc. This study uses VHI based on multispectral224

observations from the Advanced Very High-Resolution Radiometer (AVHRR) satellite. The225

dataset is provided by NOAA’s Center for Satellite Applications and Research (STAR),226

as a 7-day composite at a global scale at 4-km spatial resolution, which is aggregated to227

SMAP footprint scale (36-km) using bilinear aggregation. VHI is expressed in percentages,228

with values <40% indicating severe drought stress (Kogan, 2002, 2018, 1997) and VHI229

>60% indicates high vegetation productivity. As SMAP retrieval algorithm (O’Neill, 2018)230
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uses Normalized Difference Vegetation Index (NDVI) climatology from Moderate Resolution231

Imaging Spectroradiometer (MODIS), use of vegetation index from AVHRR helps prevent232

spurious error correlation of VHI with SMAP-based indices.233

3 Methodology234

3.1 Drought assessment matrices235

The formulation of FDSI is based on two matrices, namely Soil moisture Stress (SMS)236

and Relative Rate of Drydown (RRD), to capture the severity and the rate of intensification237

of droughts, respectively. The matrices are defined as follows:238

3.1.1 Soil Moisture Stress (SMS)239

SMS is defined as a unitless metric which maps the transition of the soil hydrologic240

regime of a SMAP footprint from energy-limited (θRS > θWT , no stress) to dry conditions241

(θRS < θTD, high stress) moderated by an exponent n (Eq. 1). For any time, t, the value242

of f (θRS , SMS) is given by a non-linear, S-shaped relationship as below:243

SMSt =
1

1 +
(
θRS,t
θIP

)n (1)

where244

θIP =

(
θTD + θWT

2

)
(2)

and245

n = λ .
√
m2 (3)

The value of SMS approaches zero [-] and unity [-] asymptotically as the value of fraction246

θRS/θIP increases or decreases respectively, moderated by the exponent n. The inflection247

in f (θRS , SMS) occurs at θRS= θIP , which yields SMS= 0.5 [-] as shown in Figure 2a. The248

parameter θIP , called the inflection point, is defined as the average of θTD and θWT (in249

m3/m3, Eq. 2). High (or low) θIP value leads to the transition of a pixel into stressed250

conditions at relatively higher (or lower) θRS . The exponent n used in the formulation of251

SMS, called the shape parameter, governs the steepness of f (θRS , SMS), moderating the252

sensitivity of SMS (higher n leads to higher sensitivity).253

The shape factor, n, used in f (θRS , SMS) is conditioned upon the land-atmospheric254

coupling strength of the SMAP footprint (Eq. 3), which is given by the slope of the transi-255

tional phase in a typical SM drydown curve and is given by the parameter m2 (Figure 2a).256

SMS for the pixels with a high value of m2 have a relatively high value of n, and hence, a257
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Figure 2. a) A sample plot for f (θRS , SMS) with different values of n (given in parenthesis)

using seasonal average values of θWT and θTD for a pixel in College Station, Texas, US (30.63°N,

96.33°W). The selected values of m2 for the schematic correspond to the 2.5, 15, 30, 50, 70, 85,

97.5th percentile of global m2 estimates (all seasons combined) and the seasonal average values of

θWT and θTD for the sample pixel 0.23 m3/m3 and 0.12 m3/m3 respectively (θIP=0.175 m3/m3).

Observe that the steepness (sensitivity) of the f (θRS , SMS) curve increases with the increasing

value of n for a fixed value of θIP . b) Stacked histogram of shape factor values for the four seasons

(DJF, MAM, JJA, SON) from the global estimates of m2. c) A contour plot of the trivariate

relationship between θRS (x-axis), SMS30 (y-axis) and FDSI (z-axis and contours). Flash drought

is characterized with FDSI ≥ 0.71 (shown in darker shades of red in the top-right quadrant).

heightened sensitivity to transient atmospheric conditions and vice-versa for a given value258

of a multiplier λ. The value of λ is taken to be 12 to attain the median global values of n259

= 6 following Cammalleri et al. (2016). The global values of m2 are observed to be (right)260

skewed, however, the square root transformation (i.e.
√
m2) is used to attain a near-normal261

distribution for n (Figure 2b). The 99% confidence band for n = [2,10]. To illustrate the262

influence of variability in m2 (and hence, n) on the estimates of SMS, a plot of f (θRS , SMS)263

using seasonal average values of θTD and θWT is shown in Figure 2b for a sample pixel.264

Seasonal estimates of SWRPeff for all four seasons may not be available for some pixels265

due to i) long-term missed retrievals in high-latitude regions due to persistent snow cover,266

or ii) dominance of partial drydown pathway i.e. {W} (wet), {D} (dry), {G} (gravity267

drainage), {GW} (gravity drainage and wet). The missing values of the SWRPeff for any268

season are gap-filled using the average values of the available seasonal SWRPs for estimating269

θIP . In the case of the pixels following the drydown pathway {T} (transitional) and {TD}270

(transitional and dry), the value of θWT is assumed to be the 1.05 times the maximum271
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seasonal value of SM for the pixel. The multiplier 1.05 is selected out of several other values272

(0.15, 1.5 and seasonal maximum) based on marginal performance improvement in correla-273

tion of the proposed index w.r.t SPEI-1 (not shown here for brevity). A spatiotemporally274

varying field of the global θIP and n is generated for each calendar day using the seasonal275

estimates of θTD, θWT and m2. A moving-average filter of a length of 30-days (centered at276

t=0) is carried out on the temporal values of the parameters for each pixel to facilitate a277

seamless transition of the SMS between the seasons.278

3.1.2 Relative Rate of Drydown (RRD)279

RRD [-] is an indicator of the rate of intensification of SM stress based on the prevailing280

Rate of Drydown (RD) of θRS in the last 30 days vis-à-vis the seasonal values of m2. Similar281

to SMS, RRD follows a non-linear formulation given as:282

RRDt =
1

1 +
(
m2

RDt

)6 (4)

where RDt is the slope of the linear fit to [θRS ] v/s [−∆θRS/∆t] observations during the283

transitional phase (θTD <θRS <θWT ) of SM drydown using observations in the interval284

t to t-30, where t=time in days. The value of RRDt approaches zero [-] and unity [-285

] asymptotically as the fraction m2/RDt increases or decreases respectively with a central286

value of 0.5 when RDt= m2. The value of the non-linear exponent is fixed to be 6, consistent287

with the median value of n used for SMS. In the event of low data availability (less than 10288

observations) or curve fitting accuracy (R2 <0.2), RRD is assumed to be 0.5.289

3.1.3 Flash Drought Stress Index (FDSI)290

As per a widely accepted definition (Pendergrass et al., 2020), flash drought episodes291

develop within a period of 1-month with hydrologic deficits developing within a 2-week292

period and sustaining for another 2 weeks. Consistent with that definition, FDSI is based293

on a combination of a 30-day retrospective moving average SMS (termed, SMS30 as shown294

in Eq. 5) and RRD as follows:295

SMS30,t = (

t−29∑
i=t

SMSi)/30 (5)

296

FDSIt =


√
SMS30,t ×RRDt ifRRDt > 0.5√
SMS30,t × 0.5 ifRRDt ≤ 0.5

(6)
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Eq. 6 provides a unique relationship between FDSI with changes in SMS30 and RRD as297

shown in Figure 2c. When RRD ≤ 0.5, FDSI is proportional to
√
SMS30 with theoretical298

maximum of 0.707 when the maximum value of SMS30 equals 1. The values of FDSI >0.71 is299

achieved only during above normal drydown rates (i.e. when RRD >0.5). Use of the square300

root transformation in Eq. 6 preserves the density distribution of FDSI consistent with301

SMS30 and RRD. Due to its reliance on θRS , FDSI can be interpreted as a meteorological302

drought indicator. However, flash droughts can be differentiated from other meteorological303

anomalies based on different FDSI thresholds. Flash droughts are identified with values of304

FDSI ≥ 0.71, while FDSI >0.5 is considered as the threshold for abnormally dry conditions305

for the purpose of this study.306

Previously, several studies have followed the seminal works of (van Genuchten, 1987;307

van Genuchten & Gupta, 1993) to develop non-linear, S-shaped relationships for diverse308

applications in soil hydrology like modeling root water uptake—soil water potential (Skaggs309

et al., 2006), relative crop yield—soil salinity (Skaggs et al., 2014; van Straten et al., 2019)310

etc. Studies have also demonstrated the application of S-shaped curves to model SM—soil311

stress relationship (Ajaz et al., 2019; Cammalleri et al., 2016). However, previous studies312

rely on using soil textural class information in deriving the estimated value of θIP while313

using a fixed value of n (depending on the application, soil type and vegetation), thus314

making the relationship purely dependent on the soil type for a given value of n. However315

in this study, the parameters θIP and n for SMS and m2 for RRD are obtained using the316

seasonally derived parameters of the footprint-scale drydown curves of θRS . Hence, FDSI is317

sensitive to temporally varying subpixel-scale land-surface heterogeneity due to vegetation318

and SM distribution; and the soil-vegetation-atmospheric controls which moderate the SM319

dynamics at RS-footprint scale.320

3.2 Pedotransfer function-based estimates of SM stress321

To provide a comparison with the proposed approach for calculating SMS, we use the322

PTFs from Saxton and Rawls (2006) to estimate SWRPs using soil textural properties and323

a time invariant value of n=6 to derive SMSPTF . Soil textural information on sand, clay324

and organic matter content is obtained from the Harmonized World Soil Database (version325

1.2) (Nachtergaele et al., 2012). Organic matter is obtained from the organic content using326

a factor of 0.58 as proposed by (Pribyl, 2010). Saxton and Rawls (2006) PTF is selected327

based on its extensive use in the field of hydrology for estimation of SWRPs at large spatial328

scales (Mart́ınez-Fernández et al., 2015; Mishra et al., 2017) and its ability to estimate both329

wilting point and field capacity. Based on the traditional definition, the wilting point of330

soil is defined as the volumetric SM at 1500 kPa pressure, given by θ(ψ=1500kPa). Similarly,331
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θ(ψ=33kPa) represents the field capacity of soil, defined as the volumetric SM at 33 kPa332

pressure. The critical point is assumed to be half of the field capacity following (Cammalleri333

et al., 2016). Accordingly, the formulation of SMSPTF uses a modification of Eq. 1 as334

θIP =
θ(ψ=1500kPa)+ θ(ψ=33kPa)/2

2 .335

3.3 Time-lagged Anomaly Correlation336

We use Anomaly Correlation (AC) to quantify the linear relationship (strength and337

timescale) of FDSI with meteorological controls (SPEI-1) and the response of vegetation338

health (VHI) to FDSI. The formulation of AC follows that of Pearson’s correlation coeffi-339

cient; except, the coefficient is computed using temporal anomalies of the dataset. AC is340

popularly used to quantify predictive skill score of the climate model outputs (Dong et al.,341

2019; T. Zhao et al., 2019, 2017).342

Time-lagged AC for a control/trigger variable (X ) and a time-lagged (by time l) re-343

sponse variable (Y ) at a temporal scale, s, is computed (significance level of 0.05) as below:344

ACl =

∑
t

[(
Xs,t −Xs

)
−
(
Xs,t −Xs

)]
×
[(
Ys+l,t+l − Ys+l

)
−
(
Ys+l,t+l − Ys+l

)]√∑
t

[(
Xs,t −Xs

)
−
(
Xs,t −Xs

)]2∑
t

[(
Ys+l,t+l − Ys+l

)
−
(
Ys+l,t+l − Ys+l

)]2
(7)345

AC = max
l
|ACl| (8)

where, Xs,t are the observations of the control variable, X, recorded at time t, at a temporal346

scale, s (month/ week). The value of Y observed at a lag, l, with respect to Xs,t is given347

by Ys+l,t+l. X̄s and Ȳs are the climatological mean of X and Y for each s for the period348

of analysis. For VHI and SPEI-1, s corresponds to weekly (s=1 to 52) and monthly (s=1349

to 12) timescale respectively. At large spatial scales, meteorology is the primary driver of350

the temporal SM dynamics, while, SM availability is a strong predictor of vegetation health351

and productivity. Hence, ACl is calculated between monthly SPEI-1 and time-lagged (up352

to three months) mean monthly FDSI (s=1 to 12, l=0 to 3). ACl between mean weekly353

FDSI and time-lagged (up to 10 weeks) 7-day composite VHI provides the skill of FDSI354

in forecasting vegetation health (s=1 to 52, l=0 to 10). The maximum lag times in the355

response variables is selected to capture the sub-seasonal to seasonal variabilities in the356

dataset (up to 3 months/ 10 weeks). For each pixel, maximum (absolute) ACl (Eq. 8) and357

the corresponding time-lag, l, is recorded.358

AC provides a more rigorous assessment of the relationship between two variables than359

Pearson’s correlation by excluding the influence of seasonal and sub-seasonal variabilities in360

the observations (Reichle, Draper, et al., 2017). Use of AC is particularly suited in this study361

13



as use of seasonal drydown parameters in the formulation of FDSI may lead to potential362

sub-seasonal periodicities in the dataset leading to spuriously high correlation with SPEI-1363

and VHI.364

4 Results and discussion365

4.1 Characteristics of FDSI parameters366

4.1.1 Spatial and temporal variability in SMAP-based θIP and n367

A global season-wise comparison of θIP and n, is shown in Figure 3 to help understand368

the characteristic properties of f (θRS , SMS) and f (RD, RRD) across different hydrocli-369

mates, landuse/landcover and/or soil types. The parameters, θIP and n, show a significant370

spatiotemporal variability in response to the changing subgrid-scale heterogeneity (vegeta-371

tion and SM distribution), and availability of moisture and energy for the SMAP footprint.372

Climate has a dominant influence on the effective SM dynamics at SMAP footprint. The373

values of θWT are observed to be higher (hence, higher θIP ) for subhumid and humid cli-374

mates compared to the arid and semi-arid regions. In regions with semi-arid or arid climate,375

pixels with high clay content (>40% w/w) show a greater value of θTD (and hence, θIP ).376

The temporal variability in θIP is observed to be higher for pixels with clayey soils, irre-377

spective of the climate, due to susceptibility to shrinking and swelling (Boivin, 2011; Boivin378

& Garnier, 2004). Such condition is observed in (not limited to) Eastern Texas, Central379

India, and Pampas of South America. The value of θTD increases in clayey soils during dry380

seasons and cause an increase in θIP as seen in Figure 3.381

In moisture-limited conditions, SM exerts the limiting control on the variance in evap-382

otranspiration in response to the atmospheric moisture (Dirmeyer, 2011). The terrestrial383

component of the land-atmospheric coupling strength is measured by the parameter m2, and384

is governed by potential evapotranspiration (PET). Typically, arid and semi-arid regions385

show higher values of n due to stronger land-atmospheric coupling compared to humid and386

sub-humid regions (Figure 3). The influence of high PET is reflected in higher values of n in387

the southern hemisphere during boreal winter for Southern America, Southern Africa, and388

large parts of Australia. During MAM and JJA, large parts of the northern hemisphere in-389

cluding Central Asia, U.S. South West, Sahel region of Africa and Indus Valley, show higher390

values of n. The spatiotemporal dynamics of land-atmospheric coupling directly impacts the391

sensitivity of f (θRS , SMS) to the variability in θRS through the parameter n. Hence, higher392

PET leads to higher land-atmospheric coupling and higher sensitivity of f (θRS , SMS), and393

vice-versa. In humid and subhumid climates, strong vegetation-atmospheric coupling (es-394

pecially in croplands, forests and savannah grasslands during the growing season) can help395
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Figure 3. (Left) Season-wise spatial plots of the inflection point (θIP in m3/m3) using SMAP-

based seasonal estimates of θWT and θTD (Right) Season-wise SMAP-based estimates of the shape

factor (n, unitless). Gray area in the spatial plots indicate pixels with masked/ flagged data.

reduce the sensitivity of f (θRS , SMS) by slowing down the rate of drydown (and hence, the396

value of m2). Access to upward movement of water in humid climates due to matric suction397

with shallow ground table and high transpiration leads to strong vegetation-atmospheric398

coupling (Zscheischler et al., 2015). As a results, the value of m2 decreases, reducing the399

sensitivity of f (θRS , SMS) for humid and subhumid ecosystems.400

4.1.2 Comparison of θIP from PTF and SMAP401

Figure 4a shows the spatial distribution of θIP based on the PTF. In the absence402

of vegetation and subgrid-heterogeneity in SM in arid and semi-arid climate regions, soil403
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texture exerts dominant control on the spatial variability of θIP (Gaur & Mohanty, 2013,404

2016). Hence, the estimates of θIP from SMAP and PTF are observed to be similar in arid405

and semi-arid climates (Figure 4b). In contrast, significant differences between SMAP- and406

PTF-based estimates are observed in sub-humid and humid hydroclimates, where climatic407

and vegetative factors strongly influence the dynamics of SM at the RS-footprint scale408

(Figure 4b). In humid and sub-humid climates, the median PTF-based estimates of θIP are409

observed to be significantly lower compared to SMAP-based estimates by 0.06 m3/m3.

Figure 4. a) Spatial plots of the inflection point (θIP , in m3/m3) using estimates of θ(ψ=1500kPa)

and θ(ψ=33kPa) from PTF. b) Hydroclimate-wise distribution of θIP from SMAP and PTF. Grey

area in the spatial plots indicate pixels with masked/ flagged data.

410

Figure 5 provides a comparison between SMS estimated using parameters from SMAP411

and PTF (referred to as SMSSMAP and SMSPTF here respectively) for three sample lo-412

cations in different hydroclimates. As shown in Figure 5, the temporal variability in both413

θIP and n yields a distinct influence on the characteristics of f (θRS , SMS) for each season414

based on the hydroclimate. Due to the higher value of θIP , the observed values of θRS are415

mapped to a higher value of stress in boreal winter (DJF) and spring (MAM) compared416

to summer (JJA) and fall (SON) seasons in humid and sub-humid climates. The seasonal417

variability is compounded for the pixel in Texas (sub-humid climate) with clayey soil as418

shrinkage and swelling of soil leads to larger inter-seasonal variations in θIP . Furthermore,419

humid and sub-humid climates show higher variability in n over the seasons compared to420

arid and semi-arid regions, thus moderating the steepness of f (θRS , SMS) (between 3.32421

to 5.15 [-], 4.07 to 5.89 [-] and 4.39 to 5.08 [-] for humid, sub-humid and semi-arid pixel422

respectively). In contrast, SMSPTF uses time-invariant parameters and is insensitive to the423

changing subgrid conditions and the soil-vegetation and climate dynamics. This leads to424

overestimation of SM stress by SMSPTF in arid and semi-arid climates and underestima-425

tion of SM stress in humid and sub-humid regions compared to SMSSMAP . At a regional/426
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Figure 5. Left) Time series of θRS , SMSSMAP and SMSPTF for the three sample locations.

Right) Plots for f (θRS , SMS) using parameters from SMAP and PTF for three sample pixels

located in East-Texas (Sub-humid), Georgia (Humid) and Kansas (Semi-arid). The values in the

parenthesis show respective values of n for each season/method.

continental scale, insensitivity to changing subpixel properties and large-scale SM dynamics427

reduces the accuracy of drought severity estimates using SMSPTF . To highlight this issue a428

CONUS-wide comparison of SMSSMAP and SMSPTF is provided with the drought severity429

assessment from the U.S. drought monitor at a weekly scale in Section S1 of the supplemen-430

tary material. Based on the analysis shown in Section S1, and Figure 5, we use SMS, RRD431

and FDSI based only on the footprint-scale drydown parameters from SMAP (θIP and m2)432

in the subsequent sections of this study.433
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4.2 Performance assessment of FDSI: Comparison with SPEI-1434

A global-scale assessment shows high (negative, as low SPEI indicate higher drought435

stress and vice-versa) AC values between SPEI-1 and FDSI (Figure 6a). Depending on436

the hydroclimate, θRS displays short-term memory ranging from several days to multiple437

weeks (McColl et al., 2017) and is sensitive to transient climatic/ meteorological variability438

through evapotranspirative, drainage losses, and gain due to precipitation. Strong relation-439

ship between SPEI-1 and FDSI is observed for most part of the globe. The median values of440

AC between SPEI-1 and FDSI is observed to be -0.45 [-] for arid climate and -0.50 to -0.52441

[-] for semi-arid, sub-humid and humid regions, with maximum values ranging from -0.76442

to -0.87 [-]. Surface SM is known to underestimate temporal hydrometeorological variabil-443

ity under extreme and/or sustained dry conditions as the surface soil profile hydrologically444

decouples from the rootzone (Hirschi et al., 2014). This explains relatively weaker linear445

relationship between SPEI-1 and FDSI for arid regions compared to other climates.446

Figure 6. Global maps and sumary of a) Anomaly correlation [-] and b) Lag time (in months)

in FDSI response to monthly SPEI-1. Monthly SPEI-1 and mean-monthly FDSI values are used

for the analysis. Anomaly correlation values with p-value >0.05 are excluded from the analysis.

Grey area in the spatial plots indicate pixels with masked/ flagged data.
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As θRS responds to short-term meteorological variabilities, FDSI anomalies correlates447

best with the concurrent (0-1 month) SPEI-1 for large parts (19.5 and 66.5% respectively)448

of the globe (Figure 6b). Higher fraction (∼1/3rd) of pixels in arid climate show maximum449

correlation between FDSI and SPEI-1 for the same month (l=0) due to stronger land-450

atmospheric interactions (higher m2, hence sensitive FDSI) in these regions. Such conditions451

are observed for regions like Southwestern U.S., large parts of Australia, Western India,452

Gobi Desert in Mongolia, Kalahari Desert in Southern Africa, among others. For other453

hydroclimates, a large majority of pixels (over 74% each) displayed 1-month lag in FDSI for454

maximum (negative) AC with SPEI-1.455

A short response time of FDSI to SPEI-1 (0-1 month) supports the applicability of the456

proposed approach in characterization of global flash droughts. Due to the limitation of457

the temporal resolution (monthly) of SEPI-1 dataset, sub-monthly dependencies between458

SPEI-1 and FDSI is not evaluated in this study. However, application of changes in SPEI-1459

at a monthly timescale is satisfactorily demonstrated in identifying flash droughts using460

SPEI-1 (Noguera et al., 2020). Hence the assessment is restricted to using freely available461

global SPEI-1 dataset at a monthly time-step.462

Figure 7. Top) Time series of median value of SMS30 [-] and RRD [-] for the Northern Great

Plains (inset). The blue markers indicate the timeline of FDSI snapshots shown in the panel below.

Bottom) Snapshots of FDSI [-] over the region during May through October 2017 showing evolution

of flash drought over the region. Gray area in the spatial plots indicate pixels with masked/ flagged

data.
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4.3 Application of FDSI for global (flash) drought monitoring and impact463

assessment464

4.3.1 Mechanistic evaluation of the 2017 Northern Great Plains flash drought465

The Northern Great Plains (NGP, western Montana, Wyoming, North- and South-466

Dakota and parts of Canadian Prairies) experienced an unprecedented flash drought in mid-467

2017. A mechanistic assessment of the 2017 drought event in the NGP is shown in Figure468

7 using FDSI, and its constituent matrices, RRD and SMS30. Large parts of the region469

are observed to be under normal conditions (FDSI <0.4) till mid-May; however, above-470

normal temperature and windy conditions caused an increase in the (median) RRD for the471

region. With the dry conditions prevailing in the subsequent weeks, the SMS30 is observed to472

increase causing an onset of flash drought (FDSI ≥ 0.71) in Eastern Montana by the end of473

May 2017. As SMS30 remains high in the subsequent weeks, coupled with high RRD, drought474

conditions are observed to spread in most parts of the NGP, expanding to the Canadian475

Prairies. The characteristics of the 2017 episode of flash drought — concurrent high SMS30476

and RRD for several consecutive weeks, are uniquely distinguishable from the SMS30 and477

RRD relationship from other years in the study period. These observations are consistent478

with various hydroclimatological studies which identify increased evapotranspiration and479

rapid loss of SM as the trigger of the 2017 flash drought caused by a combination of record-480

low precipitation (since 1895) in May-July 2017, above-normal temperatures and high winds481

from mid-May to June (Mo & Plettenmaier, 2020; Osman et al., 2020; Pendergrass et al.,482

2020).483

4.3.2 Global hotspots of flash droughts484

Figure 8a-c provide a spatial distribution of the total number of days under flash drought485

regime under three FDSI categories (FDSI ≥ 0.71, FDSI ≥ 0.81 and FDSI ≥ 0.91) for486

longer than 30 days. Several global hotspots of flash droughts are observed, predominantly,487

in global drylands — Western US, Sahel, large parts of India, Northeastern Brazil, and488

Central Asia due to strong land-atmospheric interactions and high atmospheric moisture489

demand in these regions. Large parts of Australia and southern Africa sustained persistent490

droughts during the study period with intermittent recovery. High FDSI (≥0.91) was seen491

for Australia and southern Africa due to high SMS30, coupled with high RRD after (any)492

intermittent precipitation under large vapor pressure deficit and temperature. Figure 8d493

summarizes the total area (in million km2) and duration (days) of flash droughts under494

different severity categories of FDSI. A large area of about 7.8 million km2 (5.2% of global495

landmass) is estimated to be impacted by flash droughts lasting from 30-50 days with FDSI496
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Figure 8. Number of days (from 31st March 2015 to 19th March 2019) under various flash

drought stress category a) FDSI ≥ 0.71, b) FDSI ≥ 0.81, and c) FDSI ≥ 0.91 d) Estimate of

global area (in million km2) under different flash drought categories. Severity-area estimates exclude

masked SMAP pixels. Drought events are identified as at least 30 consecutive days with FDSI ≥
0.71. Gray area in the spatial plots indicate pixels with masked/ flagged data.

≥ 0.71 and with 7.2 million km2 and 4 million km2 area under severity of FDSI ≥ 0.81 and497

FDSI ≥ 0.91 respectively.498

The global hotspots of flash droughts observed in this study closely resemble flash499

drought occurrence patterns reported by Christian et al. (2020) using global SESR from long-500

term (1980-2015) reanalysis dataset. However, it is important to note that flash drought501

hotspots may be more widespread than reported by this study due to the exclusion of502

flagged/masked SMAP observations (for all seasons) in regions with permanent dense veg-503

etation, snow cover, complex topography etc. (in Alaska, Siberia Northern Europe and504

Americas and forested regions in Amazon, Eastern U.S., and Central Africa).505

A snapshot of select drought events during 2015-2019 (Figure 9) demonstrates the506

ability of FDSI in capturing emerging and sustained drought events. Figure 9 show regional507

FDSI conditions during drought intensification in Western US (2016) and Australia (2018),508

sustained drought conditions in northeastern Brazil (2015) and Southern Africa (2018-19)509

and drought recovery in India in 2017 after the onset of monsoon.510
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Figure 9. Snapshot of FDSI [-] for some of the prominent droughts during 2015-2019 (in chrono-

logical order) a) Sustained drought conditions in Northeastern Brazil during September-December

2015, b) sustained drought in the Western U.S. during 2016 c) Drought recovery with advancing

monsoon in the Indian peninsula from May-August 2017 d) Intensification of drought severity in

Australia from March- June 2018 and e) Sustained dry conditions in Southern Africa from Decem-

ber 2018-March 2019.

4.3.3 Predicting global vegetation health using FDSI511

A global assessment of the predictive skill for VHI by time-lagged (0 to 12 weeks)512

FDSI shows a strong linear relationship between FDSI and VHI for large parts of the world513

(Figure 10). The exact nature of FDSI-VHI relationship is governed by the coupled soil-514

atmosphere-plant processes and the spatiotemporal variability in vegetation and climate.515

For the grassland and savannah ecosystems in arid and semi-arid climates, plants display516

intense competition for moisture and are more sensitive to short-term deficits in the SM517

(Grossiord et al., 2017; James et al., 2003; Western et al., 2003). Hence, FDSI shows518

high predictability of VHI in shrublands and grasslands/ savannah ecosystems with a lag519

of 0-1 week (area-average median AC of -0.49 [-] with a maximum of -0.92 and -0.93 [-]520

respectively). For mixed forests in sub-humid and humid climates, the response of short-521

term meteorological variability on vegetation is comparatively low (median AC of -0.37 [-]522

with maximum value of -0.78 [-]) due to access to SM in the deeper rootzone profile (Z. Chen523

et al., 2020; Q. Zhang et al., 2017; X. Zhang et al., 2016). Hence, regions like eastern U.S.,524

northern Europe, central Africa, and southern South America show a longer response time525

to changes in FDSI with 52.5% pixels in mixed forests show strongest AC with FDSI leading526

by over 2 weeks. For croplands in central and northern India, western China and parts of527
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central plains and mid-west of the U.S. the FDSI -VHI relationship is impacted (reduced528

AC and longer response-time of VHI) by large-scale irrigation which reduces drought stress529

due to extreme heat and moisture deficit in the crops (Shah et al., 2021; T. Zhang et al.,530

2015).531

Figure 10. Global maps and sumary of a) Anomaly correlation [-] between VHI and FDSI and b)

Lag time (in weeks) in VHI response to FDSI. Mean-weekly FDSI values are used for the analysis to

match the temporal frequency of VHI. Anomaly correlation values with p-value >0.05 are excluded

from the analysis. Grey area in the spatial plots indicate pixels with masked/ flagged data. EF=

Evergreen forests, MF= Mixed forests, SH= Open or Closed shrublands,GSA= Grasslands and

Savannah, CRP= Croplands.

AC between VHI and FDSI is expected to be lower for high-altitude regions and532

cold/coastal desert ecosystems like Siberia, Mongolia, North-East Canada and Eastern Eu-533

rope — regions where an increase in temperature can boost vegetative vigor contrary to534

a key assumption of VHI that an increase in temperature negatively influences vegetation535

health (Karnieli et al., 2006). It is important to note that the estimates of the pixel-scale536

θRS drydown parameters exhibit increased uncertainties over croplands, grasslands and sa-537

vannah (CGS) ecosystems (for example, in mid-western U.S. and Sahel) during the growing538

season (Sehgal et al., 2020). This uncertainty is due to a combination of retrieval errors and539
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complex soil-vegetation-atmospheric dynamics under rapid vegetation growth and irregular/540

unknown irrigation not captured by the shallow retrieval depth (∼5 cm) of SMAP. However,541

active research on improving SMAP retrieval algorithm for heavily vegetated regions and542

under dense canopies is expected to enhance the retrieval accuracy of θRS (Colliander et al.,543

2020), and hence, the accuracy of the drought severity estimates for the CGS ecosystems.544

Moreover, vegetation can show variable response to the intensity, duration and termination545

of drought stress based on the type of vegetation (morphology, phenology, root-structure546

etc.), developmental stage of the plants (Farooq et al., 2009; Lamaoui et al., 2018); and547

interaction with various meteorological/climatic factors regulated by seasonality and hydro-548

climate. An evaluation of these complex factors on the relationship between FDSI and VHI549

is beyond the scope of this study.550

5 Summary551

This study provides a new methodology for global near-real-time monitoring of flash552

droughts using two matrices, namely, SMS (drought stress due to SM loss) and RRD (in-553

tensification rate of SM loss) derived using SMAP observations. A new index, FDSI, is554

developed as a non-linear, bivariate function of RRD and SMS to quantify the coupled555

impact of severity and intensification rate of flash droughts. The proposed matrices are556

developed using footprint-scale seasonal drydown parameters of θRS — “effective” thresh-557

olds of soil hydrologic regimes and land-atmospheric coupling strength. Hence, FDSI is558

sensitive to the temporal variability in the subgrid-scale land-surface heterogeneity and559

soil-vegetation-climate interactions. Time invariant SWRPs from PTF, in contrast, lack560

sensitivity to variabilities in the moderators of SM dynamics at large spatial scales leading561

to bias/error when used for estimating SMS.562

A global assessment shows that FDSI evolves in strong correlation with SPEI-1 with a563

response time of 0-1 month. Application of FDSI for a mechanistic evaluation of the 2017564

flash drought in NGP and retrospective evaluation of select global droughts highlight the565

reliability of FDSI in capturing emerging and sustained droughts despite limitations of short566

length of the record (March 2015- March 2019) and shallow penetration depth (0-5 cm). A567

severity-area-duration assessment of FDSI reveals global drylands as the hotspots of flash568

droughts on account of high atmospheric moisture demand and stronger land-atmospheric569

coupling strength in these regions. The study estimates that about 7.8 million km2 area570

(∼5% of global landmass) experienced flash drought of 30-50 days duration during 2015-571

2019. An application of FDSI in forecasting VHI shows promising results for large parts572

of the globe with high skill in forecasting VHI with up to 2-weeks lead time except over573

irrigated croplands during growing season, mixed forests and high-altitude deserts.574
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While the study demonstrates a satisfactory application of SMAP for drought moni-575

toring at 36-km resolution, new (and upcoming) dataset from SMAP-Sentinel and SMAP-576

Enhanced, NASA-ISRO-Synthetic Aperture Radar (NISAR (2018), launch due in 2022)577

missions provide prospects of extending the proposed approach to finer spatial resolution.578

Readily available parameters and purely data-driven method facilitates an easy implementa-579

tion of this study into a real-time, operational framework, advancing global (flash) drought580

monitoring capabilities.581
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Section S1: Comparing SMSSMAP and SMSPTF for continental-scale drought stress mapping 

To highlight the over-sensitivity of SMSPTF vis-à-vis SMSSMAP for SM stress assessment at a 

continental scale, a comparison between i) the weekly average of 𝜃𝑅𝑆 from SMAP and ii) drought 

severity assessment from USDM for four select weeks is shown in Figure S1a-d. While both 

SMSSMAP and SMSPTF capture the overall SM stress conditions over CONUS in comparison to the 

USDM assessment, SMSPTF consistently overestimates drought severity in the western U.S. Also, 

several occurrences of mild-to-severe drought conditions in the eastern U.S. are missed by SMSPTF 

for all selected dates. The relative oversensitivity of SMSPTF compared to SMSSMAP is evident in 

the severity-area plots shown in Figure S1e-f based on the entire period of the study where SMSPTF 

consistently overestimates pixels in higher stress categories compared to SMSSMAP. It is important 

to note that the general mismatch between USDM and SMS severity estimates may be observed 

due to differences in the definition, perception and climatology of the dataset used in the 

formulation of the indices. However, the overall comparison between USDM and SMSSMAP 

reveals strong spatial agreement between the two indices in identifying SM stressed regions.   
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Figure S1: Comparison of a) weekly averages of SMAP soil moisture, drought severity assessment and a weekly 

average of the SMS estimates from b) SMAP and c) PTF-based parameters with d) weekly estimates of drought 

severity by the U.S. drought monitor (USDM, Svoboda et al., 2002) for four select dates. e) and f) show %area of 

Contiguous U.S. under specific SM stress category from SMSSMAP and SMSPTF, respectively.  CONUS-wide weekly 

drought severity assessment by is used to provide a qualitative comparison of the proposed approach. USDM is a 

composite index based on diverse county-level information, including groundwater, reservoir levels, snowpack etc. 

for socio-economic and agricultural decision making.  

 


