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Abstract

We use online data assimilation to combine information from a linear inverse model of coupled atmosphere-ocean dynamics

with proxy records to create a new annual-resolution reconstruction of atmosphere and ocean fields over the last millennium.

Instrumental validation of reconstructed sea-surface temperature and 0-700 m ocean heat content shows broad regions of

positive spatial correlations, and high correlations (˜0.6-0.9) for global averages and indices of large-scale modes of atmospheric

variability. Compared to previous reconstructions, the online reconstructions show global and hemispheric averages with little-

to-no millennial-scale trend and global-mean temperatures ˜0.25-0.5 K cooler during early periods (1000-1400 C.E.). The spatial

anomaly differences of average temperature between an early (1000-1250 C.E.) and later (1400-1700 C.E.) period show warm

anomalies over high-latitude Europe and cool tropical conditions in partial agreement with previous assessments. The addition

of online data assimilation, which provides dynamical memory to climate proxy information, is shown to be crucial for adequately

characterizing decadal-to-centennial-scale variability of 0–700 m ocean heat content. Furthermore, the climate forecasts provide

model-based physical constraints for atmosphere-ocean interaction, which become increasingly important during early periods

when less proxy information is available for assimilation.
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Key Points:6

• A new online paleoclimate data assimilation method for atmosphere–ocean recon-7

struction over the last millennium provides dynamical proxy memory8

• Reconstructed ocean field validation against instrumental products is largely skill-9

ful despite a sparse proxy network10

• Online data assimilation improves the dynamics and low-frequency variability of11

reconstructed coupled fields relative to offline assimilation12
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Abstract13

We use online data assimilation to combine information from a linear inverse model of14

coupled atmosphere-ocean dynamics with proxy records to create a new annual-resolution15

reconstruction of atmosphere and ocean fields over the last millennium. Instrumental val-16

idation of reconstructed sea-surface temperature and 0–700 m ocean heat content shows17

broad regions of positive spatial correlations, and high correlations (∼0.6–0.9) for global18

averages and indices of large-scale modes of atmospheric variability. Compared to pre-19

vious reconstructions, the online reconstructions show global and hemispheric averages20

with little-to-no millennial-scale trend and global-mean temperatures ∼0.25–0.5 K cooler21

during early periods (1000–1400 C.E.). The spatial anomaly differences of average tem-22

perature between an early (1000–1250 C.E.) and later (1400–1700 C.E.) period show warm23

anomalies over high-latitude Europe and cool tropical conditions in partial agreement24

with previous assessments. The addition of online data assimilation, which provides dy-25

namical memory to climate proxy information, is shown to be crucial for adequately char-26

acterizing decadal-to-centennial-scale variability of 0–700 m ocean heat content. Further-27

more, the climate forecasts provide model-based physical constraints for atmosphere–28

ocean interaction, which become increasingly important during early periods when less29

proxy information is available for assimilation.30

1 Introduction31

Defining the range and mechanisms of low-frequency variability of the Earth sys-32

tem is a crucial factor in understanding climate sensitivity and impacts of future climate33

change. At least for decadal-to-centennial timescales, the oceans play a central role, act-34

ing as an energy reservoir that integrates over the noisier and chaotic atmosphere (e.g.,35

Hasselmann, 1976). While the instrumental record provides a direct account of climate36

system variability, the length of record is relatively short for investigating slow climate37

features, especially when considering coupled atmosphere–ocean variability. High-resolution38

reanalysis products partly extend the record by using numerical models to assimilate ob-39

servations into atmosphere and ocean fields (e.g., Compo et al., 2011; Balmaseda et al.,40

2013; Chang et al., 2013; Poli et al., 2016). However, coupled atmosphere–ocean reanal-41

ysis products are in the early stage of development (Laloyaux et al., 2018), and reanal-42

ysis products are still limited in time due to the lack of observations earlier in the 20th43

Century. The proxy record, including measurements from trees, ice, corals, sediments,44

and more, provides an extended account of observed information to investigate decadal45

and longer climate variability. In order to extend the information contained in proxies46

from the locations and times to which they pertain, additional information is needed to47

create a climate field reconstruction (CFR). Early CFR approaches derived the additional48

information from static statistical relationships derived from the instrumental era (Mann49

et al., 2009). More recently, paleoclimate data assimilation (PDA) uses dynamical con-50

straints encoded in global climate models (GCMs) to provide the additional information51

(Hakim et al., 2016; Franke et al., 2017; Okazaki & Yoshimura, 2017; Steiger et al., 2018;52

Tardif et al., 2019). The CFRs include robust uncertainty quantification and a set of phys-53

ically consistent spatial fields useful for dynamical inquiry beyond what is feasible from54

proxies or climate models alone (e.g., Singh et al., 2017). Here we present a new PDA55

method that uses an approximate GCM to propagate the information extracted from prox-56

ies through time, providing dynamical memory, which dramatically improves the recon-57

struction of low-frequency climate variability. We use these new results to explore low-58

frequency aspects of coupled atmosphere-ocean dynamics that are not possible with tra-59

ditional CFRs.60

Ensemble-based data assimilation techniques, such as those adapted for PDA, tra-61

ditionally include a model forecast that translates the updated analysis state to the next62

time for use as a prior state estimate. This technique, known as “online” assimilation,63

assumes the forecast model possesses at least some predictive skill at the same timescale64
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as the time interval between assimilated observations (e.g., Pendergrass et al., 2012). In65

the PDA context, the lack of significant climate forecast skill and computational expense66

of performing GCM forecasts has led to most studies omitting the use of a forecast model67

(Huntley & Hakim, 2010; Bhend et al., 2012; Steiger et al., 2014; Hakim et al., 2016; Franke68

et al., 2017; Steiger et al., 2018; Tardif et al., 2019). The no-forecast approach, known69

as an “offline” method (Oke, 2002; Evensen, 2003; Oke et al., 2005, 2007), uses clima-70

tological information (e.g., from existing climate simulations) to generate a prior esti-71

mate of fields for each analysis time. This technique benefits from being computation-72

ally efficient, but the state trajectory over time is solely dependent on available proxy73

information and is not constrained by physics. The oceans are a potential source of pre-74

dictability for up to decadal timescales (e.g., Hawkins & Sutton, 2009; Branstator et al.,75

2012; Zanna, 2012) due to memory and predictable dynamics (e.g., the El Niño South-76

ern Oscillation; ENSO). Thus, the incorporation of a forecast model encapsulating these77

processes could help constrain low-frequency variability that may not be well represented78

by proxies (Broecker, 2001; Esper et al., 2002). In addition to providing dynamical mem-79

ory for information extracted from proxy records, the online PDA approach also produces80

state-dependent statistics, which spread new proxy information in space and to fields other81

than those directly related to the proxy. This approach allows the dominant modes of82

climate variability to evolve in time, in contrast to CFR techniques that are derived from83

one time period (e.g., the instrumental era, or a GCM simulation of the last millennium).84

In this work, we present a substantial improvement to previous PDA methods for85

CFR with the addition of a simple coupled-climate forecast model to propagate assim-86

ilated information in time. Including a model provides a more dynamically consistent87

coupled reanalysis of atmosphere–ocean fields spanning the last millennium, showcas-88

ing the breadth of new field information obtainable from climate proxies, and highlight-89

ing features of interest in the long-term temperature and upper-ocean heat content be-90

havior. Section 2 describes the background for data assimilation (DA) and its applica-91

tion for CFRs. Section 3 describes the configuration of reconstruction experiments, in-92

cluding the forward model for the proxy measurements, chosen proxy data, and climate93

simulation data sources. The results of coupled reconstructions are presented in Section94

4 with comparisons to previous reconstructions and validation of ocean fields against In-95

strumental Era products. We present an illustrative investigation of the climate periods96

known as the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), and atmosphere–97

ocean states related to warm periods over Europe in Section 5. Finally, Section 6 com-98

pares the temporal characteristics of online reconstructions with offline and simulation99

output from GCMs.100

2 Data Assimilation Background101

In this study, we implement an online version of the Last Millennium Reanalysis102

framework (LMR; Hakim et al., 2016; Tardif et al., 2019), an open-source codebase for103

CFR. The framework implements variants of the ensemble Kalman filter (EnKF) to op-104

timally blend information from the proxy record with climate model data. The Kalman105

update equation, defined as106

xa = xb + K[y −H(xb)], (1)

describes an updated state (e.g., the climate fields of interest), xa, as a combination of107

the prior state estimate, xb, with new information from the innovation, [y−H(xb)], and108

the Kalman gain, K. The innovation is the difference between observations (y; e.g., proxy109

measurements) and estimated observations (H(xb)) where H is a function mapping from110

state space of the prior into the proxy space. Hereafter, the estimated observations are111

denoted as ye for simplicity. The Kalman gain,112
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K = BHT [HBHT + R]−1, (2)

weights the new contributions from the innovation considering uncertainty in the prior113

and observations. Here, B represents the prior covariance matrix, H is the linearization114

of H about the prior ensemble mean, and R is the proxy error covariance matrix. The115

Kalman gain term is the key component that translates information from point obser-116

vations into full fields through estimated covariance structures. In the LMR framework,117

the general DA algorithm used is as follows:118

1. Generate a prior estimate, xb, for the current time period. In this case, the prior119

state is an ensemble of climate fields joined along a spatial dimension.120

2. Calculate ye values using the associated field(s) from the state, xb, and a proxy121

system model (PSM). For example, a PSM may use a temperature and/or mois-122

ture measure from a grid cell to convert to an estimated tree-ring width.123

3. Assimilate available proxy information, y, for the current analysis time using the124

Kalman update equation (Eq. 1).125

2.1 Online Paleoclimate Data Assimilation126

In order to assimilate observations over time, we require a method to generate rel-127

evant prior state estimates as a “first guess” of the climate state. In the offline case of128

PDA, the prior estimate is often taken as a random draw of states (centered about the129

climatological mean) from a long-running climate simulation. The same draw is then used130

as a prior for each assimilation period, which results in the reconstructed variability over131

time being entirely determined by the assimilated proxy observations. Online assimila-132

tion offers a method to propagate information over time by using short-term forecasts133

to generate prior estimates for subsequent times. In doing so, some of the memory of pre-134

vious proxy information is retained through time. However, online forecasting for PDA135

requires large ensembles of millennium-scale climate simulations, posing an exceptional136

computational hurdle for most climate model implementations.137

To make online PDA for ensemble-based techniques feasible, previous work explored138

ways to reduce the computational expense while still retaining a skillful model. Recon-139

struction studies using a particle filter method of ensemble PDA reduce the computa-140

tional expense by incorporating forecasts from Earth system models of intermediate com-141

plexity (e.g., Crespin et al., 2009; Goosse et al., 2010; Goosse, 2017; Dubinkina et al.,142

2011), or by using a coarsened resolution GCM forecasting at decadal timescales (Matsikaris143

et al., 2016b). However, research suggests that online data assimilation using a parti-144

cle filter does not necessarily provide a benefit over the offline method for decadal sur-145

face temperature reconstructions (Matsikaris et al., 2015, 2016a). Perkins and Hakim146

(2017) investigate annual-timescale CFR skill using an ensemble-Kalman-filter-based PDA147

method with forecasts of the surface temperature from an empirically fit linear inverse148

model (LIM; Penland & Sardeshmukh, 1995). They find the inclusion of a LIM calibrated149

on climate model output improves reconstructions of Instrumental Era surface temper-150

atures compared to the offline method, and that it retains computational expediency of151

the offline method.152

A LIM provides an empirically derived encoding of system dynamics into two com-153

ponents: slow-timescale deterministic linear dynamics, and stochastic noise represent-154

ing nonlinearity and unresolved fast-timescales (Eq. B1). The timescale separation of155

deterministic and stochastic components is analogous to large-scale climate dynamics156

forced by weather. As such, LIMs have been widely used to explore mechanisms of atmosphere–157

ocean interactions such as ENSO and the Pacific Decadal Oscillation (PDO; e.g., Alexan-158

der et al., 2008; Newman et al., 2011), and as a forecast skill benchmark for decadal sur-159

face temperature (Newman, 2013). For the purposes of PDA, a LIM provides a low-cost160
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mechanism to create a stable model approximating the behavior of sophisticated GCMs161

and to generate ensembles without requiring any complex state initialization strategy.162

In a follow on to Perkins and Hakim (2017), Perkins and Hakim (2020, hereafter denoted163

as PH20) describe the use of a LIM as a GCM analog, providing a general method of cal-164

ibrating a LIM from a coupled global climate model for ensemble forecasts of multivari-165

ate atmosphere–ocean states. They find the multivariate LIM to be skillful out to multi-166

year lead times and that it reproduces free-running statistics of large-scale climate dy-167

namics indices related to ENSO and the PDO. We use the LIM developed in PH20 as168

the forecast model for the online PDA reconstructions we present in this study. For a169

technical description of a LIM, forecasting, and our calibration strategy please see Ap-170

pendix B.171

3 Reconstruction Configuration and Data172

In this study, we perform reconstructions covering a period over the last millen-173

nium from 1000–2000 C.E. The climate dynamics used to reconstruct the state for each174

experiment depends on the climate model data used to calibrate the LIM. We select two175

sources of dynamical information for LIM calibration from the Coupled Model Intercom-176

parison Project phase 5 (CMIP5; Taylor et al., 2012) “Last Millennium Experiments”:177

the Community Climate System Model version 4 (CCSM4; Landrum et al., 2013) and178

the Max Planck Institute Earth System Model (MPI; Giorgetta et al., 2013). The Last179

Millennium Simulations cover 850–1850 C.E. and include estimated forcing from green-180

house gases, aerosols (primarily volcanic), solar variability, and land-use changes. The181

use of two models to reconstruct climate states allows us to assess the robustness of re-182

construction results. Our coupled reconstructions include the following fields: 2 m sur-183

face air temperature (TAS), precipitation (PR), sea-level pressure (SLP), 500 hPa geopo-184

tential height (ZG500), outgoing top-of-atmosphere (TOA) longwave (RLUT), outgo-185

ing TOA shortwave (RSUT), sea-surface temperature (SST), sea-surface salinity (SSS),186

dynamic ocean surface height (ZOS), and 0-700 m ocean heat content (OHC700m).187

All fields are regridded to a regular 2◦ x 2◦ latitude-longitude grid using bilinear188

interpolation and are averaged annually from April to March, except for TAS, which has189

additional seasonal averages. Unlike previous offline reconstruction studies (e.g., Hakim190

et al., 2016; Tardif et al., 2019), we need to include sub-annual TAS information in the191

state to calculate the estimated observations (ye) after each climate forecast. We chose192

to add all seasonal-average data to the state as individual fields rather than using indi-193

vidual calendar months and forming seasonal averages at runtime. The explicit incor-194

poration of seasonal-average data carries the benefit of decreasing noise in the covari-195

ance estimates, which impacts assimilation and forecast skill (e.g., Tardif et al., 2014).196

All fields are detrended to remove long-term climate model drift and converted to anoma-197

lies for LIM calibration and reconstruction procedures.198

After preprocessing the data, we use all fields to calibrate the LIM (Eqs. B2, B3).199

We formulate the LIM and perform forecasts in a reduced parameter space using a two-200

step empirical orthogonal function (EOF) reduction that PH20 show efficiently preserves201

shared aspects of large-scale field variability (Appendix B2). Based on LIM skill test-202

ing, we retain 40 degrees of freedom for the CCSM4-LIM (20 multivariate and 20 OHC203

EOFs) and 47 for the MPI-LIM (27 multivariate and 20 OHC EOFs). During the re-204

construction process, analysis fields (xa) are projected into this EOF space, forecast for205

1-year using Eqs. B4 and B5, and then back projected into physical space to be used as206

the next prior state (xb).207

In the LMR framework (e.g., Tardif et al., 2019), the update equation (Eq. 1) in-208

volves the use of an ensemble square-root filter approach (Whitaker & Hamill, 2002), which209

serially updates the state one proxy at time. The serial update implementation is rel-210

atively straightforward and allows for covariance localization, which is useful to reduce211
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Figure 1. Proxy record spatial distribution (a) and total number of available records sepa-

rated by type (b) from the PAGES 2k Consortium (2017) database. Proxies shown are those with

valid PSMs, which require at least 25-years of overlapping observations with GISTEMP v4 data

for calibration.

the effects of sampling error at large distances from observations. In the online case, car-212

rying the fields required for seasonal PSMs increases the state size and computational213

expense considerably. To speed up the reconstructions, we solve the update equation us-214

ing a new vector solver variant described in Appendix A. This technique reduces the up-215

date problem to the smallest possible space spanned by the ensemble size and number216

of proxies, at the expense of no covariance localization on the full-space state (a com-217

monly used measure to control spurious long-range correlations).218

The last important factor concerning experiment configuration is the selection of219

proxies and proxy system models (PSMs; represented as H) used to predict the proxy220

values from the climate state variables. We use proxy records with annual time resolu-221

tion from the PAGES 2k Consortium (2017, PAGES2017) database with a recently up-222

dated Palmyra coral record (Emile-Geay et al., 2013b; Anderson et al., 2019). The PAGES2017223

database is a quality-controlled compilation of metadata and proxy records screened for224

temperature sensitivity. For each proxy PSM, we fit a linear univariate model using ob-225

jectively determined seasonal averages (as in Tardif et al. (2019)) for tree-based prox-226

ies and expert-derived seasonality (PAGES 2k Consortium, 2017) for all other proxy types.227

(See Appendix C for a description of the objective testing procedure.) The PSMs are228

fit against co-located instrumental temperature data from the NASA Goddard Institute229

for Space Studies Surface Temperature Analysis GISTEMP v4 (Hansen et al., 2010) dataset230

(similarly regridded to a 2◦ x 2◦ grid). Only proxies with an overlap of at least 25-years231

with instrumental data are calibrated, which results in 545 usable proxies (Fig. 1).232

With the calibrated LIM and PSMs, we perform Monte-Carlo (MC) iteration re-233

construction experiments where in each case a 100-member ensemble and 75% of the avail-234

able proxy data are assimilated over all times. We run 50 realizations using this resam-235

pling strategy to assess uncertainty related to proxies, such as changing coverage and po-236

tential dating errors, and LIM climate forecasts. Previous work finds that iterative re-237

constructions in this manner provide beneficial results (Tardif et al., 2019). The use of238

100 ensemble members is consistent with previous work that shows ensembles of this size239

reasonably sample field covariances used in the Kalman gain (Hakim et al., 2016; Tardif240
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Figure 2. A selection of scalar index ensembles calculated from the annual-average field

reconstructions using the CCSM4-LIM including: global average (a) sea-surface temperatures

(SST) and (c) 0–700 m ocean heat content (OHC700m), and dynamic indices of the (b) Niño

3.4 region average SST and (d) Pacific Decadal Oscillation (PDO) index. Curves represent the

annual ensemble-mean indices taken over all 50 × 100 members (black) and the associated 95%

confidence region (grey shaded), and the smoothed 20-year lowpass filter of the ensemble mean

(red).

et al., 2019). In addition to online forecasts using LIMs calibrated on the CCSM4 and241

MPI Last Millennium Simulations (hereafter referred to as CCSM4-LIM and MPI-LIM),242

we perform an offline reconstruction for comparison, which uses climatological draws from243

the CCSM4 simulation as a prior. We use a seeding strategy to ensure that the proxy244

samples and initial prior ensemble samples are equivalent for a given MC iteration be-245

tween the CCSM4-LIM, MPI-LIM and offline experiments.246

4 Last Millennium Reconstruction using Online Data Assimilation247

As an overview of reconstructed ocean results, we show area-weighted global av-248

erage temperature and OHC700m, the Niño 3.4 index, and the Pacific Decadal Oscil-249

lation (PDO) index (Fig. 2). The Niño 3.4 index is the average SST over the region from250

5S–5N and 170W–120W, and the PDO is calculated by projecting the first EOF of North251

Pacific (20N–70N and 110E–110W) detrended SST variability from the CCSM4 last mil-252

lennium simulation onto the reconstructed SST field. We also provide ensemble-mean253

scalars that are smoothed using a 61-sample Lanczos filter (Duchon, 1979) with a cut-254

off frequency of 20-years to highlight low-frequency variability in the data. All recon-255

structed data are centered with a reference period of 1951–1980 unless stated otherwise.256

Reconstructed global average SST (Fig. 2a) portray relatively cool conditions for257

the majority of the last millennium with apparent decadal-to-centennial-scale (hereafter258

referred to as dec-cen) variability (e.g., temperature swings from 1300–1500 and repeated259

volcanic cooling events post 1600 C.E). The average SST warms considerably during the260

–7–
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Figure 3. As in Fig. 2 but for the MPI-LIM reconstruction.

Instrumental Era ending ∼0.4 K warmer than the 1000–1850 CE average of approximately261

−0.2 K. Additionally, the ensemble-mean SST appears to exit the pre-industrial recon-262

structed range of millennial temperatures by the first half of the 20th Century. Notably263

absent are global-scale warm anomalies in the early period typically associated with the264

Medieval Climate Anomaly (MCA) or millennial-scale cooling present in other field re-265

constructions (e.g., Mann et al., 2009; Hakim et al., 2016). We investigate the expres-266

sion of the MCA in our reconstruction in Section 5. The reconstructed upper-ocean heat267

content (Fig. 2c) shows less interannual variability than SST, but similar dec–cen vari-268

ability, which corresponds to the much higher thermal inertia of an ocean layer. Con-269

cerning OHC700m thermal inertia, the first few decades of OHC700m show evidence that270

there is some “spin-up” time associated with online DA for this field, as the state is drawn271

toward observations.272

The dynamic indices of ENSO (Niño 3.4) and the PDO display the reconstructed273

character of known predominant modes of natural variability. The Niño 3.4 index (Fig.274

2b) shows relatively stable temperatures over the last millennium with the ensemble av-275

erage, suggesting a slight warming trend over time (∼0.5 K / 1000 yrs). Also evident in276

the Niño 3.4 reconstruction is an increase in the positive temperature trend during the277

modern era, consistent with global warming. The large span of the 95% confidence re-278

gion early in the period is because the Niño 3.4 index is a regional-scale index and there279

are relatively few local constraints before the 1600s when more coral records become avail-280

able. The PDO index (Fig. 2d) also suggests some dependence on available proxy ob-281

servations. Before 1600 C.E., there is pronounced dec-cen variability in the ensemble-282

average PDO index with fluctuations of about 2–3 σ during some periods. After the year283

1600, a large number of tree-based information and some corals (Fig. 1) become avail-284

able and the PDO index shows reduced low-frequency variability (Fig. S1). Only con-285

sidering reconstructed PDO values after 1600 C.E., there is no distinct long-term trend286

or changes to variability between the pre-industrial and modern period.287
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Scalar indices calculated from the MPI-LIM reconstruction (Fig. 3) give qualita-288

tively similar results as the CCSM4-LIM experiment. Lowpass- filtered scalar correla-289

tions with the CCSM4-LIM reconstructions are 0.91 for global average SST, 0.85 for OHC,290

0.83 for the PDO, and 0.68 for the Niño 3.4 index, respectively. The temperature-related291

indices (SST, OHC700m, and Niño 3.4) show some warming into the 16th century fol-292

lowed by cooling into the 17th and 18th century. The warming of the MPI-LIM ensemble-293

averages (SST and OHC700m) into the 1500s reaches similar temperatures as during the294

early 20th-Century although the warming occurs over a longer period. Additionally, the295

OHC700m warm-period before 1600 C.E. is outside of the CCSM4-LIM confidence in-296

tervals. This may suggest some underestimation of the LIM forecast variance. The PDO297

shows large fluctuations in the average index value prior to the 1600s, with similar phas-298

ing as in the CCSM4-LIM case. Similarity in the long-term PDO index fluctuations sug-299

gest the two online reconstructions reproduce the same ocean state given the same proxy300

data. However, the change in dec–cen variability after 1600 C.E. is likely due to the spar-301

sity of the proxy data before that time. To illustrate the character of spatial variabil-302

ity from the ocean–atmosphere fields, we provide videos of the evolution of selected fields303

and the geographic distribution of available proxies over time (Movies S1 and S2). In304

these field sequences, the coupled variability associated with ENSO and with slower modes305

of variability in the North Atlantic and Pacific are prominent features, as well as the global-306

scale warming during the 20th Century.307

4.1 Instrumental Validation308

We now validate the field reconstructions during the instrumental period for SST309

and OHC700m spatial fields and related scalar quantities. Comparison products include310

the following: Hadley EN4 v4.2.1 (Good et al., 2013), a quality-controlled and objectively311

interpolated dataset based on ocean profile measurements from 1940–2000 C.E., the Geo-312

physical Fluid Dynamics Laboratory Ensemble Coupled Data Assimilation (GFDLECDA;313

Chang et al., 2013), a coupled climate model reanalysis using ocean observations from314

1960–2010 C.E., and the European Center for Medium-range Weather Forecasting (ECMWF)315

ORA-20C dataset covering 1900–2010 (de Boisséson et al., 2018), an ocean-field reanal-316

ysis for use as initial conditions in ECMWF coupled reanalysis product (Laloyaux et al.,317

2018). For El Niño, PDO, and OHC comparison, we also use the Earth System Research318

Laboratory Niño 3.4 time series (1950–2018, accessed Apr. 19, 2019), the Mantua et al.319

(1997) PDO index hosted by the Joint Institute for Study of the Atmosphere and Ocean320

(research.jisao.washington.edu/pdo/PDO.latest.txt, accessed Apr. 19, 2019), a gridded321

OHC estimate optimally interpolated using information from CMIP5 historical simula-322

tions, and an estimate of OHC over the full Instrumental Era using observed SSTs and323

a passive ocean transport model (Cheng et al., 2017; Zanna et al., 2019).324

Temporal gridpoint correlations with instrumental products show large-scale agree-325

ment with SST and more regionally dependent agreement for OHC700m (Fig. 4). SST326

correlations (Fig. 4, column a) are largely positive in the tropics, especially the tropi-327

cal Pacific Ocean, less correlated in the Southern Ocean regions and Northwest Pacific,328

and uncorrelated-to-anti-correlated in the Labrador Sea and North Atlantic region south329

of Greenland and Iceland. SST correlations display better spatial agreement with the330

two model-reanalysis experiments (GFDLECDA, ORA-20C) than the observation-only331

data (HadleyEN4). Correlations for OHC700m (Fig. 4, column b) similarly show the trop-332

ical Pacific Ocean as a region with more agreement between the reconstruction and in-333

strumental products. Additionally, OHC700m correlations are moderately positive in the334

subtropical Atlantic Ocean and weak-to-moderately positive in the mid-latitude South-335

ern Ocean areas when comparing with the four instrumental products. The HandleyEN4336

dataset shows the lowest correlations, especially in the Southern Hemisphere, with the337

CCSM4-LIM reconstructed OHC700m. In general, more regions of small or negative cor-338

relations are apparent for OHC700m, but the North Atlantic and Labrador Sea region339

again is a common region of anti-correlation with instrumental products. We note that340
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(a)
1940-2000 SST: HadleyEN4

(b)
1940-2000 OHC700m: HadleyEN4

(c)
1961-2000 SST: GFDLECDA

(d)
1961-2000 OHC700m: GFDLECDA

(e)
1900-2000 SST: ORA20C

(f)
1900-2000 OHC700m: ORA20C

(g)
1940-2000 OHC700m: Cheng17

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 4. Detrended temporal gridpoint correlations of the LMR Online (CCSM4-LIM) re-

construction with Instrumental Era observational and reanalysis products for SST (column a)

and OHC700m (column b). Correlations are calculated against Hadley EN4 data (a, b; 1940–

2000), GFDLECDA (c, d; 1961–2000), ORA-20C (e, f; 1900–2000), and Cheng2017 (g; OHC only,

1940–2000)
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Figure 5. Scalar index comparison between the LMR Online (CCSM4-LIM) reconstruction

(black with 95% confidence bounds in grey shading) and instrumental products for (a) SST, (b)

Niño 3.4, (c) OHC700m, and (d) PDO. The HadleyEN4, GFDLECDA, and ORA-20C products

are compared in all cases. Additionally, ESRL Niño 3.4 data, the Mantua et al. (1997) PDO

index, and Cheng et al. (2017) and Zanna et al. (2019) OHC data are compared. Error bounds

(±2σ) are shown for the Cheng17 and Zanna19 OHC700m data.

OHC observations were generally sparse during the 20th century before the implemen-341

tation of the ARGO observing array during the late 1990s (Riser et al., 2016). There-342

fore, observationally-based spatial products have large uncertainties for OHC700m dur-343

ing the 20th Century and considerable discrepancies (e.g., see Fig. S2 for instrumental344

product spatial correlation comparisons). The southern Atlantic and Indian oceans show345

up as a region of low correlation for both SST and OHC700 likely due to the large dis-346

tance from the assimilated proxy observations. However, this is also the region that dis-347

plays the most uncertainty between observational products (e.g., Fig S2). We also val-348

idate the MPI-LIM SST and OHC700m against these products and find similar corre-349

lation patterns as those described for CCSM4-LIM reconstructions (Fig. S3).350

Figure 5 shows a comparison of instrumental scalar indices, and Table 1 shows the351

associated correlation values. The reconstructed global average SST values (Fig. 5a) fol-352

low the decadal trajectory of the instrumental products but also show smaller amplitude353

interannual variability. Additionally, the small 95% confidence interval for SSTs relative354

to the validation data mismatch suggests the ensemble variance of this scalar measure355

is underestimated. SST correlations with the instrumental products are generally high356

with values between 0.8–0.9. As in the spatial comparison, the LMR Online reconstruc-357

tion agrees best with the two reanalysis products (GFDLECDA and ORA-20C). Despite358

the lack of interannual anomaly amplitude for global-average SST, the Niño 3.4 index359

(Fig. 5b) matches the comparison products well for both phase (correlations between360

0.8–0.87) and amplitude. Upper-ocean heat content products (Fig. 5c) have more dis-361
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Table 1. LMR Online (CCSM4-LIM) reconstruction scalar correlations with instrumental

products.

Product Glob. Avg. SST Glob. Avg. OHC700m Nino 3.4 PDO

HadleyEN4 0.80 0.27 0.79 0.61
GFDLECDA 0.89 0.58 0.87 0.56
ORA20C 0.90 0.79 0.80 0.63
ESRL – – 0.84 –
Mantua – – – 0.58
Cheng17 – 0.94 – –
Zanna19 – 0.98 – –

agreement among them, but the LMR Online reconstruction is strikingly similar to the362

Cheng17 (correlation of 0.94) and Zanna19 (correlation of 0.98) data. These two data363

products share the distinction of using a passive style of model–observations blending.364

The other products (HadleyEN4, GFDLECDA, and ORA-20C) tend to have much larger365

decadal-scale variability and differences of the global average OHC700m trajectory. Fi-366

nally, the PDO comparison (Fig. 5d) shows that the CCSM4-LIM reconstruction repro-367

duces the decadal-scale changes of the PDO, but is less skillful for interannual PDO vari-368

ability (correlations near 0.6 for all products). The 95% confidence interval is generally369

close to encompassing the interannual instrumental PDO data, which suggests the un-370

certainties of the reconstructed PDO estimate are reasonable.371

The MPI-LIM reconstruction scalar validation (Fig. S4) shows similar global av-372

erage performance based on correlation but less skill for the dynamic indices. The re-373

constructed global average SST and OHC700m show a noticeable pause in warming from374

1940–1970 C.E. and do not warm as strongly towards the end of the reconstruction pe-375

riod. The reconstructed Niño 3.4 in the MPI-LIM case has smaller amplitude interan-376

nual anomalies, and correlations with instrumental products of 0.72–0.78 (Table S1). The377

reconstructed PDO, in this case, shows less clear agreement with decadal-scale variabil-378

ity and the correlations for the shorter-length comparisons (HadleyEN4, GFDLECDA,379

Mantua) decrease to 0.24–0.42. The differences in reconstruction performance of dynamic380

indices suggest the MPI-LIM produces less representative reconstructed fields in these381

regions, which could be related to the character of the MPI-LIM dynamics, or how proxy382

information is weighted given the forecast ensemble characteristics.383

4.2 Comparison to previous reconstructions384

To put our reconstruction in the context of previous research, we show the LMR385

Online (CCSM4-LIM) reconstruction compared to other proxy-based reconstructions (Fig.386

6). We apply a 20-year lowpass filter to all data except for SST, which is averaged to387

100-year intervals to correspond with the SST estimates from McGregor et al. (2015).388

Note that the comparison SST data (McGregor et al., 2015) are re-averaged to 100-year389

intervals (as opposed to the 200-year intervals they present) using that study’s associ-390

ated code and data.391

The Northern Hemisphere (NH) average temperature reconstructions (Fig. 6a) show392

closer correspondence from roughly 1500 C.E. onwards with LMR Online on the cooler393

end of the distribution. Notable cooling events in the NH temperature (e.g., in the 1300s394

and 1400s) display a more extensive range of hemisphere average temperature variabil-395

ity and the LMR temperatures are generally 0.25–0.5 K cooler than other reconstruc-396

tions in the early portion of the last millennium. Cooler NH temperatures suggested by397

our reconstruction are closer in agreement with borehole estimates (Pollack & Smerdon,398
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Figure 6. A comparison of LMR Online (CCSM4-LIM) reconstructed scalar indices with

previous reconstructions. Northern hemiphere average TAS (a) is compared between LMR

Online (black; grey shading for 95% confidence region) and the following studies: MBH1999:

Mann et al. (1999), MJ2003: Mann and Jones (2003), PS2004: Pollack and Smerdon (2004),

RMO2005: Rutherford et al. (2005), MSH2005: Moberg et al. (2005), Ju077cvm: Juckes et al.

(2007), Ma08eivf: Mann et al. (2008), and Ma09regm: Mann et al. (2009). Global average SST

(b) is compared with McGregor et al. (2015), a compilation of 57 100-year bin-averaged sediment

records with the basin-weighted mean standard anomaly (blue), median standard anomaly (red),

and box-whisker plots displaying the inner-quartile range (IQR) with 1.5×IQR whiskers at each

time interval. The Niño 3.4 index (c) is compared against index reconstructions from Emile-Geay

et al. (2013a) where the solid line is the average of three reconstructions they present and shad-

ing denotes the range. The PDO (d) is compared with collection of index reconstructions using

proxies with a variety of regional coverage (Biondi et al., 2001; D’Arrigo et al., 2001; MacDonald

& Case, 2005; D’Arrigo & Wilson, 2006; Shen et al., 2006).
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Figure 7. A comparison of LMR Online (CCSM4-LIM) reconstructed global mean surface

air temperature (orange with 95% confidence region shaded) against the Crowley et al. (2014)

ENSO-tuned global composite reconstruction (blue) and HadCRUT5 (Osborn et al., 2021) obser-

vational data (black).

2004), and the tree-based estimates from Juckes et al. (2007). Global average SST (Fig.399

6b) estimated from sediment cores generally has a wider uncertainty range than the LMR400

Online reconstructed SST owing to fewer single-location measurements and large differ-401

ences in temporal recording resolution of the different cores. Throughout the 1000-year402

reconstruction, our reconstructed SST values fall within the whiskers (1.5× inner-quartile403

range) for all times except during the last 100-year interval where global warming has404

considerable influence, and sediment cores lack information. LMR Online global aver-405

age SSTs are cooler earlier in the reconstruction period compared to the Ocean2k me-406

dian and mean values.407

The Niño 3.4 index shows limited agreement with Emile-Geay et al. (2013a, referred408

to as EG13) while the PDO index shows general disagreement with the five comparison409

studies (Biondi et al., 2001; D’Arrigo et al., 2001; D’Arrigo & Wilson, 2006; MacDon-410

ald & Case, 2005; Shen et al., 2006) outside of the Instrumental Era. Comparing the Niño411

3.4 index (Fig. 6c), the EG13 reconstruction is mostly within the uncertainty bounds412

of the LMR Online reconstruction except during the period from approximately 1700–413

1900 where the EG13 reconstructed temperatures are about 0.5–1.0 K cooler. The pe-414

riod of divergence (1700–1900) occurs over a time where the number of available proxy415

records markedly increases in both reconstructions. We note that the EG13 large-scale416

tropical multiproxy network does overlap with the records used in our reconstruction ex-417

periments, but the number of used proxies in the EG13 network is much smaller (36 to-418

tal records). The PDO index comparison (Fig. 6d) shows that the reconstructions mostly419

disagree in signal phasing. Correlations between the experiments (Fig. S5) show the D’Arrigo420

et al. (2001) reconstruction has the highest agreement with the CCSM4-LIM reconstructed421

PDO with a value of ∼0.4. Otherwise, most correlations are quite low or even anti-correlated422

(e.g., MacDonald & Case, 2005). The Biondi et al. (2001) reconstruction has the broad-423

est agreement across records, but even that agreement is relatively low (correlations be-424

tween 0.2–0.5).425

For additional perspective, we include a comparison of annual global-mean surface426

temperature from our online DA reconstruction with that of Crowley et al. (2014), which427
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they describe as a “baseline” reconstruction employing minimal proxy processing. The428

Crowley et al. (2014) method uses a geographically broad and fixed proxy network over429

time. Proxy data are centered, standardized, zonally averaged, and then linearly regressed430

against instrumental temperature data (HadCRUT3) to reconstruct temperature from431

the proxy composites before the instrumental period. This definition is analogous to the432

inverse of the H operator in (Eq. 1), taking climate as a linear function of the proxies433

(H relates proxy values linearly to climate). Overall, the two reconstructions are quite434

similar with a correlation of 0.82 over 1850–1984 C.E., in-phase multi-decadal variabil-435

ity, and a similar magnitude of overall warming into the late 20th century. The two re-436

constructions slightly diverge around 1860–1910 C.E. where the Crowley reconstruction437

is about 0.1–0.2 C warmer. When comparing to HadCRUT5 instrumental temperature438

data (Osborn et al., 2021), the LMR Online reconstruction outperforms the Crowley base-439

line with a higher correlation (0.83 compared to 0.71 for Crowley) and better agreement440

with observations through 1860–1910 C.E. where Crowley data shows slightly higher tem-441

peratures. We emphasize that the Crowley composite reconstruction is calibrated directly442

to large-scale zonal averages of HadCRUT3 data, while our reconstruction derives in-443

dices from reconstructed full-fields informed by locally assimilated proxy data.444

5 Medieval Climate Anomaly in LMR Online445

The “Medieval Climate Anomaly” (MCA) is an often targeted period (e.g., 950–446

1250 C.E.) for investigating the mechanisms and magnitude of natural climate variabil-447

ity before the Industrial Era (see review by Diaz et al., 2011). Documentary evidence448

(Lamb, 1965) and reconstructions based on proxy records (e.g., Mann et al., 2008, 2009;449

Ljungqvist, 2010) suggest the possibility of extended regional-to-hemispheric warm pe-450

riods during the MCA. Mann et al. (2009), using a multi-proxy statistical technique, es-451

timate the spatial character of the temperature transition from the MCA into the “Lit-452

tle Ice Age” (LIA), a period of cool climate conditions roughly between the 1400s and453

1800s. They find the MCA–LIA difference is defined by broad warmth with a La Niña-454

like temperature pattern in the tropical Pacific, and that potential mechanisms for this455

pattern are related to forcing from ENSO and high-latitude atmospheric circulation vari-456

ability. Goosse, Crespin, et al. (2012) and Goosse, Guiot, et al. (2012) examine climate457

dynamics of the MCA period over Europe and the northern hemisphere using the en-458

semble particle filter PDA method. Spatial reconstructions coupled with information from459

regional proxy assessments suggest possible mechanisms for the MCA–LIA transition in-460

cluding changes in North Atlantic SST and atmospheric circulation (e.g., Trouet et al.,461

2009), teleconnections related to cool tropical Pacific temperatures (Cobb et al., 2003;462

Mann et al., 2009), feedbacks related to solar variability (Ammann et al., 2007; Meehl463

et al., 2009; Goosse, Crespin, et al., 2012) and volcanic activity (Atwood et al., 2016).464

However, uncertainties related to the proxy network and reconstruction methodology can465

produce significant differences in estimated spatial characteristics of the MCA (Wang466

et al., 2015). Furthermore, recent work utilizing statistical and PDA-based CFR tech-467

niques finds little evidence of globally coherent warm or cold extremes before 20th Cen-468

tury warming (Neukom, Steiger, et al., 2019). As an example, we provide a short inves-469

tigation of the LMR Online reconstruction of the MCA–LIA transition and field rela-470

tionships with average temperatures over the European region.471

The reconstructed NH average temperature, as previously described, shows rela-472

tively cool temperatures throughout the pre-industrial period (Figs. 8a, 8b). However,473

when averaging temperature over the European (EU) region (40–80N, 20W–40E), decadal-474

scale warming events within the MCA period are apparent. In the CCSM4-LIM recon-475

struction (Fig. 8a), the EU warm events reach a magnitude about half as large as the476

early 20th Century warming. The MPI-LIM reconstruction (Fig. 8b) also shows decadal-477

scale warm periods during the MCA consistent with CCSM4-LIM results.478
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Figure 8. Comparisons between Europe (40–80N, 20W–40E) and North Hemisphere lowpass-

filtered average TAS anomalies (centered about 1951–1980 C.E.) for the (a) CCSM4-LIM and (b)

MPI-LIM reconstructions. As in Mann et al. (2009), spatial differences between the reconstructed

(1000–1250 C.E.) and the LIA (1400–1700 C.E.) time periods are shown for (c) CCSM4-LIM

and (d) MPI-LIM reconstructions and for reference (e) CCSM4 and (f) MPI Last Millennium

Simulations.
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Spatial differences in the reconstructed TAS field between the MCA and LIA pe-479

riods for the CCSM4-LIM and MPI-LIM reconstruction experiments are shown in Fig-480

ures 8c and 8d. Both reconstructions have positive temperature anomalies over north-481

ern Europe with a maximum occurring over the Barents Sea in the sea-ice transition re-482

gion, some expression of higher-latitude warming in North America, and colder tropi-483

cal regions. However, there is no evident global-scale warmth, which agrees with results484

presented by Neukom, Steiger, et al. (2019) but stands in contrast to the reference GCM485

simulations (Fig. 8e and 8f). The patterns of the reference simulations for the MCA–486

LIA difference presents as mostly global-scale warming, whereas the reconstructions are487

more regionally distinct, with warmer conditions at high-latitudes and colder in the trop-488

ics.489

Considering the two reconstructed MCA–LIA patterns (Figs. 8c, 8d), there are sub-490

stantial differences in the spatial character of anomalies outside of Europe. The CCSM4-491

LIM reconstruction MCA–LIA difference has warming localized to Alaska and Canada492

with a positive PDO expression in the North Pacific and a La Niña-like state in the trop-493

ical Pacific. The MPI-LIM/MCA–LIA difference has broad warming across the entire494

Arctic region with broadly cold tropical and North Pacific temperatures. Consistent with495

the sentiment expressed in Wang et al. (2015), differences in the regional expression of496

temperature anomalies reinforce the notion that result robustness to methodological de-497

cisions should be considered along with reconstruction results.498

Both the CCSM4-LIM and MPI-LIM reconstructions point to a warm anomaly in499

the vicinity of northern Europe during the MCA. We now investigate how temperatures500

in Europe (20-year lowpass filtered) covary with the coupled fields of SST/ZG500 and501

OHC700m/SLP using regression analysis during 1000–1850 C.E. (Fig. 9). In the CCSM4-502

LIM reconstruction, warm temperatures in the EU region are related to generally warm503

SSTs (Fig. 9a) with maximum warmth in the Norwegian and Barents Sea and warmer504

SSTs in the Gulf Stream region. Upper-level ZG500 field shows an annular pattern of505

increased mid-latitude heights with maxima situated over the North Atlantic, Europe,506

North Pacific, and North America. Lower values of ZG500 over the Arctic suggest a strength-507

ening of the upper-level circulation, which is reminiscent of a positive-phase Arctic Os-508

cillation (AO; Wallace & Thompson, 1998). The positive-phase AO is highly correlated509

with a positive North Atlantic Oscillation (NAO) phase (e.g., Ambaum et al., 2001), which510

is associated with warmer temperatures and enhanced storminess over the EU region in511

modern times (Rogers, 1997; Trigo et al., 2002). The regression on the OHC700m field512

(Fig. 9b) shows similarly located regions of warm anomalies associated with EU-region513

warmth, and the SLP regression suggests the Arctic circulation anomaly strengthens near514

the surface. Significance tests show that the SST and OH700m anomalies are significant515

at the 95% thresholds (Figs. S8a, S8b). Significant aspects of the ZG500 field are asso-516

ciated with the positive height anomaly maxima, but SLP significance is limited to the517

North Atlantic and the central Arctic regions.518

The MPI-LIM reconstruction regressions (Figs. 9c, 9d) mostly disagree with the519

CCSM4-LIM results over the North Pacific, but display some similar results as in the520

CCSM4-LIM case in other regions. Positive SST and OHC700m anomalies in the Nor-521

wegian and Barents Sea are associated with warm EU average temperature. The OHC700m522

field has negative anomalies south of Greenland as opposed to more neutral heat con-523

tent in the CCSM4-LIM reconstruction, but these regions are not significantly related524

to EU average temperature (Fig. S8c). For ZG500 (Fig. 9c), there are similarly four cen-525

ters of height local maxima in the mid-latitudes, but in contrast to the CCSM4-LIM case,526

there is an increase in ZG500 over the Arctic. At lower levels, the SLP regression im-527

plies lower pressure over the Arctic region with the local maxima located over Green-528

land and Arctic regions north of EU and Asia. Lower Arctic SLP and an increase in Arc-529

tic ZG500 suggests warmer temperatures in Europe are associated with higher atmospheric530

thickness over the Arctic. However, the SLP relationships with EU temperature are not531
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Figure 9. Regression of the Europe average TAS (region denoted by black box) from 1000–

1850 C.E. onto fields of (row a) SST/ZG500 and (rows c and e) OHC700m/SLP for the (a, c)

CCSM4-LIM and (b, d) MPI-LIM reconstructions, and (e) CCSM4 and (f) MPI reference last

millennium simulations. ZG500 field contour levels are incremented by 2.5 m from 2.5–10 m and

5 m from 10–20 m for positive (solid) and negative (dashed) values. SLP field contour levels

are incremented by 0.25 hPA from 0.25–1.0 hPa and by 0.5 hPa from 1.0–2.5 hPa. All data are

20-year lowpass filtered prior to calculating the regression.
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significant at the 95% confidence level (Fig. S8d). The CCSM4-LIM and MPI-LIM re-532

construction regressions suggest a strengthened lower-level Arctic circulation anomaly533

in the lower atmosphere along with the warmer regional SSTs and OHC700m anoma-534

lies. Furthermore, the regression relationships are notably different from those derived535

from the reference CCSM4 Last Millennium simulations, which tend to be much more536

regional in scale (Fig. 9e). The change in character of the reconstructed field relation-537

ships with EU temperature suggests that proxy assimilation adds new information to coupled-538

field variability over the past 1000 years.539

6 Temporal Constraints in the Online Technique540

A motivating factor in pursuing online assimilation for climate reconstruction is541

the long-term predictability related to ocean dynamics and memory (Goosse, 2017). With542

predictive skill on timescales longer than the temporal resolution of the proxies (e.g., Hawkins543

& Sutton, 2009; Perkins & Hakim, 2020), adding a forecast model preserves information544

assimilated at previous times. In this section, we provide an assessment of changes to545

reconstructed state memory and dynamics for the ocean fields by comparing the online546

results with the offline results and the reference GCM simulations. For the offline recon-547

struction, proxy data is the only information governing variability and memory over time.548

In contrast, the online reconstructions have LIM dynamics, which persist and constrain549

climate signals when less proxy data are available. The reference models provide a com-550

parison between the variability that the LIM dynamics are calibrated to emulate, and551

the influence of the LIM coupled to proxy assimilation. Where applicable, we compare552

time periods pre- and post-1600 C.E. in order to assess the dynamics with fewer and more553

proxies, respectively, available to constrain the reconstruction.554

Comparing the online CCSM4-LIM results with the offline CCSM4 reconstruction555

of lowpass-filtered global average TAS, SST, and OHC700m (Fig. 10) reveals cooler con-556

ditions (∼1000–1600 C.E.), a tightened confidence interval, and larger dec–cen fluctu-557

ations in the online results. Because both the online and offline LMR reconstructions use558

the same proxy information, TAS and SST signal phasing between the two reconstruc-559

tions is high (correlations near 0.9). Additionally, the online reconstruction results for560

TAS and SST generally fall within the confidence interval of the offline results. However,561

for OHC700m, differences in dec–cen variability are more substantial. Overall, the ad-562

dition of temporal memory and dynamical information results in cooler temperatures early563

in the reconstruction period, diminishing the millennial-scale cooling trend compared to564

the offline case. Even though low-frequency variability may not be well represented by565

annually-resolved proxies, we recover an estimate of low-frequency variations via assim-566

ilation and the slow-timescale dynamics of the LIM.567

To test if the cooler reconstructed temperature during the early period of the last568

millennium are an artifact of the LIM, we performed two additional experiments. First,569

to test whether the inclusion of volcanic events in the LIM calibration may result in sus-570

tained artificially cool temperatures during low proxy-information periods, we performed571

an equivalent reconstruction experiment using a LIM calibrated on the CCSM4 pre-industrial572

control (piControl) simulation without forcing (see Section S2 for details). Results show573

that the piControl-LIM experiment still displays a relatively cool early period with no574

millennial-scale cooling trend (Fig. S6). Second, we tested sensitivity to the initializa-575

tion time by starting another CCSM4-LIM reconstruction from the year 1 C.E. This ex-576

periment produced nearly identical reconstruction results from 1000 C.E. onward (Fig.577

S7). Finally, we note that, by construction, the LIM mean state is zero, and all anoma-578

lies decay with time. For example, when initializing a deterministic (no-noise) LIM fore-579

cast from the CCSM4-LIM reconstructed states, all global average TAS anomalies de-580

cay to nearly zero on the order of a decade (not shown). Taken together, these results581

strongly suggest that the relatively cool reconstructed states are a result of system mem-582

ory that is consistently reinforced by information from proxies.583
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Figure 10. A comparison of the offline and online CCSM4-LIM reconstructions for lowpass

filtered global average 2 m surface air temperature (TAS), sea-surface temperature (SST), and

0-700m ocean heat content (OHC700m).
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Figure 11. Spectral power density comparison of global average OHC700m between LMR

online (CCSM4-LIM) (blue) and offline (orange) reconstructions and reference last millennium

simulation data (dark grey) for (a) 1000–1500 C.E. and (b) 1500–1850 C.E. Spectra are calcu-

lated from the ensemble mean of each of the 50 reconstruction Monte-Carlo iterations. Solid lines

denote the average spectral density while shading shows the 95% confidence interval.

The most notable effect from the inclusion of LIM forecasts for online assimilation584

is the memory and variability of ocean heat content. Figure 11 shows a spectral power585

disparity between the offline and online reconstructions at short and long periods. At586

short timescales (periods of 2–3 years), the offline reconstruction shows approximately587

an order of magnitude larger variability than the online reconstruction and reference CCSM4588

simulation. At longer timescales (periods > 50 years), the offline case has an order of589

magnitude less variability than the online reconstruction and CCSM4 reference simu-590

lation for OHC700m. This behavior is displayed in both the relatively data-sparse early591

period (1000–1500 C.E.) and when more proxy information is available. In the offline592

case, the upper-ocean heat content is solely determined by field covariance and the year’s593

available proxy observations. The lack of memory means that OHC700m is free to vary594

widely between years, but also that it does not necessarily act as a long-term filter of595

atmospheric variability (i.e., an ocean layer with a large amount of thermal inertia). The596

ensemble average of global mean OHC700m (Fig. 10c) shows the lack of field constraint597

in the offline reconstruction. The wide confidence interval relates to a large range of re-598

constructed global mean OHC700m in ensemble members, but when averaged across the599

ensemble, little coherent low-frequency variability remains. The autocorrelation of the600

global average OHC700m (Figs. S9a, S9b) highlights the lack of memory in the offline601

reconstruction, where autocorrelations at a two-year lag decrease below 0.4, whereas the602

online reconstructions and reference simulations show autocorrelations in the range of603

0.8–0.9.604

We turn now to how the online method affects the relationships between global av-605

erage SST and OHC700m (Fig. 12a,b), and the Niño 3.4 and PDO indices (Fig. 12c,d).606

The global average SST and OHC lead–lag correlations show online reconstructions have607

an asymmetric relationship where SST leads OHC700m. During the data-sparse period608

(Fig. 12a), the global average SST correlation with OHC700m at five-years lead is around609

0.7, while at five-years lag, the correlations are around 0.4–0.5. The lead–lag relation-610

ship from the reference Last Millennium simulations is also asymmetric but with smaller611

correlations during this period. SST leading OHC700m implies the atmosphere is driv-612

ing the changes in upper-ocean heat content. The offline reconstruction does not display613
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Figure 12. Lead–lag correlations for scalar indices of global average SST and OHC700m (row

a) and Niño 3.4 and PDO (row c) for the time periods of 1200–1450 C.E. (column a) and 1600–

1850 C.E (column b). Correlations are shown for the Online CCSM4-LIM (blue) and MPI-LIM

(pink) reconstructions, the CCSM4 Offline (orange) reconstruction, and reference last millennium

simulation data from the CCSM4 (black solid) and MPI (dashed black) models. Correlations

are calculated at the specified lead/lag from the ensemble mean of each of the 50 reconstruction

Monte-Carlo iterations. For reconstructions, solid lines denote the average correlation across

Monte-Carlo iterations while shading shows the 95% confidence interval.
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a lead–lag asymmetry and has lower correlation compared to the online reconstructions614

except at zero-lag.615

From 1600–1850 C.E., when more proxy information is available, the online recon-616

struction lead–lag correlations for global mean SST and OHC700m are slightly lower (Fig.617

12b), with correlations around 0.5–0.6 at an SST-lead of five years, and correlations near618

0 (MPI-LIM) and 0.3 (CCSM4-LIM) at an SST-lag of 5 years. The online reconstruc-619

tions still display a correlation asymmetry with higher correlations when SST leads. How-620

ever, the online SST-lag correlations for the CCSM4-LIM reconstruction closely corre-621

spond to the SST-lag correlations in the offline case, and the MPI-LIM SST-lag corre-622

lations are lower than the offline SST-lag correlations. In the offline case, the lead–lag623

relationship does not qualitatively change between the two periods. The reference sim-624

ulation lead–lag correlations show differences in magnitude between the periods but re-625

tain the asymmetric lead–lag character.626

For the Niño 3.4 and PDO index lead–lag relationships, there is a disparity in the627

early period between offline and online reconstructions (Fig. 12c) that is rectified, to a628

degree, with increased proxy record availability (Fig. 12d). During 1200–1450 C.E., the629

online reconstructions show the Niño 3.4 leads the PDO by one year (correlations near630

0.2). At a one-year lag, the Niño 3.4 index switches to small anticorrelation. The flip in631

correlations relates to the timescale difference between ENSO, which oscillates on inter-632

annual timescales, and the PDO, a more persistent decadal-scale phenomenon. The on-633

line reconstruction behavior corresponds to a similar lead–lag relationship evident in the634

reference simulations. The offline reconstruction again shows a symmetric relationship635

between the indices about zero lag, which is quite different from the online reconstruc-636

tions.637

During 1600–1850 C.E., when proxy availability increases, both the offline and on-638

line reconstructions are quite similar in their Niño 3.4 and PDO lead–lag correlation re-639

lationships (Fig. 12d), with the largest correlation at zero-lag. A comparison of lead–640

lag relationships during the instrumental period (∼1900–2000 C.E.) also show Niño 3.4641

and the PDO with the highest correlation occurring at zero-lag, including for the observation-642

based products (Fig. S10b). The Niño 3.4 phase relationship with the PDO pattern in643

the North Pacific is suggested to occur via teleconnection responses in the atmospheric644

circulation (e.g., see review by Newman et al. (2016)). However, recent work isolating645

variability at different time-frequencies suggests that ENSO and the PDO may be largely646

independent (Wills et al., 2018). These results suggest the one-year Niño 3.4 lead is a647

byproduct of the GCM-calibrated LIM and less available proxy data during 1200–1450648

C.E. When more proxy information is assimilated, the reconstructed PDO–ENSO rela-649

tionship is in better agreement with observational products. The offline reconstruction650

does not show the same 1-year-lag anticorrelation as the online results, which suggests651

that the offline reconstruction constrained only by proxy data may be less likely to switch652

into La Niña conditions following the positive phase. Overall, these results highlight that653

when enough data are available to constrain the reconstruction, it is possible that the654

offline case displays the same temporal dynamics as the online method.655

7 Discussion of novel reconstruction results656

Our reconstructions provides novel insight into atmosphere–ocean climate fields over657

the last millennium based on online data assimilation of paleoclimate proxies. Here we658

discuss aspects in these results that differ from findings in previous studies. A notable659

difference compared to previous reconstructions is the finding that the LMR online re-660

constructions are generally colder by ∼0.25–0.5 K for NH average TAS and global av-661

erage SST during the early portion of the last millennium. Additionally, our reconstruc-662

tions do not show signs of a hemispheric or global-scale warm anomaly during the MCA663

period, and only a slight millennium-scale cooling trend into the 1800s. The lack of long-664
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term cooling in the LMR online reconstructions contrasts with other temperature recon-665

structions and climate model simulations over the last millennium (e.g., Figs 8c-f). The666

small cooling trend with previous statistical reconstruction results should be considered667

within the context of known sensitivity to methodological choices (e.g., Juckes et al., 2007;668

Mann et al., 2008), and generally broad uncertainty bounds of previous reconstructions669

(see Fig. 1a in Neukom, Barboza, et al., 2019). Specifically considering the MCA–LIA670

differences, the reconstructed pattern of cool tropics and warmer high-latitude regions671

is in constrast with the primarily global pattern evident in the GCMs. We note that when672

removing a constant from the the reference GCM results, consistent with the colder global673

average of the reconstructions, the MCA–LIA difference is more similar. Our sensitiv-674

ity experiments and the damped-eigenmodes of the LIM forecast (by construction) all675

point toward the relatively cold reconstructed early temperatures being a result of the676

dynamical propagation of assimilated proxy information. However, a question for future677

research concerns whether the reconstructed cool early period is related to the proxy dis-678

tribution or lack of proxies sensitive to decadal–centennial climate variability.679

Despite the relatively cold conditions of reconstructed NH average temperature from680

1000–1250 C.E., the average reconstructed EU temperature displays decadal-scale warm681

periods, which are approximately half the magnitude of early 20th Century warming.682

Reconstructed spatial patterns of temperature change between the MCA and LIA pe-683

riod are spatially heterogeneous, showing large positive anomalies over the Barents Sea684

and Northern Europe and cooler tropical temperatures. The spatial character of tem-685

perature differences supports previous results depicting high-latitude warmth and cold686

tropical temperatures (e.g., Cobb et al., 2003; Mann et al., 2009; Goosse, Crespin, et al.,687

2012). Examining field regression relationships with average EU temperatures, we find688

that warm conditions relate to warm SST and OHC700m anomalies over the Norwegian689

and Barents Seas, and the mid-latitude North Atlantic. Additionally, the atmospheric690

circulation is characterized by lower SLP across the Arctic and increased mid-latitude691

ZG500 heights with an upper-level ridge centered over Europe. The reconstruction re-692

gression relationships notably differ from those derived from the reference simulations693

(Figs 9c–f) with more broad-scale pan-Arctic circulation connections found in the recon-694

struction. This again suggests that the assimilated proxies are adding new information695

about past dynamical relationships compared to unconstrained model simulations. The696

relation of EU warmth with enhanced lower-level circulations in the reconstruction at697

least partially supports previous work suggesting longer-term NAO-like circulation anoma-698

lies during the MCA (e.g., Trouet et al., 2009). However, the LMR online reconstruc-699

tions also suggest major European warm events seem to occur on decadal scales instead700

of centennial scale during the MCA.701

Instrumental validation of the reconstructed SST and OHC700m fields show an area702

of correlations that are consistently low- or anti-correlated in the Labrador Sea and re-703

gions just south of Greenland and Iceland. This region of weak correlation is also ap-704

parent in offline reconstructions (Hakim et al., 2016; Tardif et al., 2019). The lack of im-705

provement with online and offline DA suggests that the climate models used as a basis706

for field constraints may not correctly represent the variability of this region during the707

instrumental period, and/or that we do not have enough proxy information to describe708

this region. In the case of unrepresentative model dynamics, it could mean that instru-709

mental period covariances related to the North Atlantic are qualitatively different from710

the pre-industrial period, perhaps related to changes in external forcing. Further inves-711

tigation into the causes of the reconstruction discrepancy in this region could provide712

insight into the relative roles of internal ocean dynamics and external forcing in the North713

Atlantic, which is an active and open research question (e.g., Clement et al., 2015; Zhang714

et al., 2016; Vecchi et al., 2017; Sutton et al., 2018; Wills et al., 2019).715
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8 Conclusions716

Understanding the dynamics of coupled atmosphere–ocean low frequency variabil-717

ity of the real climate system requires a physically consistent gridded dataset that is faith-718

ful, within error, to the climate recorded by proxy archives. We have presented coupled719

atmosphere–ocean field reconstructions over the last millennium that incorporate tem-720

poral constraints from online data assimilation with linear inverse models (LIMs). Global721

aggregate measures of sea surface temperature (SST) and upper-700m ocean heat con-722

tent (OHC700m) show relatively cold pre-industrial conditions with pronounced decadal-723

to-centennial-scale variability. By the modern era, significant increases in temperature724

and heat content related to anthropogenic greenhouse gas forcing are apparent. As full-725

field reconstructions, we can calculate and assess a large variety of physically-consistent726

dynamic field measures and uncertainty over a much longer time period than instrumen-727

tal data allow. For example, the reconstructed Niño 3.4 index shows millennium-scale728

warming on the order of ∼0.5 K per 1000 years. The reconstructed PDO does not dis-729

play distinct trends or changes to variability from 1600–2000 C.E. Before 1600, there is730

pronounced decadal-to-centennial-scale variability of the PDO index, potentially related731

to lower proxy coverage during the early period. We also find regional decadal periods732

of warm temperatures over northern Europe during the MCA, and from the underlying733

full-field information, we assess connections to regional circulation via regression against734

reconstructed atmospheric fields.735

Instrumental validation of reconstructed ocean fields shows remarkable agreement736

given that the results derive from the assimilation of sparsely distributed and mostly ter-737

restrial proxy information. We find high levels of agreement between our reconstruction738

and instrumental products with global average SST (correlations between 0.8–0.9), upper-739

700m ocean heat content (OHC700m; correlations greater than 0.9 with two recent prod-740

ucts), and Niño 3.4 (correlations near 0.8). The reconstructed PDO shows moderate agree-741

ment with instrumental products in the CCSM4-LIM reconstruction (correlations near742

0.6), generally capturing the same inter-decadal PDO variability. Furthermore, spatial743

validation shows broadly positive correlations for the reconstructed SST field and more744

regionally dependent positive correlations for OHC700m. Encouragingly, we find that745

our reconstructed surface temperature agrees well with the carefully curated and min-746

imally pre-processed Crowley et al. (2014) reconstruction, and that our reconstruction747

gives a better estimate of the instrumental surface temperature despite the Crowley re-748

construction being calibrated directly to it. Altogether, the positive validation results749

across many fields and indices give confidence that the reconstruction strategy produces750

high-fidelity, dynamically-consistent results.751

The primary goal of incorporating a forecast model into the LMR framework is to752

provide further dynamical constraints and allow for dynamical memory of proxy infor-753

mation over time. For global temperature fields, assimilated proxy information suggests754

colder conditions on average compared to reconstructions constrained only by the proxy755

record. For reconstructed OHC700m, the memory from the forecast model results in an756

order of magnitude more power to variability on timescales longer than 50 years and smooths757

high-frequency fluctuations, compared to the offline case. The enhanced expression of758

multi-decadal variability, in general, improves one of the primary criticisms of offline re-759

construction results, the relatively smooth character of reconstructed global averages.760

Moreover, the addition of the online forecasts improves aspects of the coupled-field lead–761

lag relationships in the reconstructions. For global average SST and OHC700m, lead–762

lag correlations show that SST generally leads OHC700m, which would physically re-763

late to OHC integrating forcing from the ocean surface over time and is in better agree-764

ment with the GCMs from which the LIMs are derived. In contrast, the offline recon-765

struction shows a considerably different relationship with a symmetric peak about zero-766

lag between global average SST and OHC700m. The Niño 3.4 and PDO lead–lag rela-767

tionship highlights the addition of dynamical constraints when fewer proxies are avail-768
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able. In the earlier period from 1200–1450 C.E., the online reconstructions show sim-769

ilar characteristics as in the GCM simulations with Niño 3.4 leading the PDO by one770

year, whereas the offline reconstruction again shows symmetric lead–lag correlations. Dur-771

ing later periods, when more proxy records are available, the offline reconstruction changes772

character with a lead–lag relationship between Niño 3.4 and PDO similar to online re-773

constructions, highlighting the dependence on observations without the forecast model.774

This extension of the LMR framework to include online data assimilation repre-775

sents a significant step forward in combining information from proxies with climate model776

constraints. The approach promotes easy comparison of various GCM dynamics, pro-777

vides an easy pathway to update reconstructions as new model simulations become avail-778

able, and accommodates new information from expanded proxy databases (e.g., Ander-779

son et al., 2019). For example, using two different GCM-calibrated (CCSM4 and MPI)780

we compare and contrast reconstructed state of past climate as a check of result robust-781

ness. While we focused on validation and description of specific ocean fields, the recon-782

structions include other fields, which can also be used for investigations of coupled vari-783

ability over the last millennium, validation against observations and climate models, and784

comparisons with previous reconstructions. For example, we have used the results here785

to show that the time period of the MCA was in fact much colder than previously es-786

timated in the hemispheric-mean temperature and that it was a regional phenomenon787

over Northern Europe. Moreover, the circulation pattern we find in the reconstruction788

departs significantly from that in last-millennium climate model simulations, which un-789

derscores the importance of proxy records in estimating the actual climate behavior. Sim-790

ilarly, when compared to last-millennium climate model simulations, the reconstructions791

show a greater influence of SST leading changes in OHC, and a weaker relationship be-792

tween the Niño 3.4 and PDO indices (Fig. 11). These findings illustrate the power of this793

approach: by combining proxies and online DA, we discover dynamical insights into the794

climate system that differ from those in the climate model. Since climate models have795

different expressions of coupled atmosphere–ocean variability (e.g., Branstator et al., 2012),796

including the proxy records is essential.797

In this work, we focus on DA-based reconstructions over the Common Era, which798

features relatively broad proxy coverage and many coincident GCM simulations. For deeper799

time DA application (e.g., Tierney et al., 2020), significant non-stationarity related to800

external forcing complicates the GCM modeling such that further research is needed to801

determine how to best formulate and apply a statistical forecast method like a LIM. For802

the Common Era, there are a further improvements we envision, incluidng the assim-803

ilation of multi-resolution records (e.g., Steiger & Hakim, 2016) in PDA, such as the Ocean2k804

sediment records (McGregor et al., 2015), which would likely provide better centennial805

and millennial-scale constraints than from annual timescale proxies alone. Furthermore,806

other fields with slow-timescales of variability, such as sea ice, might be similarly improved807

using an online assimilation method for field reconstruction.808

Appendix A EnKF Vector Solver809

Here we present the vector solver for the ensemble Kalman update equation, which810

is a variant of the ensemble transform Kalman filter described by Bishop et al. (2002).811

When using ensembles to estimate sample statistics (e.g., prior covariance, B), the Kalman812

update equation (Eq. 1) describes an update of the ensemble average. The state, x, is813

an M × 1 row vector equal to the the column average of, X, the M ×N state ensem-814

ble. Here, M represents the number of state features (e.g., field grid points) and N is815

the number of ensemble members. Equivalently, the estimated observations, ye (with di-816

mensions P×1 where P is the number of proxies) represent the column average of the817

ensemble of proxy estimates calculated on H(X). For paleoclimate reconstruction, it is818

usually the case that the number of state features is much larger than the number of ob-819

servations (M � P ), which suggests that the updated state will be at least partially820
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under-determined. The vector transform reduces the problem into the smaller space (O(N×821

P )) by diagonalizing K and creating linear combinations of proxy observations.822

To translate the problem into a transformed space, we define x̃ = B−1/2x and ỹ =823

R−1/2y and substitute into Eq. 1, giving824

x̃a = x̃b + K̃[ỹ − H̃x̃b] (A1)

where825

B1/2 =
1√
N − 1

[X−X],

H̃ = R−1/2HB1/2,

K̃ = H̃T
[
H̃H̃

T
+ I
]−1

.

We then perform a singular value decomposition on H̃ (H̃ = UΛVT ) and transform826

into the new component space using827

x̂ = VT x̃

ŷ = UT ỹ.

Converting equation A1 into the new coordinates yields828

x̂a = x̂b + K̂[ŷ −Λx̂b], (A2)

where829

K̂ = Λ
[
Λ2 + I

]−1
, (A3)

In this optimal space, the update considers all proxies and properly weights information830

between ensemble members in a single calculation. The weighting term, Λ (P×N), is831

a diagonal matrix with terms in order of influence. The optimal space state (x̂) has di-832

mensions of N × 1 and observations (ŷ) has dimensions P × 1. To translate from the833

optimal space state back to the full space for results, we calculate834

Xa = XbVx̂a. (A4)

Appendix B Linear Inverse Models835

For the benefit of the reader, we summarize a technical background description of836

LIMs, their calibration, and stochastic integration in Appendix B1, and in Appendix B2,837

we summarize the multivariate LIM calibration strategy described in Perkins and Hakim838

(2020).839

B1 Background840

A linear inverse model (LIM, Penland & Sardeshmukh, 1995) is an empirically de-841

termined estimate of a dynamical system linearized about its mean state. In this model,842
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dx

dt
= Lx + ξ, (B1)

the slow-varying deterministic drift of the state is explicitly defined by the matrix op-843

erator, L, while fast-timescale processes are represented as white-noise forcing, ξ. We844

use this simple model to create a coupled GCM analog to forecast multivariate states845

between reconstructed times.846

To create a LIM, we perform an empirical fit based on 1-year lag-covariance (τ =847

1) statistics of the climate state,848

L = τ−1ln[C(τ)C(0)−1], (B2)

with the sample n-lag covariance defined as C(n) =
〈
x(n)xT (0)

〉
. Note that angle brack-849

ets represent an expectation, which in practice is taken as a sample average. The dynam-850

ical operator, L, encapsulates the information to propagate predictable aspects of the851

state from one time to the next. System dynamics are assumed to be stable, which re-852

quires that the forecast modes (i.e., eigenvectors of L) of a valid LIM do not grow with853

time. While constructive interference between forecast modes enables short-term tran-854

sient anomaly growth (e.g., ENSO), extended deterministic forecasts asymptote to zero855

if all modes are damped. For applications in EnKF assimilation, the forecast ensemble856

variance is crucial for weighting the prior against and the innovation from observations.857

LIM deterministic forecasts alone (omitting the noise term, ξ) have collapsing forecast858

ensemble variance over time, which limits the utilization of observations.859

In Perkins and Hakim (2017), forecast ensemble variance is enhanced by blending860

the LIM ensemble forecast with climatological covariances from a GCM, using a “hybrid”861

DA method adapted from Hamill and Snyder (2000). This technique incorporates a blend-862

ing coefficient, which is tuned based on reconstruction results, to control the amount of863

information from the forecast and climatological source. More recently, PH20 use a LIM864

as a GCM analog for coupled ocean–atmosphere ensemble forecasts and find that stochas-865

tic LIM forecasts reasonably approximate the ensemble variance and errors at 1-year lead866

times. Stochastic integration provides a natural mechanism to sample the envelope of867

noise-forced spread across assimilation times, and it does not necessarily require a tun-868

ing procedure based on reconstruction output. Moreover, integration provides a straight-869

forward technique for providing time-variable information that is potentially useful for870

more sophisticated PSMs in the future. For these reasons, we choose to utilize a LIM871

with stochastic noise forcing (ξ) to sustain ensemble variance between assimilation times.872

To perform stochastic LIM forecasts, we first determine the noise forcing statistics873

of the system, Q = 〈ξξT 〉dt, using the calibration data. With the assumption of sta-874

tionary statistics, we use the dynamical operator, L (Eq. B2), and the fluctuation–dissipation875

relationship (Penland & Matrosova, 1994),876

dC(0)

dt
= LC(0) + C(0)LT + Q = 0, (B3)

to estimate Q. With both model terms (L and Q) we explicitly simulate the determin-877

istic and stochastic drift of a sample climate trajectory over time using a two-step in-878

tegration scheme defined by Penland and Matrosova (1994),879

a(t+ δt) = Lx(t) + Q̂
√

Λδtα (B4)

x(t+ δt/2) = [x(t) + a(t+ δt)]/2. (B5)
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In this scheme, a is an intermediate state variable, Q̂ and Λ are from the eigendecom-880

position Q = Q̂ΛQ̂−1, δt is the timestep, and α is a vector of random numbers drawn881

from a unit-normal distribution.882

B2 Parameter Reduction and Calibration883

Climate-scale predictability is typically dominated by a few modes of atmosphere–884

ocean variability such as ENSO, the PDO, and Atlantic multidecadal variability. There-885

fore, the number of important degrees of freedom for the predictable climate state are886

substantially fewer than the total degrees of freedom presented by the gridded climate887

fields of the climate model. For this reason, we consolidate the information of the grid-888

ded climate fields for use in LIM forecasting by using a two-step EOF reduction as in889

PH20, which we summarize here.890

The climate state, X, used for reconstruction includes target output fields and also891

fields required for estimated observation calculations via PSMs. These fields are concate-892

nated along the first dimension to form the total state,893

X =


X1

X2

...
XF

 .

For the initial step, we reduce each of the F fields individually. We first area weight each894

row of field Xf (with dimensions of spatial features by ensemble samples, m×n), in this895

case using latitude weighting,896

xw
i = xi

√
cos(φi) for i = 1, ..., m,

where φi represents the ith grid cell latitude. We then find the EOFs truncated to the897

leading k modes, Uf , using a singular value decomposition (SVD), Xw
f = UfΣfVT

f ,898

and project the field into this space using: X̂f = UT
f Xf . The initial reduction com-899

pactly represents fields and expedites the next step’s multivariate-EOF calculation.900

For the second reduction, we first standardize each field by the total component901

variance, σf , and reform the state using previously reduced fields,902

X̂ =


X̂1/σ1
X̂2/σ2

...

X̂F /σF

 .

Then we take the SVD of this new state, X̂ = ÛΣ̂V̂T , and use the leading ` EOFs to903

project into the components of the fully reduced multivariate-EOF state, X̃ = ÛT X̂.904

The LIM calibration procedure (Eq. B2) and forecasts (Eqs. B4,B5) take place using905

data projected into the reduced space defined by X̃. By storing the EOFs and standard-906

ization factors (Û, Uf , and σf ), we project into and out of the space during the recon-907

struction process.908

The reduction process introduces two parameters, k and `, determining the EOF909

truncation at each step. For our experiments, we choose to retain the leading 400 EOFs910

(k = 400) in the first step, which we find retains greater than 90% of each field’s vari-911

ance. The second reduction parameter ultimately determines the LIM skill properties912
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and ensemble forecast spread characteristics (Perkins & Hakim, 2020). As in PH20, we913

separate OHC700m from the multivariate reduction process due to adverse effects on fore-914

cast skill from truncation. The leading OHC700m field components from the first reduc-915

tion (retaining 20 modes) are instead appended to the multivariate state to form the LIM-916

space components,917

Z =

[
X̃

X̂OHC

]
.

We additionally find that due to the small magnitude of values in the PR field, which918

have similar scale as numerical errors of the EOF-reduction procedure, it is useful to stan-919

dardize precipitation values by the total field variance before the first step reduction.920

With additional fields in the state vector compared to PH20, including all season-921

ally averaged TAS fields, we run the same diagnostic tests for increasing numbers of re-922

tained multivariate-EOF components investigating both aggregate measures of 1-year923

forecast skill and ensemble calibration. We get similar results as in PH20 that the fore-924

cast skill of aggregate measures (e.g., global averages, ENSO, and the PDO) are posi-925

tive and do not substantially change after retaining 15–20 multivariate-EOF components926

(not shown). Ensemble characteristics are prone to unpredictable changes at different927

multivariate-EOF truncations due to an imperfectly determined L (e.g., from noise and928

non-linearity), which similarly affects the determination of Q and leads to numerical un-929

certainty in the eigendecomposition of the noise statistics (PH20). Therefore, we per-930

form tests to assess the ensemble calibration ratios (see supplementary text Section S1)931

for global averages (TAS, SST, OHC700m) and dynamic indices (PDO- and ENSO-related932

quantities). The calibration ratio gives a measure indicating whether the ensemble vari-933

ance is representative of the forecast errors where a “well-calibrated” ensemble forecast934

system would result in a ratio near 1.0. Based on calibration ratio results, we select the935

multivariate-EOF truncation parameter of ` = 20 for the CCSM4-LIM, and ` = 27936

for the MPI-LIM.937

Appendix C PSM Objective Seasonality Determination938

For proxy PSMs, we use univariate linear regression models, yek = β0k +β1kx+939

εk, fit to temperature data estimate proxy values for the kth proxy, yek (e.g., tree-ring940

widths), from the climate state, x. The overbar (e.g., x) denotes a seasonal-to-annual941

average of the temperature using data from the closest grid cell from calibration data.942

We determine the time-average distinction used for each PSM by a series of objective943

seasonality tests for tree-based proxies (as in Tardif et al., 2019), and use the PAGES2017944

seasonality metadata for all other proxies. We fit parameters including the intercept (β0k),945

slope (β1k) and Gaussian error with statistics N (0, σ2
k) through a least-squares fit with946

co-located temperature data in the NASA Goddard Institute for Space Studies Surface947

Temperature Analysis GISTEMP v4 (Hansen et al., 2010) dataset (similarly regridded948

to a 2◦ x 2◦ grid). Note that the proxy error variances (σ2
k), which are assumed to be949

independent, form the diagonal of the proxy error covariance matrix, R. The objective950

determination of seasonality for tree-based proxies involves a series of tests across pre-951

scribed seasonal averages (Jan–Dec, JJA, JJASON, DJF, DJFMAM, AMJJAS, OND-952

JFM) and the expert-derived seasonality in the PAGES2017 database. We then make953

a selection of the seasonal-average definition with the best overall calibration fit from the954

tests. The best fit is defined as the model with the lowest-value Bayesian information955

criterion, BIC = −2ln(L̂) + kln(n) (Schwarz, 1978), where L̂ is the maximum value956

from the likelihood function of the model, k is the model’s number of estimated param-957

eters, and n is the sample size.958
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Acronyms959

CCSM4 Community Climate System Model version 4960

CCSM4-LIM CCSM4-calibrated LIM961

CFR climate field reconstruction962

DA data assimilation963

EG13 Emile-Geay et al. (2013a)964

EnKF ensemble Kalman filter965

EOF empirical orthogonal function966

GCM global climate model967

LIA Little Ice Age968

LIM linear inverse model969

LMR Last Millennium Reanalysis970

MCA Medieval Climate Anomaly971

MPI Max Planck Institute Earth System Model972

MPI-LIM MPI-calibrated LIM973

OHC700m 0–700 m ocean heat content974

PAGES2017 PAGES 2k Consortium (2017)975

PDA paleoclimate data assimilation976

PDO Pacific Decadal Oscillation977

PH20 Perkins and Hakim (2020)978

PR precipitation979

PSM proxy system model980

RLUT outgoing TOA longwave radiation981

RSUT outgoing TOA shortwave radiation982

SLP sea-level pressure983

SSS sea-surface salinity984

SST sea-surface temperature985

TAS 2 m surface air temperature986

TOA top of atmosphere987

ZG500 500 hPa geopotential heights988

ZOS dynamic ocean surface height989
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C.E.). Additionally, we provide figures and two movies as supporting information to the

main text.

S1. LIM Calibration Testing

To test the ensemble forecast characteristics of the LIM relevant for data assimilation,

we investigate ensemble calibration ratios (ECRs; e.g., as in Perkins & Hakim, 2020) for

a number of multivariate-EOF (mvarEOF) component truncations (` = 10, 15, 20, 21,

22, ..., 29, 30). For each test, we calibrate the LIM (Eq. 4) with the specified number

of retained multivariate-EOF components and perform a 1-year ensemble forecast (100

ensemble members) initialized from every available year of the calibration data. ECRs are

based on comparison to the reference calibration data coincident with the forecast time.

The ECR measure, defined as

ECR =
1

T

T∑
i=1

SEt

σ2
t

, (1)

represents the time-average (over all times, T ) ratio between squared errors (SEt) and

ensemble variance (σ2
t ) calculated on the forecast ensemble (gt) and reference data (vt).

The squared error at time t, is defined as

SEt = (gt − vt)2,

where the overline (e.g., gt) denotes the ensemble average. The ensemble variance is given

by

σ2
t =

1

N

N∑
i=1

(gti − g)2

where gti represents the ith of N total ensemble members. Well calibrated ensemble

forecasts have a value near 1.0, while values less than 1.0 are considered overdispersive

(errors are smaller than ensemble spread) and values greater than 1.0 are considered

underdispersive (errors are larger than ensemble spread).
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After performing the ensemble forecast experiments, we compare ensemble character-

istics between them by aggregating the relative distance from 1.0 for groups of ECR

quantities (for global averages, ENSO, and PDO-related measures). The function, f(g, v)

we use to calculate distance from being well-calibrated is as follows:

f(g, v) =

{
ln(ECR(g, v)) 0 < ECR(g, v) < 1

(ECR(g, v)− 1)2 ECR(g, v) ≥ 1
. (2)

For each reconstruction experiment, we select the multivariate-EOF truncation that dis-

plays the lowest total ECR distance from 1.0 (Tables S2 and S3). For the CCSM4-LIM,

the minimum aggregate ECR occurs at a truncation of 20 modes (f = 0.79), and for the

MPI-LIM, the minimum occurs at 27 modes (f = 1.25).

S2. Pre-industrial Control LIM Test

Our reconstructed global-average temperature estimates during the early period of the

last millennium are cooler than many previous reconstructions (Fig. 6). Here we in-

vestigate whether the cooler average temperature during the early period of the last

millennium is caused by the LIM model formulation. Specifically, we test whether the

inclusion of forcing (especially volcanic response) plays a role in the cool temperatures

and lack of millennium-scale cooling trend, by training another LIM based on the CCSM4

pre-industrial control simulation (no-forcing) and using it for an online DA reconstruction.

To train the pre-industrial control (piControl) LIM, we use the same fields and pro-

cedures as in the past1000 CCSM4-LIM (see Sections 3 and S1), searching for a “well-

calibrated” ensemble forecast. In general, the lower variance of the piControl simulation

produces underdispersive forecast ensembles when testing forecasts against piControl data

(minimum ECR at 26 modes retained, f = 2.1) and severely underdispersive results when
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testing forecasts against past1000 data (minimum at 22 modes retained, f = 2550). We

select l = 26 for the number of retained multivariate-EOFs based on the forecast tests

against piControl data. The ECR >> 1 values shown in the piControl calibration exper-

iments indicate that variance inflation is necessary to produce a representative ensemble

for data assimilation purposes. To find an appropriate inflation ratio, we perform three

reconstructions (with 5 iterations each) with inflation factors of 1.0, 2.0, and 4.0, to find an

inflation parameter that produces at least similar global-average TAS verification scores

as in the offline case. The experiment with an inflation factor of 4.0 produced the clos-

est verification correlations (SST ∼0.8, Niño 3.4 ∼0.7, PDO ∼0.6, OHC700m ∼0.1–0.5).

Therefore, we use the inflation factor 4.0 experiment to assess whether the LIM calibrated

on the past1000 data is solely responsible for the colder temperatures.

Results of the piControl-LIM experiment are compared against the offline case in

Fig. S6. The global-average temperatures for the piControl-LIM (Fig. S6a) still show

cooler conditions are prevalent during the early period (1000–1400 C.E.) with no clear

millennium-scale cooling trend. The global-average SST and OHC700m also show cooler

conditions compared to the offline case, albeit less consistently cool than in the CCSM4-

LIM experiment from the main text. In general, the multi-decadal variations and uncer-

tainty bounds are larger in the piControl-LIM experiment, which is related to our use of

inflation. However, even without any information on forced-response of the climate sys-

tem, the piControl-LIM reconstruction still produces colder temperatures. This strongly

suggests the behavior during the early part of the reconstruction is a byproduct of the sys-

tem memory introduced by the LIM and consistent reinforcement from proxy information

during that time.
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Movie S1.

A video showing the grand-ensemble mean (taken over the 50 × 100 Monte-Carlo iter-

ations and ensemble members) spatial field results (TAS, SST, PR, SLP, ZG500) for the

LMR Online reconstruction using the CCSM4-LIM calibration. Fields are centered about

the 1000–1850 mean values. The spatial distribution of the proxy network available for

assimilation in each year is provided in the lower right panel.

Movie S2.

As in Movie S1, but depicting fields of RLUT, RSUT, SST, OHC700m, SSS, and ZOS.

Provided as a separate video for clarity.
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Table S1. LMR Online (MPI-LIM) reconstruction scalar correlations with instrumental

products.

Product Glob. Avg. SST Glob. Avg. OHC700m Nino 3.4 PDO
HadleyEN4 0.79 0.37 0.72 0.42
GFDLECDA 0.88 0.56 0.78 0.24
ORA20C 0.91 0.85 0.72 0.55
ESRL – – 0.77 –
Mantua – – – 0.42
Cheng17 – 0.90 – –
Zanna19 – 0.98 – –

Table S2. Aggregate ensemble calibration ratio (ECR) distances from the ideal ECR of 1.0

as calculated using Eq. S2. Values are shown for each test using different mvarEOF truncations

during LIM calibration on CCSM4 last millennium data. The global average (Glob Avg) measure

includes ECRs from TAS, SST, OHC700m, RSUT, and RLUT. The ENSO measure includes

ECRs from Niño 3, 3.4, and 4 indices and the Southern Oscillation Index (SOI). The PDO

measure only includes the PDO index ECR. The Total column shows the sum of Glob Avg,

ENSO, and PDO aggregate ECR distances.

num mvarEOFs Glob Avg ENSO PDO Total
15 2.98 0.20 0.01 3.18
20 0.14 0.00 0.65 0.79
21 0.42 0.01 0.71 1.15
22 0.21 0.01 0.88 1.11
23 0.32 0.03 0.82 1.17
24 1.75 0.26 0.21 2.22
25 0.01 0.51 2.70 3.22
26 3.27 0.24 0.03 3.55
27 0.54 0.08 0.46 1.09
28 0.84 0.22 0.12 1.17
29 1.33 0.11 0.52 1.96
30 1.60 0.03 0.09 1.73
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Figure S1. Complex Morlet wavelet analysis of the grand-ensemble average (taken over 50 ×

100 members) Pacific Decadal Oscillation (PDO) index reconstructed in the (a) CCSM4-LIM and

(b) MPI-LIM experiments. The displayed power is normalized by dividing by the input timeseries

variance in each case. White contours indicate a power exceedance of a 95% confidence interval

generated using 1000 integrations of a red-noise model fit to the PDO timeseries.
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Figure S2. A gridpoint correlation comparison of the OHC700m spatial validation products

with each other including HadleyEN4 (1900–2000), GFDLECDA (1961–2000), ORA-20C (1900–

2000), and Cheng2017 (1940–2000)
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Figure S3. Detrended spatial field gridpoint correlations of the LMR MPI-LIM with Instru-

mental Era observational and reanalysis products for SSTs (column a) and OHC700m (column

b). Spatial correlations are calculated against HadleyEN4 data (a, b; 1950-2000), GFDLECDA

(c, d; 1961–2000), ORA-20C (e, f; 1900–2000), and Cheng2017 (OHC only, g; 1940–2000)
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Figure S4. Scalar index comparison between the LMR Online (MPI-LIM; black with 95%

confidence bounds in grey shading) reconstruction and instrumental products for (a) SST, (b)

Niño 3.4, (c) OHC700m, and (d) PDO. The HadleyEN4, GFDLECDA, and ORA20C products

are compared in all cases. Additionally, ESRL Niño 3.4 data, the Mantua et al. (1997) PDO

index, and Cheng et al. (2017, Cheng2017) and Zanna et al. (2019, Zanna19) OHC data are

compared. Error bounds (±2σ) are shown for the Cheng2017 and Zanna19 OHC data.
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Figure S5. Correlations between the PDO index of the CCSM4-LIM reconstruction and

previous PDO index reconstructions (Biondi et al., 2001; D’Arrigo et al., 2001; MacDonald &

Case, 2005; D’Arrigo & Wilson, 2006; Shen et al., 2006).
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Figure S6. As in Fig. 7, but comparing the offline reconstruction against an online recon-

struction using a LIM calibrated against CCSM4 preindustrial-control data. See Section S2 for

details.
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Figure S7. As in Fig. 7, but comparing online reconstructions intialized at 1000 C.E.

(past1000) and 1 C.E. (past2000).
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Figure S8. Regression of the reconstructed Europe average TAS (region denoted by black

box) from 1000–1850 C.E. onto fields of SST/ZG500 (column a) and OHC700m/SLP (column b)

for the CCSM4-LIM (row a) and MPI-LIM (row b) reconstructions. ZG500 field contour levels

range from 7.5 m to 20 m incremented every 2.5 m for positive (solid) and negative (dashed)

values. SLP field contour levels range from 0.25 hPa to 1.25 hPa incremented every 0.25 hPa.

Regression coefficient significance (grey dots for SST/OHC700m, blue hatching for ZG500/SLP)

determined using a two-tailed Student’s t-test and the effective degrees of freedom (Bretherton

et al., 1999).
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Figure S9. Autocorrelations of global average OHC700m for the time periods of 1200–

1450 C.E. (a) and 1600–1850 C.E (b). Autocorrelations are shown for the Online CCSM4-LIM

(blue) and MPI-LIM (pink) reconstructions, the CCSM4 Offline (orange) reconstruction, and

reference Last Millennium Simulation data from the CCSM4 (black solid) and MPI (dashed

black) models. Correlations are calculated at the specified lead/lag from the ensemble mean

of each of the 50 reconstruction Monte-Carlo iterations. For reconstructions, solid lines denote

the average correlation across Monte-Carlo iterations while shading shows the 95% confidence

interval.
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Figure S10. Lead–lag correlations for scalar indices of global average SST and OHC700m

(a) and Niño 3.4 and PDO (c) during the instrumental period from 1900–2000 C.E. Correlations

are shown for the Online CCSM4-LIM (blue) and MPI-LIM (pink) reconstructions, the CCSM4

Offline (orange) reconstruction, and instrumental products (dashed). Correlations are calculated

at the specified lead/lag from the ensemble mean of each of the 50 reconstruction Monte-Carlo

iterations. For reconstructions, solid lines denote the average correlation across Monte-Carlo

iterations while shading shows the 95% confidence interval.
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Table S3. As in Table S2, but for LIMs calibrated on MPI last millennium data. The global

average (Glob Avg) measure includes ECRs from TAS, SST, OHC700m. RSUT and RLUT were

omitted due to large ECR values dominating the selection process and the focus on atmosphere–

ocean data in the present study. The ENSO measure includes ECRs from Niño 3, 3.4, and 4

indices and the Southern Oscillation Index (SOI). The PDO measure only includes the PDO

index ECR. The Total column shows the sum of Glob Avg, ENSO, and PDO aggregate ECR

distances.
num mvarEOFs Glob Avg ENSO PDO Total

15 1.07 0.12 0.51 1.69
20 3.14 0.13 0.18 3.45
21 1.96 0.35 0.09 2.40
22 1.47 0.11 0.18 1.76
23 1.95 0.02 0.53 2.50
24 0.25 0.43 0.75 1.42
25 2.24 0.14 0.26 2.64
26 1.49 0.15 0.11 1.75
27 1.03 0.20 0.02 1.25
28 1.56 0.05 0.82 2.43
29 1.94 0.28 0.12 2.34
30 5.22 0.84 0.18 6.24
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