
P
os
te
d
on

26
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
63
38
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Machine learning bridges microslips and slip avalanches of sheared

granular gouge

Gang Ma1, Jiangzhou Mei1, Ke Gao2, Jidong Zhao3, Wei Zhou4, and Di Wang1

1Wuhan University
2Southern University of Science and Technology
3Hong Kong University of Science and Technology
4State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan
University

November 26, 2022

Abstract

Understanding the origin of stress avalanche of fault gouges may offer deeper insights into many geophysical processes such

as earthquakes. Microslips of sheared granular gouges were found to be precursors of large slip events, but the documented

relation between local and global avalanches remains largely qualitative. We examine the stick-slip behavior of a slowly

sheared granular system using discete element method simulations. The microslips, i.e., local avalanche events, are found to

demonstrate significantly different statistical and spatial characteristics between the stick and slip states. We further investigate

the correlation between the global stress fluctuations and the features extracted from microslips based on the machine learning

(ML) approach. The data-driven model that incorporates the information of the spatial distribution of microslips can robustly

predict the magnitude of stress fluctuation. A further feature importance analysis confirms that the spatial patterns of microslips

manifest key information governing the global stress fluctuations.
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Abstract 24 

Understanding the origin of stress avalanche of fault gouges may offer deeper insights into many 25 

geophysical processes such as earthquakes. Microslips of sheared granular gouges were found to 26 

be precursors of large slip events, but the documented relation between local and global 27 

avalanches remains largely qualitative. We examine the stick-slip behavior of a slowly sheared 28 

granular system using discete element method simulations. The microslips, i.e., local avalanche 29 

events, are found to demonstrate significantly different statistical and spatial characteristics 30 

between the stick and slip states. We further investigate the correlation between the global stress 31 

fluctuations and the features extracted from microslips based on the machine learning (ML) 32 

approach. The data-driven model that incorporates the information of the spatial distribution of 33 

microslips can robustly predict the magnitude of stress fluctuation. A further feature importance 34 

analysis confirms that the spatial patterns of microslips manifest key information governing the 35 

global stress fluctuations.  36 

 37 

Plain Language Summary 38 

Frictional instability of natural fault gouges may play a key role in numerous geophysical 39 

processes, such as earthquakes and debris flows. Direct investigation of natural faults is difficult 40 

owing to their burial depth and broad distribution beneath the earth. Structural and statistical 41 

similarities between granular materials and fault gouges render the former an ideal model system 42 

for understanding the mechanism of natural fault gouges. When slowly deformed, granular 43 

materials generate cycles of friction increase and reduction, i.e., stick-slip cycles, analogous to 44 

the earthquake cycles. Microslips are found to be precursors of large slip events, but their 45 

correlations are mostly qualitative. This study uses numerical simulations to generate a series of 46 

stick-slip cycles of slowly sheared granular gouge. Distinctive differences are observed in the 47 

statistical and spatial characteristics of microslips between stick and slip stages. A trained 48 

machine learning model is further used to predict the global slip avalanche from the features 49 

extracted from microslips and its prediction accuracy can be significantly improved when 50 

considering the spatial information of microslips. This work suggests that the microslips detected 51 

inside natural gouge faults (e.g., local acoustic emission signal or local seismic wave) and their 52 

locations can be used to assess their frictional stability.  53 

 54 

1 Introduction 55 

The frictional stability of fault gouge layers underpins key understandings to many geophysical 56 

processes, including but not limited to earthquakes, debris flows, and landslides (Song et al., 57 

2017; Ren et al., 2019; Nanjo, 2020). A granular gouge subjected to slow shearing demonstrates 58 

a typical stick-slip behavior, which plays a crucial role in triggering the frictional stability of the 59 

fault (Byerlee & Brace, 1966; Marone et al., 1991; Aharonov & Sparks, 2004; Denisov et al., 60 

2016; Dorostkar & Carmeliet, 2019). Therefore, the stick-slip behavior of sheared granular 61 

gouges has been studied extensively in both laboratory experiments (Marone, 1998; Niemeijer et 62 

al., 2010; Scuderi et al., 2015, 2016; Leeman et al., 2016; Tinti et al., 2016; Rivière et al., 2018) 63 

and numerical simulations (Aharonov & Sparks, 2004; Mair & Hazzard, 2007; Ferdowsi et al., 64 

2014b; Dorostkar et al., 2017a; Gao et al., 2018; Ma et al., 2020). Particular attention has been 65 

placed on the influences of controlling factors on the stick-slip dynamics of granular gouge, such 66 
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as the wall geometry and friction (Rathbun et al., 2013), presence of liquids (Dorostkar et al., 67 

2017b, 2018), particle characteristics (Mair et al., 2002; Dorostkar & Carmeliet, 2019), boundary 68 

vibration (Ferdowsi et al., 2014a), normal pressure (Gao et al., 2018), particle size polydispersity 69 

(Ma et al., 2020), and particle breakage (Wang et al., 2020). These studies offer novel insights 70 

into the complex dynamic behaviors of natural fault gouges and earthquake physics.  71 

 72 

However, the microscopic origin of slip avalanche of slowly deformed granular gouge remains 73 

poorly understood. To address this issue, Johnson et al. (2013) employed a biaxial shear 74 

apparatus to investigate the physics of laboratory earthquake and found that the acoustic 75 

emission and microslip exhibit an exponential increase in the rate of occurrence, reaching a peak 76 

at the onset of slip avalanche. The corresponding DEM simulations comfirmed that the microslip 77 

event rate correlates well with large slip event onset (Ferdowsi et al., 2013). Microslip or local 78 

avalanche is essentially a result of the localized particle rearrangements (Ma et al., 2021). Due to 79 

the disordered structure of granular materials, a microslip may trigger nearby microslips, and the 80 

accumulation of these microslips may give rise to a global stress avalanche (Castellanos & 81 

Zaiser, 2018; Cao et al., 2019). Thus, microslips are widely regarded as precursors of large slip 82 

events and can be used to predict frictional weakening (Bolton et al., 2019, 2020; Trugman et al., 83 

2020). 84 

 85 

Furthermore, the statistics of local and global avalanches reveal a simple relation between the 86 

number of local avalanches and the global avalanches (Barés et al., 2017). The spatial 87 

characteristics of microslips are also closely correlated with the stress avalanche, where large 88 

stress drop is accompanied by a series of connected localized zones spanning the entire system, 89 

whereas during the elastic regime, the microslip events occur with low concentration and are 90 

spatially dispersed (Cao et al., 2018). Other particle scale metrics, such as coordination number, 91 

sliding contact ratio, potential energy, kinetic energy, evolves correspondingly during the stick 92 

phase and slip instability (Ferdowsi et al., 2015; Barés et al., 2017; Dorostkar & Carmeliet, 2018; 93 

Ma et al., 2020). Thus, studying the microscopic structure and dynamics of a granular gouge may 94 

help to unveil its stick-slip behaviors (Cipelletti et al., 2019).  95 

 96 

Unfortunately, existing findings on the relation between microslips and global stress avalanche 97 

remains largely qualitative, whereas further advance on the subject matter demands quantitative 98 

correlations to be established. In this letter, we employ the machine learning (ML) approach to 99 

bridge the microslips and global stress fluctuations, including both stress recharge (stick regime) 100 

and stress drop (slip regime). ML offers data-driven approaches to automatically investigate the 101 

underlying relations between variables and facilitate the process of revealing complex and 102 

inexplicit patterns of large datasets (Marone, 2018; Bergen et al., 2019; Ren et al., 2020). 103 

Particularly, ML has gained increasing popularity in recent years and has been widely used in 104 

many areas of geoscience, such as predicting the timing and size of laboratory earthquakes 105 

(Rouet-Leduc et al., 2017; Corbi et al., 2019), revealing the frictional state of granular fault 106 

(Rouet-Leduc et al., 2018; Ren et al., 2019), estimating earthquake magnitude and GPS 107 

displacement rate (Rouet-Leduc et al., 2019; Mousavi & Beroza, 2020), and performing 108 

earthquake early warning and earthquake detection (Rouet-Leduc et al., 2018; Hulbert et al., 109 

2019; Mousavi et al., 2020; Trugman et al., 2020).  110 
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 111 

To do so, we perform the discrete element method (DEM) simulations of quasi-static shear of 112 

granular gouge to achieve stick-slip dynamics. The microslip is manifested as the particle 113 

rearrangements and quantified by the nonaffine particle motion. Then we compare between the 114 

statistical and spatial characteristics of microslips in the stick and slip regimes. We use a two-115 

step scheme for feature selection to consider both the statistical and spatial characteristics of 116 

microslips in the ML model training. The trained XGBoost model can well predict the global 117 

stress fluctuation from the features extracted from the microslips. Finally, we analyze the feature 118 

importance of the trained ML model and conclude that the spatial patterns of microslips contain 119 

key information about the stick-slip dynamics of granular gouge.  120 

2 Materials and Methods 121 

DEM simulations of simple shear tests were performed to obtained data of microslips and global 122 

stress fluctuations during the stick-slip cycles of granular gouge. Figure 1a shows the simple 123 

shear model setup of the granular gouge, which consists of 9,134 particles with diameters 124 

uniformly distributed from 0.8 50d  to 1.2 50d , where the average particle diameter 50d =1.25 mm. 125 

The size of the granular gouge sample is 32 50d  (length) × 16 50d  (depth) × 16 50d  (height). The 126 

granular gouge is confined by two rough particle walls used to apply the shear loading and 127 

normal pressure. The top wall is fixed in the shear direction, while the normal pressure is 128 

maintained constant by a servo-control at 10 MPa. The granular gouge is sheared by moving the 129 

bottom wall in the x direction with a constant velocity while the vertical movement is 130 

constrained. The shear rate  , defined as the ratio of shear velocity to the undeformed sample 131 

height, is set to 0.05 to achieve stick-slip dynamics.  132 

 133 

The numerical simulation is performed by the DEM code LIGGGHTS (Kloss et al., 2012). The 134 

Hertz-Mindlin contact model with Coulomb sliding friction is employed to simulate the contacts 135 

and deformation between particles. The particles have a density of 2900 kg/m
3
, a Poisson’s ratio 136 

of 0.25, Young’s modulus of 65 GPa, a friction coefficient of 0.1, and a restitution coefficient of 137 

0.87 (Ma et al., 2020). The wall particles adopt the same material properties as those in the shear 138 

body. The friction coefficient between the particle walls and the shear body is set to 0.9 to 139 

enhance surface friction. To collect enough data for the subsequent machine learning, we shear 140 

the granular gouge up to a shear strain of 50%. The evolution of normalized shear stress, defined 141 

as the ratio of shear stress   to the applied normal pressure p , is shown in Figure 1b. When it is 142 

sheared into the steady-state regime, the gouge is found to undergo typical intermittent dynamics 143 

and serrated plastic flow. This phenomenon is seen to be universal in many amorphous solids 144 

like metal glasses (Sun et al., 2012; Cao et al., 2018), and porous materials (Baró et al., 2013).  145 

 146 

The enlarged view of the dotted box shown in Figure 1b demonstrates that each stick-slip cycle 147 

starts with a nonlinear recharge of shear stress and is followed by a rapid drop. The recharge and 148 

drop of shear stress correspond to the stick and slip stages, respectively. We define stress 149 

fluctuation as the change of shear stress at the start and end of the recharge/drop events. Thus, 150 

the stress fluctuation of a drop event is positive, and the recharge event negative. Only the 151 
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magnitude of stress fluctuation greater than a threshold of 10
-5 

is considered. During the slow 152 

shearing of granular gouge, we recorded 3,191 stress drop and recharge cycles.  153 

 154 

 155 
Figure 1. (a) Setup of the DEM experiment. Normal pressure and shear displacement are respectively applied on the 156 

top and bottom particle walls. Periodic boundary conditions are applied in the shear and depth directions. (b) Stress-157 

strain curve resulted from the DEM simulation. The y axis denotes the shear stress   normalized by the normal 158 

pressure p . The inset shows the enlarged stick-slip cycle which consists of stress recharge and drop stage 159 

represented by the blue and red shaded region, respectively.  160 

 161 

3 Results 162 

3.1 Statistical and spatial characteristics of microslips 163 

The microslips that occurred during the recharge and drop events are manifested as irreversible 164 

particle rearrangements which are hereby quantified by the nonaffine particle displacements 165 
2

minD  (see Text S1) (Ma et al., 2021). It should be noted that many other quantities, such as local 166 

displacement, local energy fluctuation (Barés et al., 2017; Zheng et al., 2018), granular 167 

temperature (Ma et al., 2018, 2019), local acoustic emission (Trugman et al., 2020), force chain 168 

bulking (Gao et al., 2019; Liu et al., 2020) can also be used for characterizing microslips. Figure 169 

2a and 2b show the spatial distributions of 
2

minD  during the recharge stage and the drop stage of a 170 

typical stick-slip cycle. Particles with higher 
2

minD  are colored in red. Due to the discrete nature 171 

and corporative particle motion of granular materials, the deformation of granular gouge occurs 172 

as a succession of localized micro-slips distributed within the system. Intuitively, the microslips 173 

are scattered throughout the granular gouge during the recharge stage. During the drop stage, the 174 

microslips are more spatially concentrated and tend to establish large stress avalanches inside the 175 

granular gouge.  176 

 177 
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 178 
Figure 2. Statistical and spatial characteristics of microslips occurred during recharge and drop stages. Spatial maps 179 

of 
2

minD  occurred during the (a) recharge state and (b) drop stage of a typical stick-slip cycle. (c) Comparison of the 180 

statistical quantities of 
2

minD  during the recharge and drop stage. (d) Normalized spatial correlation function of 
2

minD  181 

between two particles separated by distance r where r is in unit of the mean particle diameter. The data points are 182 

averaged over the recharge or drop stages falling into each bin. Solid lines are fits to the Ornstein-Zernike function. 183 

The data points and fitting lines of the different bin are shifted vertically for better visualization. (e) Evolutions of 184 

correlation length r  and Moran’ I with the magnitude of stress fluctuation. The error bar represents the standard 185 

deviation. Note that (d) and (e) are calculated over all stick-slip cycles.  186 

 187 

Figure 2c compares the statistical features of microslips that occurred during the recharge stage 188 

(blue) and drop stage (red) of a stick-slip cycle. The microslips demonstrate significantly 189 

different statistical characteristics at the recharge stage and drop stage. For example, the 99.5
th

 190 

percentile, max, variance, skewness, and kurtosis are larger for drop stage. The difference in 191 

statistics of microslips may suggest different underlying mechanism for stress recharge and stress 192 

drop. The stick-slip dynamics of granular materials can be seen as the jamming-unjamming 193 

process accompanied by the formation and buckling of force chains, which are triggered by 194 

localized particle rearrangements known as microslips or local avalanches (Barés et al., 2017; 195 

Gao et al., 2019). 196 

 197 

The spatial distributions of microslips that occurred during the recharge and drop stage can be 198 

further quantified using the normalized spatial correlation function (see Text S2) (Ma et al., 199 
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2019, 2021). We group the recharge and drop events according to the magnitude and sign of 200 

stress fluctuation. Logarithmic binning is used. Figure 2d shows the normalized correlation 201 

functions 
2 ( )
minD

rC  for recharge and drop events of different magnitudes. The spatial 202 

autocorrelation decays rapidly within a short distance of several 
50

d , showing a short-range 203 

ordering. Solid lines indicate that the decay of correlations with r  are reasonably well fitted by 204 

the Ornstein-Zernike function as 2

-0.5( ) exp( / )
min

rD
r r rC   . We can see that the correlation 205 

length of microslips r  remains nearly unchanged for recharge events and increases rapidly for 206 

large stress drop (see red line and left axis of Figure 2e). This trend indicates that a more 207 

cooperative and concentrated distribution of microslips constitutes the microscopic origin of 208 

global slip avalanche. 209 

 210 

The spatial autocorrelation of microslips can also be quantified by global Moran’s I (see Text 211 

S2) (Ma et al., 2019, 2021). The Moran’s I of particle 
2

minD  for recharge and drop events of 212 

different magnitudes show a very similar trend as the correlation length ξr  (see blue line and 213 

right axis of Figure 2e). The spatial correlation analysis of microslips indicates that the spatially 214 

correlated microslips forming large shear transition zones are responsible for the stress drop and 215 

frictional weakening. The stress drop increases with the increasing degree of aggregation of 216 

microslips. The spatial distribution of microslips during recharge stages shows on average a 217 

plateau over different bins.  218 

 219 

3.2 Machine learning predicts the stress fluctuations 220 

In order to establish the quantitative relation between microslips and the magnitude of global 221 

stress fluctuation, we resort to use the Extreme Gradient Boosting (XGBoost) technique to 222 

interrogate the data (Chen & Guestrin, 2016). Different from the Deep Learning, we need to 223 

extract physically reasonable features from the raw data for input for the Machine Learning (ML). 224 

The above analysis demonstrates a clear difference of microslips between recharge and drop 225 

events. Therefore, it is necessary to consider both the statistical and spatial characteristics of 226 

microslips in the feature extraction. We first calculate the maximum, mean, variance, skewness, 227 

and kurtosis of particle 
2

minD  within each particle’s second-neighbor shell (see Figure 3a), 228 

corresponding to the second minimum of pair correlation function shown in Figure S1a. These 229 

statistics contain information on how particle 
2

minD  distributes in space. We then calculate the 230 

statistical features of each particle’s medium range statistics (see Figure 3b). The statistical 231 

operator includes mean, max, variance, percentiles, and various higher-order moments. These 232 

statistical features are connected as the medium-range feature vector (MRF).  233 

 234 

To highlight the importance of the spatial pattern of microslips in the prediction of global stress 235 

fluctuation, we also calculate the statistical features of particles 
2

minD  as the input vector for 236 

XGBoost model training. This feature vector does not contain any information about the spatial 237 

distribution of microslips, and is referred to as particle-scale feature vector (PSF). MRF and PSF 238 
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are extracted for each recharge/drop event, and the corresponding output of XGBoost is the 239 

global stress fluctuation of the recharge/drop event. A typical structure of a XGBoost is depicted 240 

in Figure 3c. The XGBoost modeling process is briefly introduced in Text S3.  241 

 242 

The shuffled dataset is divided into training set, test set, and validation set, with a proportion of 243 

60%, 20%, and 20%, respectively. The three sets do not overlap each other to avoid “information 244 

leakage”. The loss function of XGBoost for regression problems is the mean square error (MSE). 245 

The hyperparameters of XGBoost are tuned using Bayesian Optimization (Snoek et al., 2012). 246 

The performance of XGBoost models using PSF and MRF as inputs are shown in Figure 3d and 247 

Figure 3e, respectively. As can be seen, the trained XGBoost models not only classify the 248 

recharge and drop event from the microslips, but also predict the magnitude of stress fluctuation 249 

with good accuracy. By taking into account both statistical and spatial characteristics of the 250 

microslips, the trained XGBoost model exhibits better performance with a coefficient of 251 

determination R
2
 = 0.78.  252 

 253 

 254 
Figure 3. Machine learning builds the bridge between microslips and global stress fluctuation. (a) The statistical 255 

characteristics of particle 
2

minD  within each particle’s second-neighbor shell. (b) Feature extraction process: particle-256 

scale feature vector (red column) and medium-range feature vector (blue columns). These two feature vectors are 257 

fed as input to the downstream XGBoost model to predict global stress fluctuation. (c) Schematic of XGBoost (a 258 

supervised ML approach) based on the gradient boosting decision. Performance of XGBoost model trained by (d) 259 

PSF and (e) MRF, respectively.  260 

 261 

Figure 3e depicts that certain success can be achieved in learning the complex relations between 262 

local and global avalanches for prediction. We further analyze the feature importance of the 263 
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XGBoost model trained by MRF. The feature importance is quantified by Shapley Additive 264 

Explanation (SHAP) value (Lundberg & Lee, 2017). The SHAP value for each feature is the 265 

average marginal contribution of a feature value across all possible coalitions, representing their 266 

contribution towards a higher or lower final prediction. Figure 4a shows the mean absolute 267 

SHAP values of the top 10 important features. The mean value of kurt  is the most important 268 

feature, changing the predicted absolute stress fluctuation on average by 0.6 percentage points.  269 

 270 

kurt  measures the tail-heaviness of 
2

minD  of a particle’s second nearest neighbors (Westfall, 271 

2014). The smaller kurt  indicates the considered particle and its neighbors move in a corporative 272 

manner, i.e., particles with either high 
2

minD  or low 
2

minD  are spatially clustered. To investigate 273 

how the mean kurt  affects the model prediction, we present the SHAP dependence plot in Figure 274 

4b. Each dot denotes a recharge/drop event in the ML dataset, and the scatters are colored 275 

according to the global Moran’s I of particle 
2

minD . The higher mean kurt  results in smaller and 276 

negative SHAP value, pushing the XGBoost prediction towards a recharge event. In contrast, 277 

microslips of a drop event demonstrate stronger spatial correlation and thus have smaller kurt . 278 

This feature helps XGBoost to distinguish between the recharge and drop events and predict the 279 

magnitude of global stress fluctuation. This study reveals that the spatial distribution of 280 

microslips contains key information on the stress state of a granular gouge such that microslips 281 

(e.g., local acoustic emission signal and local seismic wave) detected inside the natural gouge 282 

faults may also serve useful to predict its frictional stability.  283 

 284 
Figure 4. Feature importance analysis. (a) SHAP values for the top 10 important features. (b) Dependence plot for 285 

the mean value of kurt , colored by the global moran’s I.  286 

 287 

4 Conclusions 288 

We numerically investigated the relations between microslips and global stress fluctuation of a 289 

slowly sheared granular gouge. The microslip is manifested as irresible particle rearrangement 290 

and is quantified by nonaffine particle motion. The statistical features and spatial distributions of  291 

microslips that occurred during the rechage and drop stages of a stick-slip cycle demonstrate 292 

apprantely different characteristics. Both the Moran’s I and the correlation length of particle 293 
2

minD  indicate that microslips in the drop stage are spatially correlated to form large local 294 
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avalanches, leading to large stress drop and frictional weakening. The difference in the 295 

microscopic dynamics of recharge and drop events suggest that we may quantitatively connect 296 

the microslips and global stress fluctuation. 297 

 298 

The use of XGBoost boosts to build the bridge between microslips and macro stress fluctuation. 299 

Two sets of input fractures are extracted from the raw data to train the ML models. By using the 300 

input feature vector containing both statistical and spatial information of microslips, the trained 301 

XGBoost model can not only distinguish btween recharge and drop events but also predict the 302 

magnitude of stress fluctuation with good accurancy. The feature importance analysis by SHAP 303 

values reveals that the kurtosis of 
2

minD  within each particle’s first and second nearest neighbors 304 

is the most important feature, which characterize the local spatial autocorrelation of microslips. 305 

We conclude that the spatial distributions of microslips contain key information about the stress 306 

state of granular gouge fault and its frictional stability. It should be noted that there are many 307 

other ways to extract the spatial patterns of microslips, such as Convolutional Neural Network, 308 

Graph Embedding for feature extraction, and complex network analysis. This study may shed 309 

lights into the mechanisms governing earthquake nucleation, microslips, friction fluctuations, 310 

and their connection during the stick-slip dynamics of earthquake cycles.  311 

 312 
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