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Abstract

Seismic hazard assessment in active fault zones can benefit of strain rate measurements derived from geodetic data. Producing

a continuous strain rate map from discrete data is an inverse problem traditionally tackled with standard interpolation schemes.

Most algorithms require user-defined regression parameters that determine the smoothness of the recovered velocity field, and

the amplitude of its spatial derivatives. This may lead to biases in the strain rates estimation which could eventually impact

studies on earthquake hazard.

Here we propose a transdimensional Bayesian method to estimate surface strain rates from GNSS velocities. We parameterize

the velocity field with a variable number of Delaunay triangles, and use a reversible jump Monte-Carlo Markov Chain algorithm

to sample the probability distribution of surface velocities and spatial derivatives. The solution is a complete probability

distribution function for each component of the strain rate field. We conduct synthetic tests and compare our approach to

a standard b-spline interpolation scheme. Our method is more resilient to data errors and uneven data distribution, while

providing uncertainties associated with recovered velocities and strain rates.

We apply our method to the Southwestern US, an extensively studied and monitored area and infer probabilistic strain rates

along the main fault systems, including the San Andreas one, from the inversion of interseismic GNSS velocities.

Our approach provide a full description of the strain rate tensor for zones where strain rates are highly contrasted, with no

need to manually tune user-defined parameters. We recover sharp velocity gradients, without systematic artifacts.
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Abstract13

Seismic hazard assessment in active fault zones can benefit of strain rate measure-14

ments derived from geodetic data. Producing a continuous strain rate map from discrete15

data is an inverse problem traditionally tackled with standard interpolation schemes. Most16

algorithms require user-defined regression parameters that determine the smoothness of17

the recovered velocity field, and the amplitude of its spatial derivatives. This may lead18

to biases in the strain rates estimation which could eventually impact studies on earth-19

quake hazard. Here we propose a transdimensional Bayesian method to estimate sur-20

face strain rates from GNSS velocities. We parameterize the velocity field with a vari-21

able number of Delaunay triangles, and use a reversible jump Monte-Carlo Markov Chain22

algorithm to sample the probability distribution of surface velocities and spatial deriva-23

tives. The solution is a complete probability distribution function for each component24

of the strain rate field. We conduct synthetic tests and compare our approach to a stan-25

dard b-spline interpolation scheme. Our method is more resilient to data errors and un-26

even data distribution, while providing uncertainties associated with recovered veloci-27

ties and strain rates. We apply our method to the Southwestern US, an extensively stud-28

ied and monitored area and infer probabilistic strain rates along the main fault systems,29

including the San Andreas one, from the inversion of interseismic GNSS velocities. Our30

approach provide a full description of the strain rate tensor for zones where strain rates31

are highly contrasted, with no need to manually tune user-defined parameters. We re-32

cover sharp velocity gradients, without systematic artifacts.33

1 Introduction34

1.1 Surface strain, fault behavior and space geodesy35

Imaging and quantifying the present-day lithospheric deformation is crucial to un-36

derstanding how and where long-term tectonic loading is accommodated. Plate tecton-37

ics theory assumes that the relative motion of rigid lithospheric blocks is accommodated38

on a limited set of localized fault zones, where the lithosphere either deforms elastically39

during the interseismic period of the seismic cycle, or in a brittle way during the coseis-40

mic rupture (Le Pichon, 1968; Morgan, 1968; Isacks et al., 1968). In a simple elastic frame-41

work, the surface deformation generated by slip on a dislocation buried in an elastic half-42

space can be computed (e.g. Okada, 1985), as well as the surface deformation produced43

–2–



manuscript submitted to JGR: Solid Earth

by full or partial locking of the buried fault using the “backslip” hypothesis (Savage, 1983).44

Analysing the spatial patterns of surface deformation and their temporal variations around45

active faults can therefore help constraining the behaviour of fault systems at each stage46

of the seismic cycle.47

With the advent of space geodesy in the 1990s, and in particular the growing de-48

velopment of GNSS (Global Navigation Satellite System) networks in active fault zones,49

precise measurements of surface displacements made it possible to detect and model var-50

ious processes of tectonic deformation, thus revolutionizing our understanding of fault51

seismic cycle (e.g. Bürgmann & Thatcher, 2013). The last decades have seen the num-52

ber of geodetic observations of large earthquakes and interseismic strain along major faults53

increase significantly (e.g. Blewitt et al., 2018). Combined with an improved knowledge54

of the past seismic history of faults, such observations have highlighted a spatial corre-55

lation between portions of the seismogenic zone locked during the interseismic period and56

the coseismic rupture zones, while portions of faults aseismically slipping during the in-57

terseismic phase appeared as potential nucleation zones or barriers to earthquakes (e.g.58

Chlieh et al., 2008; Simons et al., 2011; Métois et al., 2016). This paved the way to pro-59

vide plausible scenarios for future earthquakes based on the monitoring of interseismic60

surface strain (e.g. Kaneko et al., 2010; Avouac, 2015; Beauval et al., 2018).61

If most of the deformation due to relative block motions is indeed taken up on well62

localized and mapped plate boundaries, the lithosphere can also deform in a more dif-63

fuse way on wider zones, in particular in and around collisional belts (e.g. Thatcher, 2009).64

Such diffuse deformation may be accommodated elastically by series of multiple active65

faults, or through other non-elastic processes within the lithosphere (England & Mol-66

nar, 1997; Copley, 2008; D’Agostino et al., 2014). In combination with geological, tec-67

tonic and seismological data, geodetic measurements of surface deformation can then help68

to refine the degree of localization of the deformation over wide intracontinental areas,69

to identify active structures and constrain the style of the deformation, as well as the70

underlying mechanical processes.71

Modern geodetic techniques now offer measurements of surface velocities with ac-72

curacy of the order of 1mm/yr or below for the interseismic period. They each have their73

own contributions and specificities concerning the components of the ground motion that74

they capture, their resolution and their uncertainties, and appear to be very complemen-75
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tary. While horizontal and vertical motion can be measured by GNSS and optical im-76

age correlation, Interferometric Synthetic Aperture Radar (InSAR) only provide the pro-77

jection of ground displacements in the line-of-sight (LOS) of the satellite. GNSS mea-78

surements remain spatially sparse, at discrete stations, but benefit from a temporal sam-79

pling up to ' 1Hz. Space geodesy based on optical and radar images, on the contrary,80

provide data at all satellite image pixels, with a temporal resolution dependent on the81

return time of the satellites. Finally, depending on the technique, uncertainties can be82

spatially and temporally correlated or not. Taking advantage of the large amount and83

diversity of geodetic data available today to constrain spatio-temporal variations of the84

strain rate field is a challenge for the community involved in seismic hazard studies.85

1.2 The strain rate tensor : formulation, assumptions and analysis86

The variations of the strain rate field can be explored through the analysis of the87

velocity gradient ∇V = ∂iVj , its symmetrical part, and the strain rate tensor ε̇ij =88

1
2 (∂iVj +∂jVi). Spotting regions with high strain rates may help identify active faults89

prone to high seismic hazard (e.g. Elliott et al., 2016). To this end, maps of the second90

invariant I2 of ε̇ are built either at the local to regional scale (e.g. D’Agostino, 2014; Metois91

et al., 2015), or at the continental to global scale (e.g. Kreemer et al., 2014). Following92

Pérouse et al. (2012); D’Agostino (2014) and Metois et al. (2015), we define the second93

invariant of the horizontal strain rate tensor as :94

I2 =
√
ε̇2xx + ε̇2yy + 2ε̇2xy.95

Note that most GNSS studies only consider the horizontal 2D tensor ε̇ (Ward, 1998;96

D’Agostino, 2014) or a partially 3D tensor (Mazzotti et al., 2011; Shen et al., 2015) for97

two main reasons : (1) the vertical component of the GNSS velocity is often associated98

with large uncertainties (Bennett & Hreinsdóttir, 2007), and (2) we have no access to99

the vertical derivative of the velocity components (∂zVx,∂zVy,∂zVz). Joint GNSS-InSAR100

studies also remain limited to a 2D strain tensor analysis (e.g. Weiss et al., 2020). In this101

study, we only consider the horizontal velocity field and corresponding 2D strain rate ten-102

sor, while discussing in section 6 the possibility to include Vz in future analysis .103

Providing continuous maps of the different components or combinations of com-104

ponents of the horizontal strain tensor can help to understand the tectonic regime and105
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style of deformation of a given area (e.g. Pérouse et al., 2012; Metois et al., 2015; Chou-106

sianitis et al., 2015; Kreemer et al., 2018). For example, the second invariant analysis107

gives clues on the variations of strain amount and localization across faults. The diver-108

gence of the velocity field d = tr(ε̇) highlights areas experiencing dilation or compres-109

sion (a positive divergence stands for dilation while negative divergence is compression),110

while the horizontal vorticity defined as rotV = ∂xVy − ∂yVx allows the identification111

of nearly rigid blocks. The principal directions of the strain rate tensor may also be com-112

pared to directions of stress when the lithosphere is considered fully elastic. They are113

therefore often plotted against focal mechanisms or long-term stress orientations related114

to the geological setting (e.g. England et al., 2016; Mathey et al., 2020).115

In the past decades, the geodetically-derived strain rate tensor has also been used116

to derive the equivalent seismic energy stored as elastic deformation that could be re-117

leased during earthquakes. In particular, Ward (1998) proposes to use the formula from118

Kostrov (1974) to calculate geodetic moment rates Ṁg
o from ε̇, in the case of a uniax-119

ial strain. For a region of given area A, its geodetic moment rate is expressed as :120

Ṁg
o = 2µHsAε̇max, (1)

where µ is the rigidity modulus, Hs the seismogenic thickness, and ε̇max is the largest121

eigenvalue of the strain rate tensor ε̇. Comparing Ṁg
o to the released seismic energy based122

on historical and instrumental seimic catalogues provides information on the energy that123

remains to be released either seismically or aseismically (Ward, 1998; Pancha et al., 2006;124

Mazzotti et al., 2011; Angelica et al., 2013; D’Agostino, 2014).125

1.3 Aim of the study126

As shown above, mapping continuous surface velocities together with their spatial127

derivatives and associated uncertainties can benefit a broad community. However, two128

main methodological limitations remain:129

1. As in-situ geodetic data provide spatially discrete and unevenly distributed infor-130

mation on the surface displacement rate, these data need to be interpolated in or-131

der to recover a continuous strain rate map. This also applies to InSAR data in132

case of low coherence. Such computing formally constitutes an inverse problem133

with a highly non-unique solution and a strong trade-off between model complex-134
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ity and model constraints, i.e. between the level of spatial resolution and the level135

of errors in the solution (Bodin, Sambridge, et al., 2012).136

2. Uncertainties on the interpolated velocity field and their propagation onto the strain137

rate tensor components are often poorly estimated. These uncertainties are nonethe-138

less required and crucial if we want geodetic estimates of the strain rates to in-139

tegrate probabilistic seismic hazard assessment schemes (Beauval et al., 2018; Ger-140

stenberger et al., 2020).141

In this paper, we propose to tackle these issues by applying a transdimensional Bayesian142

approach (Bodin, Salmon, et al., 2012) to the strain rate reconstruction problem. We143

first describe the different approaches used in the community to produce strain rate maps.144

We then present our inversion method and illustrate its potential benefits with synthetic145

tests. Because the San Andreas fault system has been extensively studied in the past and146

is particularly well instrumented, we build our synthetic tests from its simplified geom-147

etry and kinematics. We then propose a first application to real observations of a GNSS148

velocity field spanning the interseismic deformation across this fault system and the South-149

western US. Finally, we discuss the main outcomes, advantages and limitations of the150

proposed method. We show that we are able to provide a full probabilistic description151

of the strain rate tensor for zones where strain rates are highly contrasted, with no need152

to introduce user-defined parameters. Our method recovers sharp velocity gradients, there-153

fore localizing strain, and distinguishing creeping from locked fault segments, without154

systematic biases.155

2 Inverting for the strain rate tensor : state of the art156

Since the first geodetic observations of ground movements by triangulation or lev-157

elling (e.g. Frank, 1966; Savage & Burford, 1970), several methods have been developed158

to infer surface strain rates from velocity fields. Today, they mainly use GNSS data (e.g.159

Shen et al., 1996; Vergnolle et al., 2007; Kreemer et al., 2018; Masson et al., 2019) and160

start to incorporate space geodetic data from InSAR and optical imagery (e.g. H. Wang161

et al., 2019; Barnhart et al., 2020a). Some of these methods rely on geophysical mod-162

els, such as elastic or visco-elastic block models with predefined active faults (e.g. Mc-163

Caffrey et al., 2013; Parsons, 2006), to calculate surface velocity and strain rates. Oth-164

ers aim at deriving the strain rate tensor from surface observations alone, without any165

underlying physical model.166
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Among the “model-free” methods, two main approaches coexist in the literature.167

The most standard approach requires to first spatially interpolate local displacement rates168

measured at GNSS stations to build a continuous velocity field. The strain rate tensor169

is then simply obtained by taking the gradient of the interpolated velocity field. The in-170

terpolation (or 2D regression) is often conducted by fitting a spline function to the data171

(Beavan & Haines, 2001; Kreemer et al., 2003; Metois et al., 2015). The level of smooth-172

ing to interpolate the velocity field is usually arbitrarily defined by the user. For instance,173

in the SPARSE code developed in Beavan & Haines (2001), it is controlled by the in-174

terpolation grid spacing and the variance attributed to each grid cell (it can therefore175

be spatially variable). In the adjusted bi-cubic spline-in-tension method (referred to as176

the B-spline method in the following), a tension parameter must be chosen as well (Smith177

& Wessel, 1990; Wessel & Bercovici, 1998; Gan et al., 2007; Wessel & Becker, 2008; Hackl178

et al., 2009). This tension parameter is unique for the whole study area. In the case of179

unevenly spaced geodetic data, regions with the densest sampling may thus be over-smoothed180

and information may be lost. Other interpolation techniques have been proposed to limit181

this weakness. For instance, the velocity for each cell of the interpolation grid can be com-182

puted as the weighted average of velocities at neighboring GPS stations (Mazzotti et al.,183

2011). However, here again, the weighting function defining the smoothness of the so-184

lution needs to be defined by the user. The level of smoothness of the velocity field (i.e.185

the amplitude of its derivatives) directly determines the amplitude of the strain rate ten-186

sor. An arbitrarily fixed smoothing level is therefore a serious limitation to proper strain187

rate assessment. Finally, B-spline methods are based on a regularized optimization scheme,188

and thus do not offer any constraint on the uncertainties regarding the velocity field and189

the strain rate tensor (Aster et al., 2018), which is problematic in the context of hazard190

assessment.191

In a second type of approach, geodetic strain rates are directly inverted from the192

GNSS data without the need for a velocity interpolation scheme (Shen et al., 1996; Spak-193

man & Nyst, 2002; Ward, 1998). At each point on a regular geographical grid, assum-194

ing a constant strain rate field, a system of linear equations can relate the displacement195

and deformation at that point and GPS velocities at neighbouring stations. The observed196

velocities at GPS stations can thus be inverted through a standard least-square scheme197

to recover the unknown deformation at any given point. This method offers more robust198

strain rate estimates as such rates are directly computed as weighted averages. It pro-199
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vides also a first-order estimate on strain uncertainties. Many studies have used such least-200

square inversion schemes for studying surface deformation in specific areas, as for instance201

Sagiya et al. (2000) in Japan, Chousianitis et al. (2015) in Greece, or Palano et al. (2018)202

in Iran. However, the parameter controlling the weighting decay with distance in the least-203

square inversion remains again arbitrarily-chosen, and acts as a smoothing factor that204

affects the resulting solution. Efforts have been made to optimize the level of smooth-205

ing and to account for spatial variability of data density (Shen et al., 2007, 2015). In par-206

ticular, Kreemer et al. (2018) propose an algorithm in which, for any given evaluation207

point, multiple least-square inversions from different stations triplets are conducted. The208

median strain rates over the ensemble of inverted ones are then provided at that point.209

However, the standard techniques presented above remain sensitive to the GNSS210

network geometry (with unevenly spaced data in most cases), data outliers and ad-hoc211

user parameters. This is now acknowledged as a major issue in the community, poten-212

tially leading to systematic artifacts that could be mis-interpreted as tectonic signals (e.g.213

Baxter et al., 2011). In the Southwestern US for instance, where seismic hazard is high,214

a wide range of methods have been applied in the last decades to recover the strain rate215

tensor (e.g. Hackl et al., 2009; Kreemer et al., 2018), with results that may differ signif-216

icantly (Sandwell et al., 2010). The remaining limitations in these methods are there-217

fore preventing further integration of geodetic measurements in seismic assessment meth-218

ods.219

In an attempt to overcome such limitations, we propose a method based on Bayesian220

inference to invert discrete GNSS velocities for the continuous 2D surface displacement221

field and the associated velocity gradients and strain rate tensor. We follow from the work222

of Bodin, Salmon, et al. (2012) who proposed a transdimensional Bayesian surface re-223

construction algorithm to estimate the Moho topography beneath Australia from a dis-224

crete set of local observations. In this approach, the reconstructed surface is parameter-225

ized with a mesh that self-adapts to the level of information in the data. This proves to226

be well suited for very heterogeneous data (spatially or in terms of data type and noise227

level). Choblet et al. (2014) used the same approach to reconstruct probabilistic maps228

of relative variations of coastal sea level from tide gauge records. The approach was also229

used by Husson et al. (2018) to reconstruct maps of vertical displacement rates from GPS230

measurements, and by Hawkins, Bodin, et al. (2019) and Hawkins, Husson, et al. (2019)231

to reconstruct maps of seal level rise by combining vertical GPS velocities, satellite al-232
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Figure 1. Horizontal GPS velocities from the MIDAS dataset in IGS14 reference frame in the

Southwestern US (this study area). Ellipsses represent the uncertainties at 95% level. Black lines

: active faults (Quaternary fault and fold database, 2019). Note that the density of GNSS sta-

tions is highly variable and higher near the San Andreas fault system. Key features of this plate

boundary zone are labeled : 1- Monarch Peek creeping section (Central section) of the main San

Andreas fault, 2- Salton Sea Lake zone, 3- Wasatch mountains fault zone, 4- Basin and Range

province, 5- East California Shear Zone, 6- Walker Lane, 7- Long Valley Caldera, 8- Central

Valley and Sierra Nevada.
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timetry and tide gauge measurements. In this work, the reconstructed surface is defined233

by two parameters : the two components of the interseismic horizontal velocities mea-234

sured at GNSS stations. Details of the method are presented in section 4.235

3 Tectonic context of the Southwestern US and GNSS velocity field236

To test and illustrate the potential of our methodology, we need a data set that is237

heterogeneous in several aspects : heterogeneous in data coverage, with a combination238

of densely monitored and poorly sampled areas, heterogeneous in data quality with vari-239

able uncertainties, and spatially heterogeneous in the expected strain rate amplitude and240

style.241

In all these regards, our study area, located in the Southwestern US (31◦ to 43◦N,242

110◦ to 124◦W, see figure 1) is a good test case. The plate boundary between the Pa-243

cific and North American plates accommodates ' 5 cm/yr of relative right-lateral mo-244

tion (Altamimi et al., 2017) partitioned over several active structures. The most famous245

one is the San Andreas strike-slip fault system that takes up to 78% of the relative plate246

motion (Freymueller et al., 1999; Bennett et al., 2003), the remaining motion being ac-247

commodated on a set of distributed active faults further inland. Eastward, the Sierra248

Nevada and Central Valley behave as a nearly rigid microplate that moves 11.4 mm/yr249

Northwestward relative to the stable North American plate (Bennett et al., 2003; Pérouse250

& Wernicke, 2017). This microplate is bounded to the East by the Walker Lane and East251

California Shear Zone where right-lateral shearing is dominant, with a small amount of252

extension, and that hosted significant historical earthquakes (Bennett et al., 2003; Niemi253

et al., 2004; Wesnousky et al., 2012). The Garlock fault zone, in the vicinity of which254

occurred the recent Ridgecrest sequence (July 2019, Mw max 7.1 (e.g. K. Wang & Bürgmann,255

2020)), is a SW-NE left-lateral strike slip structure perpendicular to the San Andreas256

and East California Shear Zone (Peltzer et al., 2001a). The large Basin and Range province257

farther east extends up to the Wasatch mountain belt and is characterized by a series258

of normal faults accomodating on the order of 3 mm/yr of the relative plate motion (e.g.259

Niemi et al., 2004). The Wasatch fault zone, marking the boundary between the Basin260

and Range and the Colorado stable plateau, is the easternmost active structure of the261

plate boundary zone and is extending at low rates (1-2 mm/yr) that may allow for Mw262

7 earthquakes with large recurrence time (Machette et al., 1991; Niemi et al., 2004; Pérouse263

& Wernicke, 2017).264
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This complex plate boundary area is one of the best studied fault zones on Earth265

and geodetic measurements have been conducted there since 1923 (date of the first lev-266

elling studies in the Parkfield area) and more extensively since the 1980’s (e.g. Snay et267

al., 1983; Murray & Langbein, 2006). Since then, modern GNSS networks have been in-268

stalled to monitor the ongoing surface deformation, for instance in the framework of the269

PBO (Herring et al., 2016), NEARNET/MAGNET (B. Hammond et al., 2010), or SCIGN270

(Hudnut et al., 2001) initiatives. The observed deformation is due to a wide variety of271

physical phenomena : eulerian plate or microplate motions (Altamimi et al., 2016), in-272

terseismic loading on active faults (e.g. Peltzer et al., 2001b; McCaffrey, 2005), coseis-273

mic and postseismic deformation due to relatively moderate but destructive earthquakes274

(e.g. Shen et al., 1994; Murray & Langbein, 2006; Milliner & Donnellan, 2020), volcanic275

inflation and deflation of the Long Valley caldera (e.g. Marshall et al., 1997; W. Ham-276

mond et al., 2019), and hydrological depletion or infill of aquifers in particular in the Cen-277

tral Valley (Amos et al., 2014; Chaussard et al., 2017) or elsewhere (Silverii et al., 2020).278

To represent the current deformation in Southwestern US, we choose here to use279

the MIDAS (Median Interannual Difference Adjusted for Skewness) velocity field that280

compiles long-term velocities derived from GNSS daily times-series. It is provided by the281

Nevada Geodetic Laboratory (Blewitt et al., 2016, 2018). In our study area, the MIDAS282

data set (downloaded on February 2020) provides velocities for 2441 stations of various283

local networks (PBO, MAGNET, SCIGN) gathered in the Network of the Americas (NOTA,284

see figure 1). The velocities are calculated on the 1994 to 2020 time-span in the IGS14285

reference frame. In the densest parts of the velocity field, in particular near the San An-286

dreas fault or in the Long Valley Caldera, baselines are around 10 km (even shorter near287

some large city centers), while they reach more than 250 km in the less densely instru-288

mented areas within the Basin and Range (figure 1).289

The MIDAS algorithm computes velocities for each individual time-series as the290

median of the linear trends obtained between two dates separated by approximately one291

year (Blewitt et al., 2016). As a result, MIDAS estimated velocities should be less af-292

fected by seasonality than when using classical regressions, and give robust estimates for293

surface average velocities (W. C. Hammond et al., 2016), except where non-linear de-294

formation occurs such as post-seismic deformation or multi-annual hydrological loading.295

This is not the case in our study area for the considered time-span, therefore we assume296

that the data set mostly captures the interseismic deformation in the area. We remove297
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only 4 stations from our data set, either because their velocities were computed on a too298

short time-span (lower than one year) or because their velocities were larger than 150299

mm/yr on at least one component. In our study area, average uncertainties are of 0.31,300

0.28 and 0.81 mm/yr on the East, North and Up components, respectively. The uncer-301

tainties estimated by the MIDAS algorithm may be considered slightly overestimated302

compared to those obtained with usual techniques for long and clean time series (Maz-303

zotti et al., 2020). However, because we chose to use on purpose the raw MIDAS inter-304

seismic velocity field provided online, without very restrictive quality criterion (see above),305

our data set may still include velocities that are not fully consistent with the long-term306

interseismic trends (when calculated on a too short time period or in cases of large data307

gaps for instance). To take into account this remaining heterogeneity in the data set, we308

thus chose to increase the MIDAS uncertainties by 10%. In the Bayesian inversion car-309

ried out in this study, we assume that errors affecting the velocities are Gaussian, un-310

correlated between different stations and independent on each horizontal component. This311

is a strong first-order hypothesis. Indeed, the structure of noise on a single GPS station312

is usually considered to be composite, both white and flicker (Williams et al., 2004; San-313

tamaŕıa-Gómez et al., 2011), and spatially correlated noise has been identified on regional314

to global scale (also called common-mode error, see (Wdowinski et al., 1997; Dong et al.,315

2006; Benoist et al., 2020)). This hypothesis and its implications will be discussed fur-316

ther in section 6.317

Other velocity estimates have been published for this region (e.g. McCaffrey, 2005;318

Klein et al., 2019) and may be substantially different from the MIDAS data set (either319

because they cover a different time-span or because of different post-processing choices).320

However, our paper aims at demonstrating the potential of our inversion method what-321

ever the chosen inverted data set.322

To assess the behavior and the performances of our algorithm, we first create a re-323

alistic synthetic set of velocity measurements that mimics the real MIDAS velocity field324

described above. We compute a theoretical (target) velocity field, and sample it at each325

GNSS station used in MIDAS (see section 5.1 for details on the synthetic model used).326

We then add random Gaussian errors to each measurement with a variance as given by327

MIDAS uncertainties. In a second step, we apply the inversion scheme to the real MI-328

DAS velocity field described above. Both data sets share the exact same characteristics329
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and can be considered as an ensemble of displacement rates measured at n GNSS sta-330

tions that can be formally described by the vector:331

dobs = [(Vx1
, Vy1

),

...,

(Vxn
, Vyn

)]

where (Vxi
, Vyi

) define the observed ground velocities for the ith of our n GNSS stations332

used as an input. Similarly, uncertainties associated with these observations are given333

by a vector334

σobs = [(σx1
, σy1

),

...,

(σxn
, σyn

)]

4 Method: Inverting for the geodetic strain rate335

4.1 Parameterizing the velocity field336

To parameterize the continuous horizontal velocity field at the surface, we use a337

set of nodes scattered on the surface as represented in red in figure 4.1. A horizontal ve-338

locity vector is assigned to each node. Note that nodes are independent of the location339

of the GNSS stations: their number, position, and velocity value are unknown param-340

eters to be inverted for. They can be freely modified during the inversion. This surface341

parametrization is given by the vector:342

m = [k, (Nx1
, Ny1

, x1, y1),

...,

(Nxk
, Nyk

, xk, yk)]

where k is the number of nodes, and (Nxj
, Nyj

, xj , yj) define the horizontal veloc-343

ities and position for the jth node of the parametrization.344

A continuous planar surface can be constructed from the vector m. The nodes are345

used to partition the plane into Delaunay triangles, so that no node is inside the circum-346
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circle of any triangle. The velocity field within a triangle is then defined by a linear in-347

terpolation between the velocities assigned at each node defining the triangle. Within348

each triangle, the velocity field is a linear function of space, and the gradient (which is349

constant within the triangle) can be obtained from the node velocities through an an-350

alytical expression.351

Delaunay triangulation schemes have previously been used to compute geodetic strain352

rates (Kreemer et al., 2018). In these techniques, the vertices are usually fixed, for ex-353

ample at the location of GNSS stations (Cai et al., 2008; Farolfi & Del Ventisette, 2017).354

In contrast, we propose here an evolutive triangulation : the nodes’ location and veloc-355

ity are the unknown of the inversion and will adapt to the level of information provided356

by the data.357

Additional nodes are added at the four corners of the area of interest to insure that358

every point in this area is within the convex hull of the Delaunay triangulation.359

4.2 Bayesian inference360

The solution m of our regression problem is clearly non-unique, and a Bayesian ap-361

proach can be used to represent the solution in probabilistic terms (Tarantola, 2005).362

In a Bayesian framework, the solution to the inverse problem is the a posteriori prob-363

ability density function (PDF), that is the probability of the model parameters m given364

the observed data dobs. It can be written through Baye’s theorem:365

p(m|dobs) =
p(m)p(dobs|m)

p(dobs)
(2)

where p(m) is the a priori probability distribution on the model (or prior), which rep-366

resents our knowledge about the model before observing the data. In this work, we as-367

sume minimal prior knowledge, and use a uniform prior distribution within a reasonable368

range for each parameter. p(dobs) is the evidence and can be ignored here as it is con-369

stant and does not depend on m.370

The term p(dobs|m) is the likelihood distribution. It represents the probability of371

observing the data given the model and the distribution of data errors. Assuming that372

data errors are normally distributed with standard deviations given by σobs, the like-373

lihood can be related to a L2 misfit function, and expressed as:374
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Figure 2. Example of surface meshing using Delaunay triangulation. Each node (in red) is

assigned an horizontal velocity and the full velocity field (green gradient) can be obtained using

a first order linear interpolation between the vertices on each triangle. Vertices can be added,

suppressed or displaced during the algorithm, and their values can be modified. They are distinct

from fixed GNSS stations (in purple) where data are available.

p(dobs|m) ∝ exp

(
−
∑

i∈[1,n]

((
Vxi
− Sxi

(m)
)2

2σ2
xi

+

(
Vyi − Syi(m)

)2
2σ2

yi

))
, (3)

where Sxi(m) and Syi(m) stand for the components of the surface velocity predicted375

by the model m at the position of data points [xi, yi]. These values are compared with376

the observed velocities Vxi
and Vyi

at the same positions, the differences being weighted377

by the corresponding uncertainties on the velocities (σxi
, σyi

).378

4.3 Sampling models from the posterior distribution379

We use a Markov chain Monte Carlo (McMC) scheme to generate a large ensem-380

ble of models which distribution asymptotically converges to the a posteriori PDF. Here381

we use the reversible-jump Markov chain Monte-Carlo algorithm (Green, 1995, 2003) which382
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Algorithm 1 rj-MCMC main loop

Start with an initial model described by a set of vertices m(Nxi , Nyi , xi, yi).

for i = 1, Nsamples do

1 : Propose a new model m by randomly perturbing the current model. Choose one

of the following perturbation at random:

- Birth of a node on a random point of the surface.

- Death of a node.

- Change the horizontal velocity of a node.

- Displacement of a node.

2 : Calculate the a posteriori probability of the perturbed model p(m′|dobs|)

3 : Randomly accept the new model with probability α(m′|m) = f
(p(m′|dobs)

p(m|dobs)

)
where f(.) is a function defined in Bodin & Sambridge (2009)

4 : If accepted, m←m′. Else, m←m.

5 : Compute the velocity field S(m) predicted for the model, and keep it in the

ensemble solution. For each point of the map (i.e. on an underlying small grid as

defined in section 4.4), calculate the velocity field at the point, its spatial derivatives,

the strain rate tensor, and any quantity of interest (second invariant, divergence,

vorticity, ...). Store these values for the final distribution.

end for

is a generalization of the Metropolis-Hasting algorithm (Metropolis et al., 1953; Hast-383

ings, 1970) to the case where the number of parameters is variable.384

This algorithm randomly explores the model space by generating a chain of mod-385

els where at each step, the current model is perturbed to produce a new proposed model.386

Then, the a posteriori probability of the current and proposed model are compared, and387

the new model is either accepted in the chain or rejected according to an acceptance rule388

depending on the ratio of posterior values. A pseudocode for the algorithm is given in389

table Algorithm 1 below. For a general description of McMC sampling, see (Geyer, 1992;390

Brooks et al., 2011; Sambridge & Mosegaard, 2002). For specific applications to trans-391

dimensional geophysical problems where the number of parameter is variable, see (Bodin392

& Sambridge, 2009; Bodin, Sambridge, et al., 2012; Sambridge et al., 2013).393
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Figure 3. Convergence of the mean vorticity map. Convergence tests are performed on the

synthetic velocity field built for our study area. Each panel shows the mean of the vorticity in

the ensemble solution that is composed of either 1, 20, 200 or 6000 models. As the number of

sampled models increases (i.e. the number of steps in the random walk), the relevant character-

istics of the vorticity field begin to appear while the triangle-shaped areas due to the Delaunay

triangulation tend to fade away.

As the number of iterations in the Markov chain increases, the values of sampled394

parameters (e.g. the number of nodes) progressively converge toward a statistically sta-395

tionary distribution which approximates the posterior distribution.396

4.4 Extracting relevant information from the ensemble solution397

It is important to note that the solution to our problem is not a single Delaunay398

velocity model that minimizes a misfit function. A model with zero misfit could be eas-399

ily obtained by placing a Delaunay node at each GNSS station. However, such a model400

would be strongly unrealistic, as it would fit data errors, and depict a constant veloc-401

ity gradient in each triangle, with sharp and discontinuous changes in strain rate at the402

triangle edges.403

Instead, the solution of a Bayesian inverse problem is rather the entire a posteri-404

ori probability distribution (PDF), i.e. an ensemble of velocity models with varying num-405
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ber of Delaunay cells. To appraise this distribution, we define an underlying grid (which406

can be as fine as needed for visualization), and store at each pixel of the grid the full dis-407

tribution of all parameters of interest, such as velocity components, spatial derivatives,408

divergence, vorticity, I2, or any other combination of the strain tensor components. By409

combining the information from several tens of thousand of models, we therefore obtain410

at each pixel of the map the entire probability distribution on any desired parameter.411

For visualization, we exhibit 2D maps of statistical indicators for the parameter412

of interest : the representation of the posterior PDF is, at each point of the map, the av-413

erage, the median value or the mode of maximum probability from all sampled models414

on that point. As an example, the mean vorticity map obtained for the synthetic test415

case presented in section 5.1 is shown in Figure 3. In this way, a large number of mod-416

els with different Delaunay parametrizations are stacked together. In a single model, the417

vorticity is constant over each triangle (top-left panel in Figure 3). But the continuous418

mean model contains features common to the entire family of models and considerably419

more information than any single Delaunay model.420

Finally, it is important to insure that the algorithm has reasonably converged. A421

great number of models (typically between 104 and 105) are required to obtain an ac-422

curate depiction of the complete a posteriori probability distribution function. The in-423

fluence of the number of models on the mean solution is shown in Figure 3, where the424

map of mean vorticity value is shown for different numbers of McMC iterations.425

5 Results426

5.1 Synthetic tests on an ideal San Andreas Fault427

In order to assess the efficiency of our algorithm, we build a synthetic velocity field428

that results from the relative plate motion and interseismic loading on a simplified San429

Andreas fault. We use the TDEFNODE code developed by McCaffrey (2005) and based430

on Okada (1985)’s equations, and assume full locking of the fault (from 0 to 30 km depth)431

within a fully elastic homogeneous half-space (see Figure 4 and 5). The fault is designed432

as vertical and is forced to be purely strike-slip. The Pacific plate motion relative to the433

fixed North American plate is described by an ad-hoc Euler pole (21.9°E, 14.2°N, 0.48°/Myr),434

that generates an overall 5 cm/yr relative right lateral motion.435
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Figure 4. Synthetic tests for velocity field recovery on an idealized San Andreas fault. Black

line : fault location. a) The amplitude of the synthetic horizontal velocity is color coded. Blue

and green arrows stands for the synthetic velocity data sampled at the position of the GNSS

stations from the real MIDAS velocity field. b) Average velocity field obtained with our Bayesian

scheme. Areas where the PDF displays a standard deviation ≥ 3mm/yr are masked. c) Interpo-

lated velocity field inverted with B-spline standard procedure.

We then extract the velocities at the locations of stations used in the MIDAS dataset436

(see section 3 and (Blewitt et al., 2016)), and add random Gaussian errors to each com-437

ponent with variance given by MIDAS uncertainties. We invert this synthetic data set438

to recover a continuous velocity field, its divergence, vorticity and the second invariant439

I2 of the strain rate tensor using two methods : our Bayesian algorithm presented avove,440

and a standard bi-cubic spline-in-tension inversion method (see figures 4 and 5). In or-441

der to assess the quality of the inversion, we use the L2 distance between maps of sec-442

ond invariant for the recovered model and the true synthetic model:443

Distance =

√√√√ 1

n

n∑
i=1

(Itrue2 − Im2 )2i (4)

where Itrue2 and Im2 are the second invariants derived from the true synthetic model444

and the inverted velocity field, and n is the number of pixels in the maps. We chose to445

define the distance on I2 rather than on the velocity components since it appears that446

inversion artifacts appear on velocity spatial derivatives (Baxter et al., 2011). This dis-447

tance indicates the ability of a method to recover the original signal over the entire re-448

gion, though it does not reflect the level of data fit (measured only at stations).449

–19–



manuscript submitted to JGR: Solid Earth

0

400

800

1200

0 400 800 1200

0 400 800 1200

2nd Invariant
T

ru
e 

M
od

el

0

400

800

1200

0 400 800 1200

0 400 800 1200

Vorticity

0

400

800

1200

0 400 800 1200

0 400 800 1200

Divergence

0

400

800

1200

0 400 800 1200

B
a
y
es

ia
n

 I
n

v
er

si
o
n

0

400

800

1200

0 400 800 1200
0

400

800

1200

0 400 800 1200

0

400

800

1200

0 400 800 1200

B
−

S
p

li
n

e 
In

ve
rs

io
n

0

400

800

1200

0 400 800 1200
0

400

800

1200

0 400 800 1200

ns.yr⁻¹ ns.yr⁻¹

ns.yr⁻¹

−50
−40
−30
−20
−10

0
10
20
30
40
50

ns.yr⁻¹

−100
−80
−60
−40
−20

0
20
40
60
80

100

0

50

100

150

200

250

300

350

400

ns.yr⁻¹

0

50

100

150

200

250

300

350

400

−100
−80
−60
−40
−20

0
20
40
60
80

100

−50
−40
−30
−20
−10

0
10
20
30
40
50

ns.yr⁻¹

0

50

100

150

200

250

300

350

400

ns.yr⁻¹ ns.yr⁻¹

−100
−80
−60
−40
−20

0
20
40
60
80

100

ns.yr⁻¹

−50
−40
−30
−20
−10

0
10
20
30
40
50

Figure 5. Strain rate tensor recovery from our synthetic test on an idealized San Andreas

fault. Maps of the second invariant (left), vorticity (center) and divergence (right, compression is

negative, dilation is positive) of the strain rate tensor are shown. The values expected from our

synthetic model are shown on the upper panels (“True model”), together with results from our

Bayesian inversion (average of the posterior distribution, middle), and from standard B-spline

inversion (model obtained with optimal tension and grid parameters, lower panels). Black line :

simplified San Andreas fault trace. Areas where the standard deviation of the horizontal velocity

PDF is higher than 3 mm/yr are masked since our Bayesian inversion is insufficiently constrained

there (see figure 4). Parameters of the B-spline inversion were chosen to minimize the distance to

the true model on the second invariant (see equation 4).
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Figure 6. Distance to the true model calculated on the second invariant for the Bayesian in-

version (based on the average model) and the B-spline method, for increasing level of data noise

(see equation 4). Different B-spline inversions with increasing grid steps, corresponding to an

increased level of smoothing are presented.

To perform the B-spline interpolation, we use a minimum curvature approach, where450

the interpolated surface minimized the level of data fit, while having continuous second451

derivatives and minimal total squared curvature (Smith & Wessel, 1990). We use the GMT452

blockmean and surface functions (Wessel et al., 2019), and calculate independently the453

velocity components Veast and Vnorth on each node of a predefined grid. In this proce-454

dure, the smoothness of the solution is determined by 2 parameters arbitrarily chosen455

by the user: the size of the grid and a tension parameter (see (Smith & Wessel, 1990)456

for more details on the method).457

Those user-defined inputs are critical and should be carefully chosen. Therefore,458

on figures 4 and 5, we show the B-spline solution that minimizes the distance to the true459

model (equation 4), obtained by manually adjusting the tension and grid parameters.460

Of course, in a real data case, this manual adjustement could not be done.461

For comparison, we plot on figures 4 and 5 the mean of the posterior PDF obtained462

with our Bayesian scheme for the velocity field, vorticity, divergence and second invari-463

ant. Overall, both inversion methods retrieve reasonably well the synthetic target with464
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a fit to the true I2 model of 37.6 and 39.5 nstrain/yr for the average of our Bayesian so-465

lution and B-spline best model, respectively. Though, major differences arise locally on466

spatial derivatives of the velocity field. Distributions obtained for I2, vorticity and di-467

vergence inverted using B-spline inversion contain small wavelengths that are well known468

interpolation artifacts mainly due to network geometry and data outliers (Baxter et al.,469

2011). Moreover, I2 is systematically underestimated in the near field of the fault due470

to over-smoothing (by around 100 nstrain/yr), and the divergence map is particularly471

affected by small scale artifacts that may lead to incorrect interpretations. On the other472

hand, the average maps resulting from the Bayesian inversion are free from these small473

scale artifacts and recover well both the amplitude and spatial variations of deformation.474

5.1.1 Noise sensitivity475

One of the main limitation of conventional approaches used to produce strain rate476

maps is their high sensitivity to noise. As shown in Figure 5, the Bayesian inversion ap-477

pears significantly more resilient to errors than the B-spline method. The patchy aspect478

of the divergence map obtained from the B-spline interpolation could be reduced by us-479

ing a higher level of smoothing but meaningful signal in the near-field of the fault would480

then be lost.481

We test the influence of the level of noise added to the synthetic data set on both482

inversion techniques. Random errors are kept Gaussian and uncorrelated between sta-483

tions. We test different cases where we progressively increase the noise on the data by484

scaling the errors given by MIDAS uncertainties by a factor varying between 0 and 3.485

Because results from the B-spline interpolation highly depends on user-defined param-486

eters, we systematically test different smoothing values (i.e. grid steps) for each noise487

level with a constant tension. We compare in figure 6 the results obtained for the B-spline488

and Bayesian method. For the Bayesian inversion, we represent both the average and489

the median of the I2 PDF.490

As expected, the quality of both interpolations decreases with the level of noise.491

However, the Bayesian scheme performs better that the B-spline inversion, whatever the492

smoothing factor (i.e. grid step) considered. Figure 6 also illustrates well the sensitiv-493

ity of the B-spline interpolation to the smoothing parameter (grid step) : low smooth-494

ing produces data over-fiting and unstable results, whereas high smoothing causes in-495
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Figure 7. Standard deviation of the probability density function (PDF) obtained for the norm

of the horizontal velocity using our Bayesian method on synthetic noisy data set (noise factor

of 1). The color-scale is saturated for σ ≥ 3mm/yr, this threshold help masking the poorly

constrained areas in figures 5,4 and 9. Areas of high velocity gradients are characterized by inter-

mediate standard deviations, while zones with no or few data exhibit higher standard deviations

(e.g. edges of the studied area). This statistic measure can be used as a proxy for the robustness

of the result (see figure 5).

formation loss. Our Bayesian inversion scheme enables us to avoid having to arbitrar-496

ily choose the level of complexity in the reconstructed model (Bodin & Sambridge, 2009).497

5.1.2 Visualizing and interpreting the Posterior solution498

Obtaining a comprehensive estimate of the posterior uncertainties affecting the in-499

terpolated velocity field and its spatial derivatives can be challenging. One option is to500

consider at each geographical point the standard deviation of the posterior PDF for each501

inverted parameter (velocity, I2, vorticity, divergence). We plot in figure 7 this error map502

for the norm of the horizontal velocities. The standard deviation is the highest where503

data are scarse or missing : there, the solution is not constrained and the PDF is nearly504
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Figure 8. Slices of the entire PDF for different parameters along the cross-section displayed

on top left of the picture. The location of the fault is materialized by a vertical black line on the

profiles. The horizontal axis represents the distance along the section and the vertical axis cor-

responds to the range of the prior, i.e. the allowed range of values for the parameter. The color

scale indicate the probability for the parameter on each point to take the corresponding value

in the posterior. Profiles of the true model, the mean Bayesian model and the B-spline inversion

are superposed on the PDF. The red dotted line delimits the interval of 90% confidence. a) PDF

of the velocity, along and across profiles b) PDF of the 2nd invariant, the divergence and the

vorticity of the strain rate tensor.

–24–



manuscript submitted to JGR: Solid Earth

flat. We chose to mask these unconstrained zones based on a threshold value fixed at 3505

mm/yr (see grey areas in figure 5 for instance). On the other hand, zones where the ve-506

locity field is well captured by the data set are characterized by low error values (≤ 0.5mm/yr).507

Intermediate levels of errors are observed in areas where the velocity gradient is the high-508

est, i.e. in the very near field from the San Andreas fault in our synthetic model.509

A careful inspection of the posterior distribution can be conducted on areas of in-510

terest to better interpret the results. A convenient way to do so is to plot the full dis-511

tribution on chosen cross-sections. In figure 8, we present the posterior distribution for512

both components of horizontal velocity (b-c), second invariant I2 (d), divergence (e) and513

vorticity (f) along a 230 km-long profile roughly perpendicular (azimuth N55) to the south-514

ernmost section of the San Andreas fault (see figure 8-a). The normalized probability515

dsitribution is color-coded for each pixel. The mean and 90% credible interval of the dis-516

tribution are indicated as well as the result from the B-spline interpolation method and517

the true synthetic model. The posterior distributions for the velocity components are518

very narrow (< 1.5mm/yr), and centered on the true model.The distribution is wider519

for the derivatives because small oscillations in the velocity field can lead to substantial520

variations on the components of the strain rate tensor. The true model is enclosed in the521

90% confidence interval and is in general well estimated by the mean of the distribution,522

except in the very near field of the fault, where deformation is strongly localized.523

Results from the B-spline interpolation often deviate significantly from the true model524

with misplaced or non-existent oscillations, that are directly due to noisy data and that525

correspond to the small-wavelength patches seen in figure 5. It is therefore difficult to526

conduct a proper interpretation of spatial derivatives of the velocity field obtained from527

direct interpolation schemes, especially since these artifacts resemble the signal that could528

be expected around active faults Baxter et al. (2011).529

5.2 Bayesian inversion of the MIDAS dataset530

We then invert the real observations from the MIDAS dataset (Blewitt et al., 2016)531

and associated uncertainties described in section 3. We present in figure 9 the map of532

posterior mean for I2 and the divergence (see supplementary material for map of the vor-533

ticity, standard deviation, and velocity residuals). Figure 10 shows the full distribution534

plotted along two distinct profiles crossing the San Andreas fault for the perpendicular-535
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to-profile velocity component and second invariant I2. The recovered map of second in-536

variant is rather smooth, except in the near field from the San Andreas fault zone. There,537

high values of I2 (higher than 1000 nstrain/yr) are observed on relatively narrow zones538

around the main fault (80 km wide for box 2 in figure 9 and corresponding cross-section539

in figure 10-b). An extreme situation is observed in the Monarch Peek segment (box 1540

in figure 9) where I2 reaches values well above 1000 nstrain/yr on a 15 km narrow sec-541

tion around the main fault (see figure 10-a). In the Walker lane, I2 reaches intermedi-542

ate values (∼100nstrain/yr) while it is lower than 10 nstrain/yr in the Basin and Range543

area with a slight increase over the Wasatch mountains. The profiles presented in fig-544

ure 10 a and b cross the San Andreas fault Monarch Peek and Salton Sea lake segments,545

respectively. Both zones are relatively well constrained by the data set since the poste-546

rior distribution of the velocity components is narrow all along the profile line, except547

in the very near field of the fault in the Monarch Peek segment. Distributions are wider548

for I2, in particular when crossing the active faults. The average, median and maximum549

probability are plotted, together with the 90% confidence interval. Differences are small550

between the average and median in the velocity profiles (less than 1mm/yr) and trends551

are very similar in I2 cross-section. Some significant variations arise when looking at the552

maximum probability mode that exhibits sharper transitions in particular in the Monarch553

Peek profile (figure 10-a).554

The map showing the mean of the distribution for the divergence exhibits much555

more complex spatial variations (figure 9-b). Values range from -500 to 300 nstrain/yr,556

with extrema located in the vicinity of the San Andreas main fault zone (color scale is557

saturated in figure 9-b for clarity). Compression is dominant in the Garlock-San Andreas558

junction zone, while extension occurs at low rates in the Wasatch mountains in a nearly559

E-W direction. Slightly higher dilation rates are observed in the Walker Lane region (20-560

30 nstrain/yr) and in the Long Valley caldera (up to 200 nstrain/yr locally). Some lo-561

calized extensional areas are also found in the vicinity of the main San Andreas fault zone562

in agreement with previously published dilatation maps (e.g. Kreemer et al., 2014).563

In order to discuss the tectonic style in the area, we also compute the distribution564

for principal strain rate directions, and plot the mean directions in figure 9-b. Figure 11565

shows a representation of the full distibution corresponding to box 3 in figure 9-b. Rose566

diagrams provide a convenient way to jointly plot the principal strain rate direction, its567

amplitude (length of the histogram bin), style (compression is blue, extension is red) and568
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Figure 9. a- Average of the a posteriori probability distribution (PDF) of the second invari-

ant of the strain rate tensor I2 in nstrain/yr. The color scale is saturated for values above 1000

nstrain/yr. Black lines : active faults from Quaternary fault and fold database (2019). Box 1

and 2 stand for the chosen cross sections presented in figure 10 for the creeping segment north of

Parkfield and Salton Sea Lake segments, respectively. b- Same but for the divergence. Positive

divergence stands for extension, negative for compression. Black arrows : mean of the principal

directions of the strain rate tensor for an arbitrarily chosen set of points, scaled by their ampli-

tude. Box 3 is the area represented in figure 11.

the associated normalized probability (color coded, see figure 11). Therefore, one can as-569

sess how well constrained is the strain rate tensor and can assess whether the tectonic570

style is robustly defined : for instance, the dispersion is lower around the principal di-571

rections to the East (Sierra Nevada) than to the West (Walker Lane) in figure 11. There,572

a large dispersion is observed both in the direction of the principal strain and in their573

amplitude : while the maximum probability mode shows a dominant roughly N160 com-574

pression and a limited N70 extension, few models propose a dominant N110 extension575

and a limited N20 compression, i.e. a completely distinct tectonic regime. Such poorly576

constrained principal strain rate components should therefore be considered with extreme577

caution if used for tectonic interpretation.578
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Figure 10. Variations of the perpendicular velocity component (upper pannel) and I2 (bot-

tom pannel) along two profile lines shown in figure 9. The full posterior probability (normalized)

plotted together with its average (orange line), median (green line), maximum (purple) and 90%

of probability envelop (dashed black line). Black arrows stand for the main mapped faults (Qua-

ternary fault and fold database, 2019; Fialko, 2006) : SAF San Andreas fault, SJF : San Jacinto

fault, CCF : Coyote Creek fault, and Elsinore fault.
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Figure 11. Zoom on the Sierra Nevada to Walker Lane transition, i.e. zone 3 in figure 9-b.

Black arrows stand for the average of the PDF for the principal components of the strain rate

tensor. A more complete description of the PDF is proposed as windroses for both points : the

amplitude (in nstrain/yr) and normalized probability (color coded) is represented for each 10◦

bin. Blue stand for compression, red for extension.
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6 Discussion579

6.1 Advantages and limits of the Bayesian surface reconstruction580

As shown with synthetics tests, our method provides better strain rate estimates581

compared to conventional interpolations schemes, where the level of smoothing is man-582

ually adjusted by the user. In a transdimensional formulation, the number of parame-583

ters defining the surface is not fixed in advance, and the complexity of the solution (smooth-584

ness) naturally adapts to the level of information present in the data. A probabilistic so-585

lution also provides a full description of uncertainties for any parameter of interests (here,586

vorticity, divergence, etc). In particular, our approach can provide uncertainty estimates587

on the largest eigenvalue of the strain rate tensor, which is used in the Kostrov formu-588

lation for geodetic moment rate calculation (Kostrov, 1974; D’Agostino, 2014). Several589

PSHA techniques are now starting to integrate geodetic estimates of surface strain Beau-590

val et al. (2018) : the full posterior distribution for principal directions, velocity deriva-591

tives and strain rate invariants could directly be included in logic trees.592

However, our method is based on a Monte Carlo sampling scheme where a large593

number of Delaunay models are tested against the data, and is therefore computation-594

ally intensive. Our final ensemble solution represented in figure 9 is obtained after 84 hours595

of calculation on 92 parallel processors, which is much larger than standard interpola-596

tion approaches.597

We shall also acknowledge that a Bayesian formulation is entirely based on the math-598

ematical model used to describe the statistics of data errors. In this study, we assume599

errors are Gaussian, and uncorrelated between different stations and between each hor-600

izontal component. A more accurate model could be used by accounting for the spatial601

correlation of errors in regional velocity fields (Wdowinski et al., 1997; Williams et al.,602

2004; Dong et al., 2006; Santamaŕıa-Gómez et al., 2011; Benoist et al., 2020). This can603

be done by using a full covariance matrix of data errors in the likelihood function Bodin,604

Sambridge, et al. (2012). A Bayesian scheme naturally propagates errors in the data to-605

wards errors in the posterior solution, and the form of the probabilistic solution also de-606

pends on the estimated amplitude of data uncertainties. If data errors are misestimated,607

posterior uncertainties will be also misestimated. In this work, we followed a conserva-608

tive approach and increased the uncertainties provided by MIDAS by 10%. In the case609
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where the level of data errors is poorly known, this level could be treated as an unknown610

in the inversion (Bodin, Salmon, et al., 2012).611

We shall aslo note that the method presented in this study has been implemented612

in cartesian coordinates, i.e. assuming the effect of Earth’s sphericity is negligible. This613

hypothesis remains valid when focusing on relatively small regions but the code should614

be adapted to spherical coordinates if to be applied to larger continental-scale regions615

(e.g. Haines & Holt, 1993; Kreemer et al., 2014; H. Wang et al., 2019).616

6.2 From a probabilistic solution to tectonic interpretations617

The method is applied to one of the most extensively studied area in terms of ac-618

tive tectonics : the San Andreas strike-slip fault system and the neighboring Basin and619

Range extensional area (see section 3 and references therein). The maps of second in-620

variant and divergence presented in figure 9 agree with previous studies (e.g. Holt et al.,621

2000; McCaffrey, 2005; Kreemer & Hammond, 2007; Kreemer et al., 2012) and which have622

been compared by Sandwell et al. (2010). We confirm that (i) transtension is dominant623

in the Walker Lane (Wesnousky et al., 2012), (ii) the innermost Basin and Range (Cen-624

tral Great Basin) experiences very low strain rates and could therefore be considered as625

rigid (Bennett et al., 2003), and (iii) 10 nstrain/yr roughly E-W extension occurs in the626

Wasatch mountains (Niemi et al., 2004). Our results tend to show that the Central Val-627

ley and Sierra Nevada are not behaving as a purely rigid block (Bennett et al., 2003; Kreemer628

et al., 2014) but accommodate some amount of NNW-SSE directed compression (I2 ≥10629

nstrain/yr).630

In addition, our mean map of second invariant depicts very clear along strike vari-631

ations in the width of the highly straining area near the main fault of the San Andreas632

system that are consistent with along-strike segmentation. In particular, our results con-633

firm that creep occurs in the Monarch Peek segment (Ben-Zion et al., 1993; Rolandone634

et al., 2008; Jolivet et al., 2015) that is surrounded by rather locked fault systems north635

and south of it. To investigate further the ability of our method to capture along-strike636

segmentation without a priori information on the fault position, we plot in figure 10 the637

full PDF for I2 and for the perpendicular-to-profile velocity along two cross-sections lo-638

cated in the Monarch Peek and Salton Sea segments (box 1 and box 2 in figure 9, respec-639

tively). The surface velocity gradient from one side of the fault to the other (between640
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40 mm/yr and 45 mm/yr depending on the considered segment) is accommodated on641

a 80 km wide zone around the Salton Sea segment while it is concentrated on a narrow642

15 km wide zone in the Monarch Peek creeping segment. There, the expected velocity643

change should be even more abrupt (as seen from InSAR images for instance, (Jolivet644

et al., 2015)) but the GNSS network is no sufficiently dense to capture changes over lower645

than 15 km baselines. However, interestingly, the mode of maximum probability exhibits646

such an abrupt change while average and median of the PDF are smoother (figure 10-647

a). The second invariant I2 as seen in cross section in this creeping segment increases648

abruptly well above 1000 nstrain/yr starting around 10 km from the fault on each side.649

In the Salton Sea Lake area, several faults are parallel to the main San Andreas650

fault and potentially active (see figure 10-b) : identifying the amount of relative motion651

that is taken by each of these structures is still debated (Fialko, 2006; Lundgren et al.,652

2009; Lindsey & Fialko, 2013) and is needed to properly conduct seismic hazard assess-653

ment. For instance, Lindsey & Fialko (2013) explore several physical models with dis-654

tinct fault geometries or spatial heterogeneities in the crustal elastic properties to esti-655

mate the fault slip on each of these faults based on the inversion of GPS and InSAR sur-656

face velocities. The ambiguity between those models comes from the very similar result-657

ing surface velocity field. However, these models predict larger differences in surface strain658

rate that could be better observed looking at the fit to the second invariant I2 for in-659

stance. This requires uncertainties on I2 to be correctly estimated, as in figure 10-b.660

The Bayesian method developed in this study allows us to identify creeping seg-661

ments from locking segments and potentially active faults during the interseismic period662

without a priori constraints on the structure of deformation. It is to note that it jointly663

retrieves the velocity field and its derivatives in areas of large strain rates such as the664

San Andreas fault system, but also in areas of lower deformation rates such as the Wasatch665

mountains experiencing ∼ 20 nstrain/yr extension. It appears robust enough to discuss666

with confidence second order features of the strain rate tensor that could be meaning-667

ful in well resolved areas. For instance, it has been proposed for years that the surface668

strain pattern above an active locked fault could show some level of asymmetry depend-669

ing on the rheology and lithology contrast between both blocks (Le Pichon et al., 2005;670

Fialko, 2006; Chéry, 2008; Jolivet et al., 2008). The posterior distribution for velocity671

or second invariant could show whether this asymmetry is required by the data.672
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Furthermore, having access to the uncertainties associated with the principal strain673

directions will help comparing deformation over broader time-scale and discuss more finely674

how strain is partitioned on active structures. However, this method is primarily depen-675

dent on the density and quality of observations, which remains the limiting factor in such676

discussions.677

6.3 Future developments678

The development of modern geodetic techniques in the last decades (GNSS con-679

tinuously recording networks, satellite images, tiltmeters) has led to the generalisation680

of strain rate maps based on velocities averaged on several years that are discussed in681

very broad contexts : long-term tectonics (e.g. Kreemer et al., 2003; Flesch & Kreemer,682

2010), seismic cycle (e.g. D’Agostino, 2014; H. Wang et al., 2019; Klein et al., 2019), or683

hydrology (e.g. Silverii et al., 2020). Recently, strain rates have been calculated on much684

shorter time-spans in order to capture the surface deformation associated with phenom-685

ena such as ground water variations (Klein et al., 2019; Silverii et al., 2020), magmatic686

intrusions (Silverii et al., 2019) or slow-slip events (e.g. Delbridge et al., 2020). Our in-687

terpolation method, with its ability to properly account for data errors, could prove use-688

ful in these cases where observations are associated with larger than usual uncertainties.689

The algorithm presented in this study has been designed for and applied to GNSS690

horizontal velocity fields. It could also be applied to a variety of interpolation problems691

in the geosciences, providing correct estimates of uncertainties. For instance, one could692

easily apply our proposed approach to the interpolation of horizontal coseismic displace-693

ments and associated strain tensor. Recently, Barnhart et al. (2020b) use high-resolution694

optical images correlation technique to recover the horizontal coseismic displacement as-695

sociated with the Ridgecrest earthquake sequence that stroke the East California Shear696

Zone and Garlock fault in 2019 (Mw 6.4 and Mw 7.1 for the main shocks). Their inter-697

pretation of the derived dilatation maps in terms of inelastic deformation in the very near698

field from the fault is highlighted by Feng & Almeida (2020) since it would have impor-699

tant consequences on our understanding of faults and earthquakes. However, as previ-700

ously shown, dilatation maps are prone to strong interpolation artifacts and should be701

carefully interpreted, or built with our artifact-free method.702
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The next step is therefore to adapt our technique to more continuous pictures of703

the surface deformation as produced by optical correlation (e.g. Vallage et al., 2015; De-704

lorme et al., 2020; Barnhart et al., 2020b) or by InSAR (LOS velocities). One difficulty705

to do so is to properly account for the correlation between pixels, fully described by a706

covariance matrix (Hussain et al., 2016; H. Wang et al., 2019). Second, these images of707

surface deformation often offer a description of the vertical velocity field (or displace-708

ment) or a combination of horizontal and vertical velocities in the LOS direction. Our709

method should therefore be adapted to jointly interpolate the three components of the710

velocity field (including the vertical velocities coming from high quality GNSS measure-711

ments). The implementation is relatively straightforward and will be added in the fu-712

ture, though it will add computational cost. Including vertical velocities will give us ac-713

cess to the horizontal derivatives of Vz that could help identifying active faults, subsi-714

dence and uplift patterns. However, even with this more complete view of the 3D strain715

rate tensor, this latter will remain incomplete as derivative with respect to the vertical716

direction will be missing. Note that some attempts to take into account the horizontal717

gradients of vertical velocity into a pseudo 3D strain rate tensor have been conducted718

by Mazzotti et al. (2005); Shen & Liu (2020) or Piña-Valdés et al. (2020) and could be719

implemented in the future.720

7 Conclusion721

We develop a transdimensional Bayesian method, adapted from seismic imaging722

(Bodin, Salmon, et al., 2012; Bodin, Sambridge, et al., 2012) to estimate surface strain723

rates from discrete GNSS horizontal velocity fields. Synthetic tests conducted on an ide-724

alized velocity field produced by the interseismic locking of the San Andreas fault zone725

show that this approach is more robust than an standard B-spline interpolation tech-726

nique. In particular, it is able to correctly recover the strain rate tensor on a wide range727

of rates, without need of manually tuned user-defined parameters. The solution is a full728

probability distribution on model parameters defining the velocity field and its spacial729

derivatives. We propose several ways to visualize the solution through maps of the mean,730

median, standard deviation, or maximum probability. We also show cross-sections pre-731

senting the full posterior distribution. The probability distribution of principal directions732

of strain rates can be plotted on wind rose diagrams, allowing for a better comparison733

with longer-term tectonic studies.734
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We apply our method to the MIDAS velocity dataset on the San Andreas and Basin735

and Range area and find that, while in general agreement with previously published strain736

rate maps, our results are smoother and artifact free. They allow for safer tectonic in-737

terpretation, and help discriminating between creeping and locked fault segments. Our738

Bayesian inversion method designed to solve this very common interpolation and deriva-739

tion problem will be applied in future work to continuous images of deformation like In-740

SAR or optical correlations, that could be combined together. We hope that the pro-741

posed approach will allow to take full profit of geodetic measurements and to include them742

better in probabilistic seismic hazard assessment techniques.743
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http://www.insu.cnrs.fr/pnts ), grant n°PNTS-2019-7. It has been conducted in the frame746

of the European Union’s Horizon2020 research and innovation programme under grant747

agreement no.716542. Most figures have been done using the open source Generic Map-748

ping Tool software https://www.generic-mapping-tools.org/.749

References750

Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H., & Collilieux, X. (2017).751

Itrf2014 plate motion model. Geophysical Journal International , 209 (3), 1906–752

1912.753

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). Itrf2014: A new754

release of the international terrestrial reference frame modeling nonlinear station755

motions. Journal of Geophysical Research: Solid Earth, 121 (8), 6109–6131.756

Amos, C. B., Audet, P., Hammond, W. C., Bürgmann, R., Johanson, I. A., & Ble-757

witt, G. (2014). Uplift and seismicity driven by groundwater depletion in central758

california. Nature, 509 (7501), 483–486.759

Angelica, C., Bonforte, A., Distefano, G., Serpelloni, E., & Gresta, S. (2013). Seis-760

mic potential in italy from integration and comparison of seismic and geodetic761

strain rates. Tectonophysics, 608 , 996–1006.762

Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and in-763

verse problems. Elsevier.764

Avouac, J.-P. (2015). From geodetic imaging of seismic and aseismic fault slip to dy-765

–35–



manuscript submitted to JGR: Solid Earth

namic modeling of the seismic cycle. Annual Review of Earth and Planetary Sci-766

ences, 43 , 233–271.767

Barnhart, W. D., Gold, R. D., & Hollingsworth, J. (2020a). Localized fault-zone768

dilatancy and surface inelasticity of the 2019 ridgecrest earthquakes. Nature Geo-769

science, 13 (10), 699–704.770

Barnhart, W. D., Gold, R. D., & Hollingsworth, J. (2020b). Localized fault-zone771

dilatancy and surface inelasticity of the 2019 ridgecrest earthquakes. Nature Geo-772

science, 13 (10), 699–704.773

Baxter, S. C., Kedar, S., Parker, J. W., Webb, F. H., Owen, S. E., Sibthorpe, A.,774

& Dong, D. (2011). Limitations of strain estimation techniques from discrete775

deformation observations. Geophysical Research Letters, 38 (1).776

Beauval, C., Marinière, J., Yepes, H., Audin, L., Nocquet, J.-M., Alvarado, A., . . .777

Jomard, H. (2018). A new seismic hazard model for ecuador. Bulletin of the778

Seismological Society of America, 108 (3A), 1443–1464.779

Beavan, J., & Haines, J. (2001). Contemporary horizontal velocity and strain rate780

fields of the pacific-australian plate boundary zone through new zealand. Journal781

of Geophysical Research: Solid Earth, 106 (B1), 741–770.782
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