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Abstract

Supervised deep learning models have become a popular choice for seismic phase arrival detection. However, they don’t always

perform well on out-of-distribution data and require large training sets to aid generalization and prevent overfitting. This

can present issues when using these models in new monitoring settings. In this work, we develop a deep learning model for

automating phase arrival detection at Nabro volcano using a limited amount of training data (2498 event waveforms recorded

over 35 days) through a process known as transfer learning. We use the feature extraction layers of an existing, extensively-

trained seismic phase picking model to form the base of a new all-convolutional model, which we call U-GPD. We demonstrate

that transfer learning reduces overfitting and model error relative to training the same model from scratch, particularly for

small training sets (e.g., 500 waveforms). The new U-GPD model achieves greater classification accuracy and smaller arrival

time residuals than off-the-shelf applications of two existing, extensively-trained baseline models for a test set of 800 event and

noise waveforms from Nabro volcano. When applied to 14 months of continuous Nabro data, the new U-GPD model detects

31,387 events with at least four P-wave arrivals and one S-wave arrival, which is more than the original base model (26,808

events) and our existing manual catalogue (2,926 events), with smaller location errors. The new model is also more efficient

when applied as a sliding window, processing 14 months of data from 7 stations in less than 4 hours on a single GPU.
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Key Points: 12 

• Transfer learning using existing model trained on California earthquake data produces 13 

effective new model for monitoring at Nabro volcano  14 

• Nabro transfer learning model shows improved S-wave picking resulting in smaller 15 

location errors than even manual phase picks  16 

• Changing task from classification to segmentation results in more efficient model 17 

processing 14 months of data from 7 stations in 4 hours  18 

  19 
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Abstract 20 

 21 

Supervised deep learning models have become a popular choice for seismic phase arrival 22 

detection. However, they don’t always perform well on out-of-distribution data and require large 23 

training sets to aid generalization and prevent overfitting. This can present issues when using these 24 

models in new monitoring settings. In this work, we develop a deep learning model for automating 25 

phase arrival detection at Nabro volcano using a limited amount of training data (2498 event 26 

waveforms recorded over 35 days) through a process known as transfer learning. We use the 27 

feature extraction layers of an existing, extensively-trained seismic phase picking model to form 28 

the base of a new all-convolutional model, which we call U-GPD. We demonstrate that transfer 29 

learning reduces overfitting and model error relative to training the same model from scratch, 30 

particularly for small training sets (e.g., 500 waveforms). The new U-GPD model achieves greater 31 

classification accuracy and smaller arrival time residuals than off-the-shelf applications of two 32 

existing, extensively-trained baseline models for a test set of 800 event and noise waveforms from 33 

Nabro volcano. When applied to 14 months of continuous Nabro data, the new U-GPD model 34 

detects 31,387 events with at least four P-wave arrivals and one S-wave arrival, which is more 35 

than the original base model (26,808 events) and our existing manual catalogue (2,926 events), 36 

with smaller location errors. The new model is also more efficient when applied as a sliding 37 

window, processing 14 months of data from 7 stations in less than 4 hours on a single GPU. 38 

 39 

Plain Language Summary 40 

 41 

Seismic monitoring increasingly relies on automated signal processing as the rate of data 42 

acquisition grows. Supervised deep learning models have proven to be effective for detecting and 43 

characterizing seismic events, but training such highly parameterized models generally requires 44 

large amounts of manually labelled data. Once trained, however, these models extract general 45 

seismic waveform features that can be used to train new models with more limited training data. 46 

In this work, we use the generalized knowledge of seismic data from a model trained on millions 47 

of earthquakes in California to train a new model for detecting volcanic earthquakes at Nabro 48 

volcano, Eritrea, a recently active and, prior to its 2011 eruption, poorly monitored volcano. Using 49 
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a small training set of waveforms, the new model more accurately detects phase arrivals and noise 50 

than off-the-shelf applications of two baseline models. The new model is efficient, processing 14 51 

months of data in less than 4 hours. It is also effective, detecting more volcanic events and showing 52 

improved levels of S-wave arrival picking. The result is smaller event location errors than even 53 

our manual picks. This level of efficiency and consistency highlights the role that machine learning 54 

can play in volcano-seismic monitoring. 55 

 56 

1 Introduction 57 

 58 

Seismic monitoring plays a fundamental part in mitigating hazards at volcanoes. During 59 

periods of unrest, thousands of earthquakes can occur each day, producing a diverse range of 60 

seismic signals that reflect a multitude of interlinked volcanic processes (e.g., migrating fluids, 61 

fault movement, explosions, rockfalls). These earthquakes are generally recorded by broadband 62 

seismometers, which are highly sensitive to ground motion across a wide range of frequencies and 63 

record signals at high sample rates (typically 100 times or more per second). This level of detail, 64 

however, comes at the cost of generating vast amounts of data. Many seismic networks utilize tens 65 

or even hundreds of seismometers at a given time (e.g., Hansen & Schmandt, 2015), making real-66 

time manual inspection of these time series practically infeasible. Previous seismic deployments 67 

have also generated extensive legacy datasets that can offer insights into historical volcanic activity 68 

and opportunities to further our understanding of volcanic processes. The main challenge is 69 

therefore to identify and characterize volcanic earthquakes in a robust and timely manner so as to 70 

provide vital clues regarding the state of a volcano and the likelihood or impact of an eruption or 71 

hazard, as well as be able to accurately and efficiently process large existing datasets for further 72 

analysis within a reasonable timeframe. 73 

 74 

Identifying earthquake phase arrivals, particularly the initial primary (P-) and 75 

secondary/shear (S-) wave arrivals, forms the basis of most seismic processing tasks (e.g., 76 

determining locations, magnitudes and source parameters). Manually identifying these phase 77 

arrivals yields greater accuracy and estimates of arrival time uncertainty than automated 78 

approaches but is extremely time-consuming. Alternatively, most automated approaches are orders 79 
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of magnitude quicker but typically require clear phase arrivals, existing ‘templates’ of previously 80 

catalogued earthquakes (e.g., Gibbons & Ringdal, 2006; Lengliné et al., 2016; Shelly et al., 2007), 81 

or pre-processing / feature extraction steps calibrated for a small set of earthquake characteristics 82 

(e.g., trigger algorithms based on the ratio of short-term average to long-term average signal 83 

amplitude, STA/LTA; Withers et al., 1998). A challenge for application to volcanology is that 84 

volcanic earthquakes can exhibit widely varying time-frequency characteristics, often with low 85 

amplitudes or obscured phase arrivals, and new phases of unrest can produce previously unseen 86 

seismic signals that differ from existing earthquake templates. Furthermore, methods based on 87 

existing seismic catalogues are unsuitable for new seismic deployments where a catalogue of 88 

events has not been collected. 89 

 90 

A recently successful approach for seismic phase arrival detection is the use of supervised 91 

deep learning models (e.g., Dokht et al., 2019; Mousavi et al., 2019; Ross et al., 2018b; Woollam 92 

et al., 2019; Zhu & Beroza, 2019). These methods are based on convolutional neural networks 93 

(CNN), a variant of classical neural networks that employ convolution operations, as opposed to 94 

matrix multiplication, in at least part of the model. These operations are employed in ‘hidden’ 95 

convolutional layers that allow the network to learn a large set of filters to extract useful features 96 

from the input data and map them to a desired output (e.g., to identify phase arrivals in earthquake 97 

waveforms; Fig 1). Typically, multiple convolutional layers are applied in succession and in 98 

combination with other operations, such as non-linear ‘activation’, down-sampling and 99 

normalization, to extract complex patterns from the data using a hierarchy of simpler filter kernels. 100 

These extracted features can then be fed into a standard fully-connected neural network or other 101 

machine learning architecture for classification, segmentation, regression, clustering or inference 102 

(e.g., Mousavi et al., 2019; Ross et al., 2018b; van den Ende & Ampuero, 2020). As such, the 103 

‘convolutional’ part of CNNs act as the model’s feature extraction system. With each successive 104 

convolutional layer, the extracted features move from lower-level, general signal features 105 

(resembling, for example, long/short period wavelets in seismological waveform models; Fig 1A 106 

inset) to more task specific, high-level features (Yosinski et al., 2014). The final ‘classification’ 107 

layers of the model map these features to the desired output and can be considered the most task 108 

specific part of the model, empirically tuned to the distribution of the training data (Yosinski et 109 

al., 2014).  110 
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 111 

Such an approach gives supervised deep learning models a strong advantage over 112 

traditional algorithms that require considerable manual intervention or rely on a small set of 113 

manually determined characteristics and simple threshold criteria. In general, however, these 114 

models require substantial amounts of labelled data during training to generalize to out-of-sample 115 

data (the amount dependent on various factors, such as network architecture, number of network 116 

parameters and training hyperparameters; e.g., D’souza et al., 2020; He et al., 2019; Sun et al., 117 

2017). In the case of seismological supervised models, these models can demonstrate impressive 118 

levels of generalization to phase arrival detection in other geographic and tectonic settings, if 119 

trained with sufficient data (e.g., Mousavi et al., 2020; Tan et al., 2021). However, as with 120 

practically any deep learning model, they can also suffer significant loss in performance when 121 

faced with data that differs in source or distribution from their training data (e.g., Barbedo, 2018; 122 

Zech et al., 2018; Fig 7). As such, the requirement for extensive training sets can place the 123 

traditional paradigm of supervised learning (i.e., using a large amount of hand-labelled data to 124 

train a single model for a desired domain or problem) out of reach for many real-world 125 

applications. 126 

 127 

Transfer learning is based on the idea of knowledge transfer from one task to another (Pan 128 

& Yang, 2010; Zhuang et al., 2020) and can be a powerful tool when we do not have sufficient 129 

labelled data to train a reliable model from scratch, or when existing models perform poorly. At 130 

its simplest, the first n convolutional layers and their weights from the feature extraction part of an 131 

existing model are copied to the first n layers of a new model for a related or similar task, with the 132 

remaining layers either re-initialized with randomized weights or replaced (e.g., Razavian et al., 133 

2014; Yosinski et al., 2014). These tasks need not be near-identical or even superficially related, 134 

as long as low-level data characteristics are shared between tasks (e.g., Efremova et al., 2019; Tran 135 

et al., 2020; Zamir et al., 2018). The intuition is that generalized knowledge of data structure and 136 

properties from one model trained with abundant labelled data (or ‘big data’) can guide a learning 137 

algorithm towards a good solution for a new task with far more limited, or even no, labelled data. 138 

 139 

In this paper, we evaluate the utility of inductive transfer learning (i.e., when labelled data 140 

are available for both the source and target tasks) for small seismic training sets and produce a 141 
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deep learning model that accurately and robustly picks phase arrivals from a deployment at Nabro 142 

volcano in Eritrea, a region with little or no prior seismic monitoring. We leverage the knowledge 143 

acquired from training a model on millions of seismic waveforms recorded by the Southern 144 

California Seismic Network (SCSN), hereby referred to as the GPD model (Generalized seismic 145 

Phase Detection; Ross et al., 2018b), and apply it to seismograms from Nabro volcano in Eritrea, 146 

for which we have limited hand-labelled data (manual phase arrival picks) from the first couple of 147 

months of a 14-month seismic deployment (Goitom, 2017; Hamlyn et al., 2014). The new model 148 

task differs from the original GPD model task in that it is modified from one of classification 149 

(assigning a single class label P-wave, S-wave or noise to an entire 4-second waveform; Fig 1A) 150 

to one of segmentation (assigning a class label P-wave, S-wave or noise to each datapoint within 151 

that 4-second waveform; Fig 1B). We achieve this by replacing the fully-connected uppermost 152 

layers of the original GPD model with further convolutional layers, creating an all-convolutional 153 

model commonly referred to as a U-Net (Ronneberger et al., 2015). We refer to this specific model 154 

design as the U-GPD model, utilizing GPD model weights within a U-Net architecture. The new 155 

data from Nabro volcano also exhibit differences in instrument calibration and sample rates from 156 

the original GPD model training data, as well as differing waveform characteristics between 157 

tectonic and volcanic event types (Lahr et al., 1994; Lapins et al., 2020; McNutt & Roman, 2015).  158 

 159 

In the following section, we introduce transfer learning and recent applications in 160 

seismological deep learning. In Sections 3 and 4, we present our proposed transfer learning 161 

method, U-GPD model architecture and seismic data recorded at Nabro volcano.  In Section 5, we 162 

present a series of model comparisons. We first use common training metrics to demonstrate that 163 

transfer learning reduces overfitting and model error, particularly for very small training sets (< 164 

1000 waveforms), when compared with a model reinitialized with randomized weights before 165 

training (i.e., trained from scratch with no transfer learning). We then apply these new models to 166 

a test dataset of known P-/S-wave arrivals and sections of noise and compare performance with 167 

off-the-shelf applications of the base GPD model and another extensively-trained phase-picking 168 

model, PhaseNet (Zhu & Beroza, 2019). We find that the U-GPD transfer learning model yields 169 

improved phase arrival identification, particularly for S-waves, and false detection rate at Nabro 170 

volcano. Altering the model task from classification to segmentation also improves pick time 171 

residuals over the base GPD model for these test data. Finally, we apply both our new U-GPD 172 
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transfer learning model and the original base GPD model to the full 14-month seismic deployment 173 

at Nabro volcano through a sliding window approach. The new U-GPD model identifies more 174 

useable S-wave arrivals than the base GPD model, yielding smaller subsequent location errors than 175 

even our manual analyst’s phase arrival picks. The new model also runs an order of magnitude 176 

faster, processing 14 months of data from 7 broadband seismometers in less than 4 hours on a 177 

single GPU. Our findings indicate that transfer learning can be extremely useful for volcano 178 

seismic monitoring, even with limited computing resources and data. We conclude this paper with 179 

a discussion of our findings, methodology and practical considerations of transfer learning in 180 

Section 6. All data and code used throughout this paper are made fully and publicly available (see 181 

Data Availability Statement). 182 

 183 
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 184 
 185 
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Figure 1. A) Model architecture for Generalized seismic Phase Detection (GPD) CNN model 186 

(Ross et al., 2018b). Model can be considered as two parts: a feature extraction system 187 

(convolutional layers) and classification part (fully connected layers). GPD model outputs 3 x 188 

prediction values (probability of P, S or noise) for an entire 400-sample 3-component waveform 189 

(i.e., output dimensions: 1 x 3). Examples of filter kernels (dashed line inset) from lowest 190 

convolutional layer that extract generalized seismic waveform features determined through model 191 

training on extensive SCSN dataset. These indicate that the GPD model has learnt to extract 192 

different features from vertical and horizontal components. B) Proposed transfer learning model 193 

architecture (“U-GPD”). GPD model feature extraction system is copied to new model and fine-194 

tuned with new Nabro data and low learning rate. Low learning rate ensures that useful features 195 

are not ‘unlearned’. New convolutional layers replace the GPD classification layers and are trained 196 

using new Nabro data and higher learning rate. Model outputs 3 x prediction values for each 197 

datapoint in 400-sample 3-component waveform (i.e., output dimensions: 400 x 3). 198 

 199 

2 Transfer Learning 200 

 201 

There are many approaches to transfer learning (see Pan & Yang, 2010; Zhuang et al., 2020 202 

for comprehensive surveys), including using ‘off-the-shelf’ feature extraction systems from 203 

existing state-of-the-art CNNs (e.g., Maqsood et al., 2019; Razavian et al., 2014), learning domain-204 

invariant or global representations across multiple tasks (e.g., Glorot et al., 2011; Li et al., 2014; 205 

Tzeng et al., 2015; Zhuang et al., 2015), applying pre-processing steps to make input data 206 

representations more similar between datasets (e.g., Daumé, 2007; Sun et al., 2016) and the use of 207 

domain-adversarial models (e.g., Ganin et al., 2016). Here we employ the first of these approaches 208 

for P- and S-wave arrival time picking at Nabro volcano, utilizing pre-trained filters from an 209 

existing, extensively trained CNN model (the GPD model; Ross et al., 2018b) to train a new model 210 

with different output dimension and task type (see Section 3.1, U-GPD Model Architecture). Most 211 

seismological studies that have employed transfer learning in this way have used pre-trained filters 212 

from models designed for non-seismological tasks, such as image recognition. For example, filters 213 

trained to recognize photographic images or handwritten characters have been used to detect 214 

earthquakes and classify volcano-seismic event types from spectrograms (Huot et al., 2018; Lara 215 

et al., 2020; Titos et al., 2020) and interpret seismic facies (Dramsch & Lüthje, 2018).  216 
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 217 

Some studies have chosen to fine-tune entire seismic deep learning models, essentially 218 

updating the models with new data (or equivalently ‘pre-training’ the models with larger datasets, 219 

depending on perspective). El Zini et al. (2020) pre-train an autoencoder with abundant unlabeled 220 

data to learn compressed data representations of 2D seismic images. These model weights then 221 

serve as a starting point for a model that segments seismic images, with weights fine-tuned using 222 

limited labelled training data. This approach was shown to outperform the transfer of weights from 223 

image recognition models and training a model from scratch. Bueno et al. (2020) fine-tune a 224 

Bayesian neural network (BNN) to improve classification of volcano-seismic event characteristics 225 

between datasets and time periods. They show that this approach increases model accuracy and 226 

reduces epistemic uncertainty when applied to new volcanic systems or phases of activity.  With 227 

a similar aim but different approach to the work of this paper, Chai et al. (2020) utilize pre-trained 228 

weights from another existing phase arrival detection model, PhaseNet (Zhu & Beroza, 2019), to 229 

pick phase arrivals from hydraulic fracturing experiments. They use the entirety of the PhaseNet 230 

model and its pre-trained weights as a starting point for training and then fine-tune all model 231 

weights equally using just 3,500 seismograms. They present improved results over the original 232 

PhaseNet model, which was trained using 700,000 seismograms of regional Californian seismicity, 233 

when applied to higher sample rate data (100 kHz) from a very different setting (i.e., hydraulic 234 

fracturing). Whilst these studies show that fine-tuning entire models can be an effective strategy, 235 

poor hyperparameter choices (model learning rate, number of training epochs, etc.) can 236 

inadvertently retrain the model (also known as ‘catastrophic forgetting’; e.g., Kirkpatrick et al., 237 

2017) or lead to settling on a non-global minimum within the parameter space, reopening the 238 

potential for overfitting when the number of model parameters is large and the training dataset is 239 

small (El Zini et al., 2020; Yosinski et al., 2014). The work in this paper differs from that of Chai 240 

et al. (2020) in that only the weights from the feature extraction part (i.e., the first ‘half’) of the 241 

GPD model are transferred to our new U-GPD model. These weights are fine-tuned using a much 242 

lower learning rate (weight update step size) to retain useful learned knowledge from the original 243 

model but optimize cohesion with the rest of the new model, which is redesigned to reduce the 244 

total number of trainable parameters, among other optimizations (see Section 3.1, Model 245 

Architecture), and initialized with randomized weights (Fig 1). 246 

 247 
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3 Proposed Model 248 

3.1 U-GPD Model Architecture 249 

 250 

As outlined briefly above, we utilize pre-trained parameters from the convolutional layers 251 

of the GPD model as a starting point for our U-GPD transfer learning model. The original GPD 252 

model was trained using 4.5 million hand-labelled seismograms (1.5 million of each class P, S and 253 

noise) recorded by the Southern California Seismic Network (SCSN) between the years 2000 and 254 

2017. These training data were all 400-sample (4 sec) 3-component waveforms, high-pass filtered 255 

above 2 Hz and (re)sampled at 100 Hz. All events had epicentral distances less than 100 km and 256 

magnitudes between -0.81 and 5.7 𝑀 (various magnitude scales). The GPD model was chosen as 257 

a base for our transfer learning model as these data characteristics (magnitude range, sample rate 258 

and event distances) are comparable to those observed and recorded by volcano observatories. 259 

Furthermore, the short input length of 4 seconds (400 samples at 100 Hz sample frequency) means 260 

there is less chance of erroneously labelling or missing relatively small magnitude or overlapping 261 

phase arrivals. Finally, the GPD model’s ‘sequential’ architecture, with each layer being solely 262 

connected to the layers directly before and after, also means the model is more interpretable and 263 

makes it easier to isolate its feature extraction system. 264 

 265 

During model training, we fine-tune these pre-trained parameters using a very small 266 

learning rate (1	 ×	10!"), rather than keep them fixed (e.g., Yosinski et al., 2014). Learning rate 267 

effectively controls how much model weights can change and a small learning rate will keep 268 

adjustments to the pre-trained GPD feature extraction weights small. The aim of this fine-tuning 269 

step is to modify any highly specific features from the source domain (particularly in the higher-270 

level feature extraction layers) and overcome optimization difficulties arising from splitting the 271 

GPD convolutional layers from co-adapted classification layers (Yosinski et al., 2014), without 272 

unlearning the important generalized waveform features we wish to exploit.  273 

 274 

We then replace the GPD model’s fully-connected layers (i.e., the task-specific 275 

classification part of the model) with further convolutional layers and up-sampling operations, 276 

combined with ReLU activation function (Nair & Hinton, 2010) and batch normalization (Ioffe & 277 
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Szegedy, 2015), to produce a model output with the same dimensions as model input (400 samples 278 

x 3 channels; Fig 1B). Each of the three output channels represents the model’s prediction (or 279 

‘probability’) of a P-wave arrival, S-wave arrival or neither (hereby referred to as noise), 280 

respectively, at each datapoint in the waveform. This all-convolutional approach has been adopted 281 

by other phase arrival picking models (e.g., Woollam et al., 2019; Zhu & Beroza, 2019) and has 282 

several distinct advantages when applied to seismic phase arrival detection: i) it provides less 283 

ambiguous labelling of phase arrivals when compared to the original GPD model’s approach of 284 

assigning a single class prediction (P, S or noise) to an entire 400-sample 3-channel waveform; ii) 285 

convolutional layers tend to have fewer parameters than fully connected neural network layers so 286 

less training data is required to avoid overfitting; iii) by producing a model with input and output 287 

traces of same dimension, we require less overlap when applied as a rolling window method, 288 

producing a model that runs orders of magnitude faster on continuous sections of data.  289 

 290 

The new convolutional layers are initialized with completely randomized weights and 291 

trained with a higher learning rate (1	 ×	10!#) than the pre-trained GPD weights. A higher 292 

learning rate effectively allows the randomized weights in the new model layers to be adjusted 293 

much more than the pre-trained GPD weights. The learning rates used for each part of the model 294 

were determined through experimentation, insight from previous works (e.g., Ross et al., 2018a, 295 

2018b), and on the basis that the learning rate for fine-tuning pre-trained weights should be orders 296 

of magnitude lower than that used for tuning randomized weights (e.g., Yosinki et al., 2014). We 297 

note that there are more formal strategies (e.g., grid/random search, Bayesian optimization, bandit 298 

strategies, gradient reversal; Bergstra & Bengio, 2012; Feurer et al., 2015; Klein et al., 2016; 299 

Maclaurin et al., 2015; Snoek et al., 2015) for determining optimal model hyperparameters. Such 300 

strategies, however, add significant computational cost as they generally require repeatedly 301 

training models with differing hyperparameter choices, producing a much greater search space. 302 

The aim in this study is not to present the absolute best possible model architecture and set of 303 

hyperparameters specific to this deployment at Nabro (as these choices will likely be specific to 304 

application and training set size) but to illustrate how existing models can be tailored to new 305 

datasets to improve performance in those settings. Furthermore, it would prove more difficult to 306 

attribute any observed improvements to the use of transfer learning and U-Net architecture, as 307 

opposed to the hyperparameter optimization strategy. We do, however, implement two further 308 
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hyperparameter choices that were found to improve performance. First, we use dilated filter 309 

kernels in the new convolutional layers (e.g., van den Oord et al., 2016; Yu & Koltun, 2016) to 310 

increase the size of the model’s receptive field (or ‘field of view’) and aggregate multi-scale 311 

context. Second, the new layers are subjected to spatial dropout (Tompson et al., 2015), where 312 

30% of the feature maps (output of filter operations) in each convolutional layer are effectively 313 

dropped (set to zero) at the start of each training epoch. This step promotes independence between 314 

the features the model extracts and prevents overfitting (Tompson et al., 2015). Precise details of 315 

U-GPD model dimensions and hyperparameters are provided in Supplementary Materials (Fig 316 

S1). 317 

 318 

The overall network architecture outlined above is sometimes referred to as a U-Net 319 

(Ronneberger et al., 2015). With each step through the network, the input data are progressively 320 

downsampled with an increasing number of features extracted, creating a contracting network path 321 

that is forced to sacrifice detail and learn a more compressed, general representation of the input 322 

waveform to discriminate between classes (P, S or noise). The model then follows a symmetrically 323 

expanding path, where the data are progressively upsampled and the number of features reduced, 324 

to regain precise temporal or spatial detail and return an output with equal dimension to the model 325 

input (Ronneberger et al., 2015). Skip connections (addition operators), which act as direct, one-326 

way pathways between layers in the contracting and expanding sides of the model (Fig 1B), are 327 

used to retain precise waveform details that may be lost through this contraction/expansion process 328 

and have been shown to greatly improve the likelihood of model parameters settling on the global 329 

minimum during training (Li et al., 2017). 330 

 331 

3.2 Phase Arrival Labels and Model Hyperparameters 332 

 333 

Each 3-component waveform in our training dataset has a corresponding 3-channel ‘mask’ 334 

that provides a ground truth label (P, S or noise) for each waveform datapoint. During training, the 335 

model aims to minimize the difference between its predictions and these ground truth labels. 336 

Labels are presented as binary values (0’s or 1’s), with P-wave arrivals indicated by a +/- 0.14 sec 337 

boxcar function, centered on the manually picked P-wave arrival time, and S-wave arrivals 338 

indicated by +/- 0.19 sec boxcar function, also centered on the manually picked S-wave arrival 339 
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time. These boxcar widths provide a good balance between phase arrival detection rate and arrival 340 

time precision and compensate for human error in the ground truth labels. Previous studies have 341 

used Gaussian-style probability masks, with values ranging between 0 and 1, for labelling phase 342 

arrivals (e.g., Woollam et al., 2019; Zhu & Beroza, 2019). We find that label accuracy on our test 343 

data (e.g., Figs 5, 6 and 7) and event location error distributions from the full deployment (e.g., 344 

Fig 10C & D) are near-identical when using either approach but training with boxcar masks 345 

produces a model that detects ~ 10% more events when run over continuous data. 346 

 347 

As with the original GPD model, our new U-GPD model was trained using a categorical 348 

cross entropy loss function (Text S7) and the Adam optimization algorithm (Kingma & Ba, 2014). 349 

The model weights that produced lowest loss value on the validation dataset during training were 350 

selected as our final model weights. Other loss functions that address the imbalance between 351 

arrival and noise labels (as the majority of labels in any given waveform are not a phase arrival), 352 

such as a focal loss function that effectively adds weighting parameters to cross entropy loss (Lin 353 

et al., 2017), were trialed but yielded no improvement in model performance. 354 

 355 

4 Data 356 

 357 

Nabro volcano is one of two calderas that form the Bidu Volcanic Massif on the Eritrea-358 

Ethiopia international border (Fig 2). Located in the Afar region at the northern end of the Main 359 

Ethiopian Rift, it erupted unexpectedly for the first time in recorded history on 12th June, 2011, 360 

disrupting continental aviation and initiating a significant humanitarian crisis (Bojanowski, 2011; 361 

Donovan et al., 2018; Goitom et al., 2015). At the time, there were no seismic or other monitoring 362 

networks operating in Eritrea but earthquakes were felt around the volcano several hours and days 363 

prior to eruption, prompting evacuation (Goitom et al., 2015). This seismicity is the first of note 364 

in global catalogues for the region (Goitom et al., 2015). Despite this fortuitous warning, at least 365 

seven people were tragically killed and about 12,000 were displaced (Bojanowski, 2011; Goitom 366 

et al., 2015; Hamlyn et al., 2014). The eruption is particularly notable for the vast amount of SO2 367 

emitted into the atmosphere, one of the largest eruptive SO2 masses globally since the eruption of 368 

Mount Pinatubo in 1991 (Fromm et al., 2014; Goitom et al., 2015; Theys et al., 2013), and the 369 
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comparative rarity of recorded historical eruptions in the region (Goitom et al., 2015; Hamlyn et 370 

al., 2014). 371 

 372 

In August, 2011, approximately two months after the eruption began, eight 3-component 373 

broadband seismometers (5 x Guralp CMG-6T, 3 x Guralp CMG-40T; Fig 2) were deployed 374 

around the volcano to monitor ongoing activity (Hamlyn et al., 2014; Hammond et al., 2011). 375 

These stations remained operational for 14 months until October, 2012. The first two months of 376 

data were collected at a sample rate of 100 Hz before dataloggers were switched to a sample rate 377 

of 50 Hz for the remainder of the deployment to maximize data recovery while minimizing service 378 

runs. Data from the full deployment occupies 70 GB of disk space (miniSEED format). Manual 379 

phase arrival picking conducted on the first four months of data (2011-08-30 to 2011-12-31; 380 

Goitom, 2017; Hamlyn et al., 2014) identified a total of 2926 events, from which the first 35 days 381 

of data (all 100 Hz sample rate) were quality checked and used for training and validating our 382 

transfer learning model. Five subsequent days of data (2 x 100 Hz days, 3 x 50 Hz days) were 383 

selected and quality checked to serve as test data. The reason to exclude 50 Hz data from model 384 

training is to emulate data availability in the early stages of this seismic deployment and 385 

demonstrate that changes in sample rate can be overcome without compiling new training datasets 386 

through a process known as data augmentation. The raw data for all datasets (training, validation 387 

and testing) were self-normalized, with linear trend removed, and left unfiltered. 388 

 389 
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 390 
 391 

Figure 2. Regional topographic map (90 m CGIAR Shuttle Radar Topography Mission and 392 

GEBCO bathymetry model, grey-scale map center) and seismic deployment (30 m ALOS Digital 393 

Surface Model, color map bottom right) around Nabro volcano. Red triangles (center map) indicate 394 

Holocene volcanoes (Global Volcanism Program, 2013) with Nabro volcano highlighted in white. 395 

Inverted blue triangles (bottom right map) indicate operational broadband seismic stations 396 

deployed around Nabro volcano from August 2011 to October 2012 (station NAB6, inverted 397 

yellow triangle, was flooded shortly after deployment and not operational). Training and validation 398 

data were taken from dark blue stations only (NAB1, NAB2, NAB3, NAB4 and NAB8). 399 
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 400 

A total of 2921 waveforms with labelled P- and S-wave arrivals from 978 events (2011-401 

08-30 to 2011-10-03) and five stations were used as training and validation data (only five stations 402 

were consistently operational during this time; dark blue stations in Fig 2 bottom right map). 403 

Training and validation data were grouped and divided so that no event appeared in both datasets 404 

to avoid data leakage (the model being trained on event data that also appears in validation or 405 

testing). 857 events (2498 waveforms) were used for model training and 121 events (423 406 

waveforms) were used for model validation, a training-validation split of approximately 85%-15%. 407 

624 sections of noise (20 secs length) were manually identified across all five stations (2011-08-408 

31 to 2011-09-27), with 500 sections (2500 waveforms) and 85 sections (425 waveforms) used for 409 

model training and validation, respectively. Two noise waveforms were randomly dropped from 410 

each dataset so that the training and validation noise data comprise 2498 and 423 waveforms, 411 

respectively, to match the number of event waveforms.  412 

 413 

A separate test dataset of 400 event waveforms with labelled P- and S-wave arrivals (132 414 

events) and 400 noise waveforms (80 sections of noise) was also produced for subsequent model 415 

testing. These data come from a different time period than those used for training and validation 416 

data, with 200 waveforms from a period where data were recorded at 100 Hz sample rate (2011-417 

10-04 and 2011-10-05) and 200 waveforms from a period with 50 Hz sample rate (2011-10-14, 418 

2011-10-15 and 2011-11-27) for each category. All training, validation and test data were 419 

manually identified and quality checked. 420 

 421 

The success of U-Net architectures relies on an effective data augmentation strategy when 422 

working with smaller datasets (Ronneberger et al., 2015). This allows the network to learn 423 

invariance to certain changes in input signal without them needing to appear in the annotated 424 

dataset. Here we outline a data augmentation strategy that improves performance of our U-GPD 425 

transfer learning model (Fig S2). First, as all stations were switched from 100 Hz sample frequency 426 

to 50 Hz sample frequency part way through the seismic deployment, we randomly select subsets 427 

of the training data (all originally sampled at 100 Hz) to be decimated to 50 Hz sample frequency 428 

throughout training. Each training sample (i.e., each 3-component waveform) has a probability of 429 

0.5 of being selected for decimation before each training epoch, with an anti-aliasing, low-pass 430 
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finite impulse response (FIR) filter applied and linear phase shift removed. Second, we randomly 431 

time-shift our P- and S-wave arrivals relative to the model input ‘window’, so that our waveforms 432 

differ slightly from epoch to epoch and the model must learn signal features that indicate arrivals 433 

rather than where they occur within the input window (i.e., arrivals don’t need to occur in the 434 

center of the window for the model to detect them). With our noise data, a random 400-sample 435 

window is chosen at each training epoch from our 20-second noise sections, introducing more 436 

waveform variety between training epochs. 437 

 438 

All data processing and model training/testing were performed in Python using the ObsPy 439 

(Beyreuther et al., 2010; Krischer et al., 2015; Megies et al., 2011), TensorFlow (Abadi et al., 440 

2015; https://tensorflow.org) and Keras (Chollet et al., 2015; https://keras.io) libraries. 441 

 442 

5 Results 443 

5.1 Training Metrics (Transfer Learning vs No Transfer Learning) 444 

 445 

To examine the impact of transfer learning and determine how much training data is 446 

required to produce an effective model, we use varying sized subsets of the training data 447 

throughout model training (i.e., 250, 500, 750, …, 2000, 2250 and 2498 training samples). Figure 448 

3 compares how model loss (measure of distance between model predictions and ground truth 449 

labels) on training and validation data evolves throughout training between our transfer learning 450 

model and the same model with completely re-initialized weights (i.e., with no transfer learning) 451 

for our smallest and largest subsets of training data (250 and 2498 training samples, respectively). 452 

The learning rate is set to be equal (1	 ×	10!#) across the whole re-initialized model as we are no 453 

longer fine-tuning existing knowledge. All other hyperparameters, including dropout rate, are kept 454 

the same. The models trained without transfer learning (Fig 3B and D) show a much greater degree 455 

of overfitting: the model loss on the training data continues to decrease with more training while 456 

the loss on validation data (data that the model does not use during training) hits an inflection point 457 

and starts increasing, reflecting that the model is ‘memorizing’ the precise features of the training 458 

data at the cost of generalization (Shorten & Khoshgoftaar, 2019). By contrast, the validation loss 459 

continues to decrease for the models trained with transfer learning (Fig 3A and C). Furthermore, 460 
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the minimum validation loss achieved by the transfer learning models for each training dataset size 461 

is lower than when transfer learning is not employed (Fig 3 horizontal dashed lines). Such 462 

diagnostics indicate that transfer learning is successfully preventing overfitting to the training data 463 

and will likely produce a model that generalizes better to non-training data (Shorten & 464 

Khoshgoftaar, 2019). The greatly improved performance on validation data using the smallest 465 

subset of training data (Fig 3A and B) shows that transfer learning is particularly useful for 466 

reducing overfitting and model loss when training data are very limited, but this advantage is 467 

progressively diminished with increasing training dataset size (Figs 3 and 4). 468 

 469 

 470 

 471 

Figure 3. Model loss vs. training epoch number. A) Transfer learning model and 250 training 472 

samples of each class (P, S or neither). B) Model trained without transfer learning (i.e., initially 473 
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randomized weights) and 250 training samples of each class. C) Transfer learning model and full 474 

training dataset (2498 training samples of each class). D) Model trained without transfer learning 475 

(i.e., initially randomized weights) and full training dataset. Blue curve shows model loss for 476 

training data, red curve shows model loss for validation data (not seen during training). A lower 477 

model loss on training data (blue) than validation data (red) means the model shows signs of 478 

overfitting. The degree of overfitting (gap between blue and red curves) is much greater for the 479 

models without transfer learning (B and D) with validation loss hitting an inflection point then 480 

increasing whilst training loss continues to decrease. The transfer learning models also achieve a 481 

smaller minimum validation loss (horizontal dashed line) for each training set size. 482 

 483 

Figure 4 shows the highest model accuracy (the proportion of labels the model classifies 484 

correctly) and lowest model loss achieved by our transfer learning and re-initialized models on 485 

validation data when trained using each subset size of training data. The transfer learning model 486 

achieves lower model loss regardless of training dataset size (Fig 4B). As training dataset size 487 

increases, the difference between the lowest loss achieved by the two models (gap between red 488 

circles and red triangles, Fig 4B) decreases and the advantages of transfer learning diminish. 489 

Generally, loss is considered a more robust metric than accuracy for model performance on future 490 

data as it measures the distance between model predictions and ground truth labels, whereas 491 

accuracy simply measures a binary true/false score. However, accuracy still provides useful 492 

information regarding model performance. In particular, the transfer learning model shows a stable 493 

relationship between maximizing model accuracy and minimizing model loss (gap between black 494 

and red circles is very small for all training subset sizes), where the training strategy of minimizing 495 

model loss appears to achieve the same goal as maximizing model accuracy, again a sign of 496 

reduced overfitting. The re-initialized model (black and red triangles), on the other hand, shows a 497 

much less stable relationship in this regard, with diverging training scores (Fig 4) indicating that 498 

high model accuracy comes at the cost of higher model loss and low model loss comes at the cost 499 

of lower model accuracy for these small training set sizes when transfer learning is not employed. 500 

The increased model loss for model weights with highest model accuracy (black triangles) also 501 

suggests that the model has become overconfident in its predictions (it has large errors on the small 502 

proportion of labels it gets wrong) and is therefore likely to perform worse on out-of-distribution 503 
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data, with more false or missed phase arrival detections (e.g., a phase arrival being labelled as 504 

noise with high model confidence, or vice versa). 505 

 506 

 Model performance between the two approaches (transfer learning vs re-initialization) 507 

converges as training set size increases, indicating that the need for transfer learning decreases 508 

with increased training set size, as expected. In fact, model performance with transfer learning 509 

appears to plateau, or possibly even degrade, at training subset sizes of more than 1500 samples. 510 

This suggests that, with enough training data, transfer learning could potentially inhibit the model’s 511 

ability to learn useful features in the new data that are absent in the original GPD training data. 512 

This apparent variance in performance may also simply be a result of the stochasticity arising from 513 

training using randomized weights in the new part of our transfer learning model. 514 

 515 

 516 

 517 

Figure 4. Model accuracy (A) and loss (B) for various subsets of training data. Open red circles 518 

are transfer learning model weights from epoch that achieves lowest validation loss (e.g., dashed 519 

horizontal lines in Fig 3), open black circles are transfer learning model weights from epoch that 520 

achieves highest validation accuracy, solid red triangles are re-initialized model (no transfer 521 

learning) weights from epoch that achieves lowest validation loss, and solid black triangles are re-522 

initialized model weights from epoch that achieves highest validation accuracy. 523 
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 524 

5.2 Test Dataset (Known Arrival Times) 525 

 526 

Following model training, we test the above models (i.e., new model with and without 527 

transfer learning) and two baseline models (GPD and PhaseNet) using the test dataset outlined in 528 

Section 4. We examine the proportion of correct class predictions (Fig 5) and the residuals between 529 

model and manually determined phase arrival pick times (Fig 6). Due to differences in model task 530 

types (classification vs segmentation), we apply all models as sliding windows over 1000-sample 531 

waveforms (note that the PhaseNet model takes a 3000-sample waveform as input so we examine 532 

only the middle 1000 samples for this model). To account for human picking error in collating our 533 

test set, we define a true positive for each phase arrival type (P or S) as the model prediction 534 

exceeding a given threshold value for that arrival type within 0.5 secs of the manually determined 535 

arrival, such that predicted arrival times very close to the manually determined arrival time are 536 

considered accurate. A true positive for sections of noise is defined as no phase arrival prediction 537 

exceeding a given threshold value at any point within that section of data. The test data are pre-538 

processed as per the training data for each model (i.e., GPD model tested on 2 Hz high-pass filtered 539 

data and all other models, including PhaseNet, tested on raw data; all detrended and self-540 

normalized). 541 

 542 

 The GPD model is tested using four different threshold values (Fig 5A – D) as this value 543 

strongly controls the number of false or missed phase arrival detections generated by this model. 544 

When the threshold is set to be whichever class label (P, S or N) has the highest predicted value 545 

for a given waveform, nearly all P- and S-wave arrivals are detected by the GPD model (99.75 % 546 

and 95 % detection rate, respectively; Fig 5A). However, this threshold criterion makes the GPD 547 

model extremely prone to false phase arrival detections in sections of noise, with 44 % of 1000-548 

sample noise waveforms in our test dataset containing at least one false phase arrival detection 549 

(Fig 5A, bottom right square) and many of our 1000-sample event waveforms containing multiple 550 

phase arrival triggers (e.g., Fig 7B & E). When this threshold criterion is applied to continuous 551 

sections of data from Nabro, the number of false phase arrival detections overwhelmingly 552 

outweighs the number of true phase arrival detections and becomes unmanageable in terms of 553 
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correctly associating phases, identifying true events and processing the data within computational 554 

memory constraints.  555 

 556 

One way to lower the number of false phase arrival detections is to use a higher threshold 557 

value for P- and S-wave predictions. Figure 5B shows the GPD model’s performance on our test 558 

data using a 0.9 threshold value (i.e., a P or S prediction ‘probability’ must exceed 0.9 to be 559 

included). The number of false detections in sections of noise is greatly reduced (down from 44 % 560 

of waveforms to 10 % of waveforms) but at the cost of reduced true phase arrival detections (~ 561 

95% and ~82% of P- and S-wave arrivals, respectively). Part of this performance dip is 562 

undoubtedly due to the difference in sample rates between one half of the test data (50 Hz) and the 563 

GPD model’s training data (all 100 Hz). When the threshold value is increased further (i.e., P or S 564 

prediction must exceed 0.95 or 0.99; Fig 5C and D), the GPD model yields even fewer false phase 565 

arrival detections in noise sections but at the cost of fewer P- and S-wave arrivals.  566 

 567 

Figure 5E shows the performance of the PhaseNet model on our test dataset. This model is 568 

included as it adopts the same U-Net segmentation approach as our new model and is trained on 569 

data from a variety of instrument types, although the training data is still exclusively from 570 

California. The PhaseNet model is much less prone to false phase arrival detections than the GPD 571 

model (Fig 5E, bottom right square); as such, a much lower threshold value (0.4) can be used to 572 

maximize the number of true phase arrival detections. This model accurately identifies ~ 89% and 573 

~ 83 % of P- and S-wave arrivals in our test dataset, which is better than the GPD model with a 574 

threshold value that achieves a similar false detection rate (e.g., Fig 5D), but detects fewer phase 575 

arrivals than our transfer learning and reinitialized models trained with Nabro data (Fig 5F – I). 576 

 577 
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 578 

 579 

Figure 5. Confusion matrices for base GPD model (A – D), PhaseNet model (E), U-GPD transfer 580 

learning model (F, 500 training samples, and G, 2498 training samples) and re-initialized model 581 

(H, 500 training samples, and I, 2498 training samples). Values in matrices are proportion of 582 

ground truth phase arrivals (test set) assigned by each model to a given class (values of 1 along 583 

diagonal from top left to bottom right means all phase arrivals and sections of noise correctly 584 

identified). 585 

 586 

When trained using a subset of just 500 training samples for each class (P/S/N) and 587 

evaluated using a prediction threshold value of 0.4, the transfer learning approach correctly detects 588 

~ 93% and ~94% of P- and S-wave arrivals with very few false phase arrival detections in sections 589 

of noise (~ 1 %; Fig 5F), a clear improvement over our model trained with re-initialized weights 590 

and the same training subset (Fig 5H). When our full training dataset is used (2498 samples for 591 

each class), model performance converges between transfer learning (Fig 5G) and re-initialization 592 

(Fig 5I), with a similar number of correctly identified phase arrivals and false detections in noise, 593 

although the transfer learning model still performs marginally better, particularly on sections of 594 

noise. In essence, the transfer learning model strikes a better balance between high phase arrival 595 

detection rate (~ 97 – 98% for each phase arrival type; Fig 5G, top left and center squares) and low 596 
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false detection rates in sections of noise (~ 1%; Fig 5G, bottom right square) on our test data from 597 

Nabro volcano than any of the existing baseline models (Fig 5A – E) or training a model from 598 

scratch (Fig 5I). 599 

 600 

Figure 6 shows the residuals for each model between their predicted phase arrival times 601 

and the original manual pick times for these test waveforms. Predicted phase arrival times were 602 

determined using a simple trigger algorithm (e.g., Withers et al., 1998) on each model’s probability 603 

time series with the time series index that yields maximum predicted value chosen as the pick time 604 

for a given phase arrival type (Fig 7). The models that employ semantic segmentation (i.e., 605 

PhaseNet, our U-GPD transfer learning model and our re-initialized model; Fig 6B – F) show 606 

comparable pick time precision (root mean square deviation [RMSD] of 0.036, 0.038 and 0.044 607 

seconds, respectively, for each model’s P-wave predictions and RMSD of 0.053, 0.053 and 0.065 608 

seconds, respectively, for each model’s S-wave predictions). The GPD model (Fig 6A), by 609 

comparison, has a more diffuse range of phase arrival pick times (RMSD of 0.217 seconds for P-610 

waves and 0.188 seconds for S-waves), with some model picks made more than 1 second before 611 

or after the manually determined arrival time. This is almost certainly a result of its more 612 

ambiguous class labelling (Fig 1) and the broad phase arrival probability peaks it generates (Fig 613 

7).  614 

 615 
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 616 

 617 

Figure 6. Model phase pick residuals vs. manual phase picks for base GPD model (A), PhaseNet 618 

model (B), U-GPD transfer learning model (C, 500 training samples, and D, 2498 training 619 
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samples), and reinitialized model (E, 500 training samples, and F, 2498 training samples). The 620 

models based on semantic segmentation (B – F) yield smaller phase pick residuals. 621 

 622 

Figure 7 shows three example waveforms from the test set with corresponding model 623 

predictions for the U-GPD transfer learning, GPD and PhaseNet models. These waveforms were 624 

chosen as they have low SNR phase arrivals. Prediction labels for the U-GPD model resemble the 625 

boxcar labels of the training set (Fig 7A, D & G), whereas prediction labels produced by the 626 

PhaseNet model resemble the model’s truncated Gaussian-style training labels (Fig 7C, F & I). 627 

Despite these boxcar shapes, the U-GPD model’s maximum predicted value for each phase arrival 628 

consistently and accurately picks both P- and S-wave arrivals (Fig 7A, D & G). On the other hand, 629 

the base GPD model’s prediction labels are considerably broader and noisier (Fig 7B, E & H). The 630 

U-GPD model appears to have benefitted from retraining using Nabro-specific data, as it performs 631 

much better than the existing models on these challenging waveforms. 632 

 633 
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 634 

Figure 7. Three example waveforms from our test set. Phase arrival prediction trigger thresholds 635 

(horizontal dashed lines) are 0.4, 0.9 and 0.4 for U-GPD (left), GPD (center) and PhaseNet (right), 636 

respectively. (A – C), Test waveform with substantial high frequency background noise. All 637 

models accurately detect P- and S-wave arrivals but GPD model makes multiple phase detections. 638 

(D – F), Test waveform with low amplitude P-wave arrival. Existing GPD and PhaseNet models 639 

incorrectly label S-wave arrival as close combination of P-wave arrival and S-wave arrival. U-640 

GPD transfer learning model correctly detects both P- and S-wave arrivals. (G – I), Test waveform 641 

with substantial low frequency background noise. P-wave arrival prediction is below trigger 642 
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thresholds for both GPD and PhaseNet models, although GPD model accurately detects S-wave 643 

arrival. U-GPD transfer learning model correctly identifies both P- and S-wave arrivals. 644 

 645 

5.3 Full 14-Month Deployment (Unknown Arrival Times) 646 

 647 
Whilst evaluating model performance on individual, manually scrutinized waveforms is 648 

useful for benchmarking and yielding estimates of model efficacy, the model’s performance in a 649 

‘real-world’ setting is ultimately of most importance to seismic analysts. Evaluating such 650 

performance is inherently more challenging, however, as the number of events in long sections of 651 

monitoring data and their respective phase arrival times are unknown, and other considerations, 652 

such as computational time and resources (e.g., memory requirements and availability of optimized 653 

hardware), affect model feasibility as a monitoring tool. 654 

 655 

In this section, we present results of our best performing model in the prior section (U-656 

GPD transfer learning model trained with full training dataset of 2498 samples of each class) and 657 

the original base GPD model when run over the full 14-month Nabro seismic deployment (Fig 8). 658 

As with the test dataset in Section 5.2, phase arrivals are detected at individual stations through a 659 

simple trigger algorithm, where an arrival is detected if the probability assigned to that class label 660 

(P or S) exceeds a given threshold (e.g., 0.4 for our U-GPD transfer learning model). The phase 661 

arrival time is determined as the waveform sample with the highest probability for that phase (Fig 662 

7). 663 

 664 

The U-GPD transfer learning model was applied to the data as a sliding window with 50 665 

% overlap (i.e., applied at ‘time shifts’ of 200 samples) over 24-hour sections of data from each 666 

individual station. The model takes 5 seconds to process 24 hours of 3-component data at 100 Hz 667 

sample rate (or 3 seconds per day at 50 Hz sample rate) on a single graphics processing unit (GPU; 668 

NVIDIA GeForce RTX 2080 Ti), a rate many orders of magnitude faster than ‘real-time’ even 669 

when run on hundreds of stations. To avoid poor predictions due to window edge effects, only the 670 

middle 200 sample predictions out of 400 from each window are used to predict phase arrivals and 671 

are concatenated to produce one long continuous prediction trace without overlap or gaps and with 672 

the same sample rate as that of the input signal (i.e., 100 or 50 Hz). With all other processing steps 673 
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(e.g., software initialization, data read/write, signal windowing, running trigger algorithm, etc.), 674 

the U-GPD transfer learning model picks phase arrivals at all 7 available stations from the full 14-675 

month deployment in less than 4 hours using a single GPU (greatly reduced when parallelized over 676 

multiple GPUs), indicating that it could easily be used within real-time monitoring constraints. 677 

 678 

Conversely, as the GPD model produces only one class prediction per window (Fig 1A), 679 

we apply this model with much greater overlap (97.5 %; every 10 samples of data) and with 680 

varying threshold values (0.9, 0.95 and 0.99) for phase arrival detection triggering. This generates 681 

a prediction trace with a much coarser sample rate than the original input signal (i.e., from 100 or 682 

50 Hz to 10 or 5 Hz, respectively) and takes 26 seconds per 24 hours’ 3-component data at 100 Hz 683 

sample rate (or 15 seconds per day at 50 Hz sample rate) on the same NVIDIA GPU, approximately 684 

a five-fold increase in computational time with a tenth of the temporal detail. With all other 685 

processing steps, the GPD model took almost 50 hours to run over the full 14-month deployment 686 

using a single GPU, more than a ten-fold increase in computational time over the transfer learning 687 

model, due to more (pre-)processing required (e.g., more signal windows generated and 688 

subsequent processing). Assuming a linear increase in computational time, running the model as a 689 

sliding window over every sample of data would take ~ 260 seconds per 24 hours’ 3-component 690 

data at 100 Hz sample rate and ~ 500 hours (nearly 3 weeks) for the full 14-month deployment and 691 

7 stations. While this is still faster than real-time, these timescales for a single or limited number 692 

of station(s) could become limiting when applied at hundreds of stations, particularly without high 693 

performance computing resources. 694 

 695 

5.3.1 Phase Association Method 696 

 697 

Both models detect P- and S-wave phase arrivals but do not associate them to the same 698 

event. To assess the number of locatable events detected, we group P-wave phase arrival triggers 699 

into 4-second bins and keep only bins with arrivals detected at four or more stations. This bin size 700 

was chosen to encompass the maximum plausible travel time between any two stations. If multiple 701 

arrivals were detected at the same station within a 4-second bin, the detection threshold was 702 

increased for all arrivals in that particular bin to retain only the highest probability phase picks. If 703 
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any of these bins now had arrivals at less than four stations, as a result of removing lower 704 

probability phase picks, they were discarded as there would be too few stations to constrain event 705 

location. If there were still multiple arrivals present at any given station, only the arrivals with 706 

highest probability for each station were kept. Finally, if phase arrival bins intersected (a subset of 707 

one bin was contained in another), the bin with highest mean probability was kept. This association 708 

method is clearly quite crude, and only works for small, very local arrays, but allows a broad 709 

evaluation of model performance at detecting phase arrivals. Use of a more rigorous phase 710 

association method (e.g., Ross et al., 2019; Yeck et al., 2019) would obviously be better at 711 

eliminating false arrival picks or identifying multiple events within a 4 second window, which is 712 

a common feature of seismicity during volcanic unrest. However, this will mask underlying model 713 

performance; e.g., the inclusion of false arrival picks is likely to generate greater estimated location 714 

errors (Fig 10). 715 

 716 

We associate S-wave arrivals to their corresponding P-wave arrivals by first locating events 717 

using NonLinLoc (e.g., Lomax et al., 2000), a widely used software package for probabilistic 718 

earthquake location, using the P-wave arrival bins outlined above (Fig 8A) and a simple 1D linear 719 

gradient velocity model from previous seismic studies at Nabro (Table S8; Goitom et al., 2015; 720 

Hamlyn et al., 2014). The difference between P-wave arrival and event origin times were used to 721 

predict which S-wave arrival detections should be associated with each P-wave arrival using a 722 

Vp/Vs ratio of 1.76 (Goitom et al., 2015) and S-wave travel time error of 0.25 (25%). S-wave 723 

arrival triggers that lay within this error bound for each detected P-wave arrival were associated to 724 

that event. S-wave arrivals at stations without a detected P-wave arrival were not included. All 725 

events were then located again in NonLinLoc using all included phase arrivals (Fig 8B). 726 

 727 
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 728 

 729 

Figure 8. U-GPD transfer learning model event locations (total no. of events = 33,950) using 730 

automated phase association strategy. A) P-wave phase arrival triggers are grouped into 4 second 731 

bins and these groupings are used to obtain initial event hypocenters and origin times. B) S-wave 732 

phase arrival triggers are associated to P-waves in (A) using initial origin times, a Vp/Vs ratio of 733 

1.76 and a travel-time error of 25 %. Events are then located again using all included P-wave and 734 

S-wave arrivals. 735 

 736 

5.3.2 Detected Events and Location Errors 737 

 738 

Figure 9 shows the cumulative number of events detected by the U-GPD transfer learning 739 

model (threshold value of 0.4; black solid line) and the original GPD model (threshold values of 740 

0.9, 0.95 and 0.99; grey lines). The cumulative number of events from an existing manual 741 

catalogue for this deployment (Goitom, 2017; Hamlyn et al., 2014), some of which provided the 742 

transfer learning model training data, is also given for reference. Event locations for each model 743 

and the manual catalogue are provided in Supplementary Materials (Figs S3 – S6). When only P-744 

wave arrivals are used (Fig 9A), the GPD model with detection threshold of 0.9 appears to detect 745 

the most events (total no. of events detected by GPD model = 41,007; total no. of events detected 746 

by transfer learning model = 33,950). A threshold of 0.95 also detects more events than the transfer 747 

learning model until shortly after the switch in instrument sample rates from 100 Hz to 50 Hz. 748 
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However, when we consider events with at least one associated S-wave arrival, the transfer 749 

learning model detects more events overall (Fig 9B; no. of events detected by transfer learning 750 

model = 31,387; no. of events detected by GPD model with 0.9 threshold = 26,808). This is 751 

consistent with the results from our test dataset in Section 5.2, with the proportion of S-wave 752 

arrivals accurately detected by the GPD model at these threshold values much lower than the 753 

proportion of P-wave arrivals detected (Fig 5B – D). Furthermore, 6 % of noise waveforms and 754 

16% of S-wave arrivals from our test data were mislabeled by the GPD model (0.9 threshold value) 755 

as P-wave arrivals (Fig 5B), a higher rate of false detections or labels than the transfer learning 756 

model (1 % of noise sections and 0.5% of S-waves, respectively; Fig 5G). This means that a higher 757 

proportion of the P-wave groupings detected by this model with 0.9 threshold value are likely to 758 

include mislabeled S-waves or false arrivals, which is reflected in subsequent event location errors 759 

(Fig 10C – D). 760 

 761 



Confidential manuscript submitted to JGR: Solid Earth 

 

 762 

 763 

Figure 9. Cumulative number of events detected by GPD model (various thresholds, grey lines) 764 

and transfer learning model trained on full Nabro dataset (2498 samples of each class, 0.4 765 

threshold, black line). Blue dashed line is existing manual catalogue (Goitom, 2017). All training 766 

/ validation waveforms are from dates before switch in sample frequency (vertical dashed line). 767 
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A) Cumulative number of events detected using P-wave arrivals only (see main text for event 768 

binning procedure). B) Cumulative number of events with at least one associated S-wave arrival. 769 

 770 

To scrutinize these results further, we examine the number of stations with P- and S-wave 771 

arrival detections per event (Fig 10A – B). In general, the events detected and picked by the U-772 

GPD transfer learning model include more stations and considerably more S-wave arrivals than 773 

those picked by the GPD model, although the number detected by the GPD model may have been 774 

reduced by using a coarser prediction trace (every 10 samples, a requirement to reduce model run 775 

time to a reasonable timeframe). This increase in the number of stations and S-wave arrivals per 776 

event will constrain event locations, as seen in the location errors derived from the models’ phase 777 

arrival picks (Fig 10C – D). 778 

 779 

Location errors are estimated by NonLinLoc using multi-dimensional Gaussian estimators 780 

and subsequent confidence intervals (e.g., Lomax et al., 2000). The horizontal errors (Fig 10C) for 781 

the locations produced using the transfer learning model pick times are comparable to the existing 782 

manually picked events. Furthermore, vertical (depth) errors are much improved over the manual 783 

catalogue (Fig 10D), likely reflecting more consistency in S-wave arrival picking than that of a 784 

manual analyst. The GPD model, by comparison, produces a more diffuse range of horizontal and 785 

vertical errors, which is likely to be a combination of coarser prediction trace, poorer pick precision 786 

(Fig 6A), lack of S-wave arrivals (Fig 10B) and false/mislabeled P-wave arrival detections (Fig 787 

5B). This interpretation is further supported when we look at the number of event locations lying 788 

within the array (i.e., event locations lying within the convex hull of station coordinates) for each 789 

model: NonLinLoc locates more events within the array using the transfer learning picks (n = 790 

23,859) than using the GPD model with 0.9 threshold value (n = 22,826). While we expect many 791 

events to occur outside of the array (e.g., at neighboring faults or volcanic centres), this metric 792 

shows that a much larger proportion of event locations detected by the GPD model lie away from 793 

the volcanic edifice, which may reflect poorer pick precision, false/mislabeled arrivals or coarser 794 

prediction trace, but may also reflect the event types (i.e., regional tectonic) that the original model 795 

was trained on. 796 

 797 
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 798 

 799 

Figure 10. A) Number of P-wave arrival picks per event for transfer learning model (grey) and 800 

base GPD model (gold). B) Number of S-wave arrival picks per event. C) Histogram of Gaussian 801 

horizontal location errors (1 standard deviation) for events picked by transfer learning model (grey) 802 

and base GPD model (gold), and those in the existing manual catalogue (blue). D) Histogram of 803 

Gaussian vertical (depth) location errors (1 standard deviation). 804 

 805 

6 Discussion 806 

 807 

Transfer learning using existing seismological deep learning models can be a highly 808 

effective strategy to automate phase arrival picking in settings with little or no prior monitoring. 809 

We demonstrate that, with a limited number of hand-labelled waveforms (on the order of hundreds 810 

to low thousands) and a few minutes of training time, one can produce a consistent and effective 811 
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deep learning model for phase arrival detection that requires no other manual intervention or tuning 812 

and can process years of data in a matter of hours. 813 

 814 

For small training datasets, the use of pre-existing, generalized CNN filters greatly reduces 815 

model overfitting (i.e., model parameters ‘memorizing’ the training data) when compared with 816 

training a model from scratch (Fig 3) and yields a more stable relationship between maximizing 817 

model accuracy and minimizing model error (Fig 4). Furthermore, when combined with a good 818 

data augmentation strategy, transfer learning can also address the issue of processing data when 819 

instrument sample rates differ from those used to train existing models. When applied to data from 820 

Nabro volcano, augmenting our training set with decimated waveforms greatly improves model 821 

performance on lower sample rate data (Fig S2). As such, hand-labelled training data from the first 822 

35 days of the deployment (all 100 Hz sample rate) were sufficient to detect phase arrivals 823 

throughout the duration of the deployment, even after instrument sample rates were switched to 824 

50 Hz (Fig 9). Without this data augmentation step, model performance on lower sample rate data 825 

declines dramatically (Fig S2). This shows that where sample rates are altered or new instruments 826 

added during a seismic deployment, data augmentation can overcome the cost of collecting further 827 

hand-labelled data and allow models to be adapted cheaply and quickly throughout the 828 

deployment. 829 

 830 

The introduction of new, task-specific data and the change in model task from one of 831 

classification to one of segmentation also improves our U-GPD model pick time precision (Fig 6), 832 

the number of stations per detected event (Fig 10A), the number of S-wave arrivals detected (Figs 833 

5 and 10B) and computational efficiency over the original base GPD model, as well as potentially 834 

reducing the number of false/mislabeled P-wave detections (Fig 5) and increasing the number of 835 

identified events that relate directly to volcanic activity (evidenced by the increased number of 836 

events located within the array). Without manual intervention or sophisticated phase association, 837 

phase arrival picks from the U-GPD transfer learning model produce locations with smaller depth 838 

errors than the base GPD model and even manually determined phase arrival times (Fig 10D). This 839 

is likely a result of more consistent picking and labelling, particularly for S-wave arrivals, which 840 

is difficult even for manual analysts to perform consistently, and suggests that very few of the 841 

events detected are false.  842 
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 843 

Given the greatly improved computational time over the base GPD model, the small 844 

number of training events required and the use of a high-level, user-focused programming library 845 

(Keras), this approach is well within the reach of volcano observatories and research groups. 846 

Previous studies that analyze the pre-, syn- and post-eruptive periods at Nabro volcano have relied 847 

on manually-produced seismic catalogues comprising hundreds of events (e.g., Goitom et al., 848 

2015; Hamlyn et al., 2014; the latter locating 658 events over 38 days, a rate of < 18 events per 849 

day). Our U-GPD transfer learning model yields a seismic catalogue that is order of magnitudes 850 

larger (33,950 events over 396 days, a rate of > 85 events per day; Figs 8 and 9), with smaller 851 

location errors (Fig 10), in a matter of hours. Furthermore, as the model processes 1D waveform 852 

data, as opposed to 2D spectrogram images in some other existing models (e.g., Dokht et al., 2019; 853 

Lara et al., 2020; Titos et al., 2020), it runs quickly on high resolution data without using a GPU 854 

optimized for deep learning frameworks (32 secs per 24 hours of 100 Hz data on an Intel Core i7 855 

desktop CPU) and so could easily be deployed for real-time monitoring with limited computing 856 

resources or at much larger arrays. The methods and computational times in this paper have relied 857 

on standard, generic libraries (ObsPy, TensorFlow and Keras); the use of more optimized, 858 

compiled code or higher-performance / lower-level languages (e.g., Julia and C) could greatly 859 

improve computational times further.  860 

 861 

 Beyond phase arrival picking, the generalized waveform features extracted by existing, 862 

extensively trained models, such as the GPD model (Fig 1A), could serve as a useful feature 863 

extraction system for models designed for other waveform processing tasks. For example, 864 

information regarding frequency content and orientation of seismic energy extracted by the GPD 865 

model (Fig 1A inset) could reasonably provide useful features for a new model designed to 866 

automatically classify volcano seismic event types (e.g., Bueno et al., 2020; Hibert et al., 2017; 867 

Lara et al., 2020), particularly when available annotated datasets are small or unbalanced. 868 

However, with larger datasets, there is the potential for transfer learning to inhibit learning of new, 869 

useful features, particularly if the source and target tasks or data distributions differ considerably. 870 

 871 

The number of seismological studies to date that employ transfer learning is relatively low 872 

(e.g., Bueno et al., 2020; Chai et al., 2020; El Zini et al., 2020; Huot et al., 2018; Titos et al., 2020). 873 
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This is undoubtedly, in part, due to the lack of extensively trained, well-documented, publicly 874 

available seismological models. However, the number is likely to grow as more extensive datasets 875 

and models are developed and released into the public domain. We credit the availability of the 876 

GPD model in the public domain and use of a popular, user-focused machine learning framework 877 

(Keras) as the foundation of the work presented in this paper. Such availability facilitates 878 

adaptation and experimentation; development of other publicly available models and extensive 879 

datasets would aid progress in the field of seismological machine learning.  880 

 881 

Whilst the application of transfer learning can overcome the perception that deep learning 882 

models require a ‘large upfront cost’ in terms of data and computational resources, the 883 

development and benchmarking of large-scale, extensive models and datasets are still imperative 884 

to push the field of seismological machine learning forwards and extend applications to all aspects 885 

of seismic processing and inference. However, it is hoped that applications such as the one 886 

presented in this paper will motivate the initial investment in the development of such models so 887 

that the cost of producing effective task-specific models (e.g., through transfer learning) is 888 

progressively reduced. 889 

 890 
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Introduction  

In this supporting information document, we provide full details of our U-GPD model 

architecture (Fig S1), cross-entropy loss function used for model training (Text S7), velocity 

model used to associate detected phase arrivals and locate events (Table S8), and 

comparisons of U-GPD model performance on test data using varying levels of data 

augmentation (Fig S2). We also provide plotted locations using the U-GPD model, base 

GPD model (with two threshold values) and existing manual catalogue (Figs S3-S6). 

 

 

 

Figure S1. U-GPD model architecture. 
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Figure S2. Results of U-GPD model, trained with different levels of data augmentation, 

applied to our test dataset. 
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Figure S3. Event locations using P- and S-wave phase arrivals detected by U-GPD model 
with 0.4 threshold (no. of events = 33,950). 
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Figure S4. Event locations using P- and S-wave phase arrivals detected by original GPD 
model with 0.9 threshold (no. of events = 41,007). 
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Figure S5. Event locations using P- and S-wave phase arrivals detected by original GPD 
model with 0.99 threshold (no. of events = 13,319). 
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Figure S6. Event locations using P- and S-wave phase arrivals from original manual 
catalogue (no. of events = 2,984). 
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Text S7. 

Supervised deep learning models are optimized through minimizing a loss function that 

measures the distance between the model’s prediction and ground truth labels. To train 

our U-GPD transfer learning model, we use a cross entropy loss function, defined as: 

 

𝑳(𝒑, 𝒒) = −))𝒑𝒊(𝒙) 𝐥𝐨𝐠𝒒𝒊(𝒙)
𝒙

𝟑

𝒊$𝟏

	 

 

where 𝒊 is class/channel number (P, S or N), 𝒙 are the datapoints in our waveform, 𝒑𝒊(𝒙) is 

the ground truth probability distribution for 𝒙 and 𝒒𝒊(𝒙) is the model’s predicted 

distribution for 𝒙. The value of this loss function decreases as the model predictions 

converge towards the ground truth labels. 

 
 
 
 

Table S8. P-wave 1D velocity model used to associate model phase arrival picks and locate 

events (linear gradient between layers, assumed Vp/Vs ratio of 1.76 for S-wave velocity 

model). 

 
Depth for top of layer (km b.s.l.) Vp (km / s) 

-1.5 4.10 
3.0 6.10 
8.0 6.80 

25.0 7.40 

 


