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Abstract

Reducing the model spread in free-tropospheric relative humidity (RH) and its response to warming is a crucial step towards

reducing the uncertainty in clear-sky climate sensitivity, a step that is hoped to be taken with recently developed global

storm-resolving models (GSRMs). In this study we quantify the inter-model differences in tropical present-day RH across

GSRMs, making use of DYAMOND, a first 40-day intercomparison. We find that the inter-model spread in tropical mean

free-tropospheric RH is reduced compared to conventional atmospheric models, except from the the tropopause region and the

transition to the boundary layer. We estimate the reduction to approximately 50-70% in the upper troposphere and 25-50%

in the mid troposphere. However, the remaining RH differences still result in a spread of 1.2 Wm-2 in tropical mean clear-sky

outgoing longwave radiation (OLR). This spread is mainly caused by RH differences in the lower and mid free troposphere,

whereas RH differences in the upper troposphere have a minor impact. By examining model differences in moisture space we

identify two regimes with a particularly large contribution to the spread in tropical mean clear-sky OLR: rather moist regimes

at the transition from deep convective to subsidence regimes and very dry subsidence regimes. Particularly for these regimes a

better understanding of the processes controlling the RH biases is needed.
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Abstract18

Reducing the model spread in free-tropospheric relative humidity (RH) and its response19

to warming is a crucial step towards reducing the uncertainty in clear-sky climate sen-20

sitivity, a step that is hoped to be taken with recently developed global storm-resolving21

models (GSRMs). In this study we quantify the inter-model differences in tropical present-22

day RH across GSRMs, making use of DYAMOND, a first 40-day intercomparison. We23

find that the inter-model spread in tropical mean free-tropospheric RH is reduced com-24

pared to conventional atmospheric models, except from the the tropopause region and25

the transition to the boundary layer. We estimate the reduction to approximately 50-26

70% in the upper troposphere and 25-50% in the mid troposphere. However, the remain-27

ing RH differences still result in a spread of 1.2 Wm−2 in tropical mean clear-sky out-28

going longwave radiation (OLR). This spread is mainly caused by RH differences in the29

lower and mid free troposphere, whereas RH differences in the upper troposphere have30

a minor impact. By examining model differences in moisture space we identify two regimes31

with a particularly large contribution to the spread in tropical mean clear-sky OLR: rather32

moist regimes at the transition from deep convective to subsidence regimes and very dry33

subsidence regimes. Particularly for these regimes a better understanding of the processes34

controlling the RH biases is needed.35

Plain Language Summary36

Errors in the humidity and its change with global warming simulated by climate37

models limit our ability to predict how the climate system responds to an increase in green-38

house gas concentrations. In this study we investigate how large these humidity errors39

are in recently developed high-resolution models. We focus on the relative humidity, which40

measures the amount of moisture in the air compared to what air can hold at a given41

temperature. We find that the disagreement in the tropics is reduced compared to con-42

ventional climate models, but the relative humidity errors still have a considerable ef-43

fect on the radiation budget. We also investigate in which regions of the tropics a fur-44

ther reduction of errors would be most beneficial. In the vertical, it is the altitude re-45

gion between about 1 km and 10 km. In the horizontal, we find two tropical regimes that46

are particularly important: Dry regimes with very strong subsidence and moister regimes47

at the edge of deep convective regimes. Particularly for those regimes a better under-48

standing of the processes that cause the model errors is needed.49

1 Introduction50

Free-tropospheric water vapor strongly impacts the Earth’s outgoing longwave ra-51

diation (OLR) and therefore plays a key role in controlling the clear-sky response of the52

climate system to an increase in greenhouse gases. It is now widely accepted that this53

response is described by a warming and moistening of the atmosphere that is implied54

if the relative humidity (RH) and lapse rate were to depend on temperature alone, which55

corresponds to a warming at approximately constant RH (e.g. Held & Soden, 2000; Romps,56

2014; Po-Chedley et al., 2019). This reduces the radiative response compared to a warm-57

ing at constant absolute humidity, and can be described as a positive water-vapor–lapse-58

rate feedback. While general circulation models (GCMs) agree on this basic response (e.g.59

Soden & Held, 2006; Bony et al., 2006), there is still an appreciable inter-model spread60

in the magnitude of the water-vapor–lapse-rate feedback. This spread, which primarily61

originates from the tropics, contributes a non-negligible (about 30%) uncertainty to the62

climate sensitivity (Vial et al., 2013).63

64

The RH is an important detail. Even small deviations from its assumed constancy65

with warming have a strong impact on the radiative response. RH changes alter the ra-66

diative compensation between water-vapor and lapse-rate feedback in the saturated re-67
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gions of the emission spectrum (Bony et al., 2006) and differences in the RH response68

control the spread in tropical water-vapor–lapse-rate feedback across GCMs (Vial et al.,69

2013; Po-Chedley et al., 2018). Even if RH does not change with warming, the RH pro-70

file in the present climate may influence the feedback. While a correlation between global71

mean present-day humidity and water vapor feedback has not been found for GCMs (John72

& Soden, 2007), Bourdin et al. (2021) have argued that especially at warmer, tropical73

temperatures the rapid closing of the atmospheric window by water vapor continuum74

absorption makes the feedback dependent on the RH profile. There are other reasons to75

care about present-day free-tropospheric RH (e.g. Derbyshire et al., 2004; Luo & Rossow,76

2004; Stevens et al., 2017), but independent of whether these (or the proposed direct ef-77

fect of present-day RH on the feedback) end up being important, confidence in an abil-78

ity of models to correctly represent the present-day RH is essential for building trust in79

model-based estimates of the subtle changes in RH under warming that influence the wa-80

ter vapor feedback.81

82

Sherwood et al. (2010) found that certain aspects of the tropical RH distribution83

show signs of convergence in GCMs once horizontal resolutions fall below about 100km.84

It is also known from previous studies that free-tropospheric RH is primarily controlled85

by the circulation on scales resolved by typical GCMs, and parameterized processes like86

convection only matter by influencing the circulation (e.g. Sherwood, 1996; Pierrehum-87

bert & Roca, 1998; Dessler & Sherwood, 2000). On the one hand, the convergence of RH88

in GCMs with different convective parameterizations might indicate that convective pro-89

cesses play a minor role in affecting the circulation. On the other hand, for simulations90

on an aquaplanet Retsch et al. (2019) found that allowing convection to be resolved ex-91

plicitly has a larger impact on free-tropospheric RH than increasing resolution in sim-92

ulations with parameterized convection. This suggests that the circulation changes more93

significantly once convection is resolved explicitly and calls into question whether the RH94

in GCMs converges for physical reasons.95

96

A milestone in climate modelling has been made with the emergence of global storm-97

resolving models (GSRMs; Satoh et al., 2019), also called global cloud-resolving or convection-98

permitting models. While the development of the first GSRM already goes back more99

than 15 years (Tomita et al., 2005), only recently the increase in computational capac-100

ities has allowed several modelling groups to follow, enabling first intercomparisons. GSRMs101

solve the non-hydrostatic equations on global grids with kilometre-scale resolution. At102

such resolutions the models begin to resolve precipitating convective systems and there-103

fore forgo the need to parameterize deep convection, which is hoped to eradicate some104

long-standing biases (e.g. Miura et al., 2007; Stevens et al., 2020). Whether the spread105

in free-tropospheric RH is reduced in GSRMs is, however, not obvious. This depends on106

how strongly the behavior of convection depends on model formulation. If this depen-107

dence is weak, RH differences should be small among GSRMs. However, there are also108

reasons to expect the opposite. Bourdin et al. (2021) found that RH differences across109

cloud-resolving models in radiative-convective equilibrium (RCE) are substantially larger110

than across GCMs. The large spread in RCE models is likely related to different degrees111

of convective organization (Becker & Wing, 2020). Although these differences are expected112

to be smaller in simulations with more realistic setups, in which large-scale circulations113

impose constraints on convective organization (Wing et al., 2020), they likely still play114

a role. Therefore, it cannot be ruled out that the RH spread across GSRMs is similar115

or even larger than across GCMs.116

117

In this study we quantify differences in tropical free-tropospheric RH across GSRMs118

for the first time, making use of the model intercomparison DYnamics of the Atmospheric119

general circulation Modeled On Nonhydrostatic Domains (DYAMOND Stevens et al.,120
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2019). To assess how relevant the RH differences are from a radiative point of view, we121

translate them into differences in clear-sky outgoing longwave radiation (OLR) using a122

radiative transfer scheme. The latter is also used to compute radiative kernels, which123

allow us to identify those regions in the tropical atmosphere, in which a future reduc-124

tion of RH differences would be most effective in reducing differences in clear-sky OLR.125

126

We perform the comparison of the DYAMOND models in moisture space, i.e. we127

sort the atmospheric state from dry to moist. On the one hand, humidity fields in mois-128

ture space are highly aggregated, which ensures robust statistics. On the other hand, the129

moisture space representation allows us to distinguish between different dynamic regimes130

of the tropics, which is useful for identifying regions of large inter-model spread as well131

as for the OLR calculations. The representation of the atmosphere in moisture space is132

inspired by Bretherton et al. (2005), who used it to study the energy balance of convec-133

tive self-aggregation in radiative-convective equilibrium simulations. Later, the depic-134

tion in moisture space has also proven useful for analysing observational data (Schulz135

& Stevens, 2018) and to bypass the issue of co-location when comparing observations136

and model simulations (Naumann & Kiemle, 2020).137

138

This paper is organized as follows: In Section 2 we introduce the DYAMOND sim-139

ulations and describe our post-processing of the model output. In Section 3 we quan-140

tify inter-model RH differences in the tropical mean and in moisture space. The impact141

of the RH differences on the clear-sky radiation budget is examined in Section 4.142

143

2 DYAMOND simulations144

2.1 Models and experimental protocol145

DYAMOND is the first intercomparison project for GSRMs, comparing 40-day sim-146

ulations of nine models (only acronyms are given here): ICON, NICAM, ARPEGE-NH,147

FV3, GEOS, MPAS, UM, SAM and IFS. In the following we provide a brief overview148

of the models and the experimental protocol of DYAMOND. A more detailed descrip-149

tion is given by Stevens et al. (2019).150

151

Most of the DYAMOND models solve the fully compressible non-hydrostatic Navier-152

Stokes equations. Two exceptions are SAM, which uses the anelastic form of the non-153

hydrostatic equations, and IFS, which solves the primitive equations and is hence a hy-154

drostatic model. The models solve their governing equations on a variety of different nu-155

merical grids. The horizontal grid spacing is between 2.5 km and 5 km in eight of the nine156

models. The only exception is UM, which uses a latitude-longitude grid with a some-157

what coarser resolution at low latitudes (7.8 km at the equator). The number of verti-158

cal levels and the vertical extent of the model grid also vary among the models. The mod-159

els were not specifically calibrated for the DYAMOND simulations. Some models even160

ran for the first time in this configuration and at storm-resolving resolutions.161

162

The models also differ in the parameterizations used to represent unresolved pro-163

cesses. In particular, there are different approaches to handle convection, reflecting some164

disagreement about which motions are adequately resolved at kilometre-resolution. While165

in some models convection is not parameterized at all, in others shallow convection is166

parameterized. GEOS and MPAS even employ scale-aware parameterizations for deep167

convection. There is also diversity in the parameterizations for boundary layer turbu-168

lence and microphysics.169

170
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The DYAMOND simulations were run for 40 days from 1 August to 10 Septem-171

ber 2016. They were initialized with common atmospheric fields from the ECMWF global172

(9 km) meteorological analysis. Daily sea surface temperatures (SSTs) and sea ice con-173

centrations from the ECMWF analysis were used as boundary conditions. The initial-174

ization of the land surface was left to the practices of the individual modelling groups.175

After the initialization each simulation was allowed to evolve freely without further forc-176

ing.177

2.2 Post-processing and profile selection178

We use the 3-hourly output of atmospheric pressure p, temperature T , specific hu-179

midity q as well as vertical velocity W . Following Stevens et al. (2019) we exclude the180

first ten days of the simulations and only use the last 30 days to minimize the effects of181

biases from differences in the model spin-up as well as constraints from the common ini-182

tialization.183

184

The size of the model output represents a challenge for the analysis. 30 days of one185

3-hourly 3D field (corresponding to 240 timesteps) on the native model grid covering the186

tropics have a size on the order of 2 TB. For nine models and four variables this adds187

up to more than 60 TB. Developing strategies for dealing effectively with the massive amounts188

of data produced by GSRMs is one of the purposes of DYAMOND. Our approach is the189

following: In a first step all fields are horizontally interpolated from each model’s native190

grid to a common regular latitude-longitude grid covering the tropics (30◦ S to 30◦ N)191

with a resolution of 0.1◦. This is done using a conservative remapping via the remap func-192

tion of the Climate Data Operators (CDO) version 1.9.5 (Schulzweida, 2019). The remap-193

ping reduces the data volume by about a factor of ten without noticeable loss of infor-194

mation in the region of interest. In a second step we perform a subsampling of grid points.195

From each of the 240 output timesteps about 42,000 oceanic profiles are selected ran-196

domly, resulting in a total of 10 million selected profiles for each model. This reduces197

the amount of data by another factor of 100. We estimated the sampling uncertainty by198

repeating the random sampling several times for the same model. For tropical mean RH,199

the quantity we focus on, the sampling uncertainty is about 0.01% RH and hence two200

magnitudes smaller than inter-model differences, which are on the order of 1% RH (Sec-201

tion 3.1). In the same manner we estimated the sampling uncertainty for each block in202

moisture space (Section 3.2) to be at least one order of magnitude smaller than the inter-203

model spread in the respective block. Hence, the random subsampling of profiles intro-204

duces only a small error, but reduces the data volume to 0.1% of its original size. This205

result shows that although GSRMs work with tremendous data volumes, most of the in-206

formation is necessary for predicting their dynamic evolution, and for many analyses there207

exists considerable opportunities to compress their output with relatively little loss of208

information.209

210

We exclude land areas to avoid complications from topography and more strongly211

varying boundary layer depths and hence to simplify the interpretation. The inhomo-212

geneity of land regions would also colour our analysis in moisture space. Vertically in-213

tegrated water vapor (IWV), which is used to span moisture space (Section 3.2), is strongly214

influenced by local surface characteristics over land. It can be very low in regions with215

little soil moisture or in regions with high elevation. Consequently, if moisture space was216

spanned from both oceanic and continental grid points, profiles associated with very dif-217

ferent regimes would be mixed in the same IWV blocks. Therefore, we focus on the more218

homogeneous ocean regions.219

220
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The fifth generation of the ECMWF atmospheric reanalysis (ERA5; Hersbach et221

al., 2020) serves as an observationally constrained reference data set in our comparison.222

It should be pointed out that potential biases with respect to observations exist in the223

ERA5 water vapor fields. Xue et al. (2020) found a wet bias with respect to satellite ob-224

servations in the free troposphere, which is most pronounced in regions of large-scale sub-225

sidence. Nevertheless, the dataset provides a valuable constraint of the humidity distri-226

bution and can be used to estimate its natural variability. Gridded atmospheric variables227

are provided at a spatial resolution of 31 km. We use 3-hourly output corresponding to228

the output times of the DYAMOND models and post-process it in the same way as the229

model output.230

231

3 RH differences in DYAMOND models232

In this section we quantify the differences in free-tropospheric RH in the DYAMOND233

models, first in the tropical mean and subsequently in moisture space.234

3.1 Tropical mean235

Since the focus of this study is on the radiative impact of humidity differences we236

concentrate on relative humidity (RH) rather than absolute humidity (measured by q).237

The atmospheric temperature and water vapor concentration are decisive parameters for238

clear-sky radiative transfer. The RH is a valuable proxy that links their competing ef-239

fects on longwave emission. This will be discussed in more detail in the second part of240

this paper. Another reason to look at RH is that it is RH rather than q that is effectively241

constrained by model processes (in particular, condensation and evaporation). There-242

fore, any model errors in temperature are expected to alter q but not necessarily RH.243

244

RH is calculated for each of the randomly selected profiles and their associated val-245

ues of q, p and T as RH = e
es(T ) , where e is the water vapor pressure and es(T ) is its246

saturation value at temperature T . For es(T ) we take the value over water for T above247

the triple point Tt and the value over ice for T below Tt− 23 K. For intermediate T a248

a combination of both is used following the IFS documentation (ECMWF, 2018). It should249

be noted here that the RH computed in this way can deviate from the RH calculated250

internally in the microphysics schemes of the models because they use different meth-251

ods to compute RH above the freezing level. The deviations are relevant when the re-252

lation between RH and clouds or precipitation is investigated. However, as explained above253

our focus is on the radiative impact of the humidity differences. We regard RH primar-254

ily as a quantity that links temperature and absolute humidity, which are the quanti-255

ties that ultimately enter the models’ radiation schemes. Therefore, it is reasonable to256

compare RH computed in a uniform way for all models.257

258

Overall, the models all capture the typical C-shape of the tropical mean RH pro-259

file with two maxima, one atop the boundary layer and one at the tropopause, and a min-260

imum in the mid troposphere (Figure 1). The models’ RH distributions also agree re-261

markably well with the ERA5 distribution. In fact, the multi-model mean RH (not shown)262

differs from ERA5 by less than 2% RH throughout the troposphere, except from the al-263

titude region above 15 km.264

265

Nevertheless, there are considerable differences among the models. The inter-model266

standard deviation σ(RH) (Figure 1c) has a distinct maximum around the top of the bound-267

ary layer (BL). The transition from the BL to the free troposphere is marked by a steep268

gradient in RH. Therefore, differences in the depth of the BL cause a large inter-model269
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spread in RH. In IFS the RH gradient at the top of the BL is particularly steep and the270

lower free troposphere is significantly dryer than in other models. Generally, in most mod-271

els the BL is deeper than in ERA5. The inter-model spread is smallest in the mid tro-272

posphere between 4 and 10 km altitude. In that region σ(RH) is 2–3% RH and approx-273

imately constant with height. RH is lower than in ERA5 in the majority of models, ex-274

cept ICON and NICAM. Above 10 km σ(RH) increases with altitude and exceeds 8% RH275

at 100 hPa.276

277

To the extent one thinks of RH anomalies as linking q and T anomalies, it is in-278

formative to consider q and T separately. In the DYAMOND models, T anomalies are279

smallest in the lower troposphere, where they are constrained by identical SSTs, and in-280

crease with height throughout the free troposphere, where the temperature profile is set281

by convection and radiation (Figure 2a,b). At lower levels, where T anomalies are small,282

q and RH anomalies are correlated (Figure 1b, Figure 2d). In the upper troposphere, where283

T anomalies are large, T and q anomalies are correlated (Figure 2b,d), consistent with284

the idea that model errors in T cause errors in q. Although RH anomalies are also large285

there (Figure 1), they play a minor role in determining whether a model’s q is small or286

large as compared to another model’s q.287

288

That the DYAMOND simulations were run just over one month (August/ Septem-289

ber 2016) represents a potential limitation for the intercomparison, especially for vari-290

ables that are subject to high internal variability on longer time scales. To estimate the291

internal variability of RH, we calculate the interannual variability in the mean August/292

September RH distribution based on five years (2014-2019) of the ERA5 reanalysis, shown293

as the dotted line in Figure 1c. Given that interannual variations in free-tropospheric294

water vapor are primarily driven by SST variations (Chuang et al., 2010) and the five295

years include a strong El Niño event in 2015/2016, the interannual variability rather rep-296

resents an upper bound for the internal variability one could expect in the DYAMOND297

runs with fixed SST. Despite this, the inter-model standard deviation is significantly larger298

than the ERA5 interannual variability throughout the troposphere, suggesting that the299

inter-model differences are mostly systematic model biases rather than a result of poorly300

sampled internal variability. The region where the inter-model differences are expected301

to be colored most strongly by internal variability is the upper troposphere, where the302

inter-model spread is only two to three times larger than the estimated internal variabil-303

ity.304

305

Another potential limitation arises from the common initialization of the models,306

which might constrain the RH profiles even after the first ten days of the simulation that307

were excluded (Section 2.2). To test this, we divided the analyzed 30-day period into three308

consecutive 10-day periods and repeated the spread analysis. We did not find a system-309

atic increase of the inter-model spread over time, except from the altitude region above310

14 km. For a second analysis we made use of a coupled atmosphere-ocean simulation per-311

formed with the ICON model at storm-resolving resolution (5 km grid spacing). The sim-312

ulation was run for two years, starting on 20th January 2020. The length of the simu-313

lation allows us to examine how the RH profile evolves after the first 40 days. In Fig-314

ure 3 we compare tropical mean RH profiles for February 2020 and February 2021. Febru-315

ary 2020 corresponds to days 13 to 40 after the initialization and is hence comparable316

to the time period we analyze in the DYAMOND simulations. If the RH profile was still317

in the transition from the initial conditions during that month, we would expect it to318

be very different one year later. However, the RH differences between February 2020 and319

February 2021 are small compared to the inter-model differences (cf. Figure 1). Through-320

out the lower and mid troposphere, the difference is smaller than 1% RH. The largest321

differences of up to 3% RH occur in the upper troposphere above 12 km. It has to be kept322
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in mind that SST changes from February 2020 to February 2021 in the coupled simu-323

lation, so the RH differences we find are most likely related to SST changes rather than324

to constraints from initialization in February 2020. The size of the differences and the325

increase in the upper troposphere are in accordance to what we found for the inter-annual326

variations in ERA5 (Figure 1c). It is very unlikely that the RH in February 2020 was327

still in its transition from initialization, but SST and/or model drift changed in a way328

to keep RH almost constant in February 2021. Hence, both analyses indicate that the329

transition from the initial conditions is already largely completed after the first ten days.330

The upper troposphere (above 12 km) might be an exception, but as we will see in Sec-331

tion 4 the RH differences in this region do not significantly affect the clear-sky radiation332

budget.333

334

To examine how the RH spread in DYAMOND compares to that in conventional,335

coarser atmospheric GCMs, we compare the DYAMOND ensemble to 29 GCMs that par-336

ticipated in the Atmospheric Model Intercomparison Project (AMIP) experiments of the337

Coupled Model Intercomparison Project phase five (CMIP5) (Taylor et al., 2012). The338

AMIP simulations have a total length of 30 years (1979-2008) and were run with pre-339

scribed (identical) SST. An exact quantitative comparison of the RH spread in GSRMs340

and GCMs will not be possible until longer, multi-year storm-resolving simulations are341

available. Nevertheless, a comparison to the AMIP GCMs is valuable to put the DYA-342

MOND spread into perspective. The inter-model spread in AMIP is quantified both based343

on 30-year averages and based on monthly averages of RH. This allows us to estimate344

how much the inter-model spread in a single month can differ from the spread on clima-345

tological timescales. The inter-model standard deviation of 30-year mean RH is denoted346

by the black dashed line in Figure 1c. It lies within the range of monthly standard de-347

viations, which is shown as gray shading. In most parts of the free troposphere, the most348

extreme monthly standard deviations differ between 5-25% from the 30-year value. Only349

in the tropopause region the deviations are larger (up to 40%). Overall, the AMIP ex-350

periment confirms that the inter-model spread in a single month provides a good first351

estimate of the inter-model spread on climatological timescales. However, the the vari-352

ability in the monthly standard-deviation should be kept in mind when the (monthly)353

DYAMOND spread is compared to the (climatological) AMIP spread in the following.354

355

The inter-model spread in DYAMOND is smaller than the spread in AMIP through-356

out most of the free troposphere. The largest reduction is found between 8 km and 14 km357

altitude, where the RH spread in DYAMOND is reduced by approximately 50-70% com-358

pared to AMIP. At lower altitudes, between 3 km and 8 km altitude, the DYAMOND spread359

is smaller by approximately 25-50%. The lower free troposphere is an exception: the peak360

in σ(RH) at the top of the BL is less pronounced in CMIP5 AMIP than in DYAMOND,361

indicating that variations in the depth of the BL are smaller in the AMIP models. How-362

ever, part of the smaller spread in the AMIP models can be explained by the fact that363

the hydrolapse in these models is generally less steep, which is evident from the AMIP364

multi-model mean RH profile (Figure 1a). RH differences caused by a shift in the height365

of the hydrolapse are therefore smaller, but dispersed over a broader layer.366

367

As mentioned in Section 1, Sherwood et al. (2010) found that certain aspects of368

the RH distribution converge in GCMs once horizontal grid spacings fall below a cer-369

tain scale. A question arising from this is whether the agreement across GSRMs is bet-370

ter than across the CMIP5 AMIP models with rather high resolutions. To test this we371

repeated the spread analysis for only those nine AMIP models with grid resolutions ex-372

ceeding T85 (128x256 grid points), corresponding to the scale suggested by Sherwood373

et al. (2010). While the RH spread across these high-resolution GCMs is somewhat re-374

duced in the upper and lower troposphere, the spread in the mid troposphere seems to375
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be unaffected (not shown). As we will show in Section 4.4, it is particularly the spread376

in the mid troposphere that matters for the outgoing longwave radiation. Hence, there377

is still a valuable improvement in GSRMs compared to the high-resolution GCMs.378

379

An additional series of DYAMOND runs with the ICON model allowed us to in-380

vestigate how RH changes with increasing horizontal resolution beyond the convergence381

scale suggested by Sherwood et al. (2010). We compared tropical mean (ocean only) RH382

from runs at 80 km, 40 km and 20 km grid spacing with parameterized convection as well383

as runs at 20 km, 10 km, 5 km and 2.5 km grid spacing with explicit convection (not shown).384

In the parameterized runs RH hardly changes with increasing horizontal resolution. RH385

strongly depends on resolution for the explicit runs at 20 km and 10 km, for which us-386

ing explicit convection might not be adequate. At 5 km grid spacing RH has converged.387

In some altitude regions, particularly in the mid troposphere, the RH difference between388

the converged explicit runs and the parameterized runs is significantly larger than the389

differences between the parameterized runs at different resolutions. These findings sug-390

gest that resolving convection impacts RH although it seemed to have already converged391

at coarser resolutions when convection was parameterized.392

393

In summary, despite the shortness of the DYAMOND simulations we can say with394

a high degree of certainty that the spread in free-tropospheric RH in the DYAMOND395

GSRMs is reduced compared to the AMIP GCMs throughout most of the free troposphere,396

except from the region at the transition to the BL and the tropopause region. We es-397

timate the reduction to approximately 50-70% in the upper troposphere (8-14 km) and398

25-50% in the mid troposphere (3-8 km). For an exact quantification longer storm-resolving399

simulations are required. The reduction in the spread is even more remarkable consid-400

ering that the DYAMOND models were not specifically calibrated for this experiment.401

Many of them were even run in the storm-resolving configuration for the first time. How-402

ever, as we will show in Section 4, the remaining RH differences still have a non-negligible403

impact on the clear-sky radiation budget.404

405

3.2 Moisture space406

To distinguish between different dynamic regimes of the tropics, namely subsidence407

and deep convective regimes, which are not necessarily co-located in different models,408

we compare RH statistics in moisture space (Bretherton et al., 2005; Schulz & Stevens,409

2018; Naumann & Kiemle, 2020). To span the moisture space, the randomly selected at-410

mospheric profiles (Section 2.2) are ranked by their vertically integrated water vapor (IWV).411

The integration is performed from the surface to an altitude of 20 km for all models.412

413

Inter-model differences in the distribution of IWV are most pronounced at high IWV414

values (Figure 4). This is apparent when comparing different percentiles of IWV. While415

the 25th percentiles of all models lie within a range of 2.2 kg m−2, the 75th percentiles416

differ by more than 10 kg m−2 between the two most extreme models IFS and NICAM.417

The overall shape of the IWV distribution differs among models. For IFS and NICAM418

distributions are approximately uniform over a large range of IWV values, whereas the419

distribution of ARPEGE-NH has a pronounced peak at IWV values of about 50 kg m−2.420

For the remaining models (including ERA5) distributions are more bimodal with a first421

peak at 25–30 kg m−2 and a second peak at 50-55 kg m−2. The exact position and the422

relative strengths of the two peaks differ among the models. In SAM the first peak is423

particularly pronounced, whereas in ICON the second peak is comparably strong. Bi-424

modality is a known feature of the IWV distribution over tropical oceans, which is not425

reliably reproduced by GCMs (Mapes et al., 2018). Our results indicate that this prob-426
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Figure 1. Tropical mean RH profiles and inter-model spread in the DYAMOND ensem-

ble. (a) Tropical mean vertical profiles of RH over ocean regions from all DYAMOND models

(colours), the ERA5 reanalysis (black solid) and the CMIP5 AMIP 30-year multi-model mean

(black dashed). (b) Vertical RH profiles for the DYAMOND models shown as deviation from

the ERA5 profile. (c) Inter-model standard deviation of tropical mean RH in DYAMOND (solid

line). For comparison, the inter-annual RH spread in five years of ERA5 (2014-2019; dotted

line) as well as the inter-model spread of the 30-year mean RH in the CMIP5 AMIP ensemble

(dashed line) are shown. Grey shading indicates the range of inter-model standard deviations in

individual months of the AMIP experiment.

lem is similarly pronounced in GSRMs.427

428

To display quantities in moisture space IWV-ranked profiles from each model are429

split into 50 blocks, each containing an equal amount of profiles corresponding to two430

percentiles of IWV. Quantities are then averaged over each block. This block-averaging431

results in an x-axis that is linear in the percentile of IWV. Due to the non-uniform IWV432

distributions (Figure 4) block-averaged IWV itself increases non-linearly as a function433

of the IWV percentile. This is also visible in the multi-model mean (black line in Fig-434

ure 5d), albeit very weakly: In the driest and moistest percentiles, respectively, the in-435

crease in IWV is steeper than in the intermediate percentiles. Note that this also means436

that the comparison of different models in moisture space is made at a certain IWV per-437

centile rather than a certain IWV value.438

439

SST increases from about 292 K in low IWV percentiles to about 302 K in high per-440

centiles (Figure 5d). The SST gradient weakens from dry to moist regimes, similar to441

how the meridional SST gradient weakens from the subtropics towards the inner trop-442

ics. The inter-model standard deviation in block-averaged SSTs is around 0.15 K, im-443

plying that the the distribution of SST in moisture space is very similar among models.444

The underlying PDF of SSTs is identical in all models, which, compared to other quan-445

tities like IWV, puts an additional constraint on the SST distribution in moisture space.446

447

Block-averaged vertical velocities (Figure 5c) indicate that the large-scale circu-448

lation is directed upward in the highest 5–10 IWV percentiles and downward in drier re-449

gions. The blocks with positive vertical velocities correspond to the regions of intense450

rainfall in the Indo-Pacific Warm Pool and the Intertropical Convergenze Zone (ITCZ),451

where deep convection is concentrated. Note that block-averaged vertical velocities take452

on values up to 13 cm s−1 in the deep convective regimes, but the color map in Figure453

5c is truncated at 1.2 cm s−1. The drier blocks correspond to trade wind regimes. There,454

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

200 250 300
T / K

0

2

4

6

8

10

12

14

16

z /
 k

m

(a)

ARPEGE-NH
FV3
GEOS5
ICON
IFS
MPAS
NICAM
SAM
UM
ERA5 reanalysis

5.0 2.5 0.0 2.5 5.0
T TERA5 / K

1000
900
800
700
600
500
400

300

200

100

p 
/ h

Pa

(b)

10 4 10 2

q / kg kg 1

0

2

4

6

8

10

12

14

16
z /

 k
m

(c)

0.5 0.0 0.5 1.0 1.5
q qERA5

qERA5

1000
900
800
700
600
500
400

300

200

100

p 
/ h

Pa

(d)

Figure 2. Tropical mean vertical profiles of temperature T and specific humidity q over ocean

regions from all DYAMOND models. Vertical profiles of T (a, b) and q (c, d) are shown as abso-

lute values together with the ERA5 profiles (a, c) and as deviation from the ERA5 profiles (b, d).

Deviations in q are in fractional units, i.e. normalized by the ERA5 value (qERA5).

the free troposphere is characterized by large-scale subsidence, which increases in strength455

with decreasing IWV. At the transition from deep convective to subsidence regimes near456

the 90th IWV percentile vertical velocities are negative in the lower free troposphere and457

positive aloft. These blocks represent an advanced state in the life cycle of deep convec-458

tion associated with upper-level anvil clouds. This state is characterized by ascent above459

the freezing level (which is located around 5 km) and descent below, driven by conden-460

sation and freezing above the freezing level, and melting and evaporation of precipita-461

tion below (Betts, 1990). The increasing amount of high-level clouds from dry to moist462

regimes is also reflected by a sharp decrease in all-sky OLR in the moist blocks (Figure463

5d).464

465

The largest RH values are found in the BL (5a), where moisture is provided by evap-466

oration from the surface. The RH in the BL is relatively constant throughout moisture467

space. Where air rises from the BL to the free troposphere in deep convective plumes468

it cools and its RH increases until saturation is reached. Therefore, the highest RH val-469

ues in the free troposphere are found in deep convective regions. Throughout the trop-470

ics, particularly in the subsidence regions, the free-tropospheric RH profile takes on a471

typical C-shape, which is known from observations (e.g. Jensen et al., 1999; Vömel et472

al., 2002) and GCMs (Sherwood et al., 2010). With a simple analytical model Romps473

(2014) showed that this shape of the RH profile can be understood from the balance be-474

tween moistening by detrainment of saturated air from convective regions and drying by475

subsidence. As the temperature lapse rate increases with height, the reduction in RH476

for a given amount of subsidence also increases with height. This increase in subsidence477

drying, together with a decrease in convective moistening, explains why RH decreases478

with height in the lower free troposphere. In the upper troposphere, however, convec-479

tive moistening dominates and causes RH to maximize at the tropopause. A plateau in480
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Figure 3. Comparison of RH in two subsequent Februaries of a coupled atmosphere-ocean

simulation with the ICON model at storm-resolving resolution (5 km). (a) Tropical mean (ocean

only) RH in February 2020 (blue) and February 2021 (orange). February 2020 corresponds to

days 13 to 40 after initialization, which is comparable to the analyzed DYAMOND period. (b)

RH difference between February 2020 and February 2021.

RH is apparent near the freezing level at around 5 km particularly in the high IWV per-481

centiles. Latent heat release from ice formation enhances the stability at this level, which482

causes deep convection to preferably detrain there (Stevens et al., 2017).483

484

Displaying inter-model differences in moisture space reveals how they are distributed485

over the different regimes of the tropics. RH anomalies for individual models are shown486

in Figure A1 in Appendix A. Here we focus on the inter-model standard deviation σ(RH),487

shown in Figure 5b. First, it is apparent that the large inter-model spread in the upper488

troposphere (Figure 1) prevails throughout the entire tropics. In the tropopause region489

σ(RH) exceeds 10% RH everywhere except from the driest part of the subsidence regions.490

Second, the local maximum in σ(RH) at the top of the BL is most pronounced in the491

driest regimes, where the RH gradient between the BL and the free troposphere is steep-492

est (Figure 5a). In moister regions, where the RH gradient is less steep, the maximum493

in σ(RH) is weaker but broader. Third, in the mid troposphere σ(RH) increases from494

less than 1% RH in the lowest IWV percentiles to more than 5% RH near the 90th per-495

centile. The largest part of the spread in tropical mean mid-tropospheric RH stems from496

the region representing the transition from subsidence to deep convective regimes (cf.497

Figure 5c). The large spread in this regime might be related to model differences in con-498

vective behavior. In the moistest 5 percentiles of IWV the inter-model spread decreases499

again. In these regimes deep convection keeps the RH close to 100% in all models.500

501

4 Impact of RH anomalies on clear-sky OLR502

To quantify the effect of the inter-model differences on the radiation balance, we503

translate them into differences in clear-sky OLR (OLRc) using a radiative transfer model.504

The differences are analyzed in moisture space to determine how much different trop-505

ical moisture regimes contribute to the inter-model spread in tropical mean OLRc. Fur-506

thermore, we use radiative kernels to examine in which altitude regions RH differences507

have the strongest impact on OLRc. This allows us to identify the regions of the trop-508

ical troposphere in which a further reduction of RH differences would be most benefi-509

cial.510

511
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Figure 5. Distributions of different block-averaged quantities in moisture space: (a) multi-

model mean RH, (b) multi-model standard deviation of RH, (c) multi-model mean vertical

velocity and (d) multi-model mean IWV (black), SST (blue) and all-sky OLR (red). Note that

the color map for vertical velocity in (c) is truncated at 1.2 cm s−1 and any larger values (up to

13 cm s−1 in the highest IWV block) are displayed in black. For the quantities in (d) the inter-

model standard deviation is denoted by shaded areas around the multi-model mean values.

Fundamentally, clear-sky OLR is determined by surface temperature as well as at-512

mospheric temperature and greenhouse gas concentrations. For the OLRc anomalies in513

the DYAMOND models we expect that anomalies in the surface temperature play a mi-514

nor role, since SST is prescribed and its distributions in moisture space is very similar515

among models (Figure 5). Furthermore, compared to model differences in water vapor516

we expect differences in other greenhouse gasses to have a small effect on OLRc. There-517

fore, we fix the concentrations of other greenhouse gasses in our radiative transfer sim-518

ulations. Thus, we assume that OLRc anomalies in the DYAMOND models are primar-519

ily caused by anomalies in atmospheric temperature and absolute humidity.520

521
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4.1 Radiative transfer simulations522

The radiative transfer simulations to obtain clear-sky OLR are performed with the523

Rapid Radiative Transfer Model for GCMs (RRTMG Mlawer et al., 1997). RRTMG is524

is a well validated fast radiative transfer code used in various weather and climate mod-525

els. For this study we use RRTMG through the Python package konrad (DOI: 10.5281/zen-526

odo.3899702), which in turn uses the CliMT Python interface for RRTMG (Monteiro et527

al. 2018). Note that not all of the DYAMOND models employ RRTMG as their native528

radiation scheme. Differences in the radiation codes can cause errors on the order of 2 Wm−2
529

in the models’ internally calculated clear-sky OLR (Pincus et al., 2015). By using the530

same radiation scheme for each model for our offline calculations we neglect this error531

source, but instead focus solely on the effect of RH differences on clear-sky OLR.532

533

OLRc is calculated based on the block-averaged profiles of pressure, temperature,534

and specific humidity in moisture space (Section 3.2). We found that calculating OLRc535

from block-averaged profiles generally introduces a small negative error compared to OLRc536

calculated based on individual profiles. OLR is often thought to increase linearly with537

temperature, and does, increasingly so, as temperatures are reduced below their trop-538

ical mean (e.g. Koll & Cronin, 2018). Within the tropics, where temperature fluctua-539

tions are small, variability in clear-sky OLR is dominated by RH changes (e.g. John et540

al., 2006). Due to the approximately logarithmic dependence of OLRc on RH, averag-541

ing decreases OLRc (Pierrehumbert et al., 2007). However, the resulting bias is very sim-542

ilar for all models, so that the effect on inter-model differences in OLRc is negligible.543

544

To characterize the surface we use model output of surface pressure and the pre-545

scribed SST fields and select the same points as for the 3D data (Section 2.2). The sur-546

face emissivity is assumed to be 1. For other gasses than water vapor we use fixed ver-547

tical profiles in accordance with those in Wing et al. (2017): The ozone volume mixing548

ratio follows a gamma distribution in pressure and vertically constant volume mixing ra-549

tios are assumed for O2, CO2, CH4 and N2O.550

551

For the radiative transfer simulations we interpolate profiles from all models on a552

uniform vertical grid ranging from the surface to an altitude of 20 km with a resolution553

of 100 m. The top at 20 km corresponds to the maximum altitude for which output is554

available from all models. For our purpose OLRc is defined as the longwave upward clear-555

sky radiative flux at this level. Due to this definition the inter-model differences in OLRc556

only reflect T and q differences in the troposphere, potential differences in the strato-557

sphere are ignored. Note that due to the missing stratosphere the absolute value of the558

OLRc defined at 20 km has a positive offset compared to the ”true” OLRc defined at a559

higher TOA. However, this is not relevant for our results since we are only interested in560

the effect of differences in the troposphere.561

562

We focus only on the clear-sky case here, so any cloud condensate contained in the563

profiles is ignored. Clouds, particularly those at high altitudes, have a strong impact on564

OLR. Hence, model differences in cloud properties can cause significant differences in all-565

sky OLR, which are not considered here.566

4.2 Model differences in clear-sky OLR567

Tropical mean OLRc differs by more than 4 Wm−2 between the two most extreme568

models IFS and ICON (Figure 6a). The multi-model standard deviation in tropical mean569

OLRc is 1.2 Wm−2. This is small compared to cloud radiative effects, but still a third570

of the estimated radiative forcing due to a doubling of CO2 (Collins et al., 2013). In some571
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models, e.g. UM and ARPEGE-NH, both positive and negative anomalies occur across572

moisture space, which partly cancel in the tropical mean.573

574

Two moisture regimes stand out due to a particularly large spread in clear-sky OLR575

(Figure 6b): One local maximum in σ(OLR) occurs in rather moist regimes around the576

80th percentile of IWV. This corresponds to the region at the transition from deep con-577

vective to subsidence regimes, where the inter-model RH spread in the mid troposphere578

maximizes (Figure 5b). A second, slightly weaker maximum in σ(OLR) is located at the579

dry end of moisture space. In the next section we aim to better understand why the spread580

in OLRc maximizes in these two regimes and which altitude regions in the troposphere581

contribute most.582
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Figure 6. Inter-model differences in clear-sky OLR in moisture space. (a) Anomalies in clear-

sky OLR for each model, defined as the deviation from the ERA5 value and (b) inter-model

standard deviation of clear-sky OLR.

4.3 Radiative kernels584

To examine how different altitude regions in moisture space contribute to the spread585

in tropical mean OLRc, for each of the 50 blocks in moisture space we decompose each586

model’s OLRc anomaly into contributions from individual atmospheric layers using the587

radiative kernel method (Soden et al., 2008).588

589

Dividing the atmosphere into N vertical layers and linearising around the ERA5590

state that we use as reference state, a model’s clear-sky OLR anomaly ∆OLRc can be591

written as:592

∆OLRc ≈
N∑
i=1

(
Ke
i ∆ei +KT

i ∆Ti
)
≈

N∑
i=1

KRH
i ∆RHi. (1)
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Here, the index i denotes the vertical layer. The vectors Kx are radiative kernels593

that describe the sensitivity of OLRc to changes in a variable x in each layer:594

Kx
i =

∂OLRc

∂xi
. (2)

The first approximation in Equation 1 assumes that anomalies in OLRc are pri-595

marily caused by anomalies in atmospheric e and T , the effect of anomalies in surface596

temperature is assumed to be negligible. Moreover, it is assumed that contributions from597

each layer to the OLR response are independent, neglecting potential masking effects from598

perturbations above. Despite these assumptions the kernels Ke and KT can be used to599

approximate the OLRc anomalies of the DYAMOND models with good accuracy, which600

is shown in Figure B1 in Appendix B. The computation of the kernels is also described601

in Appendix B.602

603

Perturbations in e and T have opposite effects on OLRc, which is evident from the604

different signs of the respective kernels (Figure B1). At constant RH perturbations in605

e and T are positively correlated, so their effects on OLRc compensate to some degree.606

It is well known that in the water vapor bands, the spectral regions at which the water607

vapor optical depth is larger than 1, modulo foreign broadening, the emission from a layer608

to space depends only on RH (Nakajima et al., 1992; Ingram, 2010). This behavior is609

often referred to as ”Simpsonian”, as it has been recognized since the early work of Simpson610

(1928). Therefore, it can be assumed that anomalies in OLRc in the DYAMOND mod-611

els are primarily determined by RH anomalies. This corresponds to the second approx-612

imation in Equation 1.613

614

A perturbation in RH can be produced isothermally, i.e. by varying e and keep-615

ing T constant, or isobarically, i.e. by varying T and keeping e constant. Therefore, there616

are two ways to define a RH kernel, which we refer to as KRH,e and KRH,T, respectively:617

KRH,e
i = ∂OLRc

∂RHi

∣∣∣
T=const.

= esK
e
i

KRH,T
i = ∂OLRc

∂RHi

∣∣∣
e=const.

= − es
RH

(
des
dT

)−1KT
i . (3)

To translate Ke and KT into RH kernels they have to be weighted by a factor de-618

scribing the change of RH for a change in e or T , respectively. For KRH,e this factor is619

equal to the saturation water vapor pressure es. For KRH,T the dependence of es on T620

given by the Clausius Clapeyron relation has to be taken into account. KRH,e and KRH,T
621

are identical to the extent that the OLRc response to a given change in RH is indepen-622

dent of whether this change is produced by a change in e or in T .623

624

OLRc anomalies approximated using KRH,e (Figure 7c) are more accurate than those625

approximated using KRH,T (Figure B2c). Therefore, for the further analysis we concen-626

trate on KRH,e. Overall, OLRc anomalies approximated from RH anomalies agree well627

with true (directly calculated) OLRc anomalies (Figure 7c) and the inter-model stan-628

dard deviation σ(OLRc) is well reproduced (Figure 7d). In Appendix B we elaborate more629

on the accuracy of the approximation for individual models as well as on the differences630

between KRH,e and KRH,T.631

632
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4.4 Relative importance of different altitude regions633

The impact of RH anomalies for the radiation budget is determined by the mag-634

nitude of the RH anomalies and the sensitivity of OLRc to a given perturbation in RH.635

The latter is described by the radiative kernel KRH,e (Equation 1). KRH,e is negative636

throughout the tropical troposphere (Figure 7a), indicating that an increase in RH leads637

to a decrease in OLRc. Its absolute value is largest in the mid troposphere in the dry638

subsidence regimes.639

640

The overall distribution of the kernel can be understood based on the concept of641

an effective emission height for each wavenumber ν, corresponding to the level at which642

the optical depth τν reaches unity (e.g. Petty, 2006). A water vapor perturbation will643

generally have a strong impact on OLR if it is applied near or above a level for which644

τν ≈ 1 in a large portion of the water vapor bands. Ultimately, the vertical distribu-645

tion of KRH,e is determined by the distribution of effective emission heights. The dis-646

tribution of effective emission heights depends on the distribution of spectral absorption647

coefficients and is generally broad (e.g. Clough et al., 1992; Jeevanjee & Fueglistaler, 2020),648

which is why KRH,e is significant throughout the troposphere. However, above a certain649

level (around 200 hPa) the emission from water vapor rapidly declines, which is well known650

from studies of radiative cooling (e.g. Hartmann & Larson, 2002). Due to the strong de-651

pendence of water vapor concentrations on temperature through Clausius-Clapeyron, the652

amount of water vapor at these upper levels is so small that even at the line centers τν653

barely reaches unity. The emission to space also declines at the lowest levels, although654

water vapor is abundant, because there is only a limited part of the spectrum (on the655

wings of lines and very weak lines), where radiation can escape to space without being656

re-absorbed at upper levels. This ”masking” by the optically thick atmosphere above in-657

creases with increasing IWV, which is why for a given altitude level the absolute value658

of KRH,e decreases towards moist regimes.659

660

Note that in general the distribution of a water vapor kernel is very sensitive to how661

water vapor is perturbed (Held & Soden, 2000). We perturb RH by a constant value,662

similar to Spencer and Braswell (1997) or Allan et al. (1999). In this case the pertur-663

bation in e is proportional to es (Equation 3). Hence, it decreases with altitude, but is664

approximately constant throughout moisture space. Other studies apply equal fractional665

perturbations in e (Shine & Sinha, 1991) or keep RH constant under a uniform temper-666

ature perturbation (Held & Soden, 2000; Soden et al., 2008). In both cases the pertur-667

bation in e is proportional to e itself, resulting in a stronger weighting of moist compared668

to dry regimes.669

670

In low IWV percentiles KRH,e peaks at an altitude of around 6 km. The peak weak-671

ens from dry to moist regimes for the reasons named above. A very similar behavior was672

found by Spencer and Braswell (1997) for base states with RH values roughly correspond-673

ing to those in the dry half of moisture space. For the moist half of moisture space, how-674

ever, we find that lower atmospheric layers (below 5 km) become relatively more impor-675

tant. A possible explanation for this could be the continuum absorption in the major676

atmospheric window region (approximately 800 to 1200 cm−1), which acts to decrease677

the surface component of OLRc as RH increases in the lower troposphere. In contrast678

to absorption in the water vapor bands, continuum absorption scales with the square of679

the water vapor pressure and therefore becomes relatively more important for high hu-680

midity base states.681

682

The product of the RH response kernel KRH,e and the RH inter-model standard683

deviation σ(RH) (Figure 7b) indicates where the actual inter-model differences have the684
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strongest effect on clear-sky OLR. First, the top of the BL stands out as a narrow re-685

gion of strong impact. OLRc is not particularly sensitive to RH perturbations there (Fig-686

ure 7a), but the inter-model differences in RH are large (Figure 5b) because the mod-687

els differ in the depth of the BL. RH differences in a broad layer in the mid troposphere688

also significantly affect OLRc. Integrated over its full width, the contribution from this689

layer is larger than that from the BL top. The mid troposphere is characterized by an690

increasing RH spread from dry to moist regimes with a pronounced maximum near the691

80th IWV percentile (Figure 5b) and a decreasing sensitivity of OLRc from dry to moist692

regimes (Figure 7a). The combination of both results in a relatively uniform importance693

of RH differences across moisture space, with two local maxima occurring near the 30th694

and near the 80th IWV percentile. The layer over which RH differences have a consid-695

erable impact on OLRc generally extends to higher altitudes in the dry regimes than in696

the moist regimes, which is again a consequence of the stronger masking effect in moist697

regimes. Due to the low sensitivity of OLRc to RH perturbations in the upper tropo-698

sphere (above about 10–12 km) the large inter-model RH differences there (Figure 5b)699

have virtually no effect on OLRc.700

701

Not considering clouds has an effect on the response kernels. Particularly high clouds702

are important, because they mask some of the effect of T and q in lower atmospheric lev-703

els (Soden et al., 2008). They are mainly present in moist regimes, starting around the704

60th IWV percentile in most models (not shown). In these regimes we would expect the705

sensitivity of OLRc to RH perturbations to decrease, particularly in levels below the clouds,706

which are most abundant at around 8-12 km height. This would dampen some of the ef-707

fect of the large RH differences in the lower and mid free troposphere in the moist regimes.708

709

An important point to note is that the vertical integration of the product of KRH,e
710

and σ(RH), shown as the grey line in Figure 7d, does not yield the inter-model standard711

deviation in OLRc, but a higher value, which is more uniform throughout moisture space.712

In many models RH anomalies have different signs in different altitude regions (Figure713

1 and Figure A1). This information is not contained in σ(RH). The effects of such op-714

posite RH anomalies on OLRc compensate to some degree. Interestingly, such compen-715

sating errors play a bigger role in the dry regimes, as indicated by the larger difference716

between the grey and the black line in Figure 7d and evident from Figure A1. In fact,717

it is only due to these compensating effects that dry regimes contribute less to tropical718

mean differences in clear-sky OLR than moist regimes.719
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Figure 7. Impact of RH differences on clear-sky OLR in moisture space. (a) RH response

kernel KRH,e showing the sensitivity of clear-sky OLR to a 1% RH change in a 1 km layer under

constant temperature for 50 blocks in moisture space, (b) inter-model standard deviation σ(RH)

weighted with KRH,e, (c) Clear-sky OLR anomalies approximated from KRH,e and the RH

anomalies of each model and (d) inter-model standard deviation in the approximated clear-sky

OLR. Thin dashed lines in (c) and (d) correspond to ”true” clear-sky OLR calculated directly

from temperature and specific humidity profiles (same as in Figure 6). The vertical integral of

(b) is shown as the grey line in (c).

5 Summary and conclusions720

In this study we quantified inter-model differences in tropical free-tropospheric hu-721

midity in an ensemble of nine different GSRMs, which took part in DYAMOND, a first722

40-day intercomparison for models of this type. We focused on the effect of the humid-723

ity differences on the radiation budget and therefore concentrated on differences in RH724

rather than absolute humidity. The RH is most informative because in a large part of725

the spectrum the emission from a layer to space depends primarily on RH (Nakajima726

et al., 1992; Ingram, 2010).727

728

A justified question that arises is how much one can learn about climatological RH729

biases from an intercomparison as short as 40 days. To address some major concerns as-730

sociated with the shortness of the DYAMOND simulations, we performed additional anal-731

ysis based on longer-term data sets. One potential limitation is that the models’ RH might732

still be constrained by the common initial conditions. However, both a first two-year storm-733

resolving simulation with the ICON model as well as the evolution of the inter-model734

RH spread within the analyzed 30-day period suggest that the transition from the ini-735

tial conditions is largely completed after the excluded ten-day spinup period. Another736

concern is that the RH biases identified in the analyzed 30-day period might result mainly737

from a poor sampling of internal variability. However, the DYAMOND inter-model spread738

in RH is significantly larger than what would be expected from internal variability, which739

was estimated from five years of ERA5 reanalysis data. This suggests that the inter-model740

differences we find in DYAMOND mostly represent systematic model biases. This ap-741

plies least to the upper troposphere (above 12 km), where natural variability is compa-742

rably large. In accordance with that, the inter-model RH spread in each individual month743

of the CMIP5 AMIP intercomparison is within a 25% range of the spread in 30-year mean744

RH, only in the upper troposphere deviations are larger. We conclude from these results745
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that in a large part of the free-troposphere one month of intercomparison already pro-746

vides a good first estimate for climatological RH biases.747

748

The comparison to the CMIP5 AMIP ensemble also shows that the inter-model spread749

in tropical mean RH in DYAMOND is reduced throughout the free troposphere, except750

from the transition to the boundary layer and the tropopause region. This indicates that751

free-tropospheric RH and hence clear-sky OLR are better constrained in GSRMs than752

in GCMs. Based on this first month of intercomparison we estimate the reduction to ap-753

proximately 50-70% in the upper troposphere (8-14 km) and 25-50% in the mid tropo-754

sphere (3-8 km). For an exact quantification longer storm-resolving simulations will be755

needed.756

757

A question that cannot be answered from the relatively short DYAMOND simu-758

lations is whether the spread in the water-vapor–lapse-rate feedback is also reduced in759

GSRMs. However, there are some reasons to be optimistic about this. On the one hand,760

to the extent that the feedback depends on the base-state RH as suggested by Bourdin761

et al. (2021), reducing the inter-model spread in present-day RH should also reduce the762

spread in the feedback. On the other hand, the water-vapor–lapse-rate feedback depends763

on how much RH changes under warming. Given that the present-day RH is better con-764

strained in GSRMs, it seems unlikely that the spread in the RH response is increased.765

This is to be verified once model simulations at higher SSTs are available.766

767

Although RH differences are reduced in the DYAMOND ensemble, they still cause768

a spread of 1.2 Wm−2 in tropical mean clear-sky OLR. To better understand how dif-769

ferent tropical moisture regimes contribute to this spread, it has proven useful to com-770

pare model fields in moisture space, i.e. sorted from low to high IWV. Combining the771

inter-model standard deviation σ(RH) with radiative kernels (the sensitivity of clear-sky772

OLR to RH perturbations) in moisture space allowed us to examine the radiative im-773

pact of the RH differences in a given dynamic regime and altitude region and hence to774

assess in which regions a further reduction would be most beneficial. Based on the re-775

sults we can split the tropical free troposphere into four main regions:776

1. The transition between the BL and the free troposphere. Throughout the trop-777

ics this altitude region (around 2 to 3 km) is characterized by a local maximum778

in the inter-model RH spread, with σ(RH) exceeding 6% RH. These differences are779

associated with differences in the depth of the BL. Due to their large magnitude780

they contribute considerably to the spread in clear-sky OLR, although the sen-781

sitivity of clear-sky OLR to a given RH perturbation is rather small in this alti-782

tude region.783

784

2. The mid troposphere of moist regimes. This region ranges from about 3 km to 10 km785

in altitude and roughly covers the highest 50 percentiles of IWV in moisture space.786

With σ(RH) up to 6% RH the inter-model spread in these moist regimes is sub-787

stantially larger than in the same altitude region of dry regimes. The spread max-788

imizes at the transition from deep convective to subsidence regimes near the 90th789

percentile of IWV, which might be indicative of model differences in convective790

behavior. The large RH differences cause the inter-model OLR spread to maxi-791

mize in this region, although the sensitivity of clear-sky OLR to RH perturbations792

is moderate.793

794

3. The mid troposphere of dry regimes. In this region the model agreement in RH795

is remarkably good. The inter-model standard deviation σ(RH) is 1–3% RH and796

hence less than half of the standard deviation in moist regimes. However, the sen-797
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sitivity of clear-sky OLR to RH perturbations is considerably larger. Therefore,798

the small RH differences in the dry regimes have a comparable effect on clear-sky799

OLR as the larger differences in the moist regimes. This is why the inter-model800

spread in clear-sky OLR has a second, albeit slightly weaker local maximum in801

the dry regimes. The maximum is weaker than the one in the moist regimes be-802

cause compensating effects due to opposite RH anomalies at different altitude re-803

gions occur more frequently in the dry regimes. The reason for this is not obvi-804

ous and needs further investigation.805

806

4. The upper troposphere. In the altitude region above 10 km the inter-model spread807

is generally large, with σ(RH) exceeding 8% near the tropopause. However, the808

sensitivity of clear-sky OLR to RH perturbations is so small that the impact of809

these differences on the clear-sky OLR is negligible.810

Our results are limited to the clear-sky case. High clouds, which are most abun-811

dant in the moist regimes, mask some of the clear-sky effect (e.g. Soden et al., 2008) and812

hence reduce the radiative impact of the RH differences in the mid troposphere. This813

highlights even more the importance of the dry regimes, where high clouds are rare.814

815

We conclude that to further constrain the radiation budget in GSRMs it is most816

crucial to reduce the RH differences at the top of the BL and in the mid troposphere.817

Reducing the former by adjusting the depth of the BL seems possible with the current818

level of knowledge. Also, one would expect clear benefits from increased vertical reso-819

lution when it comes to representing the BL depth. On the other hand, observational820

reference data are sparse because satellite capacities to probe the BL region are still lim-821

ited. Reducing the differences in the mid troposphere seems more challenging and re-822

quires a detailed understanding of the processes controlling RH in these regions remote823

from deeper convection. An advantage is that this altitude region of the tropical atmo-824

sphere is extensively observed by satellites.825

Appendix A RH anomalies in individual models826

In Section 3.2 we focused on the inter-model spread in RH expressed by the inter-827

model standard deviation σ(RH). Here we show how the RH deviates from ERA5 in mois-828

ture space for individual models (Figure A1). It is evident that for many models, par-829

ticularly for ICON, NICAM and IFS, the largest part of the RH anomalies in the mid830

troposphere that are apparent in the tropical mean (Figure 1) stems from rather moist831

regimes. Furthermore, in all models RH anomalies of opposite sign exist at different al-832

titude regions and across moisture space. As mentioned in Sections 4.2 and 4.4 their ef-833

fects on tropical mean clear-sky OLR partly compensate. For example, the GEOS5 model834

has both an anomalously moist lower free troposphere (due to an anomalously deep BL)835

and an anomalously dry mid free troposphere in regions of intermediate IWV (Figure836

A1d). Due to the compensation of these opposite effects the OLRc anomaly in these re-837

gions is rather small (Figure 6). In the UM model the lower and mid free troposphere838

are anomalously moist in dry regimes and anomalously dry in moist regimes (Figure A1j).839

The resulting OLRc anomalies almost fully compensate in the tropical mean (Figure 6).840

Appendix B Radiative kernels for water vapor pressure, temperature841

and relative humidity842

To obtain the radiative kernels Ke and KT for a given block in moisture space, OLRc843

is calculated for the averaged ERA5 profiles in this block using the setup described in844

Section 4.1. The calculation is repeated with a small perturbation applied to e or T in845

one atmospheric layer, yielding the element of Ke of KT, respectively, for that layer. This846
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is done successively for all layers. We perturb e by 5% of its absolute value and T by 1 K.847

The chosen perturbation sizes lie within the range for which the assumption of linear-848

ity around the base state is valid. Within this range the calculated kernels are indepen-849

dent of the exact perturbation size.850

851

The kernels Ke and KT can be used together with anomalies in e and T to approx-852

imate anomalies in clear-sky OLR (Equation 1) in the DYAMOND models with good853

accuracy (Figure B1e). The approximation is least accurate for the NICAM model. NICAM854

is the model with the largest anomalies in absolute humidity (Figure 2), so it is likely855

that the assumption of linearity around the reference state starts to lose validity. In other856

models some smaller inaccuracies occur particularly in the dry half of moisture space.857

Most of them can be explained by SST anomalies that are not considered in Equation858

1. Such SST anomalies have a stronger impact in the dry regions because the surface com-859

ponent of OLRc is larger there than in moist regions. The largest deviations between true860

and approximated OLRc anomalies in dry regimes arise for SAM and ARPEGE-NH. These861

are only partly explained by SST anomalies, so non-linearity or masking effects might862

play a role.863

864

As explained in Section 4.3, anomalies in OLRc can also be approximated from RH865

anomalies and a RH kernel (Equation 1). There are two ways to define a RH kernel by866

varying either e or T (Equation 3), which we refer to as KRH,e and KRH,T, respectively.867

Our main analysis is based on KRH,e because it approximates the anomalies in OLRc868

more accurately. The largest deviations from true (directly calculated) OLRc anoma-869

lies occur for SAM in the lowest IWV percentiles, for ARPEGE-NH in high percentiles870

and for ICON in all percentiles (Figure 7c). The inter-model standard deviation σ(OLR)871

is well reproduced with the approximated OLRc (Figure 7d), except from the lowest IWV872

percentiles, where it is slightly underestimated. This is mainly caused by the deviations873

in SAM and ICON. For most models the approximation from RH anomalies is slightly874

less accurate than the one from e and T anomalies (cf. Figure B1). An exception is NICAM,875

for which OLRc approximated from RH anomalies matches the true OLRc much bet-876

ter than the one approximated from e and T anomalies.877

878

For completeness Figure B2 shows KRH,T and the OLRc anomalies approximated879

using this version of the RH kernel. KRH,T takes on larger absolute values than KRH,e
880

(cf. Figure 7a, note the different colour scales in Figures 7 and B2), i.e. a 1% increase881

in RH causes a larger decrease in clear-sky OLR if it is produced by decreasing T rather882

than increasing e. Furthermore, the peak altitude in KRH,T is lower than in KRH,e. These883

differences indicate that for OLRc it does matter to a certain degree whether a RH per-884

turbation is caused by a perturbation in e or in T . Nevertheless, considering that the885

physical mechanisms behind a change in OLRc are very different for changes in e and886

T , the two kernels agree remarkably well, again demonstrating that the atmosphere be-887

haves partly ”Simpsonian” (see Section 4.3).888
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Figure A1. RH anomalies of DYAMOND models in moisture space. The upper left panel

shows the ERA5 RH distribution in moisture space, remaining panels show the deviation from

the ERA5 RH for each model.
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Figure B1. Clear-sky OLR anomalies in the DYAMOND models approximated with the

kernel method. (a) Water vapor response kernel Ke showing the sensitivity of clear-sky OLR

to a change of 1 Pa in water vapor pressure e in a 1 km layer. Note the logarithmic colour scale.

(b) Temperature response kernel KT showing the sensitivity of clear-sky OLR to a temperature

change of 1 K in a 1 km layer. Also shown are clear-sky OLR anomalies calculated (c) solely from

anomalies in e and the respective kernel Ke and (d) solely from anomalies in T and KT. (e)

shows clear-sky OLR anomalies calculated from both kernels. True (directly calculated) clear-sky

OLR anomalies are shown as thin dashed lines for comparison.
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Figure B2. As Figure 7 but based on KRH,T. Note that the colour scale in (a) and (b) is

different from Figure 7 since KRH,T takes on more negative values than KRH,e.
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