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Abstract

Most countries around the world including the United States took actions to control COVID-19 spread that lead to an abrupt

shift in human activity. On-road NOx emissions from light and heavy-duty vehicles decreased by 9% to 19% between February

and March at the onset of the lockdown period in the middle of March in most of the US; between March and April, the on-road

NOx emissions dropped further by 8% to 31% when lockdown measures were the most stringent. These precipitous drops in

NOx emissions correlated well with tropospheric NO2 column amount observed by the Sentinel 5 Precursor TROPOspheric

Monitoring Instrument (S5P TROPOMI). Furthermore, the changes in TROPOMI tropospheric NO2 across the continental

U.S. between 2020 and 2019 correlated well with changes in on-road NOx emissions (r = 0.68) but correlated weakly with

changes in emissions from the power plants (r = 0.35). At the height of lock-down related unemployment in the second quarter

of 2020, the NO2 values decreased at the rate of 0.8 μmoles/m2 per unit percentage increase in the unemployment rate. Despite

the lifting of lockdown measures, parts of the US continued to have ˜20% below normal on-road NOx emissions. To achieve

this new normal urban air quality in the US, continuing remote work policies that do not impede economic growth may become

one of the many options.
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Abstract 30 

Most countries around the world including the United States took actions to control 31 

COVID-19 spread that included social distancing, limiting air and ground travel, closing schools, 32 

suspending sports leagues, closing factories etc., leading to an abrupt shift in human activity. On-33 

road NOx emissions from light and heavy duty vehicles decreased by 9% to 19% between 34 

February and March at the onset of lockdown in the middle of March in most of the US; between 35 

March and April, the on-road NOx emissions dropped further by 8% to 31% when lockdown 36 

measures were the most stringent.  These precipitous drops in NOx emissions correlated well 37 

with tropospheric NO2 column amount observed by Sentinel 5 Precursor TROPOspheric 38 

Monitoring Instrument (S5P TROPOMI).  Further, the changes in TROPOMI tropospheric NO2 39 

across the continental U.S. between 2020 and 2019 correlated well with changes in on-road NOx 40 

emissions (r = 0.68) but correlated weakly with changes in emissions from the power plants (r = 41 

0.35). These findings confirm the known knowledge that power plants are no longer a major 42 

source of NO2 in urban areas of the US. With increased unemployment rate in 2020 after the 43 

lockdown combined with telework policies across the nation for non-essential workers, the NO2 44 

values decreased at the rate of 0.8 µmoles/m
2
 decrease per unit percentage increase in 45 

unemployment rate.  Across the urban regions we found positive correlation between S5P 46 

TROPOMI NO2 and Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol 47 

optical depths indicating common source sectors for NO2 and aerosols/aerosol precursors.  48 

Key Words: COVID-19, nitrogen dioxide, aerosol optical depth, TROPOMI, NOx emissions 49 

 50 

Plain Language Summary 51 
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This study documents the different phases of lockdown and how traffic emissions 52 

changed accordingly across the US and in particular in five different cities, namely Los Angeles, 53 

San Francisco, San Joaquin Valley, New York City, and Atlanta.  Analysis of data for these 54 

cities from measurements on the ground and satellite data indicate that a down turn in economy 55 

and telework policies reduced the number of cars and trucks on the road in March and April due 56 

to which air quality got better.  This provided a window into the future as to how we can achieve 57 

improved air quality.   58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

1. Introduction 74 

As the 2019 novel Corona virus (COVID-19) spread from China to other parts of the world, 75 

various countries imposed lockdown measures one by one.  Reports of improved air quality from 76 
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ground and satellite observations of aerosol optical depth and nitrogen dioxide soon followed in 77 

the media as documented by Kondragunta et al. (2020).  The precipitous drops seen in the 78 

tropospheric vertical column nitrogen dioxide (NO2, tropNO2 here onwards) measured by the 79 

Sentinel 5P Tropospheric Monitoring Instrument (TROPOMI) were substantial, especially 80 

during the strict lockdown period for each country (Gkatzelis et al., 2020).  Goldberg et al. 81 

(2020) reported that in the United States (US), tropNO2 decreased by 9.2% to 45% in 26 cities 82 

during March 15 to April 30, 2020 compared to the same time period in 2019; these reported 83 

reductions account for the influence of the weather. Other researchers reported similar findings, 84 

mainly reductions of tropNO2 attributed to reductions in traffic emissions both in the U.S. and 85 

across the globe in major urban areas of Europe, India, and China (Bauwens et al., 2020; Keller 86 

et al., 2020; Zheng et al., 2020; Vaderu et al., 2020; Straka et al., 2020; Nager et al., 2020).  For 87 

example in Washington D.C., average distance traveled by people dropped by 60% between 88 

February and April when restrictions were fully in place (Straka et al., 2020).  This sudden drop 89 

in tropNO2 in major metropolitan areas where transportation source sector for NOx is strong is 90 

due to reduced traffic on top of an already observed general decreasing trend in NOx emissions.  91 

According to Lamsal et al. (2015), tropNO2 observed by the Ozone Monitoring Instrument 92 

showed a decreasing trend with an overall decrease of 28% between 2005 and 2013.  These 93 

reductions are consistent with NOx emissions reductions from major power plants in the US due 94 

to Clean Air Interstate Rule and Cross State Air Pollution Rule.  The NOx emissions continued to 95 

drop as more and more power plants switched to natural gas or began to rely on clean coal (de 96 

Gouw et al., 2014) 97 

The significance of NO2 is that it is a precursor for both ozone and particulate matter, 98 

primary components of photochemical smog.  Whether it enhances or decreases ozone 99 
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production is dependent on a given region being NOx saturated or volatile organic compound 100 

(VOC) saturated, the inherent non-linearity of ozone photochemistry (Kroll et al., 2020; 101 

Mazzuca et al., 2016).  The two main sources of NO2 in the US are energy sector and 102 

transportation sector according to the 2014 Community Emissions Data System (Hoesly et al., 103 

2018).     A study by Zheng et al. (2020) analyzed the reductions in trace gas and aerosol 104 

concentrations in China during the lockdown and found that the most significant drop in aerosols 105 

was for nitrate aerosol.  For the time period corresponding to the lockdown in China, January 23 106 

to February 22, 2020, mean nitrate aerosol concentration was 14.1 µg/m
3
; for the same time 107 

period in 2019, concentration was 23.8 µg/m
3
.  This 41% reduction is corroborated by reductions 108 

in NO2 observed by TROPOMI (Bauwens et al., 2020).   109 

Though NO2 is considered important due to its ozone and aerosol producing potential, it has 110 

harmful human health impacts when inhaled. Achakulwisut et al (2019) showed that 64% of four 111 

million pediatric asthma cases each year are due to exposure to NO2.  It should be noted though 112 

that NO2 was used as a proxy for traffic-related pollution.  The World Health Organization 113 

(WHO) standard for NO2 is an annual average of 21 parts per billion and for the US, it is 53 parts 114 

per billion.    The authors do note that that daily exposures to NO2 can vary from annual averages 115 

and traffic pollution is usually a mixture of precursor gases, primary particulates, and 116 

photochemically formed ozone and aerosols.  Nevertheless, when countries went into lockdown, 117 

the most noticeable indication of a drop in traffic related pollution is tropNO2 in urban areas 118 

observed by TROPOMI, lending support to the assumption that NO2 is a good proxy for traffic 119 

related pollution.   The COVID-19 lockdown measures disproportionately impacted traffic more 120 

than industrial operations.  We analyzed TROPOMI tropNO2 and Suomi National Polar-orbiting 121 

Partnership Visible Infrared Imaging Radiometer Suite (Suomi NPP VIIRS) AOD data in 122 
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conjunction with on-road NOx (NO+NO2) emissions data, NOx emissions from power plants, and 123 

unemployment rates where available. The goal of this study is to examine the trends in on-road 124 

and power plant emissions for five different locations (four urban areas and one rural area) to 125 

answer the questions: (1) are changes in NOx emissions during the lockdown detectable in 126 

TROPOMI tropNO2 data, (2) are the economic indicators consistent with emissions changes, and 127 

(3) are the trends reversing with the removal of lockdown measures in the major metro areas.  128 

These questions are answered with spatial and temporal analysis of ground-based observations 129 

and satellite data, relating indicators of human activity during and prior to COVID-19 lockdown 130 

with air quality, and examining if a new normal urban air quality can be achieved with novel 131 

policies.   132 

2. Methods  133 

2.1. Sentinel 5P TROPOMI NO2 134 

 135 

The TROPOMI NO2 algorithm is based on the Differential Optical Absorption 136 

Spectroscopy technique that involves fitting the spectra in the NO2 absorption region between 137 

405 nm and 465 nm using known laboratory-measured reference absorption spectra.  The 138 

Sentinel 5P flies in formation with SNPP.  Though some Sentinel 5P trace gas algorithm 139 

retrievals depend on VIIRS cloud mask, the NO2 algorithm relies on cloud retrievals using its 140 

oxygen A-band absorption (van Geffen et al., 2019).  The cloud fraction and cloud top pressure 141 

are used in air mass factor calculation for partially cloudy pixels.  There is an indication that the 142 

cloud algorithm is likely conservatively masking out good NO2 retrievals according to a 143 

validation study conducted by Judd et al. (2020).  Though Judd et al (2020) used data with 144 

quality flag equals to unity, we used the quality flag value recommended by the NO2 algorithm 145 
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theoretical basis document (van Geffen et al., 2019).  Only data with quality flag > 0.75 were 146 

used as this quality flag setting ensures that cloudy retrievals or retrievals with snow/ice covered 147 

pixels are screened out. The TROPOMI Level 2 product file consists of pixel level (3.5 km x 5.6 148 

km) NO2 column amount for troposphere that we used in this study.  The NO2 algorithm 149 

retrieves total column NO2 and separates the stratosphere from troposphere using chemical 150 

transport model predicted stratospheric NO2 analysis fields (van Geffen et al., 2019).  The 151 

expected accuracy of tropospheric NO2 column for polluted regions with high NO2 values is 152 

~25% and independent validation efforts using ground based spectrometers such as Pandora have 153 

confirmed that tropNO2 is generally under estimated, especially in polluted regions and that 154 

significant sources of errors come from coarser resolution a priori profiles used in the retrieval 155 

algorithm (Chan et al., 2020).  Comparisons of TROPOMI tropNO2 column with Pandora ground 156 

station retrievals of tropospheric NO2 in Helsinki showed that mean relative difference is −28.2% 157 

± 4.8% (Ialongo et al., 2019).  Similar comparisons between Pandora ground station retrievals 158 

and tropNO2 in Canada for urban (Toronto) and rural (Egbert) stations show that tropNO2 has a -159 

23% to -25% bias for polluted regions and a 7% to 11% high bias in rural region.  Sources of 160 

error in tropNO2 include altitude dependent air mass factors, stratosphere-troposphere separation 161 

of NO2, a priori NO2 profile and shape, surface albedo climatology, and calibration errors as a 162 

function of view angle (van Geffen et al., 2019; Judd et al., 2020; Ialongo et al., 2019; Zhao et 163 

al., 2020; Chan et al., 2020).  Judd et al. (2020) showed that the TROPOMI NO2 validation 164 

carried out during the Long Island Sound Tropospheric Ozone Study (LISTOS) experiment 165 

showed that the TROPOMI tropNO2 column retrievals have a bias of -33% and -19% versus 166 

Pandora and airborne spectrometer retrievals respectively.  The biases improve to -19% and -7% 167 

when TROPOMI NO2 algorithm is run with a priori profiles from a regional air quality model 168 
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indicating that retrievals are very sensitive to a priori profile.  One aspect that is not fully 169 

explored by Judd et al. (2020) is the influence of aerosols on air mass factor calculations.  170 

Research on aerosol impact on air mass factors indicates that the impact of aerosols on NO2 171 

retrieval can vary depending on aerosol type (absorbing or scattering), amount, and vertical 172 

location (aerosol mixed in with NO2 in the boundary layer or is the layer detached from NO2 173 

layer) in the atmospheric column (Tack et al., 2019; Judd et al., 2019; Liu et al., 2020; Lin et al., 174 

2014).   175 

For this analysis, the pixel level NO2 data were rotated to orient the pixels in the 176 

downwind direction and remapped to 5 km x 5 km fixed grids prior to computing mean values 177 

around major cities for which on-road emissions data are available.  Average NO2 was computed 178 

within 100 km in the downwind direction from the city center, 50 km upwind direction, and ± 50 179 

km in the cross-wind direction.  In computing daily mean values for a location of interest, we 180 

used a criteria of having a minimum 25% of the pixels with high quality NO2 retrieval in each 181 

grid.  The data for January to February 2020 is considered BAU), the data for 15 March to 30 182 

April 2020 is considered the lockdown period, and the data for 1 May to November 2020 is 183 

considered as representing the post lockdown time period.  The Level 2 TROPOMI NO2 data 184 

were downloaded from the European Space Agency datahub 185 

(https://s5phub.copernicus.eu/dhus/#/home).   186 

The TROPOMI data is available only from mid-2018 to present.  We removed the 187 

seasonality in tropNO2 data in two simple ways: by simply taking the difference between 2019 188 

and 2020 for the same month so the sun-satellite geometries and weather conditions are similar 189 

barring any unusual inter-annual variabilities, and by doing double differencing when changes 190 

https://s5phub.copernicus.eu/dhus/#/home
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from one month to the other month needed to be analyzed.  The double differencing method is 191 

described in section 3.1.   192 

2.2. On-road NOx Emissions 193 

 194 

The on-road emissions are obtained using the Fuel-based Inventory of Vehicle Emissions 195 

(FIVE) where vehicular activity is estimated using taxable fuel sales for gasoline and diesel fuel 196 

reported at a state-level and downscaled to the urban scale using light- and heavy-duty vehicle 197 

traffic count data (McDonald et al., 2014). Once the fuel use is mapped, NOx emissions are 198 

estimated using fuel-based emission factors (in g/kg fuel) based on roadside measurements or 199 

tunnel studies (Hassler et al., 2016; McDonald et al., 2012; McDonald et al., 2018). The emission 200 

factors are calculated separately for light-duty gasoline vehicles and heavy-duty diesel trucks. 201 

The FIVE methodology was developed to derive traffic emissions to study their impact on air 202 

quality (Kim et al., 2016; McDonald et al., 2018), but in the case of 2020, the fuel-based 203 

methods provide evidence for quantifying the impact of reduced human activity during the 204 

lockdown period on air pollutant emissions (e.g., NOx). 205 

Here, we downscale on-road gasoline and diesel fuel sales following McDonald et al. (2014) 206 

for our 2019 base year, which is treated as the BAU case. We have chosen to focus on four US 207 

urban areas where real-time traffic counting data are publicly available, including the South 208 

Coast air basin ( Los Angeles county, Orange counties, and portions of Riverside and San 209 

Bernardino counties), San Francisco Bay Area (Marin, Sonoma, Napa, Solano, Contra Costa, 210 

Alameda, Santa Clara, San Mateo, and San Francisco counties), New York City (Richmond, 211 

New York, Kings, Queens, and Bronx counties), and Atlanta metropolitan region (Cherokee, 212 

Clayton, Cobb, Coweta, Dekalb, Douglas, Forsyth, Fulton, Gwinnett, Henry, Rockdale, and 213 
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Spalding counties). We also include one rural region for contrast, the San Joaquin Valley in 214 

California (Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, Tulare counties). For 215 

the BAU case, we account for typical seasonal and day-of-week activity patterns of light- and 216 

heavy-duty vehicles separately). For the COVID-19 case, we scale the January BAU emissions 217 

case with real-time light- and heavy-duty vehicle traffic counting data for the year 2020, which 218 

are described in Harkins et al. (2020, to be submitted). Light-duty vehicle counts are used to 219 

project on-road gasoline emissions and heavy-duty truck counts for on-road diesel emissions 220 

during the pandemic. 221 

To estimate NOx emissions, the FIVE NOx emission factors have been updated to 2019 based 222 

on the regression analyses of roadway studies (Hassler et al., 2016; McDonald et al., 2012; 223 

McDonald et al., 2018), and we use a value of running exhaust emission factors of 1.7 ± 2 g 224 

NOx/kg fuel and 12.4 ± 1.9 g NOx/kg fuel for on-road gasoline and diesel engines, respectively. 225 

Cold-start emissions are scaled relative to the running exhaust emissions based on the EPA 226 

MOVES2014 model (EPA, 2015). We use the 2019 NOx emission factor for both the BAU and 227 

COVID-19 adjusted cases. Thus, the differences in the BAU and COVID-19 cases in are only 228 

due to changes in traffic activity. We use the same emission factor for 2019 and 2020 because 229 

past studies have shown during the 2008 Great Recession the turnover of the vehicle fleet and 230 

corresponding reductions in emission factors are slower). Total on-road NOx emissions are the 231 

sum of emission estimates for light-duty vehicles with heavy-duty trucks. The off-road mobile 232 

source emissions are not included in the dataset. In cities, on-road transportation accounts for as 233 

much as 75% of the NOx emissions (Kim et al., 2016), and is a critical emissions sector to 234 

quantify. 235 
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Uncertainties in FIVE on-road emission estimates arise from non-taxable fuel sales 236 

associated with off-road machinery, and mismatches in where fuel is sold and where driving 237 

occurs, though diesel fuel sales reports are adjusted based on where long-haul trucking occurs 238 

(McDonald et al., 2014). However, the main source of uncertainty is the accuracy of fuel-based 239 

emissions factors used to calculate co-emitted air pollutant species (McDonald et al., 2018).  In 240 

general, there has been a downward trend in on-road NOx emissions over multiple decades 241 

(Hassler et al., 2016; McDonald et al., 2012), although there are questions about the rate of 242 

decrease in more recent years (Bishop and Haugen, 2018; Jiang et al., 2018). 243 

2.3. Power Plant NOx Emissions 244 

The daily power plant NOx emissions were obtained from the US Environmental Protection 245 

Agency (EPA) Continuous Emissions Monitoring System (https://www.epa.gov/airmarkets) and 246 

the energy generation/consumption statistics were obtained from the Energy Information 247 

Administration (eia.gov).  Unlike the traffic emissions, power plant emissions did not change 248 

much during the lockdown.  Power generation from fossil fuels dropped from 38,332 Gwh in 249 

March to 29,872 Gwh in April and rebounded to pre-pandemic levels by June.  The total NOx 250 

emissions in the US from power plants dropped from 54,531 tons in March to 44,016 tons in 251 

April, a 19% decrease.  This may seem like a big drop in production but the absolute values are 252 

quite small.  For example, NOx emissions from power plants within the 75 km of Los Angeles 253 

emitted only 20 tons in March 2020.  In contrast, on-road emissions from vehicles in the Los 254 

Angeles area alone emitted nearly 5,367 tons of NOx.  The power plant NOx emissions in the US 255 

have decreased substantially over the last two decades; they dropped from 6.4 to 0.88 million 256 

short tons annually from 1990 to 2019.  This is due to the shift in relying on fossil fuels to other 257 

alternate energy sources for power generation.  For example, the use of coal as a source of 258 

https://www.epa.gov/airmarkets


12 

 

electricity generation went down from 51% in 2001 to 23% in 2019 while the natural gas as a 259 

source increased from 17% in 2001 to 38% in 2019.  In our analysis, comparing and contrasting 260 

NOx emissions from on-road traffic and power plants for the six locations of interest, we 261 

considered only the power plants still operating using coal as a source and are within 75 km 262 

radius of the center of the city location being analyzed.  263 

2.4. Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer 264 

Suite (SNPP VIIRS) 265 

 266 

NOAA currently has two VIIRS instruments in orbit - one on SNPP launched on 28 267 

October, 2011 and one on NOAA-20 launched on 18 November, 2017.  The two VIIRS 268 

instruments continuously observe the Earth with a 50-minute time difference and provide aerosol 269 

optical depth (AOD) retrievals for cloud/snow-free scenes during the sunlit portion of the 270 

day.  The VIIRS instruments have 22 bands with 16 of the bands in the visible to long-wave 271 

infrared at moderate resolution (750m), five bands at imager resolution (375m) covering 0.64μm, 272 

0.865μm, 1.6μm. 3.74μm, and 11.45μm, and one broad Day-Night-Band (DNB) band centered at 273 

0.7μm.  The NOAA AOD algorithm over ocean is based on Moderate Imaging 274 

Spectroradiometer (MODIS) heritage and over land, the algorithm derives AOD for both dark 275 

targets as well as bright surfaces (Levy et al., 2007; Laszlo and Liu, 2016; Zhang et al., 2016; 276 

Huang et al., 2017).  For this study, we used SNPP VIIRS AOD because SNPP flies in formation 277 

with S5P TROPOMI with less than three minute difference in overpass time with a local equator 278 

crossing time of 1:30 PM.  The SNPP VIIRS AOD product has been extensively validated by 279 

comparing it to Aerosol Robotic Network (AERONET) AODs and the VIIRS 550nm AOD is 280 

shown to have a global bias of -0.046±0.097 for AODs over land less than 0.1 and for AODs 281 

between 0.1 and 0.8, the bias is -0.194±0.322.  In the U.S., for VIIRS AODs ranging between 0.1 282 
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and 0.8, the bias is -0.008±0.089 and for AODs greater than 0.8, the bias is about 0.068±0.552 283 

(Zhang and Kondragunta, 2021).  For the analysis of AOD data in this study, we remapped the 284 

high quality (Quality Flag equals 0) 750m resolution retrievals to 0.05
 o
 x 0.05

o
 resolution with a 285 

criteria that for a grid to have a mean AOD value, there should be a minimum of 20% 750m 286 

pixels with high quality AODs.   287 

2.5. Unemployment Rate 288 

 289 

The civilian labor force and unemployment estimates for metropolitan areas were obtained 290 

through the Local Area Unemployment Statistics (LAUS) provided by the Bureau of Labor 291 

Statistics (bls.gov). The LAUS program is a federal-state cooperative effort in which monthly 292 

estimates of total employment and unemployment are prepared for over 7,500 areas including 293 

metropolitan areas. The seasonal adjustments are carried out by the Current Employment 294 

Statistics State and Area program (CES) with statistical technique SEATS, or Signal Extraction 295 

in ARIMA (Auto Regressive Integrated Moving Average) Time Series. These datasets are 296 

smoothed using a Reproducing Kernel Hilbert Space (RKHS) filter after seasonal adjustment. 297 

The details of the data collection, processing and release can be found at 298 

https://www.bls.gov/lau/laumthd.htm.  The data for January to November 2020 are used in this 299 

study.  To compare the NO2 variation in the metropolitan areas, the TROPOMI tropNO2 300 

column amounts were averaged inside each metropolitan area. The 1:50,000 polygon shape files 301 

were used to test if a TROPOMI pixel is inside or outside a metropolitan area. The shape files 302 

are from United States Census Bureau (https://www.census.gov/geographies/mapping-files/time-303 

series/geo/cartographic-boundary.html). 304 

2.6. Matchup Criteria 305 

 306 

https://www.bls.gov/lau/laumthd.htm
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
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The NO2 data were matched to the on-road mobile emissions data for statistical and trend 307 

analysis with certain criteria.  Prior to generating the matchups, rotated wind analysis was carried 308 

out on the original pixel level data.  It is important to do this when sampling the satellite data 309 

because the NO2 concentrations accumulate in the cities when wind speed is low and disperse 310 

away from the city when wind speed is high. The satellite data are observed once a day in the 311 

mid-afternoon whereas on-road mobile emissions represent daily values.  To minimize sampling 312 

differences, it is common to rotate the satellite pixel-level data in the direction of the wind 313 

(Fioletov et al., 2015; Lorente et al., 2019; Goldberg et al., 2019; Zhao et al., 2020).  We used the 314 

European Center for Medium range Weather Forecast (ECMWF) Re-Analysis (ERA5) 30-km 315 

resolution global wind fields (Hersbach et al., 2020).  To do the wind rotation, each TROPOMI 316 

pixel was collocated to ERA5 with tri-linear interpolation method in both temporal and 317 

horizontal directions. The wind profiles were merged to the location of the TROPOMI pixel 318 

center. The east-west (U) and north-south (V) wind speed components were averaged through 319 

the vertical distribution within the bottom 100 hPa, approximated to be within the boundary 320 

layer. Then, each TROPOMI pixel was rotated and aligned with the average wind direction from 321 

the city center.  The rotated pixels are gridded with 5 km x 5 km resolution to generate monthly 322 

mean values for correlation analysis with on-road NOx emissions. 323 

Once the pixels are rotated, they are sampled for 100 km in the downwind direction, 50 km 324 

in the upwind direction, and cross-wind direction.  This way, the elevated concentrations of NO2 325 

moving away from the city in the downwind direction are captured.  Figure 1a shows an example 326 

of the TROPOMI NO2 tropospheric column amount for California with Los Angeles as the 327 

focus.  The NO2 data shown are monthly mean values for January 2020 remapped to a fixed grid.  328 

The black rectangle shows the area of interest over Los Angeles that we want to compare with 329 
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on-road emissions.  The ERA5 wind vectors are plotted on the NO2 map to show wind direction.  330 

To do the wind rotation, daily NO2 pixel level data are first remapped to a 5 km x 5 km fixed 331 

grid resolution.  The grids are then rotated to align with the wind direction with downwind 332 

direction pointing North (Figure 1b).  The daily rotated grid values of NO2 in 5 km x 5 km are 333 

averaged over a month to generate a monthly mean.  The monthly mean values can vary quite a 334 

bit depending on missing data due to screening for high quality data as well as cloud cover.  In a 335 

given month, the number of pixels with valid retrievals for a particular city can vary from 2% to 336 

100% depending on cloud and snow cover, and the mean value varies depending on the location 337 

of the missing values, if they are in the center of the city where NO2 is usually high or on the 338 

edges of the city where NO2 values can be low depending on wind speed and direction.  In our 339 

analysis for this study, prior to computing monthly mean, the criteria we employed is that on a 340 

given day, there should be a minimum of 25% of the pixels in a region selected for matchups of 341 

satellite data should have valid retrievals.  The 25% threshold is a reasonable compromise 342 

because any value higher than that will reduce the sample size (number of days included in the 343 

monthly mean).   344 

3. Results 345 

3.1. Deseasonalizing tropNO2 data 346 

 347 

As already shown by many research studies, the global tropNO2 column amounts dropped in 348 

coincidence with partial or complete lockdowns during the height of the COVID-19 pandemic in 349 

different parts of the world and in the US.  In order to remove the seasonality from the signal, 350 

researchers have adopted different approaches including the use of numerical models to simulate 351 

the seasonality (e.g., Goldberg et al., 2020; Silver et al., 2020; Liu et al., 2020). Seasonality has 352 

to be accounted for because in the northern hemisphere winter months, NO2 amounts are higher 353 
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than in summer months due to which during the transition from winter to summer, NO2 amounts 354 

are higher in February than in March. In our study, we used a double differencing technique to 355 

account for seasonality.  Consistent with Goldberg et al. (2020), we used 1 January to 29 356 

February 2020 as pre-lockdown time period and 15 March to 30 April as lockdown time period.  357 

The difference in mean tropNO2 between lockdown and pre-lockdown is referred to as 358 

2020∆NO2.  For the same two corresponding time periods in 2019, the difference in mean 359 

tropNO2 is 2019∆NO2.  Then, the difference of 2019∆NO2 and 2020∆NO2 was computed to 360 

tease out the changes in NO2 due to reductions in emissions during the lockdown (∆NO2).  It 361 

should be noted though that the double differencing only removes the seasonality and does not 362 

fully account for differences in meteorological events such as precipitation or anomalously cold 363 

or hot conditions in one year versus the other but on a monthly time scale they are minimized. 364 

Figure 2a-b shows 2019∆NO2 and 2020∆NO2 which includes changes due to seasonality and 365 

any changes to emissions either from natural sources such as fires or anthropogenic 366 

urban/industrial sources.  Figure 2c shows ∆NO2 for the CONUS due to just changes in 367 

emissions between the pre-lockdown and lockdown time periods in 2020 with the seasonality 368 

removed.   Comparing Figure 2a and 2b, one can deduce that reductions in tropNO2 between pre-369 

lockdown and lockdown is much stronger in 2020 compared to 2019.  However, the double 370 

difference plot in Figure 2c shows how much of that reduction seen in 2020∆NO2 (Figure 2b) is 371 

due to changes in traffic emissions.  The NO2 changes are smaller in Figure 2c than in Figure 2b, 372 

both in magnitude as well as spatial extent of the reductions.  373 

The lockdown measures in most states in the US began in the middle of March 2020.  The 374 

first state to institute stay at home measures was California on 19 March and the last state to 375 

enforce was Missouri on 6 April.  The cities/regions with worse traffic related ozone pollution 376 
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levels based on the monitoring data from 2016-2018 compiled by the American Lung 377 

Association and the duration for which they were in a lockdown is shown in Table 1.  For 378 

regions that fall into different states (e.g., Washington-Baltimore-Arlington), the dates for the 379 

state that had the longest duration of lockdown are listed in the table. Most states were in a 380 

lockdown mode only for one to two months and given the varying nature of the lockdown in 381 

different parts of the country, we treated 15 March and 30 April as lockdown months.   As shown 382 

in Figure 2a, 2019∆NO2 is positive in some areas and negative in some areas whereas in 2020 383 

(Figure 2b), large negative values (reductions) are observed in most of the CONUS except in the 384 

Great Plains region and the Pacific North West. These reduced tropNO2 amounts are attributed to 385 

reduced emissions due to lockdowns.  Changes in the rural areas (either positive or negative) of 386 

the US could be due to changes to natural sources such as soil and lightning NOx emissions.   387 

3.2. On-road NOx emissions and tropNO2 388 

 389 

 Focusing on the regions of interest with on-road NOx emissions available for this study, we 390 

calculated reductions in tropNO2 for Los Angeles, Atlanta, San Francisco, San Joaquin Valley, 391 

and New York City. The largest reductions in tropNO2 were observed for New York City (-28%) 392 

and the lowest were observed for San Francisco (-21%).  For Los Angeles, the straight difference 393 

between pre-lockdown and lockdown in 2020 shows reductions of ~81 µmoles/m
2
 when in fact 394 

NOx emissions reductions from traffic only likely reduced tropNO2 by 32 µmoles/m
2
 which is 395 

about 21% as estimated by the double differencing technique (Table2).  396 

Goldberg et al (2020) reported tropNO2 reductions of 20.2%, 18%, and 39% for Atlanta, 397 

New York, and Los Angeles respectively and their analysis is also for March 15 to April 30, 398 

2020 time period.  Our analysis shows that tropNO2 reductions for these three cities are 21%, 399 
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17%, and 22%.  Though the methodology used to remove the seasonality is different, the 400 

reductions in tropNO2 from our analysis and that of Goldberg et al. (2020) is similar with Los 401 

Angeles showing the biggest drop in tropNO2 due to lockdown measures.   402 

 The goal of this study is, however, not to repeat what other researchers have already 403 

reported for the COVID-19 lockdown impacts on tropNO2 using TROPOMI data.  What we 404 

examined in this study is the trends in on-road and power plant emissions for five different 405 

locations (four urban areas and one rural area) to answer the questions: (1) are changes in NOx 406 

emissions during the lockdown detectable in TROPOMI tropNO2 data, (2) are the economic 407 

indicators consistent with emissions changes, and (3) are the trends reversing with the removal of 408 

lockdown measures.   409 

Figure 3 shows the time series of on-road mobile (cars and trucks combined) and power plant 410 

NOx emissions for five different cities/regions in the US (Los Angeles, Atlanta, New York, San 411 

Joaquin Valley, and San Francisco) from January to November 2020 except for New York City 412 

for which the time series ends on 31 August due to the non-availability of traffic data.  For Los 413 

Angeles, the daily NOx emissions are near 200 tons/day prior to lockdown with values slightly 414 

lower on weekends (~150 tons/day).  The Los Angeles basin is home to 17 million people with 415 

11.3 million cars; cars, trucks, and other off-road machinery contributing to 80% of the observed 416 

NOx in a typical year according to the 2019 emissions report by South Coast Air Quality 417 

Monitoring Division (http://www.aqmd.gov/docs/default-source/annual-reports/2019-annual-418 

report.pdf?sfvrsn=9).  Due to the lockdown and stay at home orders, people stopped driving and 419 

the NOx emissions quickly began dropping on 19 March 2020;  the NOx emissions begin to 420 

increase on 16 April 2020, even before the lockdown was lifted on 4 May.  The lowest weekday 421 

NOx emissions, 141.3 tons/day, occurred on 6 April.  Even though the NOx emissions begin to 422 

http://www.aqmd.gov/docs/default-source/annual-reports/2019-annual-report.pdf?sfvrsn=9
http://www.aqmd.gov/docs/default-source/annual-reports/2019-annual-report.pdf?sfvrsn=9
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recover in the post lockdown time period, they are still lower than the pre-lockdown values.  423 

Compared to on-road emissions, power plant emissions are negligible for the Los Angeles area.  424 

Power plants in the vicinity of Los Angeles (~75 km radius) emit only ~0.8 tons per day on 425 

average compared to 200 tons per day emitted by on-road vehicles during the pre-lockdown on 426 

weekdays.  On weekends, on-road emissions are lower (~150 to 175 tons/per day depending on 427 

whether it is a Saturday or Sunday) due to lower truck traffic (Marr and Harley, 2002), whereas 428 

power plant emissions do not have any weekday/weekend differences. 429 

The NOx emissions for the New York area encompass an area covering about 1,213 square 430 

kilometers.  The city is home to 8.34 million people but there are only 1.9 million vehicles (230 431 

cars per 1000 people) because of the reliance on public transportation, a factor of 3 lower than 432 

for Los Angeles basin which has 660 cars per 1000 people.  Similar to Los Angeles, the NOx 433 

emissions dropped in New York on 21 March when the lockdown measures began.  The pre-434 

lockdown levels of NOx emissions are on average ~125 tons/day.  It should be noted that New 435 

York City is in the downwind region of NOx emissions from New Jersey and Pennsylvania and 436 

the recipient of regionally transported pollution (Tong et al., 2008).  Unlike the Los Angeles 437 

area, the power plant emissions are higher but showed no trend similar to on-road emissions.    It 438 

is noteworthy that there is a jump in power plant emissions towards the end of June which 439 

coincides with the opening of retails on 22 June in New York; the power plant emissions in the 440 

New York City are higher in the summer than in winter, associated with increased demand for 441 

air conditioning.   442 

The NOx emissions for the metro Atlanta area are similar to New York City but with a weak 443 

weekday/weekend cycle.  The region encompassing Cherokee, Clayton, Cobb, Coweta, Dekalb, 444 

Douglas, Forsyth, Fulton, Gwinett, Henry, Rockdale, and Spalding counties is about 3,695 445 
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square kilometers and is home to nearly five million people.  The pre-lockdown levels of NOx 446 

emissions are on average ~125 tons/day.  The metro Atlanta region is three times larger than the 447 

area covered for the New York City region but the NOx emissions are similar in magnitude. The 448 

state of Georgia where Atlanta is located never went into any prolonged lockdown.  Though the 449 

mayor of Atlanta ordered people not to gather in large groups beginning 15 March and the 450 

Governor of Georgia ordered bars and clubs to close on 24 March, schools were not closed until 451 

1 April; shelter in place was implemented on 8 April but was lifted immediately with no real 452 

lockdown until 1 May through 23 May.  Consistent with these policies, the on-road NOx 453 

emissions were lowest on 23 March (88.5 tons/day) and 26 May (74.5 tons/day) and returned to 454 

pre-lockdown levels at the start of 1 June.  The lowest on-road NOx emission value, 74.5 tons, 455 

was observed on 26 May, towards the end of the shelter in place orders.  By 1 June, NOx 456 

emissions values returned to normal, pre-lockdown levels in Atlanta.       457 

For the pre-lockdown time period, the weekday/weekend difference in NOx emissions is 458 

stronger in New York City than Los Angles and Atlanta areas, due to commuter travel.  Mean 459 

difference in NOx emissions between weekdays and Sundays (emissions are the lowest on 460 

Sundays of each week) prior to the pandemic related lockdown in the Los Angeles, New York, 461 

and Atlanta are 54.4 tons/day (26%), 65.4 tons/day (51%), and 41.1 tons/day (33%) respectively.   462 

The San Joaquin valley is a rural area with low on-road and power plant emissions and the 463 

data are expected to have a contrast to the urban/industrial locations such as Los Angeles and 464 

New York City.  The San Joaquin Valley NOx emissions remained consistent at ~55 tons/day 465 

throughout the year with a very weak weekday/weekend cycle.  Similar to Los Angeles area, the 466 

power plant emissions are insignificant.  For the San Francisco Bay area, the on-road NOx 467 

emissions are higher than the San Joaquin Valley region but lower than the Los Angeles area.  468 
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The daily average NOx emissions prior to the lockdown were ~90 tons/day and there was a small 469 

drop in emissions (-33.2 tons/day) on 6 April with a trend to return to normal by mid-April.  The 470 

post lockdown NOx emissions are lower than pre lockdown values for San Francisco as well.  471 

3.3. Correlation between on-road NOx emissions and tropNO2 472 

 473 

Given the knowledge of changes in on-road emissions in five locations due to lockdown, we 474 

wanted to examine if tropNO2 shows similar behavior by exhibiting a linear relationship and 475 

demonstrate that the time period for which lowest NOx emissions were observed in traffic data 476 

also corresponds to the lowest observed tropNO2 data.  Additionally, we wanted to check if the 477 

post lockdown recovery in traffic emissions is reflected in tropNO2 data.  We first examined the 478 

direct relationship between daily tropNO2 and daily on-road NOx emissions for the five locations 479 

but only the analysis for Los Angeles is shown in Figure 4.  The tropNO2 and NOx emissions for 480 

January and February 2020, representing the pre-lockdown phase, and for March through 481 

November 2020 are shown in Figure 4a and Figure 4b respectively.  Again, the daily NOx 482 

emissions data are for the Los Angeles basin.  The coincident observations of tropNO2 amount 483 

sampled in the predominant direction of wind are linearly correlated with on-road emissions but 484 

the correlation is weak (r=0.39).  The traffic emissions fall into three clusters corresponding to 485 

emissions on Sundays (~150 tons/day), Saturdays (~180 tons/day), and weekdays (~199 486 

tons/day) with minimal variability in each cluster whereas tropNO2 amount varied between 50 487 

and 225 µmoles/m
2
.   488 

The variability in tropNO2 can be present due to different reasons.  First, the day to day 489 

variability in cloud cover can lead to gaps in data.  We used the recommended quality flag 490 

threshold of 0.75 to screen out the data that has potential contamination from clouds but this 491 
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strict screening reduces the number of retrievals for a given location.  Second, there is also 492 

variability in the background NO2 contribution to the tropospheric NO2 column due to which 493 

column NO2 does not correlate well with NOx emissions from sources on the ground.  We 494 

analyzed the background NO2 signal in the tropospheric column amount for TROPOMI for 2019 495 

and 2020 using Silvern et al. (2019) method and found it to be higher in the winter due to longer 496 

lifetime (lower temperature, weak photolysis, stronger wind dispersion, and less wet scavenging) 497 

and lower in the summer with monthly mean values ranging between 15 and 20 µmoles/m
2
.  498 

Sources of background NO2 are soil emissions of NOx which are amplified after precipitation 499 

events, lightning produced NOx, and chemical decomposition of peroxyacetyl and alkyl nitrates.  500 

When transport of NO2 from rural areas to urban centers occur, this can enhance the tropNO2 501 

values that may not correlate well with NOx emissions from sources on the ground.  Third, wind 502 

speed and direction influences the mean tropospheric NO2 computed for the Los Angeles basin  503 

because if the wind speed is high, NO2 is dispersed and transported away from the city and when 504 

the wind speed is low, NO2 is accumulated over the city.  Any variability associated with 505 

background NO2 is detected by TROPOMI and accounted for in the column NO2 amount that 506 

has no relation to the NOx emissions from the on-road sources on the ground.  We did account 507 

for the effects of wind in our matchups by sampling the data in the downwind direction but 508 

higher wind speeds dilute the NO2 concentrations observed by TROPOMI.  The outliers that 509 

indicate tropNO2 values are between 20 and 30 µmoles/m
2
 even when on-road emissions are 510 

high indicate TROPOMI retrievals that are either sampled after pollutants are washed out of the 511 

atmosphere due to rain or on days when wind speeds are unusually high or are noisy and have 512 

errors associated with air mass factors and a priori profile.   Parker et al. (2020) report that the 513 

Los Angeles basin was unusually wet in 2020, especially during the late March and early April 514 
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2020. Other researchers who correlated daily surface observations of NO2 and TROPOMI 515 

tropNO2 for 35 different stations in Europe reported similar findings and they found that 516 

correlation improved after averaging the data to monthly time scales (Ialongo et al., 2020; 517 

Cersosimo et al., 2020).    518 

The comparison for the lockdown and post lockdown time period of March through 519 

November is shown in Figure 4b; the correlation remains the same (r = 0.39) but the one 520 

interesting feature is that the tropNO2 and on-road emissions are very small compared to the pre-521 

lockdown scenario.  Daily NOx emissions on many days are between 100 and 150 tons after 14 522 

March; prior to that in the first 15 days of March, the region was not under stay at home orders.  523 

The tropNO2 never goes above 200 µmoles/m
2 

for this time period.  Compared to pre-lockdown 524 

period, the on-road NOx emissions and tropNO2 values shifted to lower values within each 525 

cluster (shown in blue for weekdays, green for Saturdays, and red for Sundays).  During the 526 

lockdown phase, one would anticipate that there would not be any difference between weekday 527 

and weekend emissions but the difference is stark and is reflected in tropNO2 data as well.     528 

In order to correlate the changes in on-road NOx emissions to changes in tropNO2 between 529 

2019 and 2020 for each of the five regions in this study, we averaged daily NOx emissions 530 

values and tropNO2 values for each month (January to November) and created an average value 531 

of all the five regions combined for each month.  Figure 5a shows the monthly mean trend plot 532 

∆NOx and ∆tropNO2 for January to November where we see on-road emissions and tropNO2 533 

drop steadily and hit the lowest values in March and April, consistent with lockdown measures.  534 

The recovery begins in May and continues to November for on-road emissions but not 535 

completely to the pre-lockdown levels.  However, the ∆tropNO2 trend plot shows recovery up to 536 

August and then begins to show a decline from September to November.  This decline in 537 
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tropNO2 is coming from Los Angeles and San Francisco.  The reason for this drop is currently 538 

unclear and warrants further investigation but some initial analysis presented in Section 3.4 539 

suggests there was likely an influence of biomass burning emissions on the Los Angeles area in 540 

September 2020.  Figure 5b shows the correlation of on-road NOx emissions changes (∆NOx) 541 

between 2020 and 2019 with the difference in tropNO2 amounts between 2020 and 2019 542 

(∆tropNO2).  The NOx emissions were lower in 2020 compared to 2019 for all the months and 543 

all the cities.  The positive linear correlation (r = 0.68) suggests that tropNO2 observations 544 

captured the changes in on-road emissions and can be used to study the changes in NOx 545 

emissions due to traffic elsewhere in the US where we do not have observations from the ground.  546 

Even though traffic emissions are the dominant source for NOx, there are power plants in the 547 

vicinity of the cities emitting NOx on a continuous basis and unlike traffic emissions they do not 548 

exhibit a weekday/weekend cycle.  Figure 6 shows a map of tropospheric NO2 for Quarter 2 549 

2020 (April/May/June) with on-road emissions and power plant emission for each of the five 550 

cities as stacks.  The locations of power plants in other parts of the country are circled in pink 551 

color, indicating that these power plants emit greater than 1500 tons in a given quarter; power 552 

plants with lower monthly NOx emissions < 1500 tons are not highlighted on the maps.  It is 553 

difficult to isolate the NO2 plumes from power plants in urban areas in the TROPOMI NO2 map 554 

as the NOx emitted from the power plants mixes and becomes indistinguishable from on-road 555 

emissions. Consistent with this analysis, changes in NOx emissions between 2020 and 2019 for 556 

power plants within 75 km of each of the five cities (New York, Atlanta, San Francisco, Los 557 

Angeles, and San Joaquin Valley) correlated weakly with changes in tropNO2 (Pearson 558 

correlation coefficient = 0.35); power plant NOx emissions can explain only 12% of the 559 

variability seen in tropNO2 (Figure 7).    The changes in power plant emissions were higher in 560 
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2020 compared to 2019 for some plants and lower for some but mostly varied between ±20 561 

tons/day whereas the on-road emissions reduced by about ~80 tons/day.   562 

3.4. NOx photochemistry 563 

 564 

The premise for the impact of NOx emissions reductions on improved air quality due to 565 

reduced human activity during the lockdown period depends on how the photochemical 566 

processes changed compared to the BAU scenario.  It is known that in the Los Angeles area, 567 

reductions of NOx emissions on the weekend due to reduced traffic compared to weekdays has 568 

led to an increase in ozone due to less NOx available to remove ozone via titration (Baider et al., 569 

2014).  Parker et al. (2020) report that during the April to June 2020, when NOx emissions were 570 

reduced substantially due to a 50% drop in traffic, there was a spatial modification of ozone 571 

production but not necessarily a drop, suggesting larger and more targeted NOx reductions are 572 

needed in the Los Angeles area in order to consistently reduce ozone.  While most of the NOx in 573 

the Los Angeles area comes from cars and trucks, only 25% of VOC emissions come from cars 574 

and trucks; sources of VOCs are mostly area and biogenic sources (Parker et al., 2020).  575 

McDonald et al. (2018) and Qin et al (2021) suggest the importance of volatile chemical 576 

products as sources of anthropogenic VOCs in the Los Angeles impacting both ozone and 577 

secondary organic aerosol.  Most analysis using the satellite data are focusing on TROPOMI 578 

NO2 and attributing the reductions of NOx emissions to improved air quality; the reductions in 579 

VOC emissions are largely unknown, especially of non-vehicular sources.  The aerosol 580 

formation (nitrate and organic aerosols) is driven by NOx, VOCs, and ammonia emissions and if 581 

the photochemical processes are in NOx limited or VOC limited regime.  One complicated factor 582 

for aerosols is the transport of smoke aerosols if fires are burning upwind of the city.  We 583 

established some baseline photochemical regime by calculating weekly correlation between 584 
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AOD and NO2 and obtaining the slope for each week over one year in 2019 to document the 585 

changes in slope as a function of time during the year (Figure 8a-c); Figure 8a-b show how 586 

slopes are derived using the scatter plot between VIIRS AOD and TROPOMI tropNO2 for one 587 

week in September 2019 and in 2020 as an example.  For 2019, when the fire season was not a 588 

major contributing factor, the slopes are small in the winter months and slowly increase towards 589 

the summer.  This is consistent with the knowledge that ammonium nitrate formation peaks in 590 

the summer due to the availability of ammonia from increased agricultural activity and higher 591 

volatility associated with higher temperatures (Schiferl et al., 2014).   592 

The black curve in the figure is a polynomial fit to the 2019 AOD-tropNO2 slope data and 593 

represents the increase in the rate of nitrate aerosol formation from winter to summer, and 594 

decrease from summer to winter.  The AOD to tropNO2 slopes for the year 2020 are shown as 595 

red dots and any significant sudden increase in the slope is interpreted as the influx of 596 

transported aerosol into the domain.  The weekly scatter plots of AOD and AOD-tropNO2 for 597 

September 2019 and 2020 in Figure 8a-b show that the tropNO2 values in both years ranged 598 

between 30 and 120 µmoles/m
2 
whereas AOD values in 2020 were much higher (between 0.2 599 

and 0.9) compared to values in 2019 that were only between 0.1 and 0.2.  The AOD values 600 

typically range between 0 and 1, with higher AODs typically observed in the presence of 601 

biomass burning smoke or dust storms.  The values in 2019 are akin to photochemically 602 

produced aerosols whereas the high values in 2020 indicate aerosols due to photochemically 603 

produced aerosols plus any transported aerosol from locations upwind of Los Angeles.   604 

3.5. Economic activity indicators and tropNO2 605 

 606 
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Because of the lockdown measures and work from home policies for majority of the 607 

workplaces in the US, the service industry has taken a hit and the unemployment rate has risen.  608 

The US unemployment rate increased from about 4.4% in March to 14.7% in April during the 609 

first phase of lockdown.  The unemployment rate nationwide improved as the year went by but 610 

certain parts of the country continued to be under very high unemployment rate throughout 2020 611 

(Figure 9).  Amongst the employed, 28% of employees continue to work from home as of 612 

November indicating that below normal NOx emissions data are to be expected.  The correlation 613 

between unemployment rate and tropNO2 for metropolitan areas with pre-pandemic civilian 614 

labor force greater than two million is negative for the second and third quarters (the regression 615 

line shown in Figure 9 is for second quarter data).  The unemployment rate combined with 616 

telework policies have contributed to reduced NOx emissions and thus the lower tropNO2 values 617 

across the US.  This is similar to the positive correlation between Gross Domestic Product (GDP) 618 

and tropNO2 reported by Keller et al. (2020).  Cities such as Phoenix, AZ, Minneapolis, MN, 619 

Dallas and Houston, TX, and Chicago, IL show no change or slight increase in tropNO2 in 2020 620 

compared to 2019 though unemployment rate in 2020 is much higher compared to 2019.   621 

4. Discussion 622 

 623 

The TROPOMI tropNO2 data captures the day to day variability but due to cloud cover and 624 

uncertainties associated with assumptions such as a priori profile and lower sensitivity to near 625 

surface NO2, on certain days the retrievals do not adequately represent the changes in near 626 

surface NO2. Our analysis shows that the data reflect the NO2 variability very well on monthly 627 

scales and even on weekly scales, to the extent that even weekday/weekend cycles are 628 

noticeable.   When using the TROPOMI tropNO2 data, we wanted to establish that it not only 629 
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shows the reductions/drop in tropNO2 due to reductions in on-road emissions but that the trend 630 

during post-lockdown recovery can be detected as well.  Therefore we examined the trends in 631 

on-road and power plant emissions for five different locations (four urban areas and one rural 632 

area) to answer the questions: (1) are changes in NOx emissions during the lockdown detectable 633 

in TROPOMI tropNO2 data, (2) are the economic indicators consistent with emissions changes, 634 

and (3) are the trends reversing with the removal of lockdown measures in the major metro areas.  635 

These locations have diversity from a geographical perspective, are driven by different 636 

economies, and experience different meteorology and climate.  The inventory from ground 637 

monitors for locations nationwide and its analysis is the subject of a different publication.  The 638 

focus in this paper is to corroborate trends seen in satellite data with ground observations.     639 

The spatial and temporal analysis, relating indicators of human activity during and prior to 640 

COVID-19 lockdown with air quality shows that while power plant emissions changes were not 641 

drastic compared to on-road emissions, the on-road emissions in the four urban and one rural 642 

location dropped coinciding with lockdown start date and duration.  The changes in on-road NOx 643 

emissions correlated with tropNO2 changes for these five locations, giving confidence to use 644 

tropNO2 data in other parts of the CONUS to draw conclusions about relating changes in 645 

tropNO2 to economic activity changes.  We found that the weekday-weekend differences were 646 

pronounced in on-road emissions and tropNO2 data with the lowest values of on-road NOx were 647 

all on weekends even during the pandemic related lockdown periods.  The unemployment rate 648 

and its increase during the lockdown and post lockdown period appears to also be a good proxy 649 

for economic activity and correlated well with decrease in tropNO2 changes.  At the height of the 650 

pandemic related lockdown in second quarter 2020, the unemployment rate increase was as high 651 

as 17% in populated metropolitan areas and even at the end of the third quarter in 2020, the 652 
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unemployment increase is ~10%.  The first quarter unemployment showed no relationship to 653 

tropNO2 as expected because it was constant at ~5% and did not vary.   654 

The satellite data must be analyzed by considering various quality flags and understanding 655 

the limitations of the algorithm.  It is likely that by using the quality flag > 0.75, we were 656 

conservative in the use of TROPOMI data but the extremely low daily tropNO2 values on certain 657 

days even when on-road NOx emissions were high is indicative that the data are more 658 

interpretable when averaged to weekly or monthly time scales.  For tropNO2 retrievals that have 659 

quality flags between 0.5 and 0.75, suggesting cloud contamination, we can look at coincident 660 

high resolution (750m) VIIRS cloud mask product to analyze TROPOMI flags for cloud 661 

contamination.  This analysis will help us improve our analysis using the daily tropNO2 retrievals 662 

by either including more retrievals or removing some retrievals from the matching with on-road 663 

emissions data.         664 

5. Conclusions 665 

 666 

It has already been established by numerous research studies that reduced traffic (on-667 

road) and industrial emissions led to improved air quality during the lockdown measures 668 

implemented by various countries across the globe.  However, most studies used mobility data as 669 

a proxy for reduced human activity to interpret satellite observations of tropNO2 but did not 670 

directly relate the reduced on-road emissions with reduced air quality observations.   Here, for 671 

the first time we directly correlate on-road NOx emissions data to TROPOMI tropNO2 in four 672 

metropolitan and one rural areas in the US.  For this, we used TROPOMI tropNO2, VIIRS AOD, 673 

on-road NOx emissions, and unemployment rates to develop a comprehensive analysis for 2019 674 

and 2020.  Where needed, we conducted rotated wind analyses to correctly sample and match the 675 
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on-road NOx emissions with tropNO2 data, developed a novel way of deseasonalizing tropNO2 -676 

data, and used changes in unemployment rate data as an indicator for economic activity. 677 

Our analysis of reductions in on-road NOx emissions from light and heavy duty vehicles 678 

derived from fuel sales data showed a reduction from 9% to 19% between February and March at 679 

the onset of lockdown in the middle of March in most of the US and between March and April, 680 

the on-road NOx emissions dropped further by 8% to 31% when lockdown measures were the 681 

most stringent.  These precipitous drops in NOx emissions correlated well with tropNO2.  682 

Further, the changes in tropNO2 across the continental U.S. between 2020 and 2019 correlated 683 

well with changes in on-road NOx emissions (Pearson correlation coefficient of 0.68) but 684 

correlated weakly with changes in emissions from the power plants (Pearson correlation 685 

coefficient of 0.35). These findings confirm the known knowledge that power plants are no 686 

longer a major source of NO2 in urban areas of the United States.  As the US entered into a post-687 

pandemic phase between May and November 2020, the increased mobility resulted in increased 688 

NOx emissions nearly to the pre-lockdown phase but not entirely back to 100%.  These changes 689 

are reflected in the tropNO2 data except that for Los Angeles and San Francisco, the tropNO2 690 

diverged from on-road NOx emissions that needs further inquiry. The negative correlation 691 

between changes in tropNO2 in 2020 compared to 2019 and increased unemployment rate 692 

indicates that with increased unemployment rate combined with telework policies across the 693 

nation for non-essential workers, the NO2 values decreased at the rate of 0.8 µmoles/m
2
 decrease 694 

per unit percentage increase in unemployment rate.   695 

Across the CONUS we found positive spatial correlation between S5P TROPOMI NO2 and 696 

SNPP VIIRS AOD measurements in these urban regions indicating common source sectors for 697 

NO2 and aerosols/aerosol precursors. Once the data are averaged into weekly means and 698 
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temporally correlated and weeks when transported smoke mixes in with locally produced 699 

emissions are removed, there is a negative correlation between AOD and tropNO2 indicating that 700 

photochemical conversion of NO2 to nitrate aerosol is being captured in this analysis.  This 701 

methodology of screening for fire events influencing aerosol concentrations over urban/industrial 702 

regions also helps with analyzing changes in aerosols due to emissions reductions.  This is the 703 

subject of a different manuscript that is currently in preparation.  The COVID-19 pandemic 704 

experience has provided the scientific community an opportunity to identify scenarios that can 705 

lead to a new normal urban air quality and if the new normal can be sustained with novel policies 706 

such as increased telework policies and a shift towards driving electric cars.   707 
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 753 

Figure 1: Sentinel 5P TROPOMI monthly mean NO2 for January 2020 for California.  (a) 

Original pixel level data remapped to 5 km x 5 km resolution and averaged for the month. The 

monthly mean ERA5 wind vectors are overlaid on the NO2 map to indicate the wind direction.   

(b) Original pixel level NO2 data remapped to 5 km x 5 km grids and the grids rotated in the 

direction of the wind using ERA5 wind fields.  The downwind direction is shown pointing 

North.  For the monthly mean to be computed, we used a criteria that at least 25% of the days 

in a month should have retrievals. 
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Figure 2: Tropospheric NO2 changes between pre-lockdown time period (January to February) 

and lockdown period (15 March to 30 April) for (a) 2019∆NO2, (b) 2020∆NO2, and (c) the 

difference between 2020∆NO2 and 2019∆NO2.  The double differencing is expected to remove 

the seasonal differences and provide a realistic estimate of change in tropNO2 due to emissions 

changes.   
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Figure 3: Time series of on-road and power 

plant NOx emissions for different cities from 

January to November 2020.  Note that the time 

series ends on 31 August for New York City 

because the traffic count data are not available 

for September to November.   
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 765 

 

Figure 4: Correlation between tropNO2 and on-road NOx emissions for Los Angeles, CA.  (a) For pre-

lockdown (January and February) and (b) For lockdown and post lockdown time period (March 

through end of November).  Red color is for data gathered on Sundays, green color is for data gathered 

on Saturdays, and blue color is for data gathered on weekdays. 
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Figure 5: Trends in changes in on-road monthly mean NOx emissions (tons/day) and tropNO2 

(µmoles/m
2
) between 2019 and 2020. (a) Average monthly mean differences for five cities 

(New York, Atlanta, Los Angeles, San Francisco, and San Joaquin Valley) across the United 

States from January to November.  (b) Correlation between changes in on-road monthly mean 

NOx emissions and changes in tropNO2 for the same five cities.  
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Figure 6: tropNO2 map for second quarter 2020 with the five locations where on-road NOx 

emissions data were collected by NOAA.  The red columns show total NOx emissions and the 

blue columns show NOx emissions from power plants nearby these five cities (New York, 

Atlanta, Los Angeles, San Francisco, and San Joaquin Valley).  Power plants with monthly mean 

NOx emissions greater than 500 tons are also shown in the map as pink dots.   
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Figure 7: Correlation of tropNO2 changes between 2020 and 2019 with changes in power plant 

monthly mean NOx emissions.  Daily total NOx emissions were added and divided by the 

number of days in a month to get average values in units of tons/day.   
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Figure 8: (a) Example correlation of VIIRS AOD and TROPOMI tropNO2 during one week, 

September 15-21, 2019, (b) Same for September 13-19, 2020, (c) Time series of weekly slope 

(AOD/NO2) with data for 2019 in gray color and data for 2020 in red color for Los Angeles, 

California.  The black solid line is the fit to 2019 data indicating the photochemical processes of 

the impact of NOx on secondary aerosol formation.  Any data points that depart from the fit line 

are treated as the time period when transported aerosols (e.g., smoke) influenced the air mass 

over Los Angeles. 

 

 

 

 
Figure 9: The impact of COVID-19 lockdown on unemployment rate in metropolitan areas and 

tropNO2.  (a) Unemployment rate in April 2019, (b) Unemployment rate in April 2020, and (c) 

Correlation between increase in unemployment between 2020 and 2019 and tropNO2 changes.  

Only data for metropolitan areas where civilian labor force in 2019 was greater than two million 
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 839 

 840 

 841 
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  843 

are shown in the correlation plot.  In the first quarter (Q01) unemployment changes are close to 

zero as pandemic impact did not begin until late March.  Strong negative correlation is observed 

for the second (Q02) and third (Q03) quarters. The solid black line is the fit to the second 

quarter data.   

Table 1: Ranking of cities for ozone pollution 
and their lockdown time periods 

   



44 

 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

City/Region 
Ozone 

Pollution 
Ranking  

Lockdown 
Start Date 

Lockdown 
End Date 

Los Angeles-Long Beach, CA 1 19-Mar 4-May 

Visalia, CA 2 19-Mar 4-May 

Bakersfield, CA 3 19-Mar 4-May 

Fresno-Madera-Hanford, CA 4 19-Mar 4-May 

Sacramento-Roseville, CA 5 19-Mar 4-May 

San Diego-Chula Vista-Carlsbad, CA 6 19-Mar 4-May 

Phoenix-Mesa, AZ 7 30-Mar 30-Apr 

San Jose-San Francisco-Oakland, CA 8 19-Mar 4-May 

Las Vegas-Henderson, NV 9 1-Apr 30-Apr 

Denver-Aurora, CO 10 26-Mar 26-Apr 

Salt Lake City-Provo-Orem, UT 11 30-Mar 13-Apr 

New York-Newark, NY-NY-CT-PA* 12 22-Mar 15-May 

Redding-Red Bluff, CA 13 19-Mar 4-May 

Houston-The Woodlands, TX 14 2-Apr 20-Apr 

El Centro, CA 15 19-Mar 4-May 

Chicago-Naperville, IL-IN-WI* 16 23-Mar 1-May 

El Paso-Las Cruces, TX-NM 17 2-Apr 15-May 

Chico, CA 18 19-Mar 4-May 

Fort Collins, CO 19 26-Mar 26-Apr 
Washington-Baltimore-Arlington, DC-MD-VA-WV-
PA* 20 30-Mar 15-May 

Dallas-Fort Worth, TX-OK 21 2-Apr 20-Apr 

Sheboygan, WI 22 24-Apr 26-May 

Philadelphia-Reading-Camden, PA-NJ-DE-MD* 23 30-Mar 15-May 

Milwaukee-Racine-Waukesha, WI 24 24-Apr 26-May 

Hartford-East Hartford, CT 25 23-Mar 20-May 

*Dates reflect the time period that is the longest for any given state in the region 
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Table 2:  Reductions in on-road NOx emissions and tropNO2 between 15 March to 30 

April and 1 January to 29 February 

City 
2019∆NOx 

 (%) 

2020∆NOx 

 (%) 

Seasonality 

Removed On-

road NOx 

Emissions 

Changes (%) 

2020∆NOx -  

2019∆NOx) 

2019∆NO2 

(%) 

2020∆NO2 

 (%) 

Seasonality 

Removed 

TropNO2 

Reductions (%) 

(2020∆tropNO2 

-  

2019∆tropNO2) 

Atlanta 10.41 -17.70 -28.11 -22.67 -44.14 -21.47 

San Francisco 10.54 -33.95 -44.49 -23.79 -48.18 -24.39 

San Joaquin 

Valley 
14.27 -18.39 -32.66 -27.30 -44.62 -17.32 

New York City 11.04 -36.87 -47,91 -6.07 -34.05 -27.98 

Los Angeles 10.57 -25.10 -35.67 -37.90 -59.68 -21.78 
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Abstract 30 

Most countries around the world including the United States took actions to control 31 

COVID-19 spread that lead to an abrupt shift in human activity. On-road NOx emissions from 32 

light and heavy-duty vehicles decreased by 9% to 19% between February and March at the onset 33 

of the lockdown period in the middle of March in most of the US; between March and April, the 34 

on-road NOx emissions dropped further by 8% to 31% when lockdown measures were the most 35 

stringent.  These precipitous drops in NOx emissions correlated well with tropospheric NO2 36 

column amount observed by the Sentinel 5 Precursor TROPOspheric Monitoring Instrument 37 

(S5P TROPOMI).  Furthermore, the changes in TROPOMI tropospheric NO2 across the 38 

continental U.S. between 2020 and 2019 correlated well with changes in on-road NOx emissions 39 

(r = 0.68) but correlated weakly with changes in emissions from the power plants (r = 0.35). At 40 

the height of lock-down related unemployment in the second quarter of 2020, the NO2 values 41 

decreased at the rate of 0.8 µmoles/m2 per unit percentage increase in the unemployment rate.  42 

Despite the lifting of lockdown measures, parts of the US continued to have ~20% below normal 43 

on-road NOx emissions.  To achieve this new normal urban air quality in the US, continuing 44 

remote work policies that do not impede economic growth may become one of the many options  45 

Key Words: COVID-19, nitrogen dioxide, aerosol optical depth, TROPOMI, NOx emissions, 46 
air quality, power plants 47 

 48 

 49 

 50 

 51 
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Plain Language Summary 52 

This study documents the different phases of COVID-19 lockdown in 2020 and how 53 

traffic emissions changed accordingly across the US, particularly in five different cities, namely 54 

Los Angeles, San Francisco, San Joaquin Valley, New York City, and Atlanta.  Analysis of data 55 

for these cities from measurements on the ground and satellites indicate that a down turn in the 56 

economy and telework policies reduced the number of cars and trucks on the road in March and 57 

April due to which air quality got better.  The recovery of traffic emissions after the lockdowns 58 

were lifted was slow and below normal emissions were observed into the end of 2020.  While the 59 

cities in the east reached near normal levels, the west coast showed below normal traffic 60 

emissions.  The air quality in 2020 provided a window into the future as to how improvements 61 

can be achieved.   62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 
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1. Introduction 74 

As the 2019 novel Corona virus (COVID-19) spread from China to other parts of the world, 75 

various countries imposed lockdown measures one by one.  Reports of improved air quality from 76 

ground and satellite observations of aerosol optical depth (AOD) and nitrogen dioxide (NO2) 77 

soon followed in the media as documented by Kondragunta et al. (2020).  The precipitous drops 78 

seen in the tropospheric vertical column NO2, (tropNO2 here onwards) measured by the Sentinel 79 

5P Tropospheric Monitoring Instrument (TROPOMI) were substantial, especially during the 80 

strict lockdown period for each country (Gkatzelis et al., 2020).  Goldberg et al. (2020) reported 81 

that in the United States (US), tropNO2 decreased by 9.2% to 45% in 26 cities from March 15 to 82 

April 30, 2020 compared to the same period in 2019; these reported reductions account for the 83 

influence of the weather. Other researchers reported similar findings, mainly reductions of 84 

tropNO2 attributed to reductions in traffic emissions both in the US. and across the globe in 85 

major urban areas of Europe, India, and China (Bauwens et al., 2020; Keller et al., 2020; Zheng 86 

et al., 2020; Vaderu et al., 2020; Straka et al., 2021; Nager et al., 2020).  For example in 87 

Washington D.C., average distance traveled by people dropped by 60% between February and 88 

April when restrictions were fully in place (Straka et al., 2021).  This sudden drop in tropNO2 in 89 

major metropolitan areas where the transportation source sector for NOx (NO+NO2) is strong is 90 

due to reduced traffic on top of an already observed general decreasing trend in NOx emissions.  91 

According to Lamsal et al. (2015), tropNO2 observed by the Ozone Monitoring Instrument 92 

showed a decreasing trend with an overall decrease of 28% between 2005 and 2013.  These 93 

reductions are consistent with NOx emissions reductions from major power plants in the US due 94 

to the Clean Air Interstate Rule and Cross State Air Pollution Rule.  The NOx emissions 95 
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continued to drop as more and more power plants switched to natural gas or began to rely on 96 

clean coal (de Gouw et al., 2014) 97 

Nitrogen dioxide is released during combustion of fossil fuels and is a precursor for both 98 

ozone and particulate matter, primary components of photochemical smog.  Whether it enhances 99 

or decreases ozone production is dependent on a given region being NOx saturated or volatile 100 

organic compound (VOC) saturated, due to the inherent non-linearity of ozone photochemistry 101 

(Kroll et al., 2020; Mazzuca et al., 2016).  The two main sources of NO2 in the US are the energy 102 

sector and the transportation sector according to the 2014 Community Emissions Data System 103 

(Hoesly et al., 2018).     A study by Zheng et al. (2020) analyzed the reductions in trace gas and 104 

aerosol concentrations in China during the lockdown and found that the most significant drop in 105 

aerosols was for nitrate aerosol.  For the period corresponding to the lockdown in China, January 106 

23 to February 22, 2020, mean nitrate aerosol concentration was 14.1 µg/m3; for the same period 107 

in 2019, the concentration was 23.8 µg/m3.  This 41% reduction is corroborated by reductions in 108 

NO2 observed by TROPOMI (Bauwens et al., 2020).   109 

Though NO2 is considered important due to its ozone and aerosol producing potential, it has 110 

harmful human health impacts when inhaled. Achakulwisut et al (2019) showed that 64% of four 111 

million pediatric asthma cases each year are due to exposure to NO2.  It should be noted though 112 

that NO2 was used as a proxy for traffic-related pollution.  The World Health Organization 113 

(WHO) standard for NO2 is an annual average of 21 parts per billion and for the US, it is 53 parts 114 

per billion.    The authors do note that that daily exposures to NO2 can vary from annual averages 115 

and traffic pollution is usually a mixture of precursor gases, primary particulates, and 116 

photochemically formed ozone and aerosols.  Nevertheless, when countries went into lockdown, 117 

the most noticeable indication of a drop in traffic related pollution is tropNO2 in urban areas 118 
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observed by TROPOMI, lending support to the assumption that NO2 is a good proxy for traffic 119 

related pollution.   The COVID-19 lockdown measures disproportionately impacted traffic more 120 

than industrial operations.   121 

We analyzed TROPOMI tropNO2 and Suomi National Polar-orbiting Partnership Visible 122 

Infrared Imaging Radiometer Suite (Suomi NPP VIIRS) AOD data in conjunction with on-road 123 

NOx emissions data, NOx emissions from power plants, and unemployment rates where 124 

available. The goal of this study is to examine the trends in on-road and power plant emissions 125 

for five different locations (four urban areas and one rural area) to answer the questions: (1) are 126 

changes in NOx emissions during the lockdown detectable in TROPOMI tropNO2 data, (2) are 127 

the economic indicators consistent with emissions changes, and (3) did the trends reverse with 128 

the lifting of lockdown measures in the major metro areas.  These questions are answered with 129 

spatial and temporal analysis of ground-based observations and satellite data, relating indicators 130 

of human activity during and prior to COVID-19 lockdown with air quality, and examining if a 131 

new normal urban air quality can be achieved with novel policies.   132 

2. Methods  133 

2.1. Sentinel 5P TROPOMI NO2 134 
 135 

The TROPOMI NO2 algorithm is based on the Differential Optical Absorption 136 

Spectroscopy technique that involves fitting the spectra in the NO2 absorption region between 137 

405 nm and 465 nm using known laboratory-measured reference absorption spectra.  The 138 

Sentinel 5P flies in formation with SNPP.  Though some Sentinel 5P trace gas algorithm 139 

retrievals depend on the VIIRS cloud mask, the NO2 algorithm relies on cloud retrievals using its 140 

oxygen A-band absorption (van Geffen et al., 2019).  The cloud fraction and effective  pressure 141 
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are used in air mass factor calculation for partially cloudy pixels.  There is an indication that the 142 

cloud algorithm is likely conservatively masking out good NO2 retrievals according to a 143 

validation study conducted by Judd et al. (2020).  Though Judd et al (2020) used data with 144 

quality flag equals to unity, we used the quality flag value (0.75) recommended by the NO2 145 

algorithm theoretical basis document (van Geffen et al., 2019).  Only data with quality flag > 146 

0.75 were used as this quality flag setting ensures that cloudy retrievals or retrievals with 147 

snow/ice covered pixels are screened out. The TROPOMI Level 2 product file consists of pixel 148 

level (3.5 km x 5.6 km) NO2 tropospheric column amount which we used in this study.  The NO2 149 

algorithm retrieves total column NO2 and separates the stratosphere from troposphere using 150 

chemical transport model predicted stratospheric NO2 analysis fields (van Geffen et al., 2019).  151 

The expected accuracy of the tropospheric NO2 column for polluted regions with high NO2 152 

values is ~25% and independent validation efforts using ground-based spectrometers such as 153 

Pandora have confirmed that tropNO2 is generally under-estimated, especially in polluted regions 154 

and that significant sources of errors come from coarser resolution a priori profiles used in the 155 

retrieval algorithm (Chan et al., 2020).  Comparisons of TROPOMI tropNO2 column with 156 

Pandora ground station retrievals of tropospheric NO2 in Helsinki showed that mean relative 157 

difference is −28.2% ± 4.8% (Ialongo et al., 2020).  Similar comparisons between Pandora 158 

ground station retrievals and tropNO2 in Canada for urban (Toronto) and rural (Egbert) stations 159 

show that tropNO2 has a -23% to -25% bias for polluted regions and a 7% to 11% high bias in 160 

rural region (Zhao et al., 2020).  Sources of error in tropNO2 include altitude dependent air mass 161 

factors, stratosphere-troposphere separation of NO2, a priori NO2 profile and shape, surface 162 

albedo climatology, and calibration errors as a function of view angle (van Geffen et al., 2019; 163 

Judd et al., 2020; Ialongo et al., 20; Zhao et al., 2020; Chan et al., 2020).  Judd et al. (2020) 164 
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showed that the TROPOMI NO2 validation carried out during the Long Island Sound 165 

Tropospheric Ozone Study (LISTOS) experiment showed that the TROPOMI tropNO2 column 166 

retrievals have a bias of -33% and -19% versus Pandora and airborne spectrometer retrievals 167 

respectively.  The biases improve to -19% and -7% when the TROPOMI NO2 algorithm is run 168 

with a priori profiles from a regional air quality model indicating that retrievals are very sensitive 169 

to a priori profile.  One aspect that is not fully explored by Judd et al. (2020) is the influence of 170 

aerosols on air mass factor calculations.  Research on aerosol impact on air mass factors 171 

indicates that the effect of aerosols on NO2 retrieval can vary depending on aerosol type 172 

(absorbing or scattering), amount, and vertical location (is aerosol mixed in with NO2 in the 173 

boundary layer or is the layer detached from NO2 layer) in the atmospheric column (Tack et al., 174 

2019; Judd et al., 2019; Liu et al., 2020; Lin et al., 2014).   175 

The Level 2 TROPOMI NO2 data were downloaded from the European Space Agency 176 

datahub (https://s5phub.copernicus.eu/dhus/#/home).   177 

The data for January to February 2020 is considered Business as Usual (BAU), the data 178 

for 15 March to 30 April 2020 is considered the lockdown period, and the data for 1 May to 179 

November 2020 is considered as representing the post lockdown period.   180 

The TROPOMI data are available only from mid-2018 to the present.  We removed the 181 

seasonality in tropNO2 data in two simple ways: by simply taking the difference between 2019 182 

and 2020 for the same month so the sun-satellite geometries and weather conditions are similar 183 

barring any unusual inter-annual variabilities, and by doing double differencing as  described in 184 

section 3.1.   185 

2.2. On-road NOx Emissions 186 
 187 

https://s5phub.copernicus.eu/dhus/#/home
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The on-road emissions are obtained using the Fuel-based Inventory of Vehicle Emissions 188 

(FIVE) where vehicular activity is estimated using taxable fuel sales for gasoline and diesel fuel 189 

reported at a state-level and downscaled to the urban scale using light- and heavy-duty vehicle 190 

traffic count data (McDonald et al., 2014). Once the fuel use is mapped, NOx emissions are 191 

estimated using fuel-based emission factors (in g/kg fuel) based on roadside measurements or 192 

tunnel studies (Hassler et al., 2016; McDonald et al., 2012; McDonald et al., 2018). The emission 193 

factors are calculated separately for light-duty gasoline vehicles and heavy-duty diesel trucks. 194 

The FIVE methodology was developed to derive traffic emissions to study their impact on air 195 

quality (Kim et al., 2016; McDonald et al., 2018), but in the case of 2020, the fuel-based 196 

methods provide evidence for quantifying the impact of reduced human activity during the 197 

lockdown period on air pollutant emissions (e.g., NOx). 198 

Here, we downscale on-road gasoline and diesel fuel sales following McDonald et al. (2014) 199 

for our 2019 base year, which is treated as the BAU case. We have chosen to focus on four US 200 

urban areas where real-time traffic counting data are publicly available, including the South 201 

Coast air basin ( Los Angeles county, Orange county, and portions of Riverside and San 202 

Bernardino counties), San Francisco Bay Area (Marin, Sonoma, Napa, Solano, Contra Costa, 203 

Alameda, Santa Clara, San Mateo, and San Francisco counties), New York City (Richmond, 204 

New York, Kings, Queens, and Bronx counties), and the Atlanta metropolitan region (Cherokee, 205 

Clayton, Cobb, Coweta, Dekalb, Douglas, Forsyth, Fulton, Gwinnett, Henry, Rockdale, and 206 

Spalding counties). We also include one rural region for contrast, the San Joaquin Valley in 207 

California (Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare counties). 208 

For the BAU case, we account for typical seasonal and day-of-week activity patterns of light- 209 

and heavy-duty vehicles separately). For the COVID-19 case, we scale the January BAU 210 
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emissions case with real-time light- and heavy-duty vehicle traffic counting data for the year 211 

2020, which are described in Harkins et al. (2020). Light-duty vehicle counts are used to project 212 

on-road gasoline emissions and heavy-duty truck counts for on-road diesel emissions during the 213 

pandemic. 214 

To estimate NOx emissions, the FIVE NOx emission factors have been updated to 2019 based 215 

on the regression analyses of roadway studies (Hassler et al., 2016; McDonald et al., 2012; 216 

McDonald et al., 2018), and we use a value of running exhaust emission factors of 1.7 ± 2 g 217 

NOx/kg fuel and 12.4 ± 1.9 g NOx/kg fuel for on-road gasoline and diesel engines, respectively. 218 

Cold-start emissions are scaled relative to the running exhaust emissions based on the US 219 

Environmental Protection Agency (EPA) MOVES2014 model (EPA, 2015). We use the 2019 220 

NOx emission factor for both the BAU and COVID-19 adjusted cases. Thus, the differences in 221 

the BAU and COVID-19 cases are only due to changes in traffic activity. We use the same 222 

emission factor for 2019 and 2020 because past studies have shown during the 2008 Great 223 

Recession the turnover of the vehicle fleet and corresponding reductions in emission factors are 224 

slower (Bishop and Steadman, 2014). Total on-road NOx emissions are the sum of emission 225 

estimates for light-duty vehicles and heavy-duty trucks. The off-road mobile source emissions 226 

are not included in the dataset. In cities, on-road transportation accounts for as much as 75% of 227 

the NOx emissions (Kim et al., 2016), and is a critical emissions sector to quantify. 228 

Uncertainties in FIVE on-road emission estimates arise from non-taxable fuel sales associated 229 

with off-road machinery, and from mismatches where fuel is sold and where driving occurs, 230 

though diesel fuel sales reports are adjusted based on where long-haul trucking occurs 231 

(McDonald et al., 2014). However, the main source of uncertainty is the accuracy of fuel-based 232 

emissions factors used to calculate co-emitted air pollutant species (McDonald et al., 2018).  The 233 



11 
 

underlying traffic counting data are available at hourly time resolution; however, here we have 234 

averaged the data to daily averages. Jiang et al. (2018) report the uncertainty in fuel sales (3%-235 

5%) and NOx emission factors (15%-17%) for on-road transportation.  236 

2.3. Power Plant NOx Emissions 237 

The daily power plant NOx emissions were obtained from the US EPA Continuous Emissions 238 

Monitoring System (https://www.epa.gov/airmarkets) and the energy generation/consumption 239 

statistics were obtained from the Energy Information Administration (eia.gov).  Unlike the traffic 240 

emissions, power plant emissions did not change much during the lockdown.  Power generation 241 

from fossil fuels dropped from 38,332 Gwh in March to 29,872 Gwh in April and rebounded to 242 

pre-pandemic levels by June.  The total NOx emissions in the US from power plants dropped 243 

from 54,531 tons in March to 44,016 tons in April, a 19% decrease.  This may seem like a big 244 

drop in production but the absolute values are quite small.  For example, NOx emissions from 245 

power plants within the 75 km of Los Angeles emitted only 20 tons in March 2020.  For January 246 

to July, nationally, total NOx emissions from power plants were 0.8 and 0.67 million metric tons 247 

in 2019 and 2020 respectively.  This is a 16% reduction compared to 50% reduction in on-road 248 

emissions, for the same months between 2019 and 2020.   249 

In contrast, on-road emissions from vehicles in the Los Angeles area alone emitted nearly 250 

5,367 tons of NOx.  Power plant NOx emissions in the US have decreased substantially over the 251 

last two decades; they dropped by 86% between 1990 and 2019.  This is due to the shift from 252 

fossil fuels to other alternate energy sources for power generation.  For example, the use of coal 253 

as a source of electricity generation went down from 51% in 2001 to 23% in 2019 while the 254 

natural gas as a source increased from 17% in 2001 to 38% in 2019.  In our analysis, comparing 255 

and contrasting NOx emissions from on-road traffic and power plants for the six locations of 256 

https://www.epa.gov/airmarkets
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interest, we considered only the power plants within 75 km radius of the center of the city 257 

location being analyzed.  258 

2.4. Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer 259 
Suite (SNPP VIIRS) 260 

 261 

NOAA currently has two VIIRS instruments in orbit - one on SNPP launched on 28 262 

October, 2011 and one on NOAA-20 launched on 18 November, 2017.  The two VIIRS 263 

instruments continuously observe the Earth with a 50-minute time difference and provide AOD 264 

retrievals for cloud/snow-free scenes during the sunlit portion of the day.  The VIIRS 265 

instruments have 22 bands with 16 of the bands in the visible to long-wave infrared at moderate 266 

resolution (750m), five bands at imager resolution (375m) covering 0.64μm, 0.865μm, 1.6μm. 267 

3.74μm, and 11.45μm, and one broad Day-Night-Band (DNB) band centered at 0.7μm.  The 268 

NOAA AOD algorithm over ocean is based on the Moderate Imaging Spectroradiometer 269 

(MODIS) heritage and for over land, the algorithm derives AOD for both dark targets as well as 270 

bright surfaces (Levy et al., 2007; Laszlo and Liu, 2016; Zhang et al., 2016; Huang et al., 271 

2016).  For this study, we used the SNPP VIIRS AOD because SNPP flies in formation with S5P 272 

TROPOMI with a local equator crossing time of 1:30 PM and less than three minutes difference 273 

in overpass time.  The SNPP VIIRS AOD product has been extensively validated by comparing 274 

it to Aerosol Robotic Network (AERONET) AODs and the VIIRS 550nm AOD is shown to have 275 

a global bias of -0.046±0.097 for AODs over land less than 0.1 and for AODs between 0.1 and 276 

0.8, the bias is -0.194±0.322.  In the US., for VIIRS AODs ranging between 0.1 and 0.8, the bias 277 

is -0.008±0.089 and for AODs greater than 0.8, the bias is about 0.068±0.552 (Zhang and 278 

Kondragunta, 2021).  For the analysis of AOD data in this study, we remapped the high quality 279 

(Quality Flag equals 0) 750m resolution AOD retrievals to 0.05 o x 0.05o resolution with a 280 
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criterion that for a grid to have a mean AOD value, there should be a minimum of 20% 750m 281 

pixels with high quality AODs.   282 

2.5. Unemployment Rate 283 
 284 

The civilian labor force and unemployment estimates for metropolitan areas were obtained 285 

through the Local Area Unemployment Statistics (LAUS) provided by the Bureau of Labor 286 

Statistics (bls.gov). The LAUS program is a federal-state cooperative effort in which monthly 287 

estimates of total employment and unemployment are prepared for over 7,500 areas including 288 

metropolitan areas. The seasonal adjustments are carried out by the Current Employment 289 

Statistics State and Area program (CES) using the statistical technique Signal Extraction in Auto 290 

Regressive Integrated Moving Average Time Series (SEATS). These datasets are smoothed 291 

using a Reproducing Kernel Hilbert Space (RKHS) filter after seasonal adjustment. The details 292 

of the data collection, processing and release can be found at 293 

https://www.bls.gov/lau/laumthd.htm.  The data for January to November 2020 are used in this 294 

study.  To compare the NO2 variation in metropolitan areas, the TROPOMI tropNO2 295 

column amounts were averaged inside each metropolitan area. The 1:500,000 polygon shape 296 

files were used to test if a TROPOMI pixel is inside or outside a metropolitan area. The shape 297 

files are from United States Census Bureau (https://www.census.gov/geographies/mapping-298 

files/time-series/geo/cartographic-boundary.html). 299 

2.6. Matchup Criteria 300 
 301 

The NO2 data were matched to the on-road mobile emissions data for statistical and trend 302 

analysis with certain criteria.  Prior to generating the matchups, rotated wind analysis was carried 303 

out on the original pixel level data.  It is important to do this when sampling the satellite data 304 

https://www.bls.gov/lau/laumthd.htm
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
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because NO2 concentrations accumulate in the cities when wind speed is low and disperse away 305 

from the city when wind speed is high. The satellite data are observed once a day in the mid-306 

afternoon whereas on-road mobile emissions represent daily values.  To have representative 307 

sampling, it is common to rotate the satellite pixel-level data in the direction of the wind 308 

(Fioletov et al., 2015; Lorente et al., 2019; Goldberg et al., 2019; Zhao et al., 2020).  We used the 309 

European Center for Medium range Weather Forecast (ECMWF) Re-Analysis (ERA5) 30-km 310 

resolution global wind fields (Hersbach et al., 2020).  To do the wind rotation, each TROPOMI 311 

pixel was collocated to ERA5 with tri-linear interpolation method in both temporal and 312 

horizontal directions. The wind profiles were merged to the location of the TROPOMI pixel 313 

center. The east-west (U) and north-south (V) wind speed components were averaged through 314 

the vertical distribution within the bottom 100 hPa, approximated to be within the boundary 315 

layer. Then, each TROPOMI pixel was rotated and aligned with the average wind direction from 316 

the city center.  The rotated pixels are gridded with 5 km x 5 km resolution to generate monthly 317 

mean values for correlation analysis with on-road NOx emissions. 318 

Once the pixels are rotated, they are sampled for 100 km in the downwind direction, 50 km 319 

in the upwind direction, and the cross-wind direction.  This way, the elevated concentrations of 320 

NO2 moving away from the city in the downwind direction are captured.  Figure 1a shows an 321 

example of the TROPOMI NO2 tropospheric column amount with Los Angeles as the focus.  322 

The NO2 data shown are monthly mean values for January 2020 remapped to a fixed grid.  The 323 

black rectangle shows the area of interest over Los Angeles that we want to compare with on-324 

road emissions.  The ERA5 wind vectors are plotted on the NO2 map to show wind direction.  To 325 

do the wind rotation, daily NO2 pixel level data are first remapped to a 5 km x 5 km fixed grid 326 

resolution.  The grids are then rotated to align with the wind direction with downwind direction 327 
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pointing North (Figure 1b).  The daily rotated grid values of NO2 in 5 km x 5 km are averaged 328 

over a month to generate a monthly mean.  The monthly mean values can vary quite a bit 329 

depending on missing data due to screening for the high quality data as well as cloud cover.  In a 330 

given month, the number of pixels with valid retrievals for a particular city can vary from 2% to 331 

100% depending on cloud and snow cover; the mean values vary depending on the location of 332 

the missing values, if they are in the center of the city where NO2 is usually high or on the edges 333 

of the city where NO2 values can be low depending on wind speed and direction.  In our analysis 334 

for this study, prior to computing the monthly mean, the criterion we employed is that on a given 335 

day, there should be a minimum of 25% of pixels in a region selected for matchups of satellite 336 

data should have valid retrievals.  The 25% threshold is a reasonable compromise because any 337 

value higher than that will reduce the sample size (number of days included in the monthly 338 

mean).   339 

3. Results 340 

3.1. Deseasonalizing tropNO2 data 341 
 342 

As already shown by many research studies, the global tropNO2 column amounts dropped in 343 

coincidence with partial or complete lockdowns during the height of the COVID-19 pandemic in 344 

different parts of the world and in the US.  In order to remove the seasonality from the signal, 345 

researchers in these studies have adopted different approaches including the use of numerical 346 

models to simulate the seasonality (e.g., Goldberg et al., 2020; Silver et al., 2020; Liu et al., 347 

2020). Seasonality should be accounted for because in the northern hemisphere winter months, 348 

NO2 amounts are higher than in summer months; as a result, during the transition from winter to 349 

summer, NO2 amounts are higher in February than in March. In our study, we used a double 350 

differencing technique to account for seasonality.  Consistent with Goldberg et al. (2020), we 351 
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used 1 January to 29 February 2020 as pre-lockdown period and 15 March to 30 April as the 352 

lockdown period.  The difference in mean tropNO2 between lockdown and pre-lockdown is 353 

referred to as 2020∆NO2.  For the same two corresponding periods in 2019, the difference in 354 

mean tropNO2 is referred to as 2019∆NO2.  Then, the difference of 2019∆NO2 and 2020∆NO2 355 

was computed to tease out the changes in NO2 due to reductions in emissions during the 356 

lockdown (∆tropNO2).  It should be noted though that the double differencing only removes the 357 

seasonality and does not fully account for differences in meteorological events such as 358 

precipitation or anomalously cold or hot conditions in one year versus the other but on a monthly 359 

time scale they are minimized. 360 

Figure 2a-b shows 2019∆NO2 and 2020∆NO2 which includes changes due to seasonality and 361 

any changes due to emissions either from natural sources such as fires or from anthropogenic 362 

urban/industrial sources.  Figure 2c shows ∆tropNO2 for the CONUS due to just changes in 363 

emissions between the pre-lockdown and lockdown periods in 2020 with the seasonality 364 

removed.   Comparing Figure 2a and 2b, one can deduce that reductions in tropNO2 between pre-365 

lockdown and lockdown are much stronger in 2020 compared to 2019.  However, the double 366 

difference plot in Figure 2c shows how much of that reduction seen in 2020∆NO2 (Figure 2b) is 367 

due to changes in emissions.  The tropNO2 changes are smaller in Figure 2c than in Figure 2b, 368 

both in magnitude as well as spatial extent of the reductions.  369 

The lockdown measures in most states in the US began in the middle of March 2020.  The 370 

first state to institute stay-at-home measures was California on 19 March and the last state was 371 

Missouri on 6 April.  The cities/regions with worse traffic related ozone pollution levels based on 372 

the monitoring data from 2016-2018 compiled by the American Lung Association and the 373 

duration for which they were in a lockdown are shown in Table 1.  For regions that fall into 374 
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different states (e.g., Washington-Baltimore-Arlington), the dates for the state that had the 375 

longest duration of lockdown are listed in the table. Most states were in a lockdown mode only 376 

for one to two months and given the varying nature of the lockdown in different parts of the 377 

country, we treated 15 March and 30 April as lockdown months.   As shown in Figure 2a, 378 

2019∆NO2 is positive in some areas and negative in some areas whereas in 2020 (Figure 2b), 379 

large negative values (reductions) are observed in most of the CONUS except in the Great Plains 380 

region and the Pacific North West. These reduced tropNO2 amounts are attributed to reduced 381 

emissions due to lockdowns.  Changes in the rural areas (either positive or negative) of the US 382 

could be due to changes to natural sources such as soil and lightning NOx emissions or due to 383 

meteorological differences that the double differencing technique did not account for.   384 

Fei Liu et al. (2021) used NASA global photochemical model simulations to study how long 385 

the tropNO2 data need to be averaged to minimize the influence of meteorological variability. 386 

They simulated January 2019 to December 2020 by keeping the NOx emissions the same 387 

between the two years.  and found that averaging the data over 31 days for the US leads to 388 

differences in tropNO2 between 2019 and 2020 less than 10%.  Our double differencing was 389 

done with tropNO2 data averaged over 1.5 months which should substantially minimize the 390 

differences in meteorology.   391 

To confirm our results, we also repeated the analysis for a longer period and found that our 392 

conclusions did not change.  Setting the pre-lockdown period as 1 January to 15 March and the 393 

lockdown period as 16 March to 30 May, and we found that tropNO2 decreases are consistent 394 

with those shown in Figure 2a-c (Figure S1a-c).  We also applied scaling factors to account for 395 

seasonality and meteorological variability developed by Goldberg et al. (GRL, 2020).  These 396 

scaling factors normalize tropNO2 data to conditions of a typical week day based on TROPOMI 397 
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tropNO2 data from 2018-2019, based on sun angle, wind speed, wind-direction, and day-of-398 

week.  Figure S2 shows this analysis using the normalized tropNO2 to investigate NOx trends; it 399 

shows reductions in tropNO2 for different cities during the lockdown period that are consistent 400 

with the double differencing analysis. 401 

3.2. On-road NOx emissions and tropNO2 402 
 403 

 Focusing on the regions of interest with on-road NOx emissions available for this study, we 404 

calculated reductions in tropNO2 for Los Angeles, Atlanta, San Francisco, San Joaquin Valley, 405 

and New York City. As shown in Table 2, the largest reductions in tropNO2 were observed for 406 

New York City (-28%) and the smallest reductions were observed for San Joaquin Valley (-407 

17%).  The largest reductions in NOx emissions were also for New York City but the smallest 408 

reductions were Atlanta followed by San Joaquin Valley.  The 22% reductions in tropNO2 409 

observed for Los Angeles is due to nearly 50% reductions in on-road NOx emissions.  Without 410 

accounting for the seasonality/meteorological differences between 2020 and 2019, the tropNO2 411 

reductions are 60%.  This elucidates the need to account for differences in seasonality and 412 

meteorology when analyzing the data for trends.   413 

Goldberg et al (2020) reported tropNO2 reductions of 20.2%, 18%, and 39% for Atlanta, 414 

New York, and Los Angeles respectively and their analysis is also for a lockdown period 415 

spanning 15 March to 30 April, 2020 .  Our analysis shows that tropNO2 reductions for these 416 

three cities are 21%, 17%, and 22%.  Though the methodology used to remove the seasonality is 417 

different, the reductions in tropNO2 from our analysis and that of Goldberg et al. (2020) are 418 

similar, with Los Angeles showing the biggest drop in tropNO2 due to lockdown measures.   419 

   420 
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Figure 3 shows the time series of on-road mobile (cars and trucks combined) and power plant 421 

NOx emissions for the five different cities/regions in the US from January to November 2020; 422 

the exception is New York City for which the time series ends on 31 August due to the non-423 

availability of traffic data.  For Los Angeles, daily NOx emissions are near 200 tons/day prior to 424 

lockdown with values slightly lower on weekends (~150 tons/day).  The Los Angeles basin is 425 

home to 17 million people with 11.3 million cars; cars, trucks, and other off-road machinery 426 

contributing to 80% of the observed NOx in a typical year according to the 2019 emissions report 427 

by South Coast Air Quality Management District  (http://www.aqmd.gov/docs/default-428 

source/annual-reports/2019-annual-report.pdf?sfvrsn=9).  Due to the lockdown and stay at home 429 

orders, people stopped driving and NOx emissions quickly began dropping on 19 March 2020; 430 

the NOx emissions begin to increase on 16 April 2020, even before the lockdown was lifted on 4 431 

May.  The lowest weekday NOx emissions, 141.3 tons/day, occurred on 6 April.  Even though 432 

the NOx emissions began to recover in the post lockdown period, they were still lower than the 433 

pre-lockdown values.  Compared to on-road emissions, power plant emissions are negligible for 434 

the Los Angeles area.  Power plants in the vicinity of Los Angeles (~75 km radius) emit only 435 

~0.8 tons per day on average compared to 200 tons per day emitted by on-road vehicles during 436 

the pre-lockdown period on weekdays.  On weekends, on-road emissions are lower (~150 to 175 437 

tons/per day depending on whether it is a Saturday or Sunday) due to lower truck traffic (Marr 438 

and Harley, 2002), whereas power plant emissions do not have any weekday/weekend 439 

differences. 440 

The NOx emissions for the New York area encompass an area covering about 1,213 square 441 

kilometers.  The city is home to 8.34 million people but there are only 1.9 million vehicles (230 442 

cars per 1000 people) because of the reliance on public transportation, a factor of three lower 443 

http://www.aqmd.gov/docs/default-source/annual-reports/2019-annual-report.pdf?sfvrsn=9
http://www.aqmd.gov/docs/default-source/annual-reports/2019-annual-report.pdf?sfvrsn=9
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than for Los Angeles, which has 660 cars per 1000 people.  Similar to Los Angeles, the NOx 444 

emissions dropped in New York on 21 March when lockdown measures began.  The pre-445 

lockdown levels of NOx emissions are on average ~125 tons/day.  It should be noted that New 446 

York City is in the downwind region of NOx emissions from New Jersey and Pennsylvania and 447 

it is the recipient of regionally transported pollution (Tong et al., 2008).  Unlike in the Los 448 

Angeles metro area, the power plant emissions are higher but showed no trend similar to on-road 449 

emissions.    It is noteworthy that there was a jump in power plant emissions towards the end of 450 

June which coincided with the opening of retail establishments on 22 June; the power plant 451 

emissions in the New York City are higher in the summer than in winter, associated with 452 

increased demand for air conditioning.   453 

The NOx emissions for the metro Atlanta area are similar to New York City but with a weak 454 

weekday/weekend cycle.  The Atlanta region encompassing Cherokee, Clayton, Cobb, Coweta, 455 

Dekalb, Douglas, Forsyth, Fulton, Gwinett, Henry, Rockdale, and Spalding counties is about 456 

3,695 square kilometers and is home to nearly five million people.  The pre-lockdown levels of 457 

NOx emissions were on average ~125 tons/day.  The metro Atlanta region is three times larger 458 

than the area of New York City but the NOx emissions are similar in magnitude. The state of 459 

Georgia where Atlanta is located never went into a prolonged lockdown.  Though the mayor of 460 

Atlanta ordered people not to gather in large groups beginning 15 March and the Governor of 461 

Georgia ordered bars and clubs to close on 24 March, schools were not closed until 1 April; 462 

shelter in place was implemented on 8 April but was lifted immediately with no real lockdown 463 

until 1 May-23 May.  Consistent with these policies, the on-road NOx emissions were lowest on 464 

23 March (88.5 tons/day) and 26 May (74.5 tons/day) and returned to pre-lockdown levels at the 465 

start of 1 June.  The lowest on-road NOx emission value, 74.5 tons, was observed on 26 May, 466 
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towards the end of the shelter in place orders.  By 1 June, NOx emissions values returned to pre-467 

lockdown levels in Atlanta.       468 

For the pre-lockdown period, the weekday/weekend difference in NOx emissions is larger in 469 

New York City than in Los Angles and Atlanta areas, due to commuter travel.  The mean 470 

difference in NOx emissions between weekdays and Sundays (emissions are the lowest on 471 

Sundays of each week) prior to the lockdown in the Los Angeles, New York, and Atlanta are 472 

54.4 tons/day (26%), 65.4 tons/day (51%), and 41.1 tons/day (33%) respectively.   473 

The San Joaquin valley is a 60,000 km2 area that includes the population centers of 474 

Bakersfield and Fresno as well as major freeway corridors, including I-5 and CA-99.  Due to the 475 

large geographic size of the San Joaquin Valley, the emissions magnitude is comparable to urban 476 

centers.  The San Joaquin Valley NOx emissions remained consistent at ~55 tons/day throughout 477 

the year with a very weak weekday/weekend cycle.  Similar to Los Angeles, power plant 478 

emissions are insignificant.   479 

For the San Francisco Bay area, the on-road NOx emissions are higher than the San Joaquin 480 

Valley region but lower than in Los Angeles.  The daily average NOx emissions prior to the 481 

lockdown were ~90 tons/day and there was a small drop in emissions (-33.2 tons/day) on 6 April 482 

with a trend to return to normal by mid-April.  The post lockdown NOx emissions were lower 483 

than pre-lockdown values for San Francisco as well.  484 

3.3. Correlation between on-road NOx emissions and tropNO2 485 
 486 

Given the knowledge of changes in on-road emissions in the five cities due to lockdown, we 487 

wanted to examine if tropNO2 shows similar behavior by exhibiting a linear relationship, and if 488 

so demonstrate that the period for which the lowest NOx emissions were observed in traffic data 489 
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also corresponds to the lowest observed tropNO2 data.  Additionally, we wanted to check if the 490 

post lockdown recovery in traffic emissions is reflected in tropNO2 data.  We first examined the 491 

direct relationship between daily tropNO2 and daily on-road NOx emissions for the five 492 

locations; but only the analysis for Los Angeles is shown in Figure 4 for illustration purpose; 493 

data from other cities showed similar behavior.  The tropNO2 and NOx emissions for January and 494 

February 2020, representing the BAU, and for March through November 2020 are shown in 495 

Figure 4a and Figure 4b respectively.  The coincident observations of tropNO2 amount sampled 496 

in the predominant wind direction are linearly correlated with on-road NOx emissions but the 497 

correlation is weak (r=0.39).  The traffic emissions fall into three clusters corresponding to 498 

emissions on Sundays (~150 tons/day), Saturdays (~180 tons/day), and weekdays (~199 499 

tons/day) with minimal variability in each cluster whereas tropNO2 amount varies between 50 500 

and 225 µmoles/m2.   501 

The variability in tropNO2 can be attributed due to different reasons.  First, the day to day 502 

variability in cloud cover can lead to gaps in data.  We used the recommended quality flag 503 

threshold of 0.75 to screen out the data that has potential contamination from clouds but this 504 

strict screening reduces the number of retrievals for a given location.  Second, there is also 505 

variability in the background NO2 contribution to the tropospheric NO2 column due to which 506 

column NO2 does not correlate well with NOx emissions from sources on the ground.  We 507 

analyzed the background NO2 signal in the tropospheric column amount for TROPOMI for 2019 508 

and 2020 using Silvern et al. (2019) method and found it to be higher due to the longer winter-509 

time lifetime (lower temperature, weak photolysis, stronger wind dispersion, and less wet 510 

scavenging) and lower in the summer with monthly mean values ranging between 15 and 20 511 

µmoles/m2 (Figure S3).  Sources of background NO2 are soil emissions of NOx which are 512 
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amplified after precipitation events, lightning produced NOx, and chemical decomposition of 513 

peroxyacetyl and alkyl nitrates.  Transport of NO2 from rural areas can also enhance tropNO2 514 

values that may not correlate well with NOx emissions from sources on the ground.  Third, wind 515 

speed and direction influence the mean tropospheric NO2 computed for the Los Angeles basin 516 

because if the wind speed is high, NO2 is dispersed and transported away from the city and if 517 

wind speed is low, NO2 is accumulates in the city.  Any variability associated with background 518 

NO2 is detected by TROPOMI and accounted for in the column NO2 amount, but this has no 519 

relation to the NOx emissions from on-road sources on the ground.  We did account for the 520 

effects of wind in our matchups by sampling the data in the downwind direction but higher wind 521 

speeds dilute the NO2 concentrations observed by TROPOMI (Figure S4).  Outlier values of 522 

tropNO2 values are between 20 and 30 µmoles/m2 even when on-road emissions are high 523 

indicating TROPOMI retrievals that are either sampled after pollutants are washed out of the 524 

atmosphere due to rain or on days when wind speeds are unusually high.  Retrievals can also be 525 

noisy and have errors associated with air mass factors and a priori profiles.   Parker et al. (2020) 526 

report that the Los Angeles basin was unusually wet in 2020, especially during the late March 527 

and early April 2020. Other researchers who correlated daily surface observations of NO2 and 528 

TROPOMI tropNO2 for 35 different stations in Europe reported similar findings and they found 529 

that correlation improved after averaging the data to monthly time scales (Ialongo et al., 2020; 530 

Cersosimo et al., 2020; Goldberg et al., 2020).    531 

The comparison for the lockdown and post lockdown period of March through November is 532 

shown in Figure 4b; the correlation remains the same (r = 0.39) but the one interesting feature is 533 

that the tropNO2 and on-road emissions are very small during the lockdown compared to the pre-534 

lockdown.  Daily NOx emissions on many days are between 100 and 150 tons after 14 March; 535 
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prior to that, the region was not under stay-at-home orders.  The tropNO2 never goes above 200 536 

µmoles/m2 for this period.  Compared to the pre-lockdown period, the on-road NOx emissions 537 

and tropNO2 values shifted to lower values within each cluster (shown in blue for weekdays, 538 

green for Saturdays, and red for Sundays).  During the lockdown, one would anticipate that there 539 

would not be any difference between weekday and weekend emissions but the difference is stark 540 

and is reflected in tropNO2 data as well.     541 

In order to correlate the changes in on-road NOx emissions with changes in tropNO2 between 542 

2019 and 2020 for each of the five regions in this study, we averaged daily NOx emissions 543 

values and tropNO2 values for each month (January to November) and created an average value 544 

of all the five regions combined for each month.  Figure 5a shows the monthly mean trend plot 545 

∆NOx and ∆tropNO2 for January to November; on-road emissions and tropNO2 dropped steadily 546 

and hit the lowest values in March and April, consistent with the lockdown measures.  The 547 

recovery began in May and continued to November for on-road emissions but did not completely 548 

recover to the pre-lockdown levels.  However, the ∆tropNO2 trend plot shows recovery up to 549 

August and then begins to show a decline from September to November.  This decline in 550 

tropNO2 is attributed to Los Angeles and San Francisco.  Figure 5b shows the correlation of on-551 

road NOx emissions changes (∆NOx) between 2020 and 2019 with the difference in tropNO2 552 

amounts between 2020 and 2019 (∆tropNO2).  The NOx emissions were lower in 2020 compared 553 

to 2019 for all the months and all the cities.  The positive linear correlation (r = 0.68) suggests 554 

that TROPOMI tropNO2 observations captured the changes in on-road emissions and can be 555 

used to study the changes in NOx emissions due to traffic elsewhere in the US where there are no 556 

observations from the ground.  557 
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Even though traffic emissions are the dominant source for NOx, there are power plants in the 558 

vicinity of the cities emitting NOx continuously and unlike traffic emissions they do not exhibit a 559 

weekday/weekend cycle.  Figure 6 shows a map of tropNO2 for the second quarter in 2020 560 

(April/May/June) with on-road emissions and power plant emission for each of the five analysis 561 

cities as stacks.  The locations of power plants in other parts of the country are circled in pink, 562 

indicating that these power plants emit greater than 1500 tons in a given quarter; power plants 563 

with lower monthly NOx emissions (< 1500) tons are not shown on the map.  It is difficult to 564 

isolate the NO2 plumes from power plants in urban areas in the TROPOMI tropNO2 map as the 565 

NOx emitted from the power plants mixes and becomes indistinguishable from on-road 566 

emissions. Consistent with this analysis, changes in NOx emissions between 2020 and 2019 for 567 

power plants within 75 km of each of the five analysis cities correlated weakly with changes in 568 

tropNO2 (Pearson correlation coefficient = 0.35); power plant NOx emissions can explain only 569 

12% of the variability seen in tropNO2 (Figure 7).    Also as can be seen in Figure 7, the daily 570 

average changes in power plant emissions between 2020 and 2019 were positive for some plants 571 

and negative for some but mostly varied between ±20 tons/day.   572 

 573 

3.4. Correlation between tropNO2 and AOD 574 
 575 

The premise for the impact of NOx emissions reductions on improved air quality due to 576 

reduced human activity during the lockdown period depends on how the photochemical 577 

processes changed compared to the BAU scenario.  The photochemical production of ozone and 578 

surface PM2.5 (particulate mass of particles smaller than 2.5 µm in median diameter) depends not 579 

only on NOx emissions but also on VOCs and their ratio (Baider et al., 2015; Parker et al., 2020: 580 

McDonald et al., 2018; Qin et al., 2021).  Most analysis of the impact of COVID-19 lockdowns 581 
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on air quality using satellite data have focused on TROPOMI NO2 and attributed the reductions 582 

of NOx emissions to improved air quality; the reductions in VOC emissions are largely unknown, 583 

especially from non-vehicular sources.  Atmospheric formation of nitrate and organic aerosols is 584 

driven by NOx, VOCs, and ammonia emissions and if the photochemical processes are in a NOx 585 

limited or VOC limited regime. To analyze the AOD data for indications of reduced aerosol 586 

formation due to reduced NOx emissions, one complicated factor is the transport of smoke 587 

aerosols from upwind regions and how the transported signal can be removed from the AOD 588 

data.  To address this issue, we tested the hypothesis that the AOD/NO2 ratio is small when 589 

pollution sources are local and high when non-local sources bring transported aerosols into the 590 

domain.  We calculated the weekly correlation between AOD and NO2 and obtained the slope for 591 

each week over one year in 2019 and 2020, to document the changes in slope as a function of 592 

time during the year (Figure 8a-c); In Figure 8a-b, we show an example of how slopes are 593 

derived using the scatter plot between VIIRS AOD and TROPOMI tropNO2 for one week in 594 

September 2019 and in 2020.  For 2019, when the fire season was not a major contributing factor 595 

to aerosol concentrations, the slopes are small in the winter months and slowly increase towards 596 

the summer (Figure 8c).  This is consistent with the knowledge that ammonium nitrate formation 597 

peaks in the summer due to the availability of ammonia from increased agricultural activity and 598 

higher volatility associated with higher temperatures (Schiferl et al., 2014).   599 

The weekly scatter plots of AOD and tropNO2 for September 2019 and 2020 in Figure 8a-b show 600 

that the tropNO2 values in both years ranged between 30 and 120 µmoles/m2 whereas AOD 601 

values in 2020 were much higher (between 0.2 and 0.9) compared to values in 2019 (between 0.1 602 

and 0.2).  The AOD values in the US typically range between 0 and 1, with higher AODs 603 

typically observed in the presence of biomass burning smoke or dust storms.  Given this 604 



27 
 

knowledge that slopes are higher when transported aerosol is involved, we were able to filter the 605 

AOD data.  The filtered data will be used in a future study to analyze trends in AOD due to NOx 606 

emissions reductions.   607 

3.5. Correlation of tropNO2 and Unemployment Rate 608 
 609 

Because of the lockdown measures and work from home policies for majority of the 610 

workplaces in the US, the service industry has suffered and the unemployment rate has risen.  611 

The US unemployment rate increased from about 4.4% in March to 14.7% in April during the 612 

first phase of lockdowns.  The unemployment rate nationwide improved as the progressed but 613 

certain parts of the country continued to experience a very high unemployment rate throughout 614 

2020 (Figure 9).  Amongst the employed, 28% of employees continued to work from home as of 615 

November indicating that below normal NOx emissions data are to be expected.  The correlation 616 

between unemployment rate and tropNO2 for metropolitan areas with a pre-pandemic civilian 617 

labor force greater than two million is negative for the second and third quarters (the regression 618 

line shown in Figure 9 is for second quarter data).  The unemployment rate combined with 619 

telework policies have contributed to reduced NOx emissions and thus lower tropNO2 values 620 

across the US.  This is similar to the positive correlation between Gross Domestic Product (GDP) 621 

and tropNO2 reported by Keller et al. (2020).  For reasons un-known, cities such as Phoenix, AZ, 622 

Minneapolis, MN, Dallas and Houston, TX, and Chicago, IL showed no change or a slight 623 

increase in tropNO2 in 2020 compared to 2019 though unemployment rate in 2020 was much 624 

higher compared to 2019. Keller et al. (2020) do not report these outliers because their analysis is 625 

for all developing countries around the world and is not granular at the city level like our 626 

analysis.   627 
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4. Discussion 628 
 629 

The TROPOMI tropNO2 data captures the day to day variability in tropospheric NO2 630 

concentrations but due to cloud cover and uncertainties associated with assumptions such as a 631 

priori profile and lower sensitivity to near surface NO2, on certain days the tropNO2 retrievals do 632 

not adequately represent the changes in near surface NO2 (Ialongo et al., 2020; Cersosimo et al., 633 

2020; Goldberg et al., 2020). The tropospheric NO2 variability is very well captured, however, on 634 

monthly scales and even on weekly scales, to the extent that weekday/weekend cycles are 635 

noticeable.   When using the TROPOMI tropNO2 data, we wanted to establish that it not only 636 

shows the reductions/drop in tropNO2 due to reductions in on-road NOx emissions but that the 637 

trend during the post-lockdown recovery phase can be detected as well.   638 

The spatial and temporal analysis, relating indicators of human activity during and prior to 639 

the COVID-19 lockdown to air quality conditions, shows that while power plant emissions 640 

changes were not drastic compared to on-road emissions, the on-road emissions in the five 641 

analysis cities dropped coinciding with the start date and the duration of the lockdown.  The 642 

changes in on-road NOx emissions correlated with tropNO2 changes for these five locations, 643 

giving confidence in use of tropNO2 data in other parts of the CONUS, and to draw conclusions 644 

about relating changes in tropNO2 to economic activity changes.  We found that the weekday-645 

weekend differences were pronounced in on-road emissions and tropNO2 data, and the lowest 646 

values of on-road NOx occurred on weekends even during the lockdown periods.  The 647 

unemployment rate and its increase during the lockdown and post lockdown period appears to 648 

also be a good proxy for economic activity and is correlated well with the decrease in tropNO2.  649 

At the height of the lockdown in the second quarter of 2020, the unemployment rate increase was 650 
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as high as 17% in populated metropolitan areas; even at the end of the third quarter of 2020, the 651 

unemployment rate increase was ~10%.  The first quarter unemployment rate was constant at 652 

~5% and did not vary; it showed no relationship to tropNO2 as expected because the impacts due 653 

to the lockdown did not affect unemployment rate until the second quarter  654 

The satellite data must be analyzed by considering various quality flags and understanding 655 

the limitations of the algorithm.  It is likely using the quality flag > 0.75 for TROPOMI tropNO2 656 

was conservative, but the extremely low daily tropNO2 values on certain days even when on-657 

road NOx emissions were high is indicative that the TROPOMI data are more interpretable when 658 

averaged to weekly or monthly time scales.  For tropNO2 retrievals that have quality flags 659 

between 0.5 and 0.75, suggesting cloud contamination, in future work, we will look at the 660 

coincident high resolution (750m) VIIRS cloud mask product to analyze TROPOMI flags for 661 

cloud contamination.  This analysis will help improve our analysis using the daily tropNO2 662 

retrievals by either including more retrievals or removing some retrievals from the matching with 663 

on-road emissions data.         664 

5. Conclusions 665 
 666 

It has already been established by numerous research studies that reduced traffic (on-667 

road) and industrial emissions led to improved air quality during the COVID-19 lockdown 668 

measures implemented by various countries across the globe.  However, most studies used 669 

mobility data as a proxy for reduced human activity to interpret satellite observations of tropNO2 670 

but did not directly relate the reduced on-road emissions with reduced air quality observations.   671 

Here, for the first time we directly correlate on-road NOx emissions data to TROPOMI tropNO2 672 

in four urban and one rural area in the US.  For this, we used TROPOMI tropNO2, VIIRS AOD, 673 
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on-road NOx emissions, and unemployment rates to develop a comprehensive analysis for 2019 674 

and 2020.  Where needed, we conducted rotated wind analyses to sample correctly and match the 675 

on-road NOx emissions with tropNO2 data. We also developed a novel way of deseasonalizing 676 

tropNO2 data, and used changes in unemployment rate data as an indicator for economic activity. 677 

Our analysis of reductions in on-road NOx emissions from light and heavy-duty vehicles 678 

derived from fuel sales data showed a reduction from 9% to 19% between February and March 679 

2020.  When lockdown measures were the most stringent, at the onset of the lockdown period in 680 

the middle of March 2020 in most of the US and between March and April 2020, the on-road 681 

NOx emissions dropped further by 8% to 31%.  These precipitous drops in NOx emissions 682 

correlated well with tropNO2.  Furthermore, the changes in tropNO2 across the continental US 683 

between 2020 and 2019 correlated well with changes in the on-road NOx emissions (Pearson 684 

correlation coefficient of 0.68) but correlated weakly with changes in emissions from power 685 

plants (Pearson correlation coefficient of 0.35). These findings confirm the known fact that 686 

power plants are no longer a major source of NO2 in urban areas of the US.  As the US entered 687 

into a post-pandemic phase between May and November 2020, the increased mobility resulted in 688 

increased NOx emissions nearly returning to the pre-lockdown phase but not entirely back to 689 

100%.  Though the lockdown in most of the US ended by May, the on-road NOx emissions did 690 

not bounce back to near normal values until August; for Los Angeles and San Francisco, the on-691 

road NOx emissions continued to be 20% below normal even in November.  These changes are 692 

reflected in the tropNO2 data, with the exception that Los Angeles and San Francisco, where the 693 

tropNO2 diverged from on-road NOx emissions trends, which needs further inquiry. The positive 694 

linear correlation between on-road NOx emissions and TROPOMI tropNO2 (r = 0.68) suggests 695 

that satellite tropospheric column observations of NO2 captured the changes in on-road emissions 696 
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and can be used to study changes in NOx emissions due to traffic where ground observations are 697 

not available.  698 

The negative correlation between changes in tropNO2 and increased unemployment rate 699 

indicates that with the increased unemployment rate combined with telework policies across the 700 

US for non-essential workers, the NO2 values decreased at the rate of 0.8 µmoles/m2 per unit 701 

percentage increase in the unemployment rate.   702 

Across the US we found positive spatial correlation between S5P TROPOMI tropNO2 and 703 

SNPP VIIRS AOD measurements in urban regions indicating common source sectors for NO2 704 

and aerosols/aerosol precursors. We developed a new mechanism using the changes in AOD-705 

tropNO2 slope to screen for fire events influencing aerosol concentrations in urban/industrial 706 

regions that can be used to analyze changes in aerosols due to emissions reductions.  The 707 

COVID-19 pandemic experience has provided the scientific community an opportunity to 708 

identify scenarios that can lead to a new normal urban air quality and assess if the new normal 709 

can be sustained with novel policies such as increased telework and a shift towards driving 710 

electric cars.   711 
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publicly available as co-author BM’s team is in the process of publishing its analyses.   745 
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 747 

 748 

 749 

 750 

Figure 1: Sentinel 5P TROPOMI monthly mean tropNO2 for January 2020 for Los Angeles.  (a) 751 
Original pixel level data remapped to 5 km x 5 km resolution and averaged for the month. The 752 
monthly mean ERA5 wind vectors are overlaid on the tropNO2 map to indicate the wind 753 
direction.   (b) Remapped tropNO2 data grids rotated in the direction of the wind using ERA5 754 
wind fields.  The downwind direction is towards North (zero on the axis).  For the monthly mean 755 
to be computed, we used a criterion that at least 25% of the days in a month should have 756 
retrievals. The black rectangle defines the area for which tropNO2 data are averaged.   757 

https://scihub.copernicus.eu/
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 758 

Figure 2: tropNO2 changes between pre-lockdown period (January to February) and lockdown 759 
period (15 March to 30 April) for (a) 2019∆NO2, (b) 2020∆NO2, and (c) the difference between 760 
2020∆NO2 and 2019∆NO2.  The double differencing is expected to minimize the seasonal 761 
differences and provide a realistic estimate of change in tropNO2 due to emissions changes.   762 

 763 



35 
 

 764 

Figure 3: Time series of daily on-road and power plant NOx emissions for different cities from 765 
January to November 2020.  Note that the time series ends on 31 August for New York City 766 
because the traffic count data are not available for September to November.   767 
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 768 

 769 

 770 

 771 
 772 

Figure 4: Correlation between daily tropNO2 and daily on-road NOx emissions for Los Angeles, CA.  (a) 773 
For pre-lockdown (January and February) and (b) For lockdown and post lockdown period (March 774 
through end of November).  Red color is for data gathered on Sundays, green color is for data gathered on 775 
Saturdays, and blue color is for data gathered on weekdays. 776 

 777 
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 778 

        779 

 780 
 781 

Figure 5: Trends in on-road monthly mean NOx emissions (tons/day) and tropNO2 (µmoles/m2) 782 
between 2019 and 2020 averaged for the five analysis cities. (a) Average monthly mean 783 
differences for the five cities from January to November.  (b) Correlation between five-city 784 
average changes in on-road monthly mean NOx emissions and changes in five-city average 785 
monthly mean tropNO2  786 

 787 

 788 
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 789 

Figure 6: tropNO2 map for second quarter of 2020.  The red columns show total on-road NOx 790 
emissions and the blue columns show NOx emissions from power plants nearby these five cities 791 
(New York, Atlanta, Los Angeles, San Francisco, and San Joaquin Valley).  Power plants with 792 
monthly mean NOx emissions greater than 500 tons are also shown in the map as pink dots.   793 

 794 

 795 

Figure 7: Correlation of monthly mean tropNO2 changes between 2020 and 2019 with changes in 796 
power plant monthly mean NOx emissions.  The size of the circle indicates the magnitude of total 797 
monthly emissions (high, medium, and low) of individual power plant.  To obtain monthly 798 
means, daily total NOx emissions were added and divided by the number of days in a month to 799 
get average values in units of tons/day.   800 
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 801 

 802 

Figure 8: (a) Example correlation of VIIRS AOD and TROPOMI tropNO2 during one week, 803 
September 15-21, 2019, (b) Same for September 13-19, 2020, (c) Time series of weekly slope 804 
(AOD/NO2) with data for 2019 in gray color and data for 2020 in red color for Los Angeles, 805 
California.  The black solid line is the fit to 2019 data indicating seasonal photochemistry.  Any 806 
data points that depart from the shaded gray region are treated as the period when transported 807 
aerosols (e.g., smoke) influenced the air mass over Los Angeles. 808 
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 809 

Figure 9: The impact of COVID-19 lockdown on the unemployment rate in metropolitan 810 
areas and tropNO2.  (a) Unemployment rate in April 2019, (b) Unemployment rate in 811 
April 2020, and (c) Correlation between increase in unemployment between 2020 and 812 
2019 and tropNO2 changes.  Only data for metropolitan areas where the civilian labor 813 
force in 2019 was greater than two million are shown in the correlation plot.  In the first 814 
quarter (Q01) unemployment changes are close to zero as pandemic impact did not begin 815 
until late March.  Strong negative correlation is observed for the second (Q02) and third 816 
(Q03) quarters. The solid black line is the fit to the second quarter data. 817 

 818 

 819 
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 846 

 847 

Table 1: Ranking of cities for ozone pollution 
and their lockdown periods    

City/Region 
Ozone 

Pollution 
Ranking  

Lockdown 
Start Date 

Lockdown 
End Date 

Los Angeles-Long Beach, CA 1 19-Mar 4-May 
Visalia, CA 2 19-Mar 4-May 
Bakersfield, CA 3 19-Mar 4-May 
Fresno-Madera-Hanford, CA 4 19-Mar 4-May 
Sacramento-Roseville, CA 5 19-Mar 4-May 
San Diego-Chula Vista-Carlsbad, CA 6 19-Mar 4-May 
Phoenix-Mesa, AZ 7 30-Mar 30-Apr 
San Jose-San Francisco-Oakland, CA 8 19-Mar 4-May 
Las Vegas-Henderson, NV 9 1-Apr 30-Apr 
Denver-Aurora, CO 10 26-Mar 26-Apr 
Salt Lake City-Provo-Orem, UT 11 30-Mar 13-Apr 
New York-Newark, NY-NY-CT-PA* 12 22-Mar 15-May 
Redding-Red Bluff, CA 13 19-Mar 4-May 
Houston-The Woodlands, TX 14 2-Apr 20-Apr 
El Centro, CA 15 19-Mar 4-May 
Chicago-Naperville, IL-IN-WI* 16 23-Mar 1-May 
El Paso-Las Cruces, TX-NM 17 2-Apr 15-May 
Chico, CA 18 19-Mar 4-May 
Fort Collins, CO 19 26-Mar 26-Apr 
Washington-Baltimore-Arlington, DC-MD-VA-WV-
PA* 20 30-Mar 15-May 
Dallas-Fort Worth, TX-OK 21 2-Apr 20-Apr 
Sheboygan, WI 22 24-Apr 26-May 
Philadelphia-Reading-Camden, PA-NJ-DE-MD* 23 30-Mar 15-May 
Milwaukee-Racine-Waukesha, WI 24 24-Apr 26-May 
Hartford-East Hartford, CT 25 23-Mar 20-May 

*Dates reflect the period that is the longest for any given state in the region 
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 853 

 854 
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 857 
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 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

Table 2:  Reductions in on-road NOx emissions and tropNO2 between 15 March to 30 
April and 1 January to 29 February Derived using Double Differencing Technique 

City 2019∆NOx 
 (%) 

2020∆NOx 
 (%) 

Seasonality 
Removed On-

road NOx 
Emissions 

Changes (%) 
2020∆NOx -  
2019∆NOx) 

2019∆NO2 
(%) 

2020∆NO2 
 (%) 

Seasonality 
Removed 
TropNO2 

Reductions (%) 
(2020∆tropNO2 

-  
2019∆tropNO2) 

Atlanta 10.41 -17.70 -28.11 -22.67 -44.14 -21.47 

San Francisco 10.54 -33.95 -44.49 -23.79 -48.18 -24.39 
San Joaquin 

Valley 14.27 -18.39 -32.66 -27.30 -44.62 -17.32 

New York City 11.04 -36.87 -47.91 -6.07 -34.05 -27.98 

Los Angeles 10.57 -25.10 -35.67 -37.90 -59.68 -21.78 
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