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Abstract

High resolution and accurate rainfall information is essential to modeling and predicting hydrological processes. Crowdsourced

personal weather stations (PWSs) have become increasingly popular in recent years and can provide dense spatial and temporal

resolution in rainfall estimates. However, their usefulness is limited due to a lack of trust in crowdsourced data compared to

traditional data sources. Using crowdsourced PWSs data without an evaluation of its trustworthiness can result in inaccurate

rainfall estimates as PWSs may be poorly maintained or incorrectly sited. In this study, we advance the Reputation System

for Crowdsourced Rainfall Networks (RSCRN) to bridge this trust gap by assigning dynamic trust scores to the PWSs. Using

rainfall data collected from 18 PWSs in two dense clusters in Houston, Texas USA as a case study, the results show that

using RSCRN-derived trust scores can increase the accuracy of 15-min PWS rainfall estimates when compared to rainfall

observations recorded at city’s high-fidelity rainfall stations. Overall, RSCRN rainfall estimates improved for 77% (48 out of

62) of the analyzed storm events, with a median RMSE improvement of 27.3%. Compared to an existing PWS quality control

method, results showed that while 13 (21%) storm events had the same performance, RSCRN improved rainfall estimates for

78% of the remaining storm events (38 out of 49), with a median RMSE improvement of 13.4%. Using RSCRN-derived trust

scores can make the rapidly growing network of PWSs a more useful resource for urban flood management, greatly improving

knowledge of rainfall patterns in areas with dense PWSs.
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Key Points:6

• We present a reputation system framework to measure the trustworthiness of crowd-7

sourced personal weather stations (PWSs).8

• PWSs are assigned a trust score based on their consensus with rainfall measured9

at neighboring stations.10

• The accuracy of rainfall estimates based on crowdsourced PWSs can be improved11

by excluding PWSs with low trust scores.12
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Abstract13

High resolution and accurate rainfall information is essential to modeling and predict-14

ing hydrological processes. Crowdsourced personal weather stations (PWSs) have be-15

come increasingly popular in recent years and can provide dense spatial and temporal16

resolution in rainfall estimates. However, their usefulness is limited due to a lack of trust17

in crowdsourced data compared to traditional data sources. Using crowdsourced PWSs18

data without an evaluation of its trustworthiness can result in inaccurate rainfall esti-19

mates as PWSs may be poorly maintained or incorrectly sited. In this study, we advance20

the Reputation System for Crowdsourced Rainfall Networks (RSCRN) to bridge this trust21

gap by assigning dynamic trust scores to the PWSs. Trust scores can be used when es-22

timating rainfall for applications such as real-time flood management within urban ar-23

eas with dense networks of PWSs. Using rainfall data collected from 18 PWSs in two24

dense clusters in Houston, Texas USA as case study, the results show that using RSCRN-25

derived trust scores can increase the accuracy of 15-min PWS rainfall estimates when26

compared to rainfall observations recorded at city’s high-fidelity rainfall stations. Over-27

all, RSCRN rainfall estimates improved for 77% (48 out of 62) of the analyzed storm events,28

with a median RMSE improvement of 27.3%. Compared to an existing PWS quality con-29

trol method, results showed that while 13 (21%) storm events had the same performance,30

RSCRN improved rainfall estimates for 78% of the remaining storm events (38 out of31

49), with a median RMSE improvement of 13.4%. Using RSCRN-derived trust scores32

can make the rapidly growing network of PWSs a more useful resource for urban flood33

management, greatly improving knowledge of rainfall patterns in areas with dense PWSs.34

1 Introduction35

Flooding is becoming commonplace in cities and communities worldwide, causing36

severe damage and loss of property (Wilby & Keenan, 2012; Salman & Li, 2018). As a37

result of climate change, rainfall extremes are expected to become more intense and highly38

heterogeneous (Ohba & Sugimoto, 2019; Sharma et al., 2018). Floods triggered by these39

increased storms often exhibit large variability both in space and time, especially in ur-40

ban areas with a large portion of impervious surface (Quinn et al., 2019; Cristiano et al.,41

2017). Although recent advancements in computational power and modeling approaches42

have made it possible to accurately model flooding at increasingly high resolution (Saksena43

et al., 2019; Zahura et al., 2020; Shen et al., 2019; Mosavi et al., 2018; Savage et al., 2016),44

these models require measured rainfall observations as input at high spatial and tem-45

poral resolutions. However, the current resolution of observations through traditional46

rainfall networks is typically insufficient, or even unavailable, for certain flood-prone re-47

gions (Sadler et al., 2018; Cristiano et al., 2017; Zhu et al., 2018).48

Traditionally, rainfall observations are obtained from gauges managed by federal49

or municipal agencies. These rain gauges, which we refer to as high-fidelity rainfall sta-50

tions in this study, provide accurate measurements as they are installed and maintained51

by experts, but are limited in coverage (Villarini et al., 2008; Overeem et al., 2013). An52

alternative to rain gauges is the use of weather radars. However, radar rainfall is derived53

indirectly from radar reflectivity observed at certain heights in the atmosphere, which54

may not accurately represent rainfall at the ground level (Smith et al., 1996) and requires55

calibration with ground gauges (Krajewski & Smith, 2002). Recent advancement of dual-56

polarization technologies in weather radar addresses some of these limitations of using57

radar. However, further improvements of rainfall estimation using dual-polarization radars58

are needed. For example, range-dependent sampling errors and the uncertainties in iden-59

tifying hydrometeor types with radar measurements may introduce larger bias in rain-60

fall estimates, which cannot be easily corrected with ground gauges (Cunha et al., 2015).61

Crowdsourcing could offer a potential solution to the need of high resolution and62

accurate rainfall estimates. Crowdsourcing is a broad term whereby data are obtained63
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Figure 1. The number of Personal Weather Stations in Weather Underground network in the

US and Houston, Texas has been growing exponentially in past 20 years.

through open calls to the general public for data collection, resulting in increased data64

coverage, but introducing the challenges associated with the data being collected by non-65

experts (Estellés-Arolas & González-Ladrón-De-Guevara, 2012). PWS are user-friendly66

and affordable off-the-shelf weather stations installed and maintained by individuals that67

offer a means for crowdsourcing weather data including rainfall observations (Gharesifard68

& Wehn, 2016). PWSs data can be easily shared through services such as Weather Un-69

derground, which enables real-time data gathering, integration, and visualization of weather70

data collected across a world wide network of PWSs via their online platforms and mo-71

bile applications. The growing adoption of PWSs in recent years has made crowdsourc-72

ing a powerful opportunity to supplement existing rainfall networks (Muller et al., 2015;73

de Vos et al., 2017; P. Yang & Ng, 2017; Weeser et al., 2019; Lowry & Fienen, 2013). Im-74

portantly, this crowdsourced data is growing rapidly, making it an increasingly valuable75

resource for hydrologists (Zheng et al., 2018). Based on our review of the Weather Un-76

derground data archive, the number of PWSs in the US has increased exponentially from77

7,000 to 100,000 from 2010 to 2019 (Figure 1). In Houston, Texas, for example, the num-78

ber of PWSs has grown from 99 to 382 over the three year period 2016 to 2019 (Figure79

1), which equates to an increased density from 0.06 to 0.24 PWSs per square kilometer.80

If such exponential growth continues, the density of PWSs in populated areas in the US81

could reach one PWS per square kilometers in five years, which exceeds recommended82

spatial resolutions for rainfall observations required for urban hydrology (Berne et al.,83

2004; Fletcher et al., 2013).84

The increased adoption of PWSs can be attributed to the openness of the crowd-85

sourced networks that allows anyone to act as a data contributor. Such openness, how-86

ever, also introduces challenges in assuring accurate data (Bell et al., 2013; Muller et al.,87

2015; Meier et al., 2017; Chapman et al., 2017). Crowdsourced networks are typically88

lightly controlled networks with few constraints and limited quality control processes.89

As a result, people have higher levels of confidence in data collected from high-fidelity90

rainfall stations and there are fewer sources of error in their observations compared to91

crowdsourced data (Hunter et al., 2013; Cox, 2011). PWSs can experience device er-92

rors, like high-fidelity rainfall stations, but can also suffer from compromised setups, lack93
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of routine maintenance, and other sources of error that are less common in high-fidelity94

rainfall stations (de Vos et al., 2017; Meier et al., 2017). For example, improper instal-95

lation of PWSs, such as siting the station under a tree canopy or next to a building, may96

lead to consistently incorrect readings. Likewise, the owner of the PWS might not rou-97

tinely maintain and calibrate the device, which could lead to sensor drift and faulty ob-98

servations. Beyond these cases, it is also possible in open crowdsourced networks that99

people might deliberately manipulate data to produce misleading evidence (Huang et100

al., 2014; Sanchez et al., 2018). Therefore, a method to evaluate the trustworthiness of101

crowdsourced PWSs is needed before this rich and growing dataset can be effectively used102

in decision making.103

One approach for addressing this problem with crowdsourced PWS data would be104

to adopt quality control and quality assurance (QA/QC) methods to detect, flag or re-105

move doubtful and erroneous data based on certain rules and thresholds (Estévez et al.,106

2011; Fiebrich et al., 2010; Blenkinsop et al., 2017; de Vos et al., 2019). If other data from107

more trusted sources is available, then another method would be to evaluate the qual-108

ity of crowdsourced rainfall data by direct comparison with these more trusted sources109

(de Vos et al., 2017; Muller et al., 2015). Existing methods, however, may not adequately110

address the needs of crowdsourced weather and, specifically rainfall, observation. QA/QC111

methods designed for high-fidelity stations tend to focus on outlier detection that pre-112

sumes a certain source of error (sensor malfunction) and may be less able to detect other113

sources of error (poor sensor siting or installation). For example, the Weather Under-114

ground designates a PWS as “Gold Star Weather Station” if it passes basic quality con-115

trol criteria such as data validity and a sensor failure checks over the prior five days (The116

Weather Channel, 2018). Direct comparison with trusted data sources presumes that such117

data is available, but PWSs have reached a density of observation in space and time that118

cannot be matched with other, more trusted, measurement methods. There is a need and119

opportunity, therefore, to innovate on methods for assessing the data generated by PWSs120

at scale so that trustworthy stations can be used more confidently in decision making121

and, just as importantly, untrustworthy stations can be reported to owners with sugges-122

tions for improving data quality so that the overall observation network reaches its full123

potential.124

In this study, we explore the use of reputations systems as an approach for mea-125

suring the trustworthiness of rainfall observations from PWSs. Reputation systems are126

commonly used to build trust between participants and foster good behavior in online127

crowdsourced systems (Jøsang et al., 2007). For example, online markets such as eBay128

and Amazon use reputation systems to enhance the buying and selling experiences. Such129

systems aggregate sellers’ past behavior and represent it as a trustworthiness rating for130

buyers to rely on (Resnick et al., 2000). Reputation systems have also been used for cit-131

izen science and crowdsdourced data. H. Yang et al. (2013) designed a reputation sys-132

tem framework for enhancing the data reliability of citizen science environmental acous-133

tic data. Silvertown et al. (2015) utilized a reputation system to motivate and reward134

participants of a crowdsourced species identification website that improved the accuracy135

of species determinations. Huang et al. (2014) proposed a reputation system framework136

using the Gompertz function to compute device reputation score based on the trustwor-137

thiness of the contributed data in participatory sensing applications. However, limited138

work has investigated the use of reputation systems for crowdsourced PWS networks.139

In our previous work, we presented an initial version of a system called the Rep-140

utation System for Crowsourced Rainfall Network (RSCRN) (Chen et al., 2018) to as-141

sign trust scores to PWSs. In this paper, we significantly enhance RSCRN and evalu-142

ate the method for storm events using Houston, Texas as a case study. The research ques-143

tions guiding this work are: (i) How can we systematically evaluate the trustworthiness144

of crowdsourced PWSs? and (ii) To what extent could a reputation system approach im-145

prove rainfall estimates derived from PWSs?146
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The remainder of the paper is organized as follows. Section 2 describes the detail147

of the RSCRN algorithm and methods to evaluate the RSCRN for storm events. Sec-148

tion 3 provides a description of the study area, data used in the study, as well as storm149

events selection process. The results and discussion of this study are presented in Sec-150

tions 4 and 5, followed by conclusions in Section 6.151

2 Material and Methods152

2.1 Data preparation153

The RSCRN method begins with a crowdsourced rainfall network in a specific re-154

gion having N PWSs. Given an analysis period of interest (say X time steps), the rain-155

fall observations from these N PWSs can be collected into a matrix P156

Pi,j =


p1,1 p1,2 · · · p1,N
p2,1 p2,2 · · · p2,N

...
...

. . .
...

pX,1 pX,2 · · · pX,N


where pi,j is a rainfall observation measured at time step i and PWS j. This matrix P ,157

with X rows for the rainfall observations and N columns of PWSs, will be used as the158

input for RSCRN.159

2.2 RSCRN Algorithm160

The RSCRN algorithm consists of three steps: Cluster, Consensus and Score (Al-161

gorithm 1). The objective of RSCRN is to evaluate the trustworthiness of PWSs based162

on their consensus with rainfall measured at neighboring stations. The Cluster step is163

to find clusters of neighboring PWSs. Next, the Consensus step is used to identify PWSs164

with rainfall observations that deviate from a cluster’s consensus. Finally, the Score step165

uses the degree of deviation from consensus to assign a new trust score to each PWS on166

a given time step that represents the trustworthiness of that PWSs. Further detail for167

each step in the algorithm follows (Algorithm 1).168

Algorithm 1 RSCRN algorithm

Cluster step:
Input PWS rainfall observation matrix P (i, j) | i ∈ [1 : X]; j ∈ [1 : N ]

X: number of time steps, N : number of PWSs
Output Clustered sub-dataset matrix Dk

Mk
⊂ P | k ∈ [1 : K]

K: number of clusters, Mk: number of PWSs in the k-th cluster
Consensus/Score step:

Input Clustered sub-dataset matrix Dk
Mk

(i, j) | i ∈ [1 : X]; j ∈ [1 : Mk]
Output Trust score matrix Ti,j | i ∈ [1 : X]; j ∈ [1 : Mk]

1: for k ∈ [1 : K] do
2: for i ∈ [1 : X] do
3: for j ∈ [1 : Mk] do
4: Compute robust weight wi,j using Equations 1 - 4
5: Compute cooperative metric Ci,j using Equations 5
6: Compute trust score Ti,j using Equations 8 - 10

Python codes for the RSCRN algorithm and datasets used in this study169

are available from Hydroshare (https://www.hydroshare.org/resource/170
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cf7796cdeace42818dbbd7f95f8e1872/). For the Weather Underground, the P171

matrix can be populated for a region using their Application Programming Interface172

(API). Example code for this process is also provided as a resource in Hydroshare173

with the same link as above. This code requires a Weather Underground key to use174

the API, which at the time of this writing can be obtained by connecting a PWS to175

the Weather Underground platform.176

2.2.1 Cluster177

Different methods can be used to define PWS clusters in RSCRN. In this work,178

we take a simple approach of defining clusters based on geographic proximity of sta-179

tions. Thus, we used a buffering tool in a Geographic Information System (GIS) to180

identify clusters that consist of PWSs within a fixed distance to other neighboring181

PWSs and high-fidelity, government-operating rainfall stations that will be used for182

evaluation. We have explored other methods for clustering as well including k-means183

where clusters are identified not only based on geographic position, but also other184

factors including elevation (Chen et al., 2018). It is important to ensure there are185

sufficient PWSs (at least four and preferably five or more PWSs) in each cluster186

actively reporting rainfall observations during the analysis period of interest, because187

the RSCRN algorithm relies on the consensus of PWSs rainfall observations in a188

cluster. More active PWSs in a cluster will likely result in a more reliable consensus.189

Starting from the input matrix P, the resulting clustered matrices are denoted by190

Dk
Mk

, where k is the k-th cluster, and Mk is the number of PWSs in the k-th cluster.191

These matrices will be the input for the consensus step.192

2.2.2 Consensus193

The input to the consensus step are clustered sub-datasets Dk
Mk

, where each194

sub-dataset contains rainfall observations from PWSs that fall within the same clus-195

ter. Assuming the k-th clustered sub-dataset has m PWSs, this sub-dataset will be a196

matrix Dk
m197

Dk
m(i, j) =


p1,1 p1,2 · · · p1,m
p2,1 p2,2 · · · p2,m

...
...

. . .
...

pX,1 pX,2 · · · pX,m


where pi,j represents the rainfall observation PWS j within the cluster k measured198

at time i. For the clustered sub-datasets Dk
Mk

(k = 1, 2, . . . ,K), the consensus step199

computes a cooperative metric (denoted as Ci,j , which has the same dimension as200

Dk
m) based on the rainfall observations for each time-step (i = 1, 2, . . . , X) and each201

PWS (j = 1, 2, . . . ,m).202

We use the robust averaging algorithm (Chou et al., 2013) as the method for203

estimating a cluster’s consensus. We selected this method for its effectiveness and ef-204

ficiency in similar applications for wireless sensor networks and participatory sensing205

(Ganeriwal et al., 2008; Huang et al., 2014). Robust averaging is a type of weighted206

average method that is less affected by values that deviated from the average. For207

each time step i, this iterative algorithm works as follows208

1. First, assign an initial (uniform) weight to every PWS j at iteration l = 1

wl=1
i,j =

1

m
(1)

where m is the number of PWSs in the clustered sub-dataset DK
m .209
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2. Next, compute the robust average RAli, such that

RAli =

m∑
j=1

wli,j · pi,j (2)

where pi,j is the rainfall observation of PWS j for time step i.210

3. Next, compute the squared difference of PWS j’s rainfall observation pi,j from
the robust average RAli

vli,j = (pi,j −RAlj)2. (3)

4. Finally, compute the new robust weight at iteration l + 1

wl+1
i,j = (

1
vli,j∑m

j=1 v
l
i,j

+ ε
)/(

m∑
i=1

1
vli,j∑m

j=1 v
l
i,j+ε

). (4)

211

The algorithm continues iterating until the convergence |wli,j −w
l+1
i,j | < ν is achieved,212

i.e., the robust weights converge to a value with difference less than ν. Note that the213

ε is a small positive constant that is set to 0.1, determined by trial and error based214

on the convergence of the algorithm (Chou et al., 2013).215

The cooperative metric is then defined as

Ci,j =
wi,j −Wi

σ(Wi)
(5)

where Wi and σ(Wi) are the average and standard deviation, respectively, of the i-th216

row of the robust weight matrix. This metric represents the level of deviation of the217

final robust weight from the initial weight. A positive cooperative metric indicates218

agreement with the consensus (robust average) within the cluster, while a nega-219

tive cooperative metric represents disagreement with the consensus. The resulting220

cooperative metric is used as the input for score step.221

We further extended the algorithm to accommodate two data exception cases:222

(i) all zero observations and (ii) missing observations in certain time steps. In a223

clustered sub-dataset, the first case occurs when all rainfall observations are zero224

on a given time step. In this case, cooperative metrics will be invalid because the225

standard deviation of the robust weight matrix is zero. Therefore, the cooperative226

metric of every PWS in this case is set to zero. The second case occurs when PWSs227

have intermittent missing observations. In this case, for those time steps that PWS228

has missing observations, this particular PWS is excluded from the robust average229

calculation, and the cooperative metric of this PWS will be set to zero. Additionally,230

if there are too many PWSs with missing observations resulting in a low number231

of active PWSs reporting data on a time step, the cooperative metrics of all PWSs232

on that time step will also be set to zero, because the consensus computed from the233

robust average algorithm may be unreliable. The definition of this low number can234

be determined based on the data availability during the analysis period.235

2.2.3 Score236

As described in Section 2.2.2, the cooperative metric can be interpreted as a237

measure of the PWS deviation from the robust average for each time step. To eval-238

uate the trustworthiness of the PWSs, this step assumes neutral initial trust scores239

for every PWS without the knowledge of any past behaviors (rainfall observations in240

this case), and integrates this cooperative metric to update the trust score for every241

PWS for each time step.242
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We used the beta reputation system (Josang & Ismail, 2002) for its advantages243

of simplicity, flexibility, and ability to counter most arbitrary device faults in wire-244

less sensor networks (Ganeriwal et al., 2008). The beta reputation uses a statistical245

approach to provide a mathematical basis for trust management. The idea is that246

the trust score, which is computed based on the beta probability density function247

(PDF), is gradually updated as new observations are made available. The beta PDF248

is a continuous family of distribution functions indexed by two parameters: α and β.249

It is denoted by beta(p|α, β) and can be expressed using the gamma function Γ as250

beta(p|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (6)

where 0 <= p <= 1, α and β > 0. The expectation value of the beta distribution is
given by

E(p) = α/(α+ β) (7)

where 0 < E(p) < 1.251

In each clustered sub-dataset, the prior distribution is assumed to be a uni-252

form beta PDF with α1 = 1, β1 = 1, and E(p)1 = 0.5 for every PWS at time step253

i = 1 before any data is collected. This can be interpreted as the neutral trust for254

these PWSs which indicates that the relative frequency of reporting trustworthy255

or untrustworthy observations is equal. After observing new data, the posterior256

distribution will be the beta PDF with updated α and β parameters. In RSCRN,257

these parameters are updated using the cooperative metrics Ci,j computed from the258

consensus step as259

αi+1,j = αi,j × λ+ Ci,j , βi+1,j = βi,j × λ if Ci,j > 0

αi+1,j = αi,j × λ, βi+1,j = βi,j × λ+ |Ci,j | if Ci,j < −1

αi+1,j = αi,j , βi+1,j = βi,j if Ci,j = 0 or − 1 < Ci,j < 0. (8)

There are four possible outcomes for updating the α and β parameters: (i) A260

positive outcome is defined if the cooperative metric is greater than zero. In a posi-261

tive outcome, the alpha parameter increases by the value of the cooperative metric.262

(ii) A negative outcome is defined if the cooperative metric is less than -1, which263

implies significant deviation from the consensus because the final robust weight is264

more than one standard deviation lesser from the average weight. In a negative out-265

come, the beta parameter increases by the absolute value of the cooperative metric.266

(iii) A zero cooperative metric outcome indicates either all observations at the time267

step were zero or a missing observation from a single PWS. In this case, both alpha268

and beta parameters are held constant with the previous time step values. (iv) In269

a minor negative outcome which we define as when the cooperative metrics is less270

than zero but greater than -1, both alpha and beta parameters will also be held con-271

stant with the previous time step values because the deviation from the consensus272

is insignificant. In addition, to focus the evaluation on time steps when rain is re-273

ported, the algorithm is set to only update trust scores on time steps when at least274

one PWS in the cluster is reporting more than one tick (0.25mm) of rainfall.275

A forgetting factor λ is introduced in Equation 8 to avoid the trust score be-276

ing overly weighted on the past information. The λ parameter, which ranges from277

0 to 1, is used to give old information less weight than more recent information. A278

forgetting factor of 1.0 indicates no forgetting at all, whereas a forgetting factor of 0279

indicates forgetting all past information except for the previous time step.280

Given the updated alpha and beta parameters by the cooperative metrics, the281

expected value of the posterior beta PDF becomes282
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E(p)i+1,j =
αi+1,j

αi+1,j + βi+1,j
. (9)

Finally, the trust score Ti,j is computed by re-scaling the expectation value to283

be between 0 and 10 for each PWS j at time step i284

Tij = 10 · E(p)i,j . (10)

2.3 Comparison with a PWS Quality Control Method285

The performance of RSCRN approach is evaluated against a quality control286

method recently proposed for PWSs (de Vos et al., 2019). This quality control ap-287

proach (hereinafter referred as PWS QC method) consists of three major filters to288

flag PWS rainfall observations. These filters are (i) a high influx (HI) filter to cap-289

ture PWS observations with observations much higher than neighboring stations,290

(ii) a faulty zero (FZ) filter to identify erroneous zeros, and (iii) a station outlier291

(SO) filter to flag PWSs with low correlation of rainfall time series with neighboring292

stations. Using the same clustered sub-datasets as input for the PWS QC method,293

individual PWS observations were flagged with SO flags, FZ flags and SO flags, and294

these flags were used to compare to RSCRN trust scores.295

2.4 Validation using High-Fidelity Rainfall Stations on Storm296

Events297

Using a binary trust score threshold, PWSs were classified as trustworthy or298

untrustworthy PWSs for storm events with durations of X time steps that begin on299

time step T1 and end on time step T2. The trust score thresholds of the each PWS300

are defined as follows301

Trustworthy PWS:

T2∑
i=T1

Ti,j
X

> γ (11)

Untrustworthy PWS:

T2∑
i=T1

Ti,j
X

< γ (12)

where γ is the threshold value that ranges from 0 to 10.302

Using γ = 5.0 as an example, trustworthy PWSs are stations that received303

average trust scores higher than 5.0 during this storm event. Generally, these PWSs304

are more likely to be reporting trustworthy data during this storm event because305

they have been consistently contributing observations that agreed with the consen-306

sus from neighboring PWSs before the storm event. On the other hand, untrust-307

worthy PWSs are PWSs that received average trust scores lower than 5.0, which308

indicates these PWSs have been reporting observations that disagreed with the con-309

sensus from neighboring PWSs. These PWSs are, therefore, less likely to report310

trustworthy data during the storm event.311

To validate if using a trust score threshold method can improve rainfall esti-312

mates from the crowdsourced rainfall network, we compute the root-mean squared313

error (RMSE) of the PWS rainfall observation with the nearest high-fidelity rainfall314

station for the storm event as315
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RMSE =

√√√√ 1

X

T2∑
i=T1

(ci − hi)2 (13)

where ci is the rainfall time series of the PWS, hi is the rainfall time series of the316

high-fidelity rainfall station, and X is the duration of the storm event. Consider a317

cluster with M PWSs, the average RMSE of all PWSs in the cluster (denoted as318

Rall) becomes319

Rall =

M∑
j=1

RMSEj
M

(14)

where RMSEj is the RMSE of the j-th PWS in the cluster. This Rall is used to320

benchmark the improvement made from the RSCRN and PWS QC methods.321

Assuming that the RSCRN trust score threshold revealed that in these M322

PWSs, there are U trustworthy PWSs that received trust scores above the threshold,323

the average RMSE of trustworthy PWSs in the cluster (denoted as RRSCRN ) can be324

computed as325

RRSCRN =

U∑
j=1

RMSEj
U

(15)

The RMSE of trustworthy PWSs is further comapred with the RMSE of QC326

PWS. Assuming there are V unflagged PWSs (stations without any flags filtered327

by the PWS QC method) during a storm event, the average RMSE of QC rainfall328

estimates (denoted as RQC) can be be computed as329

RQC =

V∑
j=1

RMSEj
V

. (16)

Lower RMSE values indicate agreement with the high-fidelity rainfall station330

observations. Therefore, the comparison of Rall, RRSCRN , and RQC can then be331

used to determine the improvements of rainfall estimates made by each method in332

providing accurate rainfall estimation from a network of PWSs.333

3 Case study334

3.1 Study Area335

To demonstrate and evaluate RSCRN, we focus on PWSs in Houston, Texas as336

a case study. The City of Houston is in a sub-tropical climate with average annual337

rainfall of 1,250 mm. Flooding has been a recurring issue in Houston because of ur-338

banization and the increase in frequency and intensity of severe storms (W. Zhang339

et al., 2018). The growing adoption of PWSs in Houston in recent years significantly340

increases ground gauge rainfall networks coverage. Extracting trustworthy rainfall341

information from the PWSs could potentially supply denser point rainfall time series342

and, thus, improve the knowledge of rainfall patterns to better model and control343

flooding.344

–10–



manuscript submitted to Water Resources Research

Figure 2. Two clusters of crowdsourced PWSs in Houston, Texas were selected as case study

for evaluating the RSCRN.

3.2 Data345

3.2.1 High-fidelity rainfall network346

In Houston, the Harris County Flood Control District (HCFCD) manages a347

rainfall monitoring network of 174 rainfall stations that can be used as the ground348

truth of the rainfall observation to evaluate RSCRN (Figure 2).349

3.2.2 Crowdsourced rainfall network350

The crowdsourced rainfall network used in this study consists of PWSs that351

are available through the Weather Underground. We accessed the data through the352

API provided by the Weather Underground. The PWS observation sampling interval353

varies from station to station. Most of the sampling intervals are about 5-10 minutes354

per observation. Based on the available PWSs in Houston area queried from the355

Weather Underground API, there were 99 PWSs in January 2016 and 382 PWSs in356

just a few years later in April 2019.357
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Figure 3. The distribution of PWSs inter-distance in both clusters. Both clusters contain two

HCFCD rainfall stations in close proximity.

Table 1. The metadata of PWSs used in this study

ID Elevation Latitude Longitude Start Time Station Type

Cluster 1

KTXHOUST281 24 29.65 -95.46 9/14/2012 N/A
KTXHOUST617 21 29.66 -95.47 7/6/2015 Ambient Weather WS-1400-IP (Wireless)
KTXHOUST1971 16 29.66 -95.49 5/7/2017 AcuRite Pro Weather Center
KTXHOUST2323 21 29.65 -95.48 3/18/2018 AcuRite Pro Weather Center
KTXHOUST327 24 29.65 -95.49 10/27/2013 Davis Vantage Pro2 (Cabled)
KTXHOUST1903 18 29.66 -95.48 12/29/2016 Ambient Weather WS-900-IP (Wireless)
KTXHOUST355 21 29.65 -95.50 6/29/2014 N/A
KTXHOUST777 21 29.66 -95.46 3/24/2016 Ambient Weather WS-1001-WiFi (Wireless)

Cluster 2

KTXHOUST240 15 29.79 -95.38 10/15/2010 Davis Vantage Pro2 Plus (Wireless)
KTXHOUST805 20 29.80 -95.38 5/6/2016 AcuRite Pro Weather Center
KTXHOUST443 21 29.79 -95.37 12/26/2014 AcuRite Pro Weather Center
KTXHOUST2591 21 29.79 -95.37 1/1/2019 Ambient Weather WS-2902
KTXHOUST314 28 29.78 -95.37 5/2/2013 Davis Vantage Pro2 Plus (Wireless)
KTXHOUST686 25 29.78 -95.39 11/20/2015 Ambient Weather WS-1001-WiFi (Wireless)
KTXHOUST452 24 29.80 -95.40 1/19/2015 Ambient Weather WS-1200-IP (Wireless)
KTXHOUST2533 26 29.80 -95.38 10/29/2018 AcuRite 5-in-1 Weather Station with AcuRite Access
KTXHOUST275 20 29.79 -95.40 6/23/2012 Davis Vantage Pro 2
KTXHOUST2258 21 29.80 -95.38 1/27/2018 Ambient Weather WS-1001-WiFi (Wireless)

3.3 PWS cluster358

Following the cluster method mentioned in Section 2.2.1, by setting the buffer359

distance to 2 kilometer for computing the number of neighboring PWSs, two clusters360

with the most active PWSs available at the beginning of the analysis period were361

used to evaluating RSCRN (see Figure 2). The first cluster consists of 8 PWSs and362

is located in southwestern Houston, Texas. The second cluster consists of 10 PWSs363

and is located in northwest of downtown Houston. The inter-distance of PWSs in364

both clusters is less than 3 kilometers (Figure 3). Table 1 shows the available meta-365

data from the Weather Underground API. Each PWS has different start times,366

which is when the station joined Weather Underground and started reporting data367

to Weather Underground database. Among these PWSs, there are three major PWS368

brands: Ambient Weather, AcuRite and Davis Instrument.369

The 15-min rainfall time series from the 18 PWSs in the two clustered sub-370

datasets for the analysis period from 1/1/2017 to 3/28/2019 were used as the input371

to the RSCRN. In this study, the minimum number of valid rainfall observations on372

a time step for computing the cooperative metrics was set to 5, given that there are373

5-7 PWSs that are actively reporting rainfall within a cluster for the majority of the374

time steps during the analysis period. The forgetting factor λ was set to 0.95, which375

approximately retains 20% of the prior knowledge that is more than 25 time steps376

(6 hours) old. This is to ensure that the trust score computed by RSCRN will not377
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Table 2. Summary information of the selected 33 storms events for cluster 1.

No Storm Event Date Season
HCFCD Rain Gauge 445 PWS

Duration
(hr)

Max. Rainfall
Intensity
(mm/hr)

Total
Rainfall

(mm)

Active
PWSs

Median PWS
Total Rainfall

(mm)

1 20170102 Winter 0.5 81.3 30.5 6 29.3
2 20170118 Winter 4.8 89.4 119.9 6 100.6
3 20170120 Winter 2.0 77.2 35.6 6 33.8
4 20170305 Winter 8.8 24.4 61.0 6 48.5
5 20170329 Winter 2.5 93.5 49.8 6 40.4
6 20170418 Summer 4.0 16.3 25.4 6 14.7
7 20170522 Summer 3.3 52.8 32.5 7 30.5
8 20170529 Summer 1.8 105.7 62.0 7 56.1
9 20170604 Summer 2.5 56.9 53.8 7 44.5
10 20170624 Summer 1.8 56.9 31.5 6 20.8
11 20170715 Summer 3.3 113.8 47.8 6 28.7
12 20170802 Summer 3.8 36.6 42.7 7 37.3
13 20170808 Summer 2.3 48.8 26.4 6 24.8
14 20170825 Summer 10.8 61.0 101.6 7 67.1
15 20170918 Summer 2.5 52.8 53.8 7 44.7
16 20171203 Winter 1.3 69.1 39.6 7 42.9
17 20171216 Winter 1.8 40.6 25.4 7 23.4
18 20180210 Winter 6.8 32.5 87.4 7 86.9
19 20180329 Winter 4.3 52.8 66.0 8 55.0
20 20180421 Summer 1.5 56.9 41.7 8 44.2
21 20180521 Summer 2.0 69.1 35.6 7 20.8
22 20180704 Summer 6.5 89.4 164.6 8 144.3
23 20180731 Summer 1.0 81.3 37.6 7 35.6
24 20180909 Summer 1.5 61.0 29.5 6 35.8
25 20181015 Summer 0.8 89.4 27.4 6 20.1
26 20181031 Summer 3.3 101.6 82.3 5 94.2
27 20181207 Winter 8.5 52.8 124.0 7 118.1
28 20181213 Winter 2.0 28.4 26.4 7 30.0
29 20181227 Winter 3.3 20.3 36.6 6 39.2
30 20190102 Winter 2.8 21.3 28.4 7 35.6
31 20190119 Winter 0.8 65.0 25.4 7 22.9
32 20190123 Winter 4.8 20.3 26.4 4 26.2
33 20190226 Winter 3.3 28.4 27.4 6 28.6

be overweighted by past observations so that it is able to accommodate temporary378

behavioral changes, especially during storm events. The sensitivity to this forgetting379

factor is further explored later in the paper. For the PWS QC method, the neigh-380

boring stations for each PWSs were set to all other PWSs in the cluster identified by381

the RSCRN. Several parameter choices were evaluated and the best one were chosen382

based on the data availability and rainfall characteristics of the collected PWS data.383

3.4 Storm Events Selection384

In this study, a storm event is defined as the accumulated rainfall greater than385

25.4 mm within a 12-hour rolling window. Rainfall time series from the high fidelity386

rainfall network (HCFCD rainfall stations 445 and 560) were used to identify storm387

events for cluster 1 and cluster 2, respectively. As shown in Tables 2 and 3, 33 and388

29 storm events with various rainfall statistics that occurred in what we referred to389

as winter (November to March) and summer (April to October) seasons during the390

analysis period (1/1/2017 to 3/28/2019) were identified. In these storm events, du-391

rations ranged from 0.5 to 10.8 hours, maximum rainfall intensity from 20.3 to 113.8392

mm/hr, and total rainfall from 25.4 to 164.6 mm.393
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Table 3. Summary information of the selected 29 storms events for cluster 2.

No. Storm Event Date Season
HCFCD Rain Gauge 560 PWS

Duration
(hr)

Max. Rainfall
Intensity
(mm/hr)

Total
Rainfall

(mm)

Active
PWSs

Median PWS
Total Rainfall

(mm)

1 20170102 Winter 1.0 56.9 25.4 5 21.3
2 20170118 Winter 6.0 81.3 157.5 6 165.4
3 20170120 Winter 2.8 73.2 42.7 6 39.2
4 20170220 Winter 6.3 12.2 37.6 5 40.4
5 20170305 Winter 7.5 16.3 38.6 5 38.6
6 20170329 Winter 2.0 101.6 47.8 5 46.5
7 20170411 Summer 4.3 48.8 36.6 6 35.6
8 20170522 Summer 2.5 69.1 37.6 7 39.1
9 20170604 Summer 3.0 105.7 61.0 7 65.3
10 20170625 Summer 2.3 81.3 57.9 7 25.4
11 20170713 Summer 1.0 81.3 30.5 7 27.2
12 20170807 Summer 1.8 48.8 27.4 7 22.4
13 20170826 Summer 18.8 113.8 389.1 6 417.7
14 20170918 Summer 1.8 48.8 25.4 6 30.5
15 20180108 Winter 2.5 40.6 27.4 7 16.5
16 20180210 Winter 5.5 20.3 57.9 8 59.6
17 20180329 Winter 5.5 52.8 67.1 8 62.4
18 20180421 Summer 1.8 65.0 45.7 8 46.4
19 20180520 Summer 2.0 44.7 26.4 8 26.7
20 20180704 Summer 5.8 40.6 110.7 6 148.6
21 20180909 Summer 1.3 81.3 45.7 7 37.9
22 20180922 Summer 2.0 56.9 25.4 7 16.5
23 20181015 Summer 1.3 61.0 27.4 7 31.2
24 20181031 Summer 3.0 44.7 34.5 8 27.8
25 20181207 Winter 9.0 44.7 116.8 8 109.0
26 20181213 Winter 2.0 36.6 27.4 7 27.9
27 20181227 Winter 3.5 36.6 43.7 7 39.1
28 20190102 Winter 2.3 28.4 30.5 8 26.4
29 20190123 Winter 5.0 16.3 26.4 8 25.7

–14–



manuscript submitted to Water Resources Research

Figure 4. Example of a trustworthy PWS for a storm event. Trust score steadily increases

during a storm event when the observed rainfall of a PWS (black dashed line) matches well with

the consensus (robust average, shown in red line) of neighboring stations’ reported rainfall (gray

lines) consensus. No flags were identified by the PWS QC method in this storm event.

4 Results394

4.1 Reputation System For Crowdsourced Rainfall Networks395

(RSCRN)396

4.1.1 PWS Trust Score Assignment397

Figure 4 shows the resulting trust scores based on RSCRN for an example398

storm event. In this example, the majority of rainfall observations of the target399

PWS (KTXHOUST327) matched well with the robust average computed from400

neighboring stations in its cluster. At the beginning of the storm (marked with cir-401

cle 1 in Figure 4), the trust scores remained unchanged because the RSCRN only402

updates trust scores when at least one PWS in the cluster reports rainfall greater403

than 0.25 mm. Similarly, in the middle and end of the storm (also marked with cir-404

cle 1), the trust scores remain constant because all reporting rainfall is lower than405

0.25 mm. The PWSs began to observe heavier rainfall starting at 2:45am. As can be406

seen in Figure 4, the rainfall time series during the following time interval (marked407

with circle 2) agreed well with the robust average. Therefore, the PWS received sev-408

eral positive outcomes (marked with the black dot on the Alpha axis) and the trust409

score steadily increased. There were two time steps when the PWS received negative410

outcomes (marked with circle 3 and black dots on the Beta axis) because its obser-411

vations disagreed with the consensus and the trust score decreased accordingly. Note412

that the change of trust score with regard to the same positive or negative outcomes413

was higher when using a smaller forgetting factor, because less prior knowledge was414

retained, and thus the trust score change was more sensitive. Expectedly, The PWS415

QC method did not identify any flags for the PWS during this storm event. Thus,416

both approaches agree this is a trustworthy PWS.417
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Figure 5 shows examples when trust scores decrease for the majority of the418

time steps during a storm event for two untrustwortyhy PWSs. In the first example,419

the rainfall time series of the target PWS (KTXHOUST452) frequently deviated420

from the robust average. Although this PWS captured some of the peak values of421

the storm, there were several time steps between those peaks where rainfall obser-422

vations significantly deviated from the consensus of the neighboring PWSs. For423

example, the consensus of rainfall observations among the neighboring stations were424

showing that it had been raining heavily between the time interval 3:00 to 6:00.425

However, this PWS was either reporting zero rainfall or underreporting rainfall,426

which resulted in receiving many negative outcomes (black dots on the Beta axis).427

Therefore, the trust score decreased and remained low for the entire storm. Using428

the PWS QC method, several time steps were identified with the FZ flag, which429

agreed with the RSCRN that this station is likely to be untrustworthy. In the sec-430

ond example, the rainfall observation from the target PWS (KTXHOUST1903) was431

underreporting (0:00 to 0:30) and reporting zero value rainfall while the neighboring432

stations showed strong consensus of a certain rainfall magnitude. This station also433

overreported rainfall at 3:30 while the consensus of the neighboring stations showed434

that the storm had stopped. Using the PWS QC method, this PWS was first flagged435

with FZ flags for several intervals, followed by an HI flag where this PWS was re-436

porting 49.27 mm while other neighboring stations all reported zero. Thus, both437

approaches agree these are untrustworthy PWSs.438

4.1.2 PWS Trustworthiness Assessment439

The RSCRN trust score evolution over all analyzed storm events is shown in440

Figure 6. Note that the trust scores of each PWS were computed for every time441

step during the analysis period (1/1/2017 0:00 to 3/28/2019 23:45) and the trust442

score for the analyzed storm events were extracted to assess the trustworthiness443

of a PWS during a particular storm event. In this figure, each dot represents the444

average trust score for a storm event. The trust score evolution shows that some445

PWSs were assigned high trust scores throughout the analyzed storm events (e.g.,446

KTXHOUST327 in cluster 1 and KTXHOUST805 in cluster 2), while other PWSs447

consistently received low trust scores (e.g., KTXHOUST617 in cluster 1 and KTX-448

HOUST452 in cluster 2). However, there are PWSs with trust scores that fluctuated449

over time, which indicates that perhaps these stations had state changes over the450

analysis period.451

Table 4 shows the overall assessment of PWS trustworthiness for the analyzed452

storm events. Based on the results for cluster 1, KTXHOUST617 was the least453

trustworthy PWS. If we assume 4.0 as the trust score threshold γ, of the 23 ac-454

tive storm events for which this PWS reported valid rainfall observations, 18 (78%)455

were classified as untrustworthy. If we use a more restrictive trust score threshold456

γ = 5.0, 20 (87%) storm events were classified as untrustworthy. KTXHOUST281457

was the second least trustworthy PWS in this cluster, as its trust score fluctuated458

between 4.0 and 6.0, and eventually dropped below 2.5. Of the 31 active storm459

events this PWS actively reported, 10 (32%) were classified as untrustworthy with460

trust score threshold γ = 4.0. Notably, as shown in Figure 6, KTXHOUST1903 ini-461

tially received high trust scores, but dropped below 5.0 during several storm events.462

However, its trust score was restored to above 5.0 after storm event 20170715, and463

remained mostly trustworthy for the rest of the time. Other PWSs, such as KTX-464

HOUST1971, KTXHOUST327, and KTXHOUST355, received relatively higher trust465

scores and were classified as trustworthy for most of the storm events (Figure 6). In466

cluster 2, KTXHOUST452 and KTXHOUST240 were the least trustworthy PWSs467

with an average trust score less than the threshold γ = 4.0 for 83% and 61% of the468

storm events, respectively. KTXHOUST443, with 29% of the storm events evaluated469

as untrustworthy, received a high trust score at the beginning of the analysis period470
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Figure 5. Examples of untrustworthy PWSs. Trust scores decrease when the reported rainfall

of a PWS disagreed with the neighboring consensus. Faulty zero and high influx flags were also

detected by the PWS QC method in these storm events.
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Figure 6. RSCRN trust score evolution during analyzed storm events. The gray markers indi-

cate the PWS was not reporting any data during the storm events, thus the trust score remained

constant.
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Table 4. Overall assessment of the RSCRN trust score and PWS QC methods for the analyzed

storm events.

ID Active Events
RSCRN

PWS QC method
(de Vos et al., 2019)

Untrustworthy Events (Avg. Trust Score <Threshold)
Flagged Events

Threshold = 5.0 Threshold = 4.0 Threshold = 3.0

Cluster 1

Analyzed
Storm
Events: 33

KTXHOUST281 31 15 (48%) 10 (32%) 7 (23%) 8 (26%)
KTXHOUST617 23 20 (87%) 18 (78%) 17 (74%) 20 (87%)
KTXHOUST1971 27 5 (19%) 0 (0%) 0 (0%) 0 (0%)
KTXHOUST2323 15 2 (13%) 1 (7%) 0 (0%) 0 (0%)
KTXHOUST327 25 0 (0%) 0 (0%) 0 (0%) 0 (0%)
KTXHOUST1903 32 4 (13%) 2 (6%) 0 (0%) 6 (19%)
KTXHOUST355 31 9 (29%) 4 (13%) 1 (3%) 3 (10%)
KTXHOUST777 32 7 (22%) 1 (3%) 0 (0%) 7 (22%)

Cluster 2

Analyzed
Storm
Events: 29

KTXHOUST240 28 21 (75%) 17 (61%) 5 (18%) 5 (18%)
KTXHOUST805 29 0 (0%) 0 (0%) 0 (0%) 0 (0%)
KTXHOUST443 21 8 (38%) 6 (29%) 3 (14%) 6 (29%)
KTXHOUST2591 2 0 (0%) 0 (0%) 0 (0%) 0 (0%)
KTXHOUST314 29 1 (3%) 1 (3%) 0 (0%) 1 (3%)
KTXHOUST686 29 12 (41%) 2 (7%) 0 (3%) 6 (21%)
KTXHOUST452 12 11 (92%) 10 (83%) 9 (75%) 12 (100%)
KTXHOUST2533 6 5 (83%) 5 (83%) 1 (16%) 1 (17%)
KTXHOUST275 27 4 (15%) 1 (4%) 0 (0%) 2 (7%)
KTXHOUST2258 14 1 (7%) 0 (0%) 0 (0%) 0 (0%)

but decreased overtime and eventually dropped below 2.5. Other PWSs were mostly471

trustworthy during the storm events based on the average trust scores they received.472

4.1.3 Comparison with PWS Quality Control Method473

A comparison with PWS QC method (Table 4) shows that for each PWS,474

the number of untrustworthy events (defined as storm events that average trust475

scores below a threshold) identified by RSCRN generally agreed with the number476

of flagged events (defined as storm events that had at least one observation flagged477

by the PWS QC method) for the analyzed storm events. In cluster 1, PWSs with a478

large number of untrustworthy events were also frequently flagged by the PWS QC479

method, whereas PWSs that were assigned higher trust scores usually received fewer480

or no flagged events. In cluster 2, PWSs with a higher percentage of untrustworthy481

events also received several flags from the PWS QC method. Using a different trust482

score threshold for classifying PWSs, the comparison showed that the number of un-483

trustworthy events agreed the most with the flagged events from PWS QC method484

when using γ = 4.0.485

As most of the agreements between the RSCRN and PWS QC method were486

for high influx and faulty zero flags (Figure 5), there were cases where RSCRN iden-487

tified additional untrustworthy behavior while there were no flags determined by488

the PWS QC method. Using the storm event 20170120 as an example (Figure 7),489

the rainfall observed from this PWS (KTXHOUST281) received several negative490

outcomes from the RSCRN. At 17:30 and 18:15, the reported rainfall were 1.02 and491

4.06 mm, while the robust average computed from the neighboring PWSs were 5.06492

and 0.82 mm, respectively. This caused the trust score of the PWS to drop lower493

than the threshold value for this storm event. However, no observations were flagged494

by the PWS QC method in this event because none of the observations in this storm495

event met the predefined filter threshold of FZ, HI, and SO flags.496

In a second example using PWS KTXHOUST443 (cluster 2) and storm event497

20170625 (Figure 8), the rainfall reported from this station was much higher than498

the neighboring consensus, which resulted in a decrease in the trust score because of499
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Figure 7. RSCRN algorithm assigned low trust scores to a PWS during a storm event while

no flags were detected by the PWS QC method.

a couple time steps of negative outcomes identified by the RSCRN. However, in this500

particular storm event, the actual consensus of rainfall observations might be uncer-501

tain because greater spatial variability existed across PWSs in the cluster. Based on502

the RSCRN algorithm, this was interpreted as the PWS was untrustworthy because503

of overreporting, which deviated from the consensus. However, as larger rainfall504

variability exists on this time step, the actual trustworthiness of this station might505

be uncertain. Further work should explore the role of rainfall variability within a506

cluster, and not just the robust average, in assigning negative outcomes in RSCRN.507

4.2 Validation using High-Fidelity Rainfall Stations508

To validate if RSCRN can result in higher accuracy of PWS-derived rainfall509

estimates, the RMSE between rainfall observations from PWSs to high-fidelity rain-510

fall stations (HCFCD) at storm events were computed. As shown in Figure 2, the511

HCFCD rain gauges (445 and 435 in cluster 1, 520 and 560 in cluster 2) were in512

close proximity (mostly less than 1 kilometer) with PWSs in the clusters and thus513

were used as the ground truth of actual rainfall observations for validation.514

Table 5 and 6 show the RMSE comparison of PWS rainfall estimates for the515

analyzed storm events. In these comparisons, the RMSEs were computed using516

all PWSs (Equation 14, denoted as Rall), trustworthy PWSs (Equation 15, de-517

noted as RRSCRN ), and QC PWSs (Equation 16, denoted as RQC). The resulting518

Rall ranged from 0.43 to 3.41mm across the analyzed storm events, except for the519

storm event 20170305 in cluster 1 for which a single PWS (KTXHOUST355) re-520

ported an extreme value of 1462.53 mm, which resulted in much higher RRSCRN521

for this particular storm event (column 1 in Table 5). It is worth noting that, be-522

cause the RSCRN method did not rely on only a single observation to determine the523

trustworthiness of a PWS, it did not identify this station as untrustworthy for this524

storm event, which resulted worse performance at this particular storm event. This525
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Figure 8. RSCRN algorithm identified several negative outcomes (mostly overreporting rain-

fall) in a storm event with large spatial and temporal rainfall variability.

suggests, however, that RSCRN could be used along with basic outlier detection526

method to improve its results.527

The overall performances for both methods are shown in Table 7. Using the528

RSCRN method, the results showed that of the 33 analyzed storm events in cluster529

1, RRSCRN outperformed Rall for 25 (76%) of the events, with a median RMSE530

improvement (∆RMSE) of 0.35 (24.5%) (bold values in column 4 of Table 5, which531

is computed by subtracting RRSCRN with Rall). Of the 29 analyzed storm events532

in cluster 2, RRSCRN outperformed Rall for 23 (79%) of the events, with a median533

RMSE improvement of 0.41 (29.8%) (bold values in column 4 of Table 6). Using the534

PWS QC method, results showed that RQC improved for 22 (67%) of the events in535

cluster 1, and 16 (55%) of the events in cluster 2 (bold values in column 5 of Tables536

5 and 6). This demonstrates that both approaches made significant improvements in537

PWS rainfall estimates for the majority of the storm events.538

The comparison of RRSCRN and RQC showed that RSCRN generally out-539

performed the PWS QC method (Table 7). In cluster 1, the results showed that 7540

(21%) storm events have the same performance. However, in the remaining 26 storm541

events, RSCRN outperformed PWS QC method in 18 (81%) of the storm events,542

with a median RMSE improvement of 0.11 (8.6%) (shown in bold values in column543

6 of Table 5), while the PWS QC method outperformed RSCRN in 5 (15%) of the544

storm events (shown in italic values in the column 6 of Table 5). In cluster 2, the545

results showed that 6 (21%) storm events had the same performance. However, in546

the remaining 23 storm events, RSCRN outperformed the PWS QC method in 17547

(74%) storm events, with a median RMSE improvement of 0.29 (25.0%), while PWS548

QC method outperformed RSCRN in 6 (23%) storm events. This suggests that the549

RSCRN apporach identified additional untrustworthy PWSs that were not flagged550

by the PWS QC method, and thus improved the rainfall estimates from PWS net-551

work.552
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Table 5. Comparison of RMSE improvements for PWS rainfall estimates across storm events

using RSCRN and PWS QC methods for cluster 1. Column 1 to 3 are the average RMSE of rain-

fall estimates computed from all PWSs, trustworthy PWSs only and QC PWSs only, respectively.

Column 4 shows the improvements made from trustworthy PWSs (RRSCRN - Rall); Column 5

shows the improvements made from QC PWSs (RQC - Rall); Column 6 shows the improvement

between RSCRN and PWS QC method (RQC - RRSCRN ).

Storm Event Date (1) Rall (2) RRSCRN (3) RQC
(4)

Rall - RRSCRN

(5)
Rall - RQC

(6)
RQC - RRSCRN

20170102 1.78 0.87 1.78 0.92 0.00 0.92
20170118 1.47 1.34 1.47 0.13 0.00 0.13
20170120 1.22 1.13 1.22 0.09 0.00 0.09
20170305 27.82 41.13 0.67 -13.31 27.15 -40.46
20170329 2.77 2.52 2.70 0.25 0.07 0.18
20170418 1.27 1.72 0.40 -0.46 0.87 -1.32
20170522 1.56 1.10 1.34 0.46 0.22 0.24
20170529 3.41 1.15 1.26 2.26 2.15 0.11
20170604 2.86 1.20 1.43 1.66 1.43 0.23
20170624 0.87 0.80 0.88 0.07 -0.01 0.08
20170715 2.10 2.14 2.30 -0.04 -0.20 0.16
20170802 1.26 1.33 1.33 -0.08 -0.08 0.00
20170808 1.23 1.05 1.14 0.18 0.09 0.09
20170825 2.80 2.22 2.22 0.58 0.58 0.00
20170918 1.99 1.92 1.87 0.07 0.12 -0.05
20171203 1.36 0.88 1.05 0.48 0.31 0.18
20171216 0.83 0.54 0.52 0.29 0.31 -0.02
20180210 1.19 0.88 0.88 0.31 0.30 0.00
20180329 2.20 2.00 1.97 0.20 0.23 -0.03
20180421 1.73 1.37 1.37 0.35 0.35 0.00
20180521 1.23 0.75 1.20 0.48 0.03 0.45
20180704 1.93 1.44 1.44 0.48 0.48 0.00
20180731 1.00 0.80 0.83 0.20 0.17 0.03
20180909 1.18 0.78 0.78 0.40 0.40 0.00
20181015 1.77 1.33 1.38 0.43 0.39 0.05
20181031 1.25 1.08 1.20 0.17 0.05 0.12
20181207 1.51 0.82 0.82 0.69 0.69 0.00
20181213 0.60 0.60 0.70 0.00 -0.10 0.10
20181227 0.47 0.48 0.56 -0.01 -0.09 0.08
20190102 2.37 0.45 0.46 1.92 1.91 0.01
20190119 0.80 0.80 0.93 0.00 -0.13 0.13
20190123 0.43 0.40 0.43 0.03 0.00 0.03
20190226 0.55 0.55 0.55 0.00 0.00 0.00
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Table 6. The comparison of RMSE improvements for PWS rainfall estimates across storm

events using RSCRN and PWS QC method for cluster 2.

Storm Event Date (1) Rall (2) RRSCRN (3) RQC
(4)

Rall - RRSCRN

(5)
Rall - RQC

(6)
RQC - RRSCRN

20170102 0.74 0.88 0.74 -0.14 0.00 -0.14
20170118 3.15 2.78 3.02 0.38 0.13 0.25
20170120 2.07 1.93 2.07 0.13 0.00 0.13
20170220 0.80 0.50 0.80 0.30 0.00 0.30
20170305 1.10 0.63 1.10 0.47 0.00 0.47
20170329 3.50 0.75 2.33 2.75 1.18 1.58
20170411 0.97 0.68 0.90 0.29 0.07 0.23
20170522 1.19 1.53 1.40 -0.34 -0.21 -0.13
20170604 1.69 0.98 1.30 0.71 0.39 0.32
20170625 1.99 2.06 2.02 -0.07 -0.03 -0.04
20170713 2.51 1.64 1.06 0.87 1.45 -0.58
20170807 1.07 0.90 0.97 0.17 0.10 0.07
20170826 7.40 4.10 4.10 3.30 3.30 0.00
20170918 1.70 1.85 1.72 -0.15 -0.02 -0.13
20180108 2.17 2.76 2.47 -0.59 -0.30 -0.29
20180210 1.21 1.10 1.10 0.11 0.11 0.00
20180329 1.81 1.50 1.59 0.31 0.23 0.09
20180421 2.00 1.61 1.61 0.39 0.39 0.00
20180520 1.20 1.20 1.20 0.00 0.00 0.00
20180704 3.10 2.18 3.10 0.93 0.00 0.93
20180909 2.46 0.98 0.98 1.48 1.48 0.00
20180922 1.16 0.62 0.62 0.54 0.54 0.00
20181015 2.33 1.92 2.08 0.41 0.25 0.16
20181031 1.40 0.46 1.37 0.94 0.03 0.91
20181207 1.55 1.06 1.60 0.49 -0.05 0.54
20181213 1.44 1.02 1.44 0.42 0.00 0.42
20181227 1.11 0.88 1.17 0.24 -0.05 0.29
20190102 0.67 0.48 0.57 0.19 0.10 0.09
20190123 0.60 0.50 0.57 0.10 0.03 0.07

Table 7. Overall comparison of RMSE improvements using RSCRN and PWS QC method.

Number of Storm Events Median ∆RMSE (%)
Rall - RRSCRN Rall - RQC RQC - RRSCRN Rall - RRSCRN Rall - RQC RQC - RRSCRN

Cluster 1
∆RMSE >0 25 22 21 0.35 (24.5%) 0.33 (22.3%) 0.11 (8.6%)
∆RMSE <0 5 6 5 -0.08 (-5.2%) -0.10 (-13.1%) -0.05 (-3.8%)

∆RMSE = 0 3 5 7 - - -

Cluster 2
∆RMSE >0 23 16 17 0.41 (29.8%) 0.24 (13.9%) 0.29 (25.0%)
∆RMSE <0 5 7 6 -0.15 (-18.2%) -0.05 (-4.0%) -0.28 (-10.4%)

∆RMSE = 0 0 6 6 - - -
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5 Discussion553

5.1 The Potential Crowdsourced Rainfall Data554

While this study focuses on crowdsourced rainfall data collected from PWSs,555

the proposed RSCRN can be beneficial to ensure the trustworthiness of other556

emerging crowdsourcing rainfall data collection methods as well. Beyond the case557

of PWSs, recent advancement of crowdsourcing methods has further enabled rainfall558

observations to be collected from connected vehicles (Bartos et al., 2019), surveil-559

lance cameras (Jiang et al., 2019), and mobile phones (Guo et al., 2018). The avail-560

ability of these crowdsourcing methods greatly facilitates more crowd-participation,561

but also raises concerns of increased uncertainty associated with data contribu-562

tors, highlighting the need for evaluating the trustworthiness of crowdsourced data563

(Gharesifard & Wehn, 2016; Hunter et al., 2013). RSCRN should be viewed as a564

starting point for creating algorithms capable of systematically assigning the trust-565

worthiness of these data based on physical principle able to be applied at scale for566

quickly growing networks.567

5.2 The Availability and Reliability of Crowdsourced Data568

PWS adoption has been growing rapidly thanks to the advancement of tech-569

nologies that made PWSs easy to install and affordable, as well as software able to570

connect and share the data through online platforms. This increase in PWS data571

openly shared on the Internet has transformed the value of PWSs from serving the572

owners’ interests to anyone in the broader community that might benefit from the573

information (Gharesifard & Wehn, 2016). However, PWS data accessibility depends574

heavily on the platform that the PWSs are connected to. For example, Weather Un-575

derground recently ended a freely available service of the Weather Underground API576

and replaced it with a new API service that only allows PWS contributors to utilize577

the service (WXForum, 2018a). Weather Underground has also stopped the the au-578

tomatic connection with PWSs of certain brands (e.g. Netatmo) to their platform579

(WXForum, 2018b), resulting in abrupt changes to the number of sensors available580

in the system. These kind of sudden changes might happen in any crowdsourced581

platform without warnings, which could further compromise the accessibility and582

reduce the utility of crowdsourced data. The community would benefit from more583

standardization of open networks and data sharing agreements to make the most584

from this emerging data resource.585

5.3 The Assumption of Consensus in Rainfall Observations586

One of the premises behind RSCRN is that consensus in crowdsourced rainfall587

observations exists at some scale in space and time and can, therefore, be used to588

judge trustworthiness of stations within a cluster. Such consensus-based ideas are589

widely used across disciplines to identify errors in data (J. Zhang et al., 2017; Foody590

et al., 2018; Strobl et al., 2019). Strong consensus in rainfall observations occurs591

when rain gauges are located in close proximity, but the exact distance and other592

factors that should be used for defining a cluster are uncertain. This idea is not new,593

however. For example, the United States Climate Reference Network (USCRN),594

an extremely high-fidelity rainfall network, uses three distinct tipping bucket sen-595

sors installed next to each other on the same site for immediate detection of single596

sensor failure (Diamond et al., 2013). Better accounting for factors that influence597

consensus in rainfall observations (e.g., geography, climate, observation frequency)598

are possible extentions to the approach used in this study. In this work, a cluster599

was identified based on a group of PWSs that were in close distance with each other.600

However, large rainfall variability may exist even over short distances, especially for601

high frequency rainfall observations or if stations have large elevation differences.602
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For example, this particular case study focused on Houston, Texas, which has only603

slight topographical variation across the region, thus elevation was not a factor in604

station clustering. However, for regions with greater variation in elevation such as605

mountainous areas, the clustering results should include elevation to reflect where606

the consensus actually exists (Buytaert et al., 2006). Rainfall types can also be one607

of the factors that affect the consensus. For example, a convective storm may pro-608

duce rainfall over a small area that is only captured by a single PWS in a cluster if609

clusters are not carefully created. In these cases, incorporating additional variables610

of the PWS location into the clustering method may better capture the consensus611

and thus result in more meaningful trust scores.612

5.4 Feedback to Data Collectors for Improved Crowdsourced Data613

Quality614

People are motivated by various kinds of incentives to adopt a PWS. Ex-615

amples of these incentives include obtaining useful weather data for personal pur-616

poses or having a sense of belonging to a community of friends with shared interests617

(Gharesifard & Wehn, 2016). As the need of higher spatial and temporal resolution618

of rainfall data increases, the role of PWS data may be shifted from serving personal619

interests to benefiting the society at large (Gharesifard & Wehn, 2016). In this case,620

because people who need to utilize the data are interested in knowing the quality621

of the data they contributed, PWS owners might become what Jøsang et al. (2007)622

described as service providers. To manage their provision trust, they may be willing623

to demonstrate their competence in collecting data and arguably welcome any feed-624

back to improve their data quality. As a result, RSCRN could assist by making the625

trust score information available to the PWS owners. PWS owners could be notified626

of a drop in the trust score, actions could be taken to correct the erroneous obser-627

vations (e.g., cleaning the clogged rain gauge). Such efforts not only help restore628

the trust scores, which maintain their provision trust, but also greatly improve the629

overall data quality of the crowdsourced rainfall network in the long term. Future630

improvements to RSCRN could focus on identifying particular types of errors to631

more effectively advise users on steps to improve their trust score.632

5.5 Limitation of Binary Trust Score Threshold633

Trust scores derived from the RSCRN represent the relative frequency of a634

PWS reporting trustworthy rainfall observations in the future. This continuous635

form is computationally efficient for reputation systems to calculate and update636

overtime (Ruan & Durresi, 2016). However, to better enable reputation-based deci-637

sion making, a discrete format of trust scores is often used (Mousa et al., 2015), as638

humans are often better able to understand discrete verbal statements than contin-639

uous measures (Jøsang et al., 2007). In this study, we used a RSCRN-derived trust640

score threshold approach to classify PWSs as either trustworthy or untrustworthy.641

While using a binary trust score threshold is simple and straightforward for enabling642

decision making (e.g., include or ignore rainfall from a specific PWS), it does not643

represent the varying trustworthiness of PWSs (Ruan & Durresi, 2016). For exam-644

ple, a PWS with an extremely low trust score and a PWS with a trust score just645

below the threshold will both be categorized as an untrustworthy PWS, despite646

their difference in the extent of untrustworthiness. Alternatives can be dynamically647

adjusting the binary trust score threshold to optimize decision-making or use multi-648

nomial discrete values such as very trustworthy, trustworthy, untrustworthy, very649

untrustworthy to account for a broader extent of trustworthiness across PWSs (Ruan650

& Durresi, 2016). Future work could explore extensions like this so that RSCRN651

is able to weight information from PWSs based on their trust score rather simply652

including or excluding measurements using a threshold method.653
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6 Conclusion654

In this study, we presented a Reputation System for Crowdsourced Rainfall655

Network (RSCRN) for ensuring the trustworthiness of PWSs in a crowdsourced656

rainfall network. The RSCRN assigned trust scores to PWSs are calculated by (i)657

clustering the PWSs into groups with similar rainfall characteristics, (ii) computing658

the rainfall observation consensus within each cluster using a robust average method659

and (iii) deriving trust scores using a beta reputation system.660

Using PWS rainfall data collected from Houston, Texas as a case study, we661

demonstrated how RSCRN is able to identify PWSs with untrustworthy rain-662

fall data. By ignoring rainfall from untrustworthy PWSs using a RSCRN-derived663

trust score threshold, the accuracy of the resulting 15-min rainfall estimates better664

matched rainfall observations observed from high-fidelity rainfall stations for 77%665

(48 out of 62) of the analyzed storm events, with a median RMSE improvement666

of 27.3%. Compared to a PWS quality control method, results showed that while667

13 (21%) storm events had the same performance, RSCRN improved rainfall esti-668

mates for 78% of the remaining storm events (38 out of 48), with a median RMSE669

improvement of 13.4%.670

We returned to the research questions mentioned in section 1 that guided this671

work to provide answers based on the research’s outcomes.672

(i) How can we evaluate the trustworthiness of crowdsourced PWSs?673

This study demonstrated that a reputation system approach could be useful in674

evaluating the trustworthiness of crowdsourced PWSs. Unlike a traditional QA/QC675

method, the reputation system approach collectively evaluates the trustworthi-676

ness of a PWS itself over time rather than single observations collected at a gauge.677

The RSCRN presented in this study assigns trust scores to PWSs based on their678

agreement or disagreement with current and historical rainfall observations from679

neighboring PWS, and is able to converge to a confident trust score in 20-30 time680

steps, as well as accommodate sudden changes of PWSs trust levels during storm681

events in the case of system changes (e.g., a malfunctioning station).682

(ii) To what extent could a reputation system approach improve rainfall estimates683

from PWSs?684

The reputation system can be used to improve rainfall estimates in direct and685

indirect ways. First, the reputation system approach ensures the rainfall estimates686

were produced from trustworthy PWSs. Using RSCRN-derived trust scores thresh-687

old, PWSs were classified as trustworthy or untrustworthy. By judging whether a688

PWS should be included in the rainfall estimation process, the resulting trustworthy689

rainfall estimates were greatly improved in accuracy for matching rainfall observed690

from high-fidelity rainfall stations. Second, the reputation system approach has the691

potential to encourage PWS owners to maintain and contribute high quality data,692

which indirectly improves rainfall estimates from PWSs in the long term.693

Future work could be aimed at (i) a larger analysis of crowdsourced rainfall694

networks to identify and quantify the extent of untrustworthy PWSs across cities695

and regions in the world, (ii) enhancing the reputation system algorithm to ac-696

count for rainfall variability in complex topography and finer-temporal scales and697

(iii) leveraging crowdsourced rainfall estimates to improve hydrological modeling698

such as rainfall-runoff and flood prediction. With a reputation system able to en-699

sure the trustworthiness of PWSs and improve the data quality collected through700

crowdsourced rainfall networks, this growing data resource can be more confidently701

adopted and trusted for not only urban flood applications but other water resources702

management and decision-making, challenges as well.703
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