Long-term Baseline Ozone Changes in the Western US: A Synthesis of Analyses

David D. Parrish¹, Richard G. Derwent², and Ian C. Faloona³

¹David.D.Parrish, LLC ²rdscientific ³University of California, Davis

November 24, 2022

Abstract

Quantification of the magnitude and long-term changes of ozone concentrations transported into the US is important for effective air quality policy development. We synthesize multiple published trend analyses of western US baseline ozone, and show that all results are consistent with an overall, non-linear change – rapid increase during the 1980s that slowed in the 1990s, maximized in the mid-2000s, and was followed by a slow decrease thereafter. This non-linear change accounts for $^2/3$ of the variance in the published linear trend analyses; we attribute the other 1/3 to unquantified autocorrelation in the analyzed data sets. Recent systematic changes in baseline ozone at the US West Coast have been relatively small - the standard deviation of the 2-year means over the 1990-2017 period is 1.5 ppb. International efforts to reduce anthropogenic precursor emissions from all northern mid-latitude sources could possibly reduce baseline ozone concentrations, thereby improving US ozone air quality.

1	Long-term Baseline Ozone Changes in the Western US:						
2	A Synthesis of Analyses						
3							
4	David D. Parrish ^{1,2} , Richard G Derwent ³ , and Ian C. Faloona ^{2,4}						
5	¹ David.D.Parrish, LLC, Boulder, Colorado, USA						
6	² Air Quality Research Center, University of California, Davis, California USA						
7	³ rdscientific, Newbury, Berkshire, UK						
8	⁴ Department of Land, Air, & Water Resources, University of California, Davis, California, USA						
9							
10	Corresponding author: David D. Parrish, (<u>david.d.parrish.llc@gmail.com</u>)						
11							
12	Key Points:						
13 14	• Reported trends in tropospheric ozone concentrations transported into the Western US vary between -2.8 to +7.0 ppb/decade						
15 16	• All reported trends agree with an overall non-linear change – ozone increasing before the mid-2000s and slowly decreasing thereafter						
17 18 19	• About 1/3 of the variance in reported trends is due to autocorrelation in the data, which was not adequately considered in prior analyses						

20 Abstract

21 Quantification of the magnitude and long-term changes of ozone concentrations transported into the US is important for effective air quality policy development. We synthesize 22 multiple published trend analyses of western US baseline ozone, and show that all results are 23 consistent with an overall, non-linear change – rapid increase during the 1980s that slowed in the 24 25 1990s, maximized in the mid-2000s, and was followed by a slow decrease thereafter. This nonlinear change accounts for $\sim 2/3$ of the variance in the published linear trend analyses; we 26 attribute the other 1/3 to unquantified autocorrelation in the analyzed data sets. Recent systematic 27 changes in baseline ozone at the US West Coast have been relatively small - the standard 28 deviation of the 2-year means over the 1990-2017 period is 1.5 ppb. International efforts to 29 reduce anthropogenic precursor emissions from all northern mid-latitude sources could possibly 30 31 reduce baseline ozone concentrations, thereby improving US ozone air quality.

32

33 Plain Language Summary

34 Ozone is an air pollutant with significant human and ecological health impacts. Air masses transported into the western US from over the Pacific Ocean carry ozone concentrations that are, 35 on average, a large fraction of the US health standard, so quantifying these trans-boundary 36 37 concentrations are important for developing a complete picture of US air quality. Published 38 analyses of temporal trends of these transported ozone concentrations vary widely, from early reports of increases to more recent reports of decreases. We show that the long-term ozone 39 40 changes have been nonlinear, with concentration increases before the mid-2000s, followed by decreases thereafter. Superimposed on the overall changes is significant interannual variability 41 that makes accurate determination of systematic trends over decade-scale time periods uncertain. 42 The recent decreases in transported ozone concentrations is good news for US air quality, as it 43 eases the difficulty of achieving the ozone air quality standard. 44

45 **1 Introduction**

46 Air masses from the Pacific marine environment enter the continental atmosphere over 47 the western US carrying ozone concentrations determined by natural and anthropogenic sources and sinks in upwind regions. These transported ozone concentrations are large enough to 48 49 significantly impact air quality in urban and rural US locations; fully understanding this impact requires characterization of the temporal and spatial distribution of those ozone concentrations. 50 Over the past two decades, a number of observational-based studies have quantified the average 51 52 ozone concentration changes at specific western US locations thought to represent changes in the 53 transported marine air; Table 1 lists 28 of these quantifications. Reported average trends over different time periods vary widely, from relatively large increases to smaller magnitude 54 55 decreases. Our goal in this study is to synthesize these disparate results, and to develop a consistent picture of the overall, decadal-scale temporal change in the transported ozone 56 57 concentrations over the past 3 to 4 decades at the US west coast.

A conceptual picture provides a useful framework for understanding the temporal variation of ozone at northern mid-latitudes. On average, prevailing westerly winds define a circulating air stream repeatedly passing over all continents and oceans. The average net lifetime of ozone at these latitudes (~100 days) is longer than the circum-global transport time (~30 days). Overall, the long lifetime and zonal transport imply that a mean ozone concentration is established on a time scale of weeks to months, and that this mean concentration is similar

64 throughout northern mid-latitudes; we roughly estimate that this similarity is within \pm 10% from

the top of the planetary boundary layer to ~9 km at all longitudes (e.g., see Figure 5 of Parrish et

al., 2020). This picture also implies a relatively smooth and systematic seasonal cycle of ozone in

baseline air masses. A zonally similar mean does not imply a lack of ozone variability, as ozone

varies about that mean on a wide spectrum of shorter and longer time scales, including decadal climate variability (e.g., Lin et al., 2014), sporadic events such as wildfires (Lin et al., 2017), and

heatwaves and droughts (Lin et al., 2020). The first four sections of the Supporting Information

describe this conceptual picture and ozone variability in more detail.

The subject of this study is decadal and longer scale ozone changes, which are caused by 72 long-term changes in precursor emissions and the changing climate; quantifying these changes 73 74 must account for the variability of ozone on the wide spectrum of shorter time scales, variability that tends to obscure the long-term changes of interest. Importantly, our guiding conceptual 75 picture implies that these long-term changes must be zonally similar, since it is the zonally 76 similar average ozone concentration that must change; a recent analysis of baseline ozone 77 concentrations at the west coasts of North America and Europe (Parrish et al., 2020) document 78 this expected zonal similarity. 79

Several terms appear in the literature in reference to the transported ozone concentrations. 80 A common general term is background ozone. However, it is important to note that presently 81 observed concentrations do not represent natural ozone concentrations, i.e., those that existed 82 83 before industrial development, since anthropogenic emissions of ozone precursors have increased ozone concentrations throughout northern mid-latitudes. For clarity, in this work we 84 adopt the term "baseline" (e.g., see discussion in Chapter 1 of HTAP, 2010) to refer to ozone 85 concentrations measured at western US locations that receive transported marine air without 86 significant perturbation from recent local or regional North American influences. It is the long-87 term change in these baseline concentrations that we seek to quantify. 88

89 In addition to the linear trend analyses included in Table 1, two published analyses utilized non-linear approaches to quantify long-term changes of baseline ozone concentrations at 90 northern mid-latitudes; both reached similar conclusions. Logan et al. (2012) analyzed several 91 European baseline ozone data sets that extended through 2009, and showed that ozone increased 92 by 6.5-10 ppb in 1978-1989 and 2.5-4.5 ppb in the 1990s, with that increase ending and a 93 maximum reached in the 2000s, followed by decreasing concentrations, at least in summer. 94 Parrish et al. (2020) analyzed those same data sets, which by then extended through 2018, plus 95 additional European and North American data sets; in total 8 baseline data sets from surface 96 97 sites, balloon-borne sondes and aircraft over western Europe and western North America were considered. These measurements covered altitudes from sea level to 9 km. Again, an initial, 98 relatively rapid increase was observed, with ozone concentrations reaching a maximum in the 99 100 mid-2000s, followed by decreasing concentrations. An important conclusion of these analyses is that, within statistical confidence limits, the same non-linear long-term baseline ozone change 101 has occurred throughout northern mid-latitudes at all altitudes. The goal of this paper is to 102 compare and contrast published linear trend and non-linear long-term change analyses of multi-103 decadal ozone time series collected at the surface and in the free troposphere over the western 104 US, and to synthesize those analyses to provide an accurate and complete geophysical 105 quantification of long-term changes in baseline ozone at the US West Coast. 106

107 2 Materials and Methods

As discussed above, a relatively large number of analyses of long-term baseline ozone
 changes have been published based upon ozone time series collected in the continental western
 US. This work is based upon the results of those analyses; no new data sets are analyzed.

Any analysis aiming to quantify the overall long-term change in tropospheric ozone at northern mid-latitudes must effectively deal with two issues: the non-linearity of the long-term changes that have been documented in previous work, and the substantial interannual variability in mean ozone concentrations that tends to obscure the long-term changes. All linear trend analyses return a single parameter value that quantifies the trend; this is effectively an average slope of the long-term change over the span of the analyzed time series. Hence, by its very nature linear trend analysis is ill-suited to quantify non-linear, long-term changes.

118 Without a priori knowledge of the functional form of the ozone concentration changes, long-term change analysis is generally based either on linear trend analyses or on fits of the first 119 few terms of a power series to measured ozone concentrations. A power series fit does not 120 121 assume any particular functional form for the time evolution; it is quite flexible, as it provides a 122 quantitative description of the average continuous, long-term change in any series of observations (Parrish et al., 2019). The power series fit is obtained through a regression fit of a 123 polynomial to the measurements, with retention of only the statistically significant terms to avoid 124 125 over fitting the time series. In this work no more than the first three terms are considered,

(1)

126
$$O_3 = a + bt + ct^2,$$

because no more than three statistically significant terms (i.e., those with 95% confidence 127 128 intervals not containing zero) are encountered in any fits in this study. Fits with only the first two terms statistically significant are equivalent to linear regressions. A statistically significant third 129 term indicates the average long-term change is non-linear, i.e. d^2O_3/dt^2 is non-zero, but it does 130 not indicate that the overall change is necessarily parabolic. Equation 1 does not account for 131 seasonal variations; these variations are eliminated by fitting to annual means, seasonal means, 132 or deseasonalized monthly means (sometimes called monthly residuals or monthly anomalies). 133 Ozone concentrations are consistently quantified as mixing ratios, with units of 10^{-9} mole O₃ per 134 mole air, denoted as ppb. 135

136 The time origin is chosen as the year 2000 (i.e., t in Equation 1 equals the year - 2000) to ensure precise determination of the coefficients in Equation 1. The first coefficient (a, with units 137 ppb O₃) is then the intercept of the fitted curve at the year 2000, and quantifies the absolute 138 concentration at that year. The second coefficient (*b*, with units ppb O_3 year⁻¹) is the slope of the 139 fitted curve at that year, and gives the best estimate of the time rate of change of O_3 in 2000. The 140 third coefficient (c, with units ppb O_3 year⁻²) gives the constant curvature of the fit. For non-141 142 linear fits, a negative value is generally derived for c; such curves indicate ozone concentrations increasing early in the data record, reaching a maximum, and then decreasing at later times. The 143 144 year of that maximum is

145 $year_{max} = 2000 - b/2c.$ (2)

Parameter values taken from published analyses are generally given with specified 95% confidence limits. We also specify 95% confidence limits in this work. However, it is important to recognize that confidence limits reported in the literature are generally derived from the variability of the data points about the fitted line or curve without a full analysis of the autocorrelation in those data. As a consequence, the quoted confidence limits are generally

- underestimated to an unknown extent. This issue is important to the present discussion, when
- 152 comparing and contrasting results from different analyses.

Within the baseline troposphere, average ozone concentrations do exhibit some systematic spatial variability, despite the general zonal uniformity at northern mid-latitudes; in particular baseline ozone concentrations generally increase with altitude (e.g., Oltmans et al., 2008). To remove this systematic variability when comparing long-term changes derived from data sets with different mean concentrations, fits of Equation 1 are normalized to zero at the year

- 158 2000 by subtracting the corresponding values of the a parameter. The normalization of a linear 150 fit to a quadratic fit is discussed in the following section
- 159 fit to a quadratic fit is discussed in the following section.

Polynomial fits have been used previously to quantify long-term changes in ozone 160 concentrations (e.g., Logan et al., 2012; Parrish et al., 2012; 2017; 2020; Derwent et al., 2018). 161 Such fits, as well as linear fits, are not based on a physical model of the observed temporal 162 changes, so they cannot be reliably extrapolated to times outside the period of observations. For 163 ease of presentation and discussion, the values of the b and c parameters are given as ppb O_3 164 decade⁻¹ and ppb O_3 decade⁻², respectively. The Section S5 of the Supporting Information 165 discusses the relation of polynomial fits and linear trend analysis in more detail, including their 166 respective advantages and disadvantages. 167

168 **3 Results and Discussion**

The results of Parrish et al. (2020) are reproduced in Figure 1a: deseasonalized, 169 normalized monthly means from each of eight data sets considered (gray points), 2-year averages 170 171 of those monthly means (black symbols with error bars indicating standard deviations), and a 172 quantification of the average long-term baseline ozone change (black curve). This curve is the least-squares fit of a quadratic polynomial (i.e., Equation 1) to the monthly means. Table 2 gives 173 the parameters of the fit; Equation 2 indicates that a maximum average baseline ozone 174 concentration was reached in the year 2005.7 \pm 2.5. Figure 1a also includes quadratic polynomial 175 fits to time series from a US Pacific marine boundary layer (MBL) data set and from one higher 176 altitude (1.8 km) site further inland operated by the National Park Service at Lassen Volcanic 177 178 National Park. Parrish et al. (2017) analyzed these data sets to demonstrate that the long-term trend in baseline ozone concentrations at the US West Coast had reversed from an early increase 179 to a later decrease, with a maximum reached in early to mid-2000s; Figure 1a extends the 180 analysis of those data sets through 2017. These are also two of the eight data sets analyzed by 181 Parrish et al. (2020). There are apparent differences between the three curves, most prominently 182 a more rapid recent decrease in the Pacific MBL data; however, Table 2 shows that the 183 parameters from both the Lassen Volcanic NP and the Pacific MBL fits agree with those of the 184 northern mid-latitude quadratic fit of Parrish et al. (2020) within their indicated confidence 185 limits. Thus, there is no statistically significant difference between the three quadratic fits. 186

Previously published linear trend analyses of ozone changes within the western US are compared with the results of Parrish et al. (2020) in Figure 1b and Table 1 includes reported trends from 28 separate analyses. A selected sample of those trend results are represented by straight line segments with slopes equal to the reported trends and with lengths equal to the time spans of the analyzed data sets. Each straight line segment is normalized to the non-linear analysis results by minimizing the sum of the square of the deviations between the line segment and the 2-year averages (black symbols in Figure 1b) that fall within the time span of the

corresponding data set. A common general feature characterizes these results – the earlier the 194 195 start and end times of the trend analysis, the larger the quantified trend. This feature follows from the slowing of the increase in baseline ozone indicated by the black curve in Figure 1. The three 196 197 earlier analyses (Jaffe et al., 2003; Parrish et al., 2009; and Cooper et al., 2010) consider data predominately from before the baseline ozone maximum was reached, and therefore report the 198 larger trends. The multiple analyses of Cooper et al. (2020) and the two analyses of Gaudel et al. 199 (2020) cover later time periods that include the ozone maximum with extended periods on either 200 side; they therefore report small trends, some positive and some negative. Cooper et al. (2020) 201 report three analyses, with progressively later starting times for each of 4 data sets; the derived 202 trends become progressively more negative for the later starting times. These features of the 203 linear trend analyses are all consistent with the overall behavior of the quadratic analysis 204 205 indicated by the black curve.

206 The 28 referenced trend analyses considered data sets covering a total of 34 years (1984-2017) and derived widely varying trends (-2.8 to +7.0 ppb/decade). The nonlinearity of the long-207 term change accounts for much of these differences, but interannual variability about that long-208 term change also contributes to differences in the results. The analysis of Cooper et al. (2010) 209 gave the largest trend (+7.0 ppb/decade); Lin et al. (2015) show that this result was an 210 overestimate, as were 5 related analyses (Cooper et al., 2012; Lin et al., 2015), due to substantial 211 212 influences from interannual variability. None of the 28 trend analyses accounts for uncertainties introduced into the results from the autocorrelation in data sets associated with interannual 213 variability, although some address shorter-term, month-to-month autocorrelation (e.g., Gaudel et 214 al., 2020). Section S6 of the Supporting Information discuss illustrates longer-term 215 autocorrelation in two example data sets. The analysis based on the non-linear, least-squares fit 216 included in Figure 1 (Parrish et al., 2020) effectively addresses both non-linearity and the longer-217 term autocorrelation in the longer, 40-year (1978-2017) data set. The resulting quadratic 218 polynomial fit is derived from deseasonalized monthly means, but a fit to the 2-year averages of 219 those monthly means gives nearly identical parameter values, but with significantly larger 220 221 confidence limits; these larger confidence limits are included in Table 1. The high degree of temporal and spatial averaging in the 2-year means greatly reduces the influence of the 222 autocorrelation associated with interannual variability. 223

224 We conclude that the black curve in Figure 1 provides a realistic and accurate quantification of the decadal-scale baseline ozone changes over the western US. The results of 225 all published trend analyses are generally consistent with this non-linear fit over the shorter time 226 periods of the trend analyses. The result of each linear trend analysis can be quantitatively 227 compared with the average trend quantified by the quadratic curve over the time period of the 228 229 trend analysis, which is equal to the slope of a straight line segment connecting the two points on the quadratic fit at the beginning (t_1) and end (t_2) times of the period included in the trend 230 analysis: 231

232

slope =
$$b + c^*(t_1 + t_2)$$
. (3)

Table 1 compares the slopes calculated from Equation 3 with the published trends, and Figure 2a shows their overall relationship. The quadratic fit accounts for ~67% of the variance in the 28 linear trend analysis results. We attribute the remaining ~33% of the variance to the influence of interannual variability and to any spatial differences between trends at the measurement locations, which include surface sites in marine and continental environments, as well as data sets from the lower and mid free troposphere.

It is possible to independently determine a quadratic description of the overall long-term 239 ozone changes from the reported linear trends. Equation 3 indicates that a plot of the derived 240 trends as a function of the centers of the time periods of the respective trend determinations will 241 define a straight line with a slope of 2^*c and a y-intercept of b of a quadratic curve as given by 242 Equation 1. Figure 2b shows that plot, which includes a linear regression to the 28 trend 243 determinations. Note that the x-intercept corresponds to the time that the trend is zero, i.e. the 244 year_{max} given by Equation 2. Table 2 compares the parameters from this quadratic determination 245 with the three discussed previously; generally there is agreement within the indicated confidence 246 limits, but reasons for exceptions to this agreement are discussed below. 247

The error bars illustrated in Figure 2a indicate the 95% confidence limits reported for the 248 respective trends. The fraction of these error bars not overlapping the 1:1 line (~50%) is much 249 larger than the expected 5%. (In Table 1 confidence limits are also included for the slopes 250 derived from the quadratic curve through a propagation of error calculation based on the 251 confidence limits of the quadratic parameters indicated in Table 2; inclusion of these confidence 252 limits does not significantly increase the number of points in Figure 2a that overlap the 1:1 line.) 253 Similarly, the parameter values compared in Table 1 do not agree in all cases within the derived 254 confidence limits. We attribute this disagreement primarily to underestimation of the confidence 255 limits derived in the trend analyses due to inadequate treatment of the autocorrelation in the data 256 257 sets resulting from interannual variability. The trends derived in the six earlier analyses of springtime ozone mixing ratios in the free troposphere over western North America (Cooper et 258 al., 2010; 2012; Lin et al., 2015) all are particularly influenced by interannual variability, as 259 discussed by Lin et al. (2015). Increasing all confidence limits for the trends in Table 1 and the 260 lower three rows of Table 2 by 50% brings the fraction of the error bars in Figure 2 overlapping 261 the 1:1 line into close agreement with expectations, and eliminates the disagreements in Table 2. 262 The scatter of the trend analyses about the fits in Figure 2 emphasizes the importance of careful 263 consideration of the impact of autocorrelation in time series of ozone measurements caused by 264 interannual variability. 265

266 4 Summary and Conclusions

The long net lifetime of ozone in the prevailing westerly winds at northern mid-latitudes 267 implies that a common long-term change in mean baseline ozone concentrations must have 268 occurred throughout this zone. Parrish et al. (2020) document this similarity and quantify the 269 long-term change with a fit of a quadratic polynomial to monthly and biennial means of multiple 270 data sets. Linear trends reported for different time periods in 28 published analyses of western 271 US baseline ozone data sets vary between -2.8 to +7.0 ppb/decade. The quadratic fit of Parrish et 272 al. (2020) accounts for about two-thirds of the variance in the trend results, with the remaining 273 one-third attributed to interannual variability, which adds uncertainty to the trend determinations. 274 All reported trend analyses for western US baseline ozone data sets are consistent with the 275 picture conveyed by that quadratic fit - ozone increasing at the beginning of measurement 276 records with the rate of that increase progressively slowing, and ozone reaching a maximum in 277 the mid-2000s and decreasing thereafter. The quadratic fit provides an excellent fit to the twenty 278 2-year means over the 1978-2017 period, capturing about 89% of their variance with a root-279 mean-square deviation between the fit and the means of 1.3 ppb; that fit also captures about 67% 280 281 of the variance in the 28 trend analyses, and agrees well with a quadratic fit derived from the trend analysis results themselves. 282

Baseline ozone transported into the US constitutes a large fraction of the 70 ppb ozone 283 National Ambient Air Quality Standard (NAAQS); thus changes in baseline concentrations 284 affect the difficulty of achieving the NAAQS in US nonattainment areas. During the 1980s and 285 1990s those baseline concentrations were increasing, making attainment of US air quality goals 286 progressively more difficult and partially offsetting the air quality improvement that resulted 287 from emission controls (Jacob et al., 1999). In the mid-2000s baseline ozone concentrations 288 maximized and then slowly decreased at an average rate of 0.9 ± 0.8 ppb decade⁻¹ over the 2000-289 2018 period (Parrish et al., 2020). This small decrease, if continued, would gradually lessen the 290 difficulty of achieving US air quality goals. However, despite the changes evident in Figure 1, 291 since 1990 average baseline ozone concentrations entering the western US exhibit little overall 292 change; the standard deviation of the fourteen 2-year means over the 1990-2017 period is only 293 1.5 ppb. Improvement in US ozone air quality has come primarily from continued precursor 294 emission controls that reduce local and regional photochemical ozone production; this 295 improvement can continue and possibly be augmented by international efforts to reduce 296 anthropogenic precursor emissions from all sources at northern mid-latitudes, thereby reducing 297 the hemisphere-wide transported baseline ozone concentrations. 298

299 Acknowledgments, Samples, and Data

The authors are grateful for the extensive ozone trend analyses that have been published in the scientific literature; all analysis results on which this paper is based are reported in the references included in Table 1 and Parrish et al. (2020). The Pacific MBL and Lassen Volcanic NP data in Figure S3 are from Table S1 of Parrish et al. (2021) and the U.S.National Park Service (<u>https://ardrequest.air-resource.com/data.aspx</u>, last accessed 18 February 2020), respectively. This work was not supported by any funding agency, and the authors have

306 no conflicts of interests.

307 **References**

- Cooper, O. R., et al. (2010). Increasing springtime ozone mixing ratios in the free troposphere
 over western North America, *Nature*, 463(7279), 344–348, doi:10.1038/nature08708.
- Cooper, O. R., Gao, R.-S., Tarasick, D., Leblanc, T. & Sweeney, C. (2012). Long-term ozone
 trends at rural ozone monitoring sites across the United States, 1990–2010, *J. Geophys. Res.*, 117, D22307, doi:10.1029/2012JD018261.
- Cooper, O. R., et al. (2014). Global distribution and trends of tropospheric ozone: An
 observation-based review. *Elem Sci Anth* 2: 29. DOI:
 https://doi.org/10.12952/journal.elementa.000029
- Cooper, O. R., et al. (2020). Multi-decadal surface ozone trends at globally distributed remote
 locations, *Elem. Sci. Anth.*, 8, 23. doi.org/10.1525/elementa.420
- Gaudel, A., et al. (2020). Aircraft observations since the 1990s reveal increases of tropospheric
 ozone at multiple locations across the Northern Hemisphere, *Sci. Adv., 6*, eaba8272.
- HTAP (2010). Hemispheric transport of air pollution 2010, part A: Ozone and particulate matter,
 air pollution studies no. 17, edited by: Dentener F., Keating T., & Akimoto H., United
 Nations, New York and Geneva.

- Jacob, D. J., Logan, J. A., & Murti, P. P. (1999). Effect of rising Asian emissions on surface
 ozone in the United States, *Geophys. Res. Lett.*, 26, 2175–2178,
 doi:10.1029/1999GL900450.
- Jaffe, D., Price, H., Parrish, D. D., Goldstein, A., & Harris, J. (2003). Increasing background
 ozone during spring on the west coast of North America, *Geophysical Research Letters*,
 30(12), 1613. doi.org/10.1029/2003GL017024
- Lin, M., Horowitz, L. W., Oltmans, S. J., Fiore, A. M., & Fan, S. (2014). Tropospheric ozone
 trends at Mauna Loa observatory tied to decadal climate variability. *Nature Geoscience*,
 7(2), 136–143. <u>https://doi.org/10.1038/ngeo2066</u>
- Lin, M., Horowitz, L. W., Cooper, O. R., Tarasick, D., Conley, S., Iraci, L. T., Johnson, B.,
 Leblanc, T., Petropavlovskikh, I. & Yates, E. L. (2015). Revisiting the evidence of
 increasing springtime ozone mixing ratios in the free troposphere over western North
 America, *Geophys. Res. Lett.*, 42, doi:10.1002/2015GL065311
- Lin, M., Horowitz, L. W., Oltmans, S. J., Fiore, A. M. & Fan, S. (2017). US surface ozone trends
 and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions,
 domestic controls, wildfires, and climate, *Atmos. Chem. Phys.*, *17*, 2943–2970.
- Lin, M., Horowitz, L. W., Xie, Y., Paulot, F., Malyshev, S., Shevliakova, E., et al. (2020).
 Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe.
 Nature Climate Change, 10(5), 444–451. <u>https://doi.org/10.1038/s41558-020-0743-y</u>
- Logan, J. A., Staehelin, J., Megretskaia, I. A., Cammas, J.-P., Thouret, V., Claude, H., et al.
 (2012). Changes in ozone over Europe: Analysis of ozone measurements from sondes,
 regular aircraft (MOZAIC) and alpine surface sites. *Journal of Geophysical Research*,
 117, D09301. <u>https://doi.org/10.1029/2011JD016952</u>
- Oltmans, S. J., Lefohn, A. S., Harris, J. M., & Shadwick, D. S. (2008), Background ozone levels
 of air entering the west coast of the U.S. and assessment of longer-term changes, *Atmos. Environ.*, 42, 6020–6038, doi:10.1016/j.atmosenv.2008.03.034.
- Parrish, D. D., Millet, D. B., & Goldstein, A. H. (2009). Increasing ozone in marine boundary
 layer air inflow at the west coasts of North America and Europe, *Atmospheric Chemistry and Physics*, 9, 1303–1323.
- Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., et al. (2012).
 Long-term changes in lower tropospheric baseline ozone concentrations at northern midlatitudes. *Atmospheric Chemistry and Physics*, *12*, 11,485–11,504.
 https://doi.org/10.5194/acp-12-11485-2012
- Parrish, D. D., Petropavlovskikh, I., & Oltmans, S. J. (2017). Reversal of long-term trend in
 baseline ozone concentrations at the North American West Coast. *Geophys. Res. Lett.*, 44.
 https://doi.org/10.1002/2017GL074960
- Parrish, D. D., Derwent, R. G., O'Doherty, S. & Simmonds, P. G. (2019). Flexible approach for
 quantifying average long-term changes and seasonal cycles of tropospheric trace species,
 Atmos. Meas. Tech., 12, 3383–3394, https://doi.org/10.5194/amt-12-3383-2019

Parrish, D. D., et al. (2020), Zonal similarity of long-term changes and seasonal cycles of
 baseline ozone at northern mid-latitudes. J. Geophys. Res.: Atmos., doi:
 10.1029/2019JD031908

Parrish, D. D., et al. (2021), Anthropogenic Reversal of the Natural Ozone Gradient between Northern and Southern Mid-latitudes. *Atmos. Chem. Phys. Disc.*, https://doi.org/10.5194/acp-2020-1198

368

372 surface and in the free troposphere in western North America and western Europe. The symbols

373 with error bars are 2-year means with standard deviations of the gray points, the black solid

374 curve is a quadratic polynomial fit to the gray points. The colored curves are quadratic fits from

analyses of two western US data sets (Parrish et al., 2020). (b) Quadratic fit and 2-year means

from (a) compared to line segments representing the annotated trend determinations from

377 western US data sets covering varying time periods included in Table 1.

Figure 2. (a) Correlation between published ozone trends (Table 1) and those calculated for the

same time periods from the long-term northern mid-latitude baseline ozone change quantified by

the quadratic fit for northern mid-latitudes (Parrish et al., 2020). Symbols color-coded according

to center of time spans of the the reported trends. Error bars indicate the reported 95%
 confidence limits of those trends. For clarity, some Cooper et al. (2020) symbols are slightly

offset along the x-axis. (b) Correlation between published ozone trends and center of the time

spans of the trend determinations. Symbols are in the same format as in (a). Solid line indicates

the linear regression with the square of the correlation coefficient annotated, and t = 0 reference indicated by vertical line

indicated by vertical line.

Table 1. Slopes derived from published trend analyses (with 95% confidence limits) compared

389 with slopes calculated from the quadratic fit to the northern mid-latitude analysis over the same

- time periods. Studies included report results based on mean or median annual or springtime
- 391 seasonal data.

Location	b (slope)	slope from	Years of	Reference
	(ppb decade ⁻¹)	quadratic fit	data	
		(ppb decade ⁻¹)		
Mid-troposphere	1.3 ± 0.9	0.1 ± 1.1	1994–2016	Gaudel et al. (2020)
Lower troposphere	$\textbf{-0.2}\pm0.9$	0.1 ± 1.1	1994–2016	"
Centennial, Wyoming	$\textbf{-0.6} \pm 0.9$	0.8 ± 0.9	1989–2017	Cooper et al. (2020)
Great Basin NP	0.5 ± 0.9	0.1 ± 1.1	1993–2017	"
Gothic, Colorado	-1.0 ± 0.6	0.8 ± 0.9	1989–2017	"
Grand Canyon NP	$\textbf{-0.3}\pm0.7$	0.8 ± 0.9	1989–2017	"
Centennial, Wyoming	-1.5 ± 1.2	-0.3 ± 1.2	1995–2017	"
Great Basin NP	0.2 ± 1.0	-0.3 ± 1.2	1995–2017	"
Gothic, Colorado	$\textbf{-1.9}\pm0.8$	-0.3 ± 1.2	1995–2017	"
Grand Canyon NP	-1.5 ± 0.8	-0.3 ± 1.2	1995–2017	"
Centennial, Wyoming	-2.6 ± 1.8	-1.2 ± 1.4	2000-2017	"
Great Basin NP	-0.5 ± 1.4	-1.2 ± 1.4	2000-2017	"
Gothic, Colorado	-2.8 ± 1.1	-1.2 ± 1.4	2000-2017	"
Grand Canyon NP	-2.6 ± 1.1	-1.2 ± 1.4	2000-2017	"
Great Basin NP ¹	2.9 ± 2.3	0.4 ± 1.0	1994–2014	Lin et al. (2017)
Yellowstone NP ¹	2.1 ± 1.9	1.8 ± 0.7	1988–2012	"
Pinedale Wyoming ¹	0.9 ± 1.8	1.5 ± 0.7	1990–2012	"
Mesa Verde NP ¹	3.0 ± 1.8	0.8 ± 0.9	1994–2012	"
Mid-troposphere ²	3.1 ± 2.1	0.2 ± 1.0	1995–2014	Lin et al. (2015)
Mid-troposphere ²	4.2 ± 1.7	2.2 ± 0.6	1984–2014	"
Pacific MBL	2.7 ± 0.8	2.2 ± 0.6	1988–2010	Cooper et al. (2014)
Lassen Volcanic NP	2.7 ± 1.3	2.2 ± 0.6	1988–2010	"
Mid-troposphere ²	4.1 ± 2.7	0.8 ± 0.9	1995–2011	Cooper et al. (2012)
Mid-troposphere ²	5.2 ± 2.0	2.7 ± 0.6	1984–2011	"
Mid-troposphere ²	6.3 ± 3.4	1.3 ± 0.8	1995–2008	Cooper et al. (2010)
Mid-troposphere ²	7.0 ± 2.2	3.3 ± 0.6	1984–2008	"
Pacific MBL	3.4 ± 0.9	2.9 ± 0.5	1987-2007	Parrish et al. (2009)
Lassen Volcanic NP ³	5.5 ± 2.7	3.6 ± 0.6	1988–2002	Jaffe et al. (2003)

¹Lin et al. (2017) results are taken from their Figure 13 for stations west of the Front Range of the Rocky Mountains.

² Results given for 50^{th} percentiles of the springtime seasonal data sets.

³ Jaffe et al. (2003) results are 4 season average from full seasonal data sets in their Table 2.

396	Table 2. Parameter values (with 95% confidence limits) derived from quadratic fits for northern
397	mid-latitudes and for two data sets collected in the western US (Parrish et al., 2020). Intercept

and slope are given for the year 2000.

Location	a (intercept) ¹	b (slope)	c (curvature)	year _{max}	Years of
	(ppb)	(ppb/decade)	(ppb/decade ²)		data
Northern mid-latitudes		2.0 ± 0.6	-1.8 ± 0.6	2005.7 ± 2.5	1978–2017
Lassen Volcanic NP	41.0 ± 0.7	2.6 ± 0.7	-2.4 ± 0.8	2005.4 ± 2.2	1987–2017
Pacific MBL	32.9 ± 1.1	1.4 ± 1.0	-2.5 ± 1.1	2002.8 ± 2.2	1987–2017
derived from trends		3.4 ± 0.9	$\textbf{-2.9}\pm0.8$	2005.8 ± 2.2	1984–2017

Geophysical Research Letters

Supporting Information for

Long-term Baseline Ozone Changes in the Western US: A Synthesis of Analyses

David D. Parrish^{1,2}, R. G. Derwent³, I. C. Faloona^{2,4}

¹David D. Parrish, LLC, Boulder, CO, 80309 USA

²Air Quality Research Center, University of California, Davis, CA, 95616 USA

³rdscientific, Newbury, Berkshire, UK

²Department of Land, Air, & Water Resources, University of California, Davis, CA, 95616 USA

Contents of this file

Text S1 to S6 Figures S1 to S3

Introduction

This supporting information presents additional discussion of the northern mid-latitude ozone distribution with illustrative figures and their explanations, which support the analysis and interpretation of results in the main text. Figure S1 is an estimation of the important time scales influencing ozone concentrations in the northern mid-latitude troposphere and their dependence on altitude. Figure S2 is a plot derived from the multi-model ensemble of troposphere ozone budgets compiled in Table 5 from Stevenson et al. (2006). Figure S3 illustrates the autocorrelation functions from two de-seasonalized ozone time series used in this work (Pacific MBL and Lassen NP.)

Text S1. Vertical Dependence of Major Tropospheric O₃ Timescales

In order to compare relevant time scales of vertical convective mixing, horizontal advection, dry deposition, and photochemical destruction as a function of height we estimated them in the following manner and present them in Figure S1. We use the NCEP Reanalysis Seasonal Climate composites page (https://psl.noaa.gov/cgi-bin/data/composites/printpage.pl) to derive annual mean values of air temperature, specific humidity, and zonal wind speeds from 30°N to 60°N at each of eight altitudes from 1–8 km to establish mean conditions for chemical reaction rates and horizontal advection rates. To estimate the vertical mixing due to convection we use the ERA-40 reanalysis data of convective mass flux as reported in Doherty et al. (2005) for the zonal band from 30-60N. The mass fluxes are converted to vertical velocities by the air density and these are added in series to get the progressive time scales for mixing up/down into the free troposphere. To derive time scales for dry deposition we link these convective rates with an average deposition velocity of 2.1 mm/s with the understanding that at midlatitudes in the Northern Hemisphere the surface is about half ocean ($v_d \sim 0.25$ mm/s) and half land ($v_d \sim 4.0$ mm/s). The photolysis frequencies for generating excited atomic oxygen, $O(^{1}D)$, as a function of height are taken from observations over the North Pacific presented in Hall et al. (2018) from the ATom-1 mission and scaled for diurnal and annual averaging. Reaction rates for OH + O_3 and HO₂ + O₃ and O(¹D) + H₂O, N₂, and O₂ are calculated from the coefficients provided in the JPL publication 15-10 (Burkholder et al., 2015). Representative daytime/spring tropospheric profiles of OH and HO₂ were estimated based on Tan et al. (2001).

Figure S1: Vertical Dependence of Major Tropospheric O_3 Timescales in the Zonal Band from $30^{\circ}N - 60^{\circ}N$.

Text S2. Correlation Among 26 Global Chemical Transport Models' Gross Production and Loss of Tropospheric Ozone

A common relationship found in global chemical transport models with respect to the tropospheric ozone budget is that the gross photochemical loss rates are typically about 5-10% smaller than the gross production rates, regardless of their absolute magnitude. Figure S2 plots the 21 loss and production values from the models surveyed in Stevenson et al. (2006), and also includes the background tropospheric run of Crutzen et al. (1999). Aside from the difference in absolute values in all the models spanning about a factor of two, the production and loss terms tend to compensate to a great degree due to the related photochemical cycles of O_3 , HO_x , RO_2 , and NO_x . The one counter-example is the run without anthropogenic sources reported by Crutzen et al. (1999) where the high loss rate is sustained by an extremely large stratospheric source in that model, which was two and a half times larger than the model mean in Stevenson et al. (2006).

Figure S2: Correlation of gross photochemical production and loss rates among 21 chemical transport models tabulated in Stevenson et al. (2006).

Text S3. Similarity of zonal mean ozone at northern mid latitudes

The conceptual picture for understanding the long-term changes of ozone at northern midlatitudes recognizes that the circum-global transport time is significantly shorter than the net lifetime of ozone, which implies that a relatively constant zonal mean ozone concentration exists. The circum-global transport time is about 25 to 30 days, as indicated by a simple tracer experiment of a surface release using a global Lagrangian chemistry-transport model (STOCHEM-CRI; Derwent et al., 2018) driven by 1998 meteorological fields from the UK Meteorological Office Unified Model archive (Collins et al., 1997). The STOCHEM-CRI model finds that the northern mid-latitude ozone lifetime is about 50 to 60 days, when only loss processes are considered. However, in situ ozone production from photochemical oxidation of precursor compounds proceeds simultaneously with the photochemical and dry deposition loss processes to partially balance the loss; consequaently the mean net lifetime of ozone in an isolated air parcel at northern mid-latitudes is several months or longer. Meridional eddy fluxes of ozone can lead to perturbations of local concentrations, but on average the meridional gradients of ozone are small at 30 and 60 N (e.g., Figure 2 of Crutzen et al., 1999), as are the mean meridional winds (e.g., Figure 7.17 of Peixoto & Oort, 1992); thus meridional advection does not, on average, significantly affect the mid-latitude budget of tropospheric ozone.

Within the midlatitude troposphere the rate of photochemical ozone loss decreases, while the speed of advection increases with altitude. Writ large, vertical gradients in baseline ozone arise due to the elevated source in the stratosphere coupled to the surface sink of dry deposition. Modeling of background ozone by Crutzen et al. (1999) indicates that net photochemical production above about 800 hPa in the northern midlatitudes ranges from -1.0 ppb/day in the lower troposphere to +0.2 ppb/day in the upper troposphere, further reinforcing the overall positive vertical gradient in baseline ozone, and suggesting a lifetime of ~100 days with respect to net photochemistry throughout the bulk of the troposphere. However, typical convective mass flux schemes suggest that the overturning time scale is less than ~ 20 days at northern midlatitudes (Figure S1), which tends to minimize the vertical ozone gradient (e.g., Fig 1B, Lelieveld & Crutzen, 1994). Overall, the long net ozone lifetime, zonal transport, and relatively rapid vertical overturning implies that a mean ozone concentration is established on a time scale of weeks to months, and that this mean concentration must be similar throughout northern midlatitudes. This picture also implies a relatively smooth and systematic seasonal cycle of ozone in baseline air masses.

Text S4. Ozone variability at northern mid latitudes

Ozone varies about the zonally similar mean ozone concentration on a wide spectrum of shorter and longer time scales. The mean ozone concentration varies seasonally, due to seasonal changes in sources and sinks. An air parcel within the circulating river of air receives sporadic injections of ozone and its photochemical precursors from European, Asian and North American anthropogenic sources and from the natural stratospheric source. Ozone injected from the extremely arid stratosphere maintains an anti-correlation with water vapor across vast expanses of the troposphere (Newell et al., 1999) extending its photochemical lifetime with respect to OH production. The infusions of anthropogenic NO_x and VOC precursors into the general tropospheric flow, accelerate photochemical ozone production, but also concomitantly enhance photochemical losses as well due to increases in HO_x abundance and production of NO₃ radicals in the dark. Consequently, significant deviations from the circulating mean ozone are brought about in the environment of prolonged net photochemical lifetimes. In addition, air parcels with different ozone production and loss histories are entrained from and exported to higher and lower latitudes. The overall result is local and regional, quasi-chaotic ozone variability superimposed on the mean concentration.

Text S5. Quadratic fits vs. Linear trend analysis

Cooper et al. (2020) discuss two particular problems with the use of polynomial fits to characterize long-term ozone changes. The first is the inability of polynomials to describe multiyear ozone fluctuations that can be fit by other techniques. For our purposes, this inability is an advantage rather than a problem, because we aim to avoid the influence of multi-year ozone fluctuations, i.e., interannual variability, which obscure the systematic decadal scale changes that are our focus. The second identified problem is that the long-term change determination over the entire time span of the measurements, including at the beginning of the data record, is impacted by additional data added to the end of a time series as new measurements are made. The results of polynomial fits do change in this manner, because the parameter values are more precisely determined by longer time series, but these more precise parameter values generally fall within the confidence limits of the earlier derived, less precise parameters. Moreover, fits to progressively longer time series allow for the inclusion of additional terms in the polynomial fits, allowing flexibility in fitting the later data, and minimizing changes of the fit to the earliest measurements. Notably, this second problem also characterizes linear trend analysis, as the derived trend generally changes as a time series of measurements is extended; however linear trend analysis does not provide a means for the functional form to evolve as non-linear changes become apparent. Parrish et al. (2019) show that the polynomial fits, as used in this work, provide an effective approach for quantifying non-linear, long-term changes of atmospheric concentrations. The ability of polynomial fits to effectively quantify non-linear, long-term changes in the presence of substantial interannual variability is more important for our purposes, than are any problems.

Text S6. Autocorrelation functions for two of the time series used in this analysis (Pacific MBL and Lassen Volcanic NP)

The de-seasonalized monthly ozone residuals for two of the time series in the analysis of Parrish et al. (2020) are used to calculate their autocorrelation functions shown in Figures S3. The decorrelation times indicated in the annotations are used to correct the confidence limits of uncertainties of the parameters derived in the long-term change fits. While the majority of the autocorrelation fades after 1-2 months, lingering autocorrelation out to 3 years can be seen in the Pacific MBL data, and from 2-4 years in the Lassen NP data. Failure to adequately account for autocorrelation of data over the full spectrum of significant time scales results in an overestimation of the accuracy of parameter values (i.e., underestimations of their confidence limits) derived from any linear or non-linear regression analyses such as the literature results discussed in our manuscript and included in Table 1. This lingering autocorrelation issue is at least partially overcome by the 2 year means used in deriving the Figure 1.

Figure S3: Autocorrelation functions for the (left) the 21 year time series in the Pacific MBL and (right) the 15 year time series from Lassen Volcanic NP. An exponential function is fit to the near-term function to estimate the correction to confidence limits of the decadal trends reported in the literature.

Additional References:

Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Cappa, C., Crounse, J. D., Dibble T. S., et al. (2015). *Chemical kinetics and photochemical data for use in atmospheric studies; evaluation number 18.* Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration.

Collins, W. J., Stevenson, D. S., Johnson, C. E., & Derwent, R. G. (1997). Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls, *Journal of Atmospheric Chemistry*, *26*, 223-274.

Crutzen, P. J., Lawrence, M. G. & Pöschl, U. (1999) On the background photochemistry of tropospheric ozone, *Tellus B: Chemical and Physical Meteorology*, *51*:1, 123-146, DOI: 10.3402/tellusb.v51i1.16264

Derwent R. G., Parrish D. D., Galbally, I. E., Stevenson, D. S., Doherty R. M., Naik, V., & Young, P. J. (2018). Uncertainties in models of tropospheric ozone based on Monte Carlo analysis: Tropospheric ozone burdens, atmospheric lifetimes and surface distributions, *Atmos. Environ. 180*, 93–102, doi.org/10.1016/j.atmosenv.2018.02.047

Doherty, R. M., Stevenson, D. S., Collins, W. J., & Sanderson, M. G. (2005). Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model, *Atmos. Chem. Phys.*, *5*, 3205–3218, https://doi.org/10.5194/acp-5-3205-2005.

Hall, S. R., Ullmann, K., Prather, M. J., Flynn, C. M., Murray, L. T., Fiore, A. M., Correa, G., Strode, S. A., Steenrod, S. D., Lamarque, J.-F., Guth, J., Josse, B., Flemming, J., Huijnen, V., Abraham, N. L., & Archibald, A. T. (2018). Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, *Atmos. Chem. Phys.*, *18*, 16809–16828, https://doi.org/10.5194/acp-18-16809-2018.

Lelieveld, J., & Crutzen, P. J. (1994). Role of deep cloud convection in the ozone budget of the troposphere, *Science*, *264* (5166) 1759-1761

Newell, R. E., Thouret, V., Cho, J. Y. N., Stoller, p., Marenco, A., & Smit, H. G. (1999). Ubiquity of quasi-horizontal layers in the troposphere, *Nature*, *398*(6725) 316-319.

Peixoto, J. P., & Oort, A. H. (1992). *Physics of Climate*. New York, NY: American Inst. of Physics.

Stevenson, D. S., et al. (2006), Multimodel ensemble simulations of present-day and near-future tropospheric ozone, *J. Geophys. Res.*, *111*, D08301, doi:10.1029/2005JD006338.

Tan, D., I. Faloona, J.B. Simpas, W. H. Brune, et al. (2001). OH and HO₂ in the tropical pacific: Results from PEM-Tropics B. *J. Geophys. Res.*, *106* (D23):32,667-32,681.