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Abstract

By filtering the incoming climate signal when producing streamflow, river basins can attenuate – or amplify – projected

increases in rainfall variability. A common perception is that river systems dampen rainfall variability by averaging spatial and

temporal variations in their watersheds. However, by analyzing 671 watersheds throughout the United States, we find that

many catchments actually amplify the coefficient of variation of rainfall, and that these catchments also likely amplify changes

in rainfall variability. Based on catchment-scale water balance principles, we relate that faculty to the interplay between two

fundamental hydrological processes: water uptake by vegetation and the storage and subsequent release of water as discharge.

By increasing plant water uptake, warmer temperatures might exacerbate the amplifying effect of catchments. More variable

precipitations associated with a warmer climate are therefore expected to lead to even more variable river flows – a significant

potential challenge for river transportation, ecosystem sustainability and water supply reliability.
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ABSTRACT

By filtering the incoming climate signal when producing streamflow, river basins can attenuate – or amplify – projected increases
in rainfall variability. A common perception is that river systems dampen rainfall variability by averaging spatial and temporal
variations in their watersheds. However, by analyzing 671 watersheds throughout the United States, we find that many
catchments actually amplify the coefficient of variation of rainfall, and that these catchments also likely amplify changes in
rainfall variability. Based on catchment-scale water balance principles, we relate that faculty to the interplay between two
fundamental hydrological processes: water uptake by vegetation and the storage and subsequent release of water as discharge.
By increasing plant water uptake, warmer temperatures might exacerbate the amplifying effect of catchments. More variable
precipitations associated with a warmer climate are therefore expected to lead to even more variable river flows – a significant
potential challenge for river transportation, ecosystem sustainability and water supply reliability.

The temporal variability of stream flow mediates a variety of social and ecological outcomes. For example, daily flow
variability determines the suitability of aquatic habitats1, whereas variations over longer time scales affect the resilience of water
supply2, river transportation3, local economic development4 and the potential for violent conflicts5. The coefficient of variation
of stream flow (CVQ, defined as the ratio between the standard deviation of flow and its mean) plays a particularly important role,
demarcating whether riverine processes are variance-dominated, with long periods of little to no flow interspersed with erratic
bursts of high discharge, or mean-dominated, with flow rates persistently at or near their long-term mean. This distinction has
implications for the form, function and resilience of river-dependent systems6.

Although driven by the variability of incoming precipitation, stream flow variability is ultimately determined by physical
processes that take place throughout (and below) the land surface. Through these processes, catchments regulate stochastic
weather fluctuations to sustain stream-dependent social and ecological systems, and to potentially buffer these systems against
changes in these fluctuations7, 8. This buffering of water variability is commonly deemed an ecosystem service provided by the
catchment9, and emerges from a long-term co-evolution between the landscapes and the systems that depend on them, against
the backdrop of a continually changing climate10–14. Yet today’s climate is changing at an unprecedented rate. The temporal
variability of rainfall is projected to increase in most regions of the world, where increased temperatures will be associated with
more intense and less frequent precipitation events15. The standard deviation of daily rainfall is projected to be more sensitive
than rainfall averages to changing temperatures (4−5% per ◦C versus ≤ 1−2% per ◦C )15, 16. The coefficient of variation of
both rainfall and stream flow has increased significantly in most regions of the United States over the last four decades (Figure
1a). The ability of social and ecological systems to adapt to these changes is determined by the capacity of river catchments to
buffer the effect of rapidly changing rainfall variability as they generate flow.

Using daily stream flow and precipitation data from 671 catchments located across the contiguous United States for the
1980-2015 period (see Methods), we show that many catchments in fact amplify the variability (as quantified by CV) of
incoming precipitation (Figure 1 a-c). These catchments might also amplify projected changes in rainfall variability, which
has potentially troubling implications for stream-dependant social and ecological systems. We build on a widely used model
of catchment-scale water balance dynamics17–19, to relate the amplifying effect of catchments to the interplay between two
fundamental hydrological processes: the partitioning of rainfall into runoff and evapo-transpiration, and the retention of
non-evapotranspired water as storage prior to its release as stream flow. We show that an increase in the proportion of
precipitation lost to evapo-transpiration (e.g., due to higher temperatures20) will exacerbate the amplifying effect of catchments
and ultimately increase the variability of stream flow, even if rainfall variability is held constant. This suggests that projected
increases in rainfall variability and evapotranspirative losses might both contribute to increasingly variable stream flows. We



show that these two mechanisms had a driving influence on observed historical changes in CVQ.

Results

The ratio r = CVQ
CVP

between the coefficients of variation of stream flow and precipitation spans several orders of magnitude
across the conterminous United States. For about a third of the 671×4 considered combinations of catchments and seasons,
daily stream flow has a higher coefficient of variation than the incoming daily precipitation (Figure 1b). However, the analysis
also reveals a persistent patterns of variations in the r ratio across seasons, observation time scales and geographic regions,
as shown on Figure 1c. Catchments in seasons (summer) or locations (Great Plains and Southwest) where temperature and
precipitation peaks are in phase see a larger share of their precipitation ’lost’ as evapo-transpiration21 and tend to amplify
the variability of rainfall (r > 1). In contrast, catchments where flow generation is governed by long term (seasonal) water
storage, either as snow pack (Rocky Mountains and High Plains) or in the subsurface (West Coast summers), tend to dampen
the variability of daily rainfall. However, a majority (83%) of catchments and seasons amplify the variability of monthly rainfall
(obtained from daily observations using a 30-day moving average, Figure 1d). Based on these results, we hypothesize that the
partitioning and retention of rainfall by catchments, along with the considered observation time scale, play an important role in
determining whether catchments amplify or attenuate incoming rainfall variability.

We formalize this hypothesis by deriving the r ratio of catchments based on four common, albeit extremely simplifying,
assumptions about the underlying hydroclimatic processes. First, rainfall is assumed to follow a stationary marked Poisson
process with exponentially distributed event depths17. Second, instantaneous evapo-transpirative losses from the unsaturated
zone are assumed proportional to its volumetric water content. Under these conditions, pulses of deep infiltration from the
unsaturated zone to the saturated zone (here designated as ‘recharge events’) themselves follow a stationary marked Poisson
process with a lower event frequency than rainfall, but with identically distributed event depths18. Third, stream flow generation
by the saturated subsurface is assumed proportional to the volume of stored water (with proportionality constant, or inverse
mean hydraulic response time, k [T−1]), implying an exponential decrease in stream flow through time between recharge
events19. Lastly, the mean and variance of stream flow are dominated by base flow – the river discharge component associated
with groundwater – at the considered (daily to monthly) time scales . Under these assumptions, the (squared) r ratio of
catchments can be expressed as (see Methods):

r2 =
CVQ

CVP
=

f (ψ)

φ
, (1)

where f (ψ)= ψ−1+e−ψ

ψ
< 1 is a strictly increasing function. Parameter φ ∈ [0,1] represents the water yield, that is the proportion

of the incoming rainfall that leaves the catchment as stream flow. Parameter ψ ≥ 0 is the ratio between the observation time
scale (e.g. monthly versus daily flows) and the mean hydraulic response time of the catchment (see Methods). Equation (1)
allows isovalues of r to be mapped on the φ ×ψ plane (Figure 2a). Of particular interest is the isovalue line r = 1, which
separates catchments that amplify (above the line on Figure 2a) or attenuate precipitation variability. The four assumptions
that underpin Equation (1) are restrictive and likely fail to capture some of the processes that dominate flow generation in
individual catchments. For example, the model is parametrized independently for each season, which allows it to capture
seasonal changes in rainfall and temperature: a different water yield value is estimated for each season. However, carryover
water storage between wet and dry seasons (both as soil moisture and groundwater) might violate the model’s stationarity
assumption23. In addition, non-baseflow components of discharge may be non-negligible in many catchments, where the stream
flow recession is better-approximated as a nonlinear power-law relationship, rather than the linear storage-discharge relationship
assumed in Equation (1). However, these processes are unlikely dominant controls on stream flow variability at the daily to
monthly time scales that we consider, as suggested by the numerical simulations presented in the Supplementary Discussion.

Applied to the 671×4 combinations of catchments and seasons of the dataset at daily, weekly, and monthly observation
time scales, the model predicted observed values of r with a mean absolute percentage error (MAPE) of 49%. As expected,
predictions are substantially better in small catchments that are well aligned with the lumped nature of the model, and in
regions and seasons where dominant hydrologic processes are expected to align with the theoretical assumptions of the model
(Figure 2c). For example, snow-dominated hydrology throughout the winter season in the Rocky Mountain region violates
the assumption that catchment storage occurs in the subsurface and is proportional to discharge at the outlet. In many of
the seasonally dry western regions, wet season onset during the Fall months of September, October, and November violate
the assumption that rainfall statistics within a given season are stationary23. In the summer months of the desert Southwest,
monsoonal rainfall likely arrives in short, intense bursts that trigger overland flow24, which is not strictly accounted for by
the underlying runoff generation model19. Removing the 15% of catchments in region-seasons, where hydrology is likely
dominated by snow (Fall and Winter in the Rockies, High Plains, Great Plains, Great Basin and Sierra Nevada) or overland flow
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Figure 1. a. Changes in the coefficient of variation of daily streamflow (CVQ, large symbols) and precipitation (CVP, small
symbols) by season (symbol quadrants) and region of the conterminous United States. Colors indicate statistically significant
(p<0.05) increases (red) or decreases (blue) between 1980 and 2015, as indicated by student t-tests on CV values computed
over successive periods of 5 years for 563 of the 671 considered catchments with uninterrupted time series of observations (see
Methods). Geographical Regions22 correspond to the Pacific Northwest (PNW), Pacific Coast (PCS), Great Basin (GBS),
Southwest (SWS), Rockies (RMT), High Plains (HPN), Great Plains (GPN), Mississippi Valley (MSV), Great Lakes (GLK),
Tennessee Valley (TNV), Gulf Coast (GCS), Ohio Valley (OHV) and Atlantic Coast (ACS). Numbers below the symbols
indicate the number of catchments per region. b. Gage locations of the 671 catchments of the dataset22, with symbols split into
seasonal quadrants. Colors indicate whether the CV of daily streamflow in the 1980-2015 period is larger (red) or smaller (blue)
than rainfall. c. Ratio between CVQ and CVP for different regions (RMT vs. SWS, all seasons), seasons (summer vs. winter, all
regions) and observation time scales (daily vs. monthly-averaged observations, all seasons and regions). d. Comparison
between CVQ and CVP for monthly-averaged observations. The proportion of catchment-season combinations with CVQ >CVP
increased from 33% to 83%, compared to the equivalent map for daily observations in Panel b.
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(Summer and Fall Monsoon in the Southwest) reduces the MAPE to 33%. Notably, despite its shortcomings in predicting the
actual value of r in some catchments, the model predicted whether catchments amplify (r > 1) or attenuate (r < 1) rainfall with
an accuracy above 80% for the full sample of catchments and seasons (Figure 2b).

These results suggest that the amplifying effect of catchments is ultimately determined by a competition between two
fundamental processes captured by the model, precipitation partitioning and storage retention, which appear to transcend the
complex and highly local nature of stream flow generating processes in individual catchments. On the one hand, the water yield
φ quantifies how infiltrated precipitation is partitioned between river discharge and evapo-transpiration. If all other conditions
remain the same, an increase in water yield increases the mean value of stream flow and therefore decreases its coefficient of
variation and r ratio. On the other hand, the parameter ψ quantifies how non-evaporated water is retained between precipitation
events and gradually released into the stream. Catchment retention affects stream flow variability differently for different
observation time scales. If the observation time scale exceeds the average response time of the catchment (ψ > 1), the serial
correlation introduced by catchment retention is ‘averaged out in the observed stream flow time series and will have little
effect on r. In contrast, stream flow observations taken at a short enough time scale (ψ < 1) will capture the serial correlation
introduced by catchment retention. These correlations attenuate the variance of stream flow and therefore decrease r.
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Figure 2. a. Theoretical (squared) r ratio as a function of the water yield φ and the ratio ψ between the observation time scale
and the mean response time of the catchment. Partitioning (φ ) and retention (ψ) processes interact non-linearly to determine
the r ratio of catchments. b. Empirical validation of catchment types (r > 1 vs r < 1). Colored dots represent 671 catchments
× 4 seasons × 3 observation time scales (1,7 and 30 days). Catchments with empirical r above (below) the unit are represented
in red (blue) and are located above (below) the theoretical separation line with an accuracy above 80%. c. Absolute percentage
error (APE) between observed and predicted r ratios by geographical region and season. The mean APE across all catchments,
seasons and time scales (daily, weekly and monthly) is 49%, N=8,004. Removing 1,616 observations in regions and seasons
dominated by snow (Fall and Winter in the Rockies, High Plains, Great Plains, Great Basin and Sierra Nevada) or desert
monsoon (Summer and Fall in the Southwest) reduces the mean APE to 33%.

We turn to investigating whether catchments that amplify the variability of incoming precipitation also amplify changes in
that variability. This may not be the case, for instance, if changing rainfall variability affects catchments’ ability to partition or
retain water through changes in vegetation cover or snow pack. To estimate these effects, we use a linear regression framework,
where the r ratio is taken to be a function of relative rainfall variability (CVP) and time, and where CVP is a function of time.
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Taking the full time-derivative of the coefficient of variation of stream flow, CVQ, then yields a linear function of ∂CVP
∂ t and CVP:

dCVQ

dt︸ ︷︷ ︸
Total

=
d (r ·CVP)

dt
(2)

= r
∂CVP

∂ t︸ ︷︷ ︸
Direct

+
∂ r

∂CVP

∂CVP

∂ t
CVP︸ ︷︷ ︸

Indirect

+
∂ r
∂ t

CVP + r
∂CVP

∂ r
∂ r
∂ t︸ ︷︷ ︸

Exogenous

The first term of the derivative represents the direct (linear) response of the catchment to changing rainfall variability, as
described by the ratio r. This term demonstrates that catchments that amplify rainfall variability may also amplify changes in
rainfall variability. The second term represents the indirect (non linear) effect of changing rain regimes, where the r ratio is
itself a function of rainfall variability. For example, more variable precipitation might affect vegetation cover in a way that
decreases the proportion of rainfall lost to evapo-transpiration25. This increase in water yield would lower the r ratio (per
Equation 1), in which case ∂ r/∂CVP would be negative. The last terms represent the effects of an exogenous change in the r
ratio that is not elicited by a change in rainfall variability. For example, warmer temperatures will cause less precipitation to
fall as snow, which has been linked to lower water yields20. This would increase r (per Equation 1) irrespective of changing
precipitation variability, in which case ∂ r

∂ t would be positive. Such changes in catchment processes will directly influence
streamflow variability (third term of Equation 2) but might also feed back to affect the variability of precipitation (last term of
Equation 2), for instance by affecting precipitation recycling processes26.

We use linear regressions to estimate the four terms of Equation 2 based on historical changes in rain and flow variability
(see Methods). We focus on a subset of 563 catchments that have 35 years of continuous daily observations available, as shown
in Supplementary Table S1. Regression results are shown in supplementary Table S2 and used to construct the graphs on Figure
3. Figure 3a shows a general historical increase in CVQ (p<0.01) for daily, weekly and monthly observations in all seasons,
except winter when CVQ decreased (p<0.01). Changes in CVQ appear dominated by exogenous changes in r (Figure 3a, red)
and, to a lesser extent, by the direct effect of changes in CVP (blue). The indirect effect of changes in CVP (green) generally
operates in the opposite direction to the two other components. This suggests that, on average across our dataset, catchments
tend to ‘adapt’ their response to increasing rainfall variability so as to attenuate its overall effect on the variability of river flow –
a negative feedback that has been associated with hydrologic resilience in past studies27. Of note is that the indirect effect of
CVP on changes in CVQ is also substantially smaller in magnitude than the direct effect. The ratio between the two effects is
significantly smaller in absolute value than 0.55 (p < 0.01) for all seasons and observation time scales (dots on Figure 3b).
It is important to keep in mind that the above results are based on regression estimates that represent average effects across
catchments. Historical changes in CVQ, and their underlying components, vary substantially across regions (Figure 1a) and
individual catchments. A Monte Carlo analysis (see Methods) carried out to account for this variability revealed that the direct
effect remains larger than the indirect effect for nearly all (>95%) simulations (box plots on Figure 3b). Together, these results
suggest that catchments that currently amplify rainfall variability are also likely to amplify changes in rainfall variability.
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Figure 3. a. Components of changes in historical CVQ. Dots represent the average annual change in CVQ across all gages
(N=563) by season and for daily (D), weekly (W) and monthly (M) observations. Colored bars represent the direct (blue) and
indirect (green) contributions of changes in CVP, and the contribution of exogenous changes in r (red) estimated through linear
regression. b. Ratio between the indirect and direct effects of CVP on historical changes in CVQ. Dots indicate the ratios
between α12 ·E[CVP] and α1, where α1 and α12 are linear regression coefficients (see methods) and E[CVP] is the observed
CVP averaged across gages. Bootstrapped 95% confidence intervals are smaller than symbol sizes so not displayed. Purple
boxplots represent simulated variations across catchments: α12 and α1 are drawn from independent normal distributions with
mean and standard deviation given by the linear regression, and CVPs are observed individually at each gage. The ratio between
average indirect and direct effects is smaller than 0.55 for all seasons and time scales (p<0.01). The direct effect is larger than
the indirect effect for >95% of the simulations. c. Comparison between the regression coefficient α2 (black) and empirically
estimated r ratios (purple), see Methods. Most regression coefficient lie within one standard deviation (error bar) of the mean
empirical observation of r (empty symbol).
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Implications
River catchments filter incoming climate signals, and therefore determine the extent to which changing rain regimes ultimately
translate into changing water availability for stream-dependent social and ecological systems. Whether a catchment amplifies
or attenuates changes in rainfall variability emerges from the competition between two fundamental hydrologic functions –
partitioning and retention – that are active in all watersheds. The universal nature of these drivers can facilitate the assessment
of climate vulnerability in data-scarce basins, which is an enduring global challenge28. The two parameters that describe this
competition – water yield and the mean catchment response time – can be directly estimated if (even sparse) rainfall and stream
flow records are available29, 30.

These findings have three important implications in the context of climate change. First, by decreasing the water yield (for
instance by decreasing the fraction of precipitation falling as snow20), increased temperatures will likely increase catchments’
propensity to amplify the relative variability of incoming rainfall. The model associates any relative decrease in φ with an
equivalent relative increase in r2, per the inverse proportional relation between φ and r2 in Equation 1. This implies that, by
affecting water yield, increasing temperatures will increase the coefficient of variation of stream flow, even if rainfall variability
remains constant. Second, partitioning (φ ) and retention (ψ) interact non-linearly to determine the r-ratio of the catchment. By
capturing this relation, the model may be used to evaluate the effect of catchment alterations − land cover changes, for instance
− on the amplification or attenuation of changing rainfall variability. For example, an increase in water yield from φ = 0.36
to φ = 0.4 (perhaps associated with deforestation31) will have a disproportionately large bearing on r2 for catchments with
short response times, where a large value of ψ maps to steep isovalues of r in the φ ×ψ plane on Figure 2a. Third, the theory
elucidates the relation between observation time scales and catchments ability to filter incoming rainfall variability. A catchment
that attenuates rainfall variability for short (e.g., daily) observation time scales will nonetheless amplify rainfall variability
for sufficiently long (e.g., monthly) time scales. The appropriate time scale of observation is determined by the considered
application. This implies that a given catchment can both attenuate changes in rainfall variability for some applications (e.g.,
fish habitat driven by daily variability), while amplifying it for others (e.g., agricultural yields driven by seasonal variability).
Therefore, the application context, not only the underlying hydrologic processes, determines the vulnerability of watersheds to
changing rain regimes32.

Methods

Data and pre-processing
Stream flow data were obtained from the Catchment Attributes and Meteorology for Large Sample Studies (CAMELS)
dataset compiled by the United States Geological Survey22. We used precipitation data from the North America Land
Data Assimilation data preprocessed to match the catchments of the CAMELS dataset22. The combined stream flow and
precipitation dataset is publicly available at https://ral.ucar.edu/solutions/products/camels and provides
daily rainfall and stream discharge observations from 671 gaged catchments with minimal human impact in the lower 48 US
states between 1980 and 2015. Observations from 16 season-catchment combinations, most of them in winter, (Supplementary
Table S1) were removed because we were unable to identify suitable recessions to determine k (see below), likely due
to snow-dominated runoff processes. Separately, we removed 108 gauges from the regression analysis due to incomplete
(interrupted) time series of observations (Table S1). Our sample sizes were therefore 2668 and 2252 catchment-season
combinations for the validation and regression analyses, respectively. All data used in both analyses are freely available at
https://curate.nd.edu/show/bc386h47534. As seen on Supplementary Figure S1, the dataset covers a very wide
range of catchment sizes, topography, vegetation and hydroclimatic characteristics22.

Time series of daily precipitation and stream flow observations were split into four seasons according to their observation
month: December to February, March to May, June to August and September to November, respectively for Winter, Spring,
Summer and Fall. Moving average window of seven and thirty days were then applied to aggregate the 35 years of daily
precipitation and stream flow time series into weekly (T0 = 7) and monthly (T0 = 30) observation time scales, respectively. The
coefficient of variation (CV ) of precipitation and stream flow, and their ratio r, was then computed using the aggregated time
series. Note that CVQ [−] is unit-less and represents the CV of both specific (i.e. area-normalized) and total discharge. Water
yields φ were then computed for each season and catchment by taking the ratio between total seasonal stream flow volume and
total seasonal precipitation volume, both taken over the whole period of data observation. Lastly, the linear recession constant
k was estimated by identifying suitable recessions (at least 4 consecutive days with a decreasing, concave-up hydrograph)
to be fitted with non-linear least squares, as detailed in33. The recession constant was used to compute ψ = k ·T0 for each
combination of catchments, seasons, and observational time scales.

We estimated temporal changes in CVP and CVQ by assuming that long-term precipitation and stream flow dynamics
emerge from stationary processes that take place within multiple juxtaposed periods6, 34. The 35 years of continuous daily
observations available for 563 catchments of the data-set (see Supplementary Table S1) were split into seven non-overlapping
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periods of five years. To ensure that our results are not driven by the arbitrary period length, we reproduced our analyses using
period lengths of two and 10 years (see Supplementary Figures S2 and S3). The coefficients of variation of precipitation and
river flows were then computed for each period, catchment, season and (daily, weekly and monthly) observation time scales.
Pairs of successive periods (t−1 and t) were then combined to estimate temporal changes in stream flow and precipitation
variability (∆CV (t)

Q = CV (t)
Q −CV (t−1)

Q and ∆CV (t)
P = CV (t)

P −CV (t−1)
P ) along with the average level of rainfall variability

(CVP
(t)

= 0.5CV (t)
P +0.5CV (t−1)

P ) across the pair.

Hydrological Model
The model assumes that precipitation is a marked Poisson process, with frequency λP [T−1] and exponentially distributed event
volumes with (area-normalized) mean αP [L]17. Due to the assumed independence of rain events, the coefficient of variation
(CV ) of total rain volume, aggregated over T0 days, is CVP =

√
2/(T0λp) (see Supplementary Discussion for derivation details).

All incoming water is assumed to infiltrate into a subsurface unsaturated zone, meaning that canopy interception processes are
embedded in αP.

Once infiltrated, water exits the unsaturated zone layer, either via evapo-transpiration (at a rate assumed proportional to
current unsaturated zone water content18) or via percolation into the saturated zone. Such runoff generating recharge events are
created when a contemporaneous rain event causes unsaturated zone moisture content to exceed an effective field-capacity,
where water freely drains to the saturated zone. Under the above assumptions about the rainfall process and drainage from the
unsaturated zone, it can be shown that the probability distribution of depths of recharge events is approximately equal19 to
the probability distribution of rainfall depths (i.e., both distributions are exponential with mean αp). Climate processes and
water storage dynamics in the unsaturated zone therefore jointly determine the water delivered to the saturated zone, which
generates discharge in the stream as water tables lower between recharge events. These recharge events can be described as a
marked Poisson process with a censored frequency λ < λP. The censoring ratio φ provides a simple measure for quantifying
the fraction of total rainfall that exits the catchment as stream flow over the long term29, also known as the water yield:

φ =
λ

λP
=

µQ

µP
∈ [0,1] (3)

where µp and µQ are the long-term mean precipitated and discharged water volumes. Note that the above expression neglects
contributions to total stream flow volume that are not associated with discharge generated by a subsurface saturated zone. This
explains the relatively poorer performance of the model in catchments (e.g., SWS in summer, Figure 2c) where overland flow is
likely substantial.

Discharge at the catchment outlet is assumed proportional to storage within the saturated zone, with a proportionality
constant k [T−1], implying an exponential flow recession between rainfall events with characteristic drainage timescale k−1

[T]. In contrast to the rainfall and recharge events, the stream flow time series is serially correlated due to retention and slow
release of storage at a rate dependent on the hydraulic response time of the catchment k−135. This process affects the variance
of stream flow as follows (see Supplementary Discussion for derivation details):

σ
2
Q = 2λα

2
Pk−1

(
kT0−1+ e−kT0

)
(4)

Expressing mean cumulative stream flow over a period T0 as T0λαP leads to an expression for the coefficient of variation of
stream flow (CVQ) and the (squared) r ratio:

r2 =
CV 2

Q

CV 2
P
=

λP

λ
· kT0−1+ e−kT0

kT0
=

f (ψ)

φ
(5)

where ψ = kT0 > 0 is the ratio between the observation time scale (T0) and the mean response time of the catchment (k−1).
The function f (ψ) = ψ−1+e−ψ

ψ
< 1 is strictly increasing and represents the serial correlation introduced by retention, and its

attenuating effect on streamflow variability.
The model was validated by computing the absolute percentage error between the r2 ratio predicted using Equation 5 based

on estimated k and φ , and the r̂2 ratio obtained from empirical estimations of CVQ and CVP:

APE = 100× | r
2− r̂2 |

r̂2

We also evaluate the model based on the frequency of correct predictions of r < 1.
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Regression analysis
We used linear regressions to analyse temporal changes in CVQ and CVP. We first determined whether differences in CV
between subsequent periods were significantly different from zero by conducting student-t tests on ∆CVQ and ∆CVP for each
season and geographical region (Figure 1a), with standard errors clustered by catchment36.

To relate changes in CVQ to changes in CVP, Equation 2 is expressed as the following linear regression:

∆CVQ︸ ︷︷ ︸
Total

= α0 +α1CVP︸ ︷︷ ︸
Exogenous

+α2 ·∆CVP︸ ︷︷ ︸
Direct

+α12 ·∆CVP ·CVP︸ ︷︷ ︸
Indirect

+ε. (6)

where ε is a random error term assumed to have a mean value of zero and be independent across catchments. Variables
∆CVQ, ∆CVP and CVP are obtained from CVQ and CVP estimated for successive 5-year periods of the observation record
as described above. Assuming that these estimates are discrete approximations of the corresponding terms in Equation 2,
regression coefficients can be interpreted as the exogenous (α1 ≡ ∂ r/∂ t and α0 ≡ r ·∂CVP/∂ r ·∂ r/∂ t), direct (α2 ≡ r) and
indirect (α12 ≡ ∂ r/∂CVP) components of ∂CVQ

∂ t . Regression coefficients were estimated for each season and observation time
scale using ordinary least squares, with standard errors clustered by catchment36.

Plugging regression estimates back into Equation 6 and omitting random errors allowed us to plot the average contributions
of the direct, indirect and exogenous effects on the average temporal change in CVQ across catchments, for each season and
considered time scale (Figure 3a). The relative importance of the direct and indirect effects was estimated by taking the ratio
between the corresponding terms of Equations 6 (Figure 3b, dots). The variability of this ratio across catchments was estimated
through numerical simulations by (i) sampling CVP from the set of 563 catchment-averaged observations; (ii) sampling α2 and
α12 from independent normal distributions with mean and standard deviations given by the relevant regression estimates; and
(iii) computing the ratio of indirect vs. direct effects as CVP

α12
α2

. Box plots on Figure 3b represent the distribution of that ratio
obtained from 1000 Monte Carlo repetitions.

We carried out two robustness checks to build confidence in our regression results. First, the analysis implies that the
regression coefficient α2 can be interpreted as the average value of r across all catchments, as seen by comparing Equations 2
and 6. Figure 3c compares regression coefficient α2 (black) with r ratios obtained empirically from period-of-record stream
flow and precipitation observations at each catchment (purple): α0 remains within one standard deviation (error bar) of the mean
empirical value of r (empty symbols) for nearly all seasons and time scales. Second, we replicated the analysis using changes in
CVQ and CVP estimated over different periods lengths. Periods longer (10 years) or shorter (2 years) than the preferred duration
(5 years) lead to increases in both the uncertainty of regression estimates and in errors on r ≡ α2 (Supplementary Figure S3).
However, the mean contributions of the direct, indirect and exogenous effects and the spatial distribution of historical trends
remain similar to those presented for periods of 5 years (Supplementary Figures S2 and S3). We interpret the errors and
uncertainties for longer and shorter periods as likely caused by sample size limitations. Namely, there appears to be a tradeoff
on the duration of periods between (i) having enough observations within each period to accurately estimate CVP and CVQ at
daily to monthly time scales and (ii) having enough periods represented to implement the linear regression analysis over a
large enough sample size. The sensitivity analysis in Supplementary Figure S3 points to the chosen period length of 5 years as
optimal in regards to that tradeoff.
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