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Abstract

Rivers and streams are an important component of the global carbon budget, emitting CO2 to the atmosphere. However, our

ability to accurately predict carbon fluxes from stream systems remains uncertain due to small scales of pCO2 variability within

streams (100-102 m), which make monitoring intractable. Here we incorporate CO2 input and output fluxes into a stream

network advection-reaction model, representing the first process-based representation of stream CO2 dynamics at watershed

scales. This model includes groundwater (GW) CO2 inputs, water column and benthic hyporheic zone (BZ) respiration,

downstream advection, and atmospheric exchange. We evaluate this model against existing statistical methods including

upscaling techniques and multiple linear regression models through comparisons to high-resolution stream pCO2 data collected

across the East River Watershed in the Colorado Rocky Mountains. The stream network model accurately captures topography-

driven pCO2 variability and significantly outperforms multiple linear regressions for predicting pCO2. Further, the model

provides estimates of CO2 contributions from internal versus external sources and suggests that streams transition from GW-

to BZ-dominated sources between 3rd and 4th Strahler orders, with GW and BZ accounting for 53 and 47% of CO2 fluxes

from the watershed, respectively. Lastly, stream network model CO2 fluxes are 5-13x times smaller than upscaling technique

predictions, largely due to inverse correlations between stream pCO2 and atmosphere exchange velocities. Taken together, the

stream network model presented improves our ability to predict and monitor stream CO2 dynamics, and future applications to

regional and global scales may result in a significant downward revision of global flux estimates.
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Key Points: 6 

 We present a stream network model that accurately predicts stream pCO2 and fluxes 7 

through representation of physical hydrologic processes  8 

 Inverse correlations between pCO2 and atmosphere exchange velocities cause up to 13x 9 

overestimates of river CO2 fluxes from statistical upscaling 10 

 Model-data comparisons suggest that internal CO2 sources account for roughly half of 11 

watershed CO2 fluxes through hyporheic zone respiration  12 
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Abstract  14 

 Rivers and streams are an important component of the global carbon budget, emitting 15 

CO2 to the atmosphere. However, our ability to accurately predict carbon fluxes from stream 16 

systems remains uncertain due to small scales of pCO2 variability within streams (10
0
-10

2 
m), 17 

which make monitoring intractable. Here we incorporate CO2 input and output fluxes into a 18 

stream network advection-reaction model, representing the first process-based representation of 19 

stream CO2 dynamics at watershed scales. This model includes groundwater (GW) CO2 inputs, 20 

water column and benthic hyporheic zone (BZ) respiration, downstream advection, and 21 

atmospheric exchange. We evaluate this model against existing statistical methods including 22 

upscaling techniques and multiple linear regression models through comparisons to high-23 

resolution stream pCO2 data collected across the East River Watershed in the Colorado Rocky 24 

Mountains. The stream network model accurately captures topography-driven pCO2 variability 25 

and significantly outperforms multiple linear regressions for predicting pCO2. Further, the model 26 

provides estimates of CO2 contributions from internal versus external sources and suggests that 27 

streams transition from GW- to BZ-dominated sources between 3
rd

 and 4
th

 Strahler orders, with 28 

GW and BZ accounting for 53 and 47% of CO2 fluxes from the watershed, respectively. Lastly, 29 

stream network model CO2 fluxes are 5-13x times smaller than upscaling technique predictions, 30 

largely due to inverse correlations between stream pCO2 and atmosphere exchange velocities. 31 

Taken together, the stream network model presented improves our ability to predict and monitor 32 

stream CO2 dynamics, and future applications to regional and global scales may result in a 33 

significant downward revision of global flux estimates. 34 

Plain Language Summary 35 

Rivers and streams are an important part of the global carbon cycle, contributing carbon dioxide 36 

to the atmosphere. However, the amount of carbon dioxide these systems contribute is 37 

notoriously difficult to measure as it changes over short spatial scales. In this paper we present a 38 

method of modeling carbon dioxide that uses the current understanding of sources, transport, and 39 

reactions that carbon dioxide undergoes in these systems. This model is compared to previous 40 

methods of predicting carbon dioxide contributions from streams, using data collected in the East 41 

River Watershed in the Colorado Rocky Mountains. We find that the process-based model 42 

presented here is more accurate than current methods of predicting carbon dioxide contributions 43 

from rivers to the atmosphere. Furthermore, the model suggests that carbon dioxide produced 44 
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within the stream corridor, as opposed to soil and groundwater sources, contributed roughly half 45 

of watershed stream carbon dioxide fluxes. Finally, we show that previous methods for modeling 46 

stream carbon dioxide overestimate watershed fluxes by as much as 13x; therefore, the 47 

application of a process-based model to larger systems may result in a large decrease in global 48 

estimates of stream carbon dioxide fluxes. 49 

 50 

1 Introduction  51 

Inland waters have been recognized as an important component of the carbon cycle, 52 

connecting terrestrial carbon (C) to the oceans and atmosphere (Cole et al., 2007). Among inland 53 

waters, rivers and streams are the largest contributors of CO2 accounting for 70% of total fluxes 54 

(Raymond et al., 2013). Within rivers and streams, headwater are often considered hotspots of 55 

CO2 evasion contributing roughly 30% of the 0.7 - 3.88 Pg of C yr
-1

 inland waters emit to the 56 

atmosphere (Drake et al., 2018; Lauerwald et al., 2015; Marx et al., 2017; Raymond et al., 2013). 57 

Currently efforts to monitor and predict CO2 fluxes depend on accurate stream pCO2 estimates 58 

derived from pH, temperature, and alkalinity (Marx et al., 2017; Raymond et al., 2013) or using 59 

direct measurements (Sawakuchi et al., 2017). However, these types of measurements are not 60 

feasible to deploy at the scales (10
0
-10

2
 m) required to capture the spatial variability of pCO2 61 

within stream networks. Due to this inability to measure stream CO2 with adequate resolution, 62 

global fluxes remain highly uncertain and are continuously revised using new statistical scaling 63 

models and river data products (Allen & Pavelsky, 2018; Horgby et al., 2019b; Sawakuchi et al., 64 

2017). While the processes that control CO2 variability and fluxes along stream networks are 65 

relatively well characterized, current flux budgets rely exclusively on empirical and statistical 66 

upscaling or modeling efforts. 67 

Specifically, efforts to quantify large-scale stream CO2 fluxes generally employ one of 68 

two methodologies: statistical upscaling or multiple linear regression analysis. Upscaling efforts 69 

typically use statistical distributions of pCO2 observations, often categorized by Strahler stream 70 

order, and apply these to unmeasured regions (Butman & Raymond, 2011; Raymond et al., 71 

2013). Alternatively, a number of studies have used statistical regressions to predict pCO2 based 72 

on readily available environmental variables such as elevation, soil organic carbon content, 73 

discharge (Q), and areal wetland extent (Borges et al., 2015; Horgby et al., 2019b; Rocher‐Ros et 74 
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al., 2019). In both cases, fluxes are then calculated based on estimated pCO2 and calculated gas 75 

transfer velocities (k) from stream turbulence and geomorphology (e.g., Raymond et al., 2012; 76 

Ulseth et al., 2019). While these methods allow for large-scale flux estimates from relatively 77 

coarse resolution observations, recent work has suggested that associated flux estimates involve 78 

significant uncertainty. These uncertainties include mismatched scales of pCO2 and k estimates 79 

(Lauerwald et al., 2015; Raymond et al., 2013) and observations that are generally biased 80 

towards larger stream systems (Sawakuchi et al., 2017). Additionally, a recent analysis of global 81 

pCO2 observations suggests that inverse correlations between pCO2 and k values may result in 82 

large overestimations of stream CO2 fluxes using traditional statistical upscaling methods 83 

(Rocher‐Ros et al., 2019); however, the effects of this correlation on flux estimates have not been 84 

directly tested.  85 

 While models used to predict fluxes are based primarily on statistical measurements, the 86 

processes that control stream CO2 concentrations and fluxes have been characterized in a number 87 

of studies ( e.g., Duvert et al., 2018; Horgby et al., 2019a; Horgby et al., 2019b; Hotchkiss et al., 88 

2015; Raymond et al., 2012). Concentrations of CO2 in streams are determined by the balance of 89 

inputs, including soil and groundwater CO2 and respiration of organic carbon within the water 90 

column and hyporheic zone, and outputs such as atmospheric evasion and photosynthesis. In 91 

terms of spatial variability of CO2 concentrations, evasion rates control where on the landscape 92 

pCO2 is highest or lowest, as pCO2 may degas over scales of 10’s of meters (Johnson et al. 2009; 93 

Lupon et al., 2019). A number of studies have found that k values which control evasion, are 94 

primarily related to discharge and topography, allowing for large-scale estimates based on 95 

hydrographic datasets (Raymond et al., 2012; Ulseth et al., 2019). While evasion exerts a strong 96 

control on the spatial variability of CO2 concentrations and fluxes (Rocher‐Ros et al., 2019), 97 

integrated fluxes from stream networks, however, are controlled primarily by CO2 sources. 98 

Sources of stream CO2 are broadly categorized as either allochthonous or autochthonous, 99 

where allochthonous sources are CO2 dissolved in soil- and groundwater (GW) that is transported 100 

to the stream, and autochthonous CO2 is produced in the water column or within the hyporheic 101 

zone (Marx et al., 2017). While studies have converged on a conceptual model in which 102 

autochthonous sources become increasingly important with increasing stream size, the relative 103 

balance of these sources remains uncertain. For example, in a survey of USGS NWIS monitoring 104 
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sites, Hotchkiss et al. (2015) found that while autochthonous contributions increased with stream 105 

size, GW was the dominant source across all sites. In contrast, a recent CO2 budgeting study of 106 

1
st
-3

rd
 order streams in the Cote Du Nord region found that autochthonous sources accounted for 107 

~75% of stream CO2 (Rasilo et al., 2017). Thus, the lack of constraints on CO2 source 108 

contributions remains a major knowledge gap in terms of our ability to predict stream CO2 -109 

variability. 110 

Process-based models that incorporate transport and chemical reactions are extremely 111 

useful for disentangling complex natural systems and predicting elemental fluxes (Steefel et al., 112 

2005). The processes controlling CO2 in river systems, including where and how they operate, 113 

are relatively well-defined; therefore, we are uniquely poised to incorporate these into a 114 

predictive model framework. Due to the spatiotemporal variability of pCO2 and complex set of 115 

reactions that govern its fate and transport, we argue that a stream network model is an ideal 116 

method of mechanistically modeling pCO2 in a manner that allows for pCO2 to be predicted at 117 

the high spatial resolution required to accurately calculate landscape fluxes (Rocher‐Ros et al., 118 

2019). Beyond predicting pCO2 and fluxes, stream network models can help to determine the 119 

relative importance of CO2 pathways into streams comparing potential contributions of water 120 

column and hyporheic zone respiration along with GW CO2 inputs. Additionally, stream network 121 

models can be used to identify potential hotspots and hot moments to guide fieldwork. In this 122 

study, we develop and apply a stream network model of stream CO2 to a mountainous watershed 123 

in Gothic, CO containing 1
st
- 5

th
 order streams. We validate this model against a new high-124 

resolution dataset of stream geochemistry. We further compare model results to existing 125 

upscaling and multiple linear regression model techniques, and use the model-data comparisons 126 

to evaluate the relative importance of internal and external CO2 sources. 127 

2 Methods  128 

2.1 Field Site Description 129 

This study was conducted in the East River watershed near the Rocky Mountain 130 

Biological Laboratory in Gothic, Colorado (USA). The East River watershed delineated at the 131 

star shown in Fig. 1 is 87 km
2
 and includes 1

st
 to 5

th
 Strahler order streams. The watershed 132 

ranges in elevation from 2,760 to 4,123 m above sea level, has a mean slope of 23
o 
(Winnick et 133 

al., 2017), and is broadly representative of watersheds throughout the Rocky Mountains 134 
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(Battaglin et al., 2011; Markstrom & Hay, 2009). Snow is the dominant form of precipitation in 135 

the basin with an average precipitation of 1.23+0.26 m y
-1

 and an annual average temperature of 136 

1
o
C (PRISM, 2013). During the sampled period, snow was present in the higher elevations and 137 

meltwater was contributing to the discharge (Q). The three major life zones within the basin are 138 

alpine, montane, and subalpine (Carroll et al., 2018; Hubbard et al., 2018) and the majority of the 139 

watershed is underlain by the Mancos Shale formation in which weathering solute fluxes are 140 

dominated by calcium carbonate dissolution and pyrite oxidation (R. W. H. Carroll et al., 2018; 141 

Morrison et al., 2012; Winnick et al., 2017). However, the western side of the basin have a 142 

greater proportion of Quartz Monzonite Porphyry and tributaries display lower solute 143 

concentration when compared to the rest of the watershed (Carroll et al., 2018; Gaskill et al., 144 

1967, 1991).145 

 146 
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 147 

2.2 Sampling Methods 148 

Geochemical measurements and stream samples were taken across the East River and its 149 

tributaries over a 10-day period in August 2019 (Fig. 1). While discharge data for this time 150 

period was not available from a proximal gauging station, August discharge values range from 151 

0.43 to 2.81 m
3
s

-1
 (2014-2016 and 2018) (star in Figure 1) (Carroll & Williams, 2019) and 152 

precipitation during the sampled days totaled 3.3 cm (Newcomer & Rogers, 2020). Samples were 153 

taken longitudinally along the stream every ~80 m within the designated reaches. At every site, 154 

direct pCO2 measurements were taken using an EGM-5 Portable CO2 Infra-Red Gas Analyzer 155 

(PP Systems). Samples were prepared by equilibrating 80 ml of stream water with 60 ml of 156 

atmosphere in a gas-tight syringe, which was shaken vigorously for 60 s before direct injection 157 

into the analyzer. Measurements were corrected for atmospheric CO2 by calculating the total 158 

moles of CO2 within the sampled air and water at equilibrium then subtracting the moles 159 

estimated in the air at a pCO2 of 400 ppm. Additional measurements such as pH, conductivity, 160 

dissolved oxygen (DO), and temperature were taken with a Yellow Springs Instruments (YSI 161 

Professional Plus) (n=151).  162 

2.3 Stream Network CO2 Model 163 

We developed a stream network model based on the advection-reaction equation for 164 

solute transport to predict pCO2 across the East River watershed. These types of models have 165 

been recognized as an important method of estimating elemental fluxes by enhancing the spatial 166 

and temporal coverage of data (Bencala & Walters, 1983). Changes in CO2(aq) (C; mol/L) 167 

through time (t) are calculated as, 168 

𝑑𝐶

𝑑𝑡
= −𝑣

𝑑𝐶

𝑑𝑥
+  

1

𝐴

𝑑𝑄

𝑑𝑥
(𝐶𝑔𝑤 − 𝐶) − 𝑘𝐶𝑂2(𝐶 − 𝐶𝑎𝑡𝑚) + 𝐹𝑤𝑐 + 𝐹ℎ𝑒   (1), 169 

Figure 1: Map of the East River watershed (87 km
2
) with NHDplus flow lines of the East 

River and tributaries shown in blue, shaded elevation contours in green, and field-sampled 

pCO2 (ppm) as points colored from low too high in red (n=121).   
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 170 

where v is velocity (m s
-1

), A is stream cross-sectional area (m
2
), Q is discharge (m

3
 s

-1
), x is 171 

lateral distance (m), Cgw and Catm are the molarity of CO2 in groundwater and atmosphere-172 

equilibrated water, respectively (see Table 1 for model variables and descriptions). The molar 173 

fluxes of CO2(aq) (mol L
-1

 s
-1

) from water column and hyporheic zone net respiration are Fwc and 174 
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Fhe, respectively (Table 1). To estimate potential water column respiration, Fwc is set to a 175 

constant rate of 7*10
-11

 (mol L
-1

 s
-1

), which represents the high end of values found by Ward et 176 

al. (2013) in the productive Amazon river as an estimate of maximum potential water column 177 

contributions. The reaeration coefficient of CO2, kco2 (s
-1

), was calculated as the gas transfer 178 

velocity of CO2 divided by stream depth. The gas transfer velocity of CO2 was estimated using 179 

k600, based on the equations of Ulseth et al. (2019):  180 

ln(𝑘600)for eD > 0.02 = 1.18 ∗ ln(𝑒𝐷) + 6.43    (2), and 181 

ln(𝑘600)for eD < 0.02 = 0.35 ∗ ln(𝑒𝐷) + 3.10   (3). 182 

Here, eD is the energy dissipation rate of the stream (m
2
 s

-3
) calculated as, 183 

𝑒𝐷 = 𝑔 ∗ 𝑣 ∗ 𝑠       (4), 184 

where g is the acceleration due to gravity (9.8 m s
-2

), and s is stream slope (unitless, m m
-1

). In 185 

order to convert k600 into kCO2, we calculated the Schmidt number sct (unitless) using the average 186 

daily air temperature T (13.7 
o
C) of the sampling period and the equation (Wanninkhof, 1992), 187 

𝑠𝑐𝑡 = 1911 − 118.11 ∗ 𝑇 + 3.453 ∗ 𝑇2 − 0.0413 ∗ 𝑇3   (5). 188 

The kCO2 variable was then calculated using the equation (Raymond et al., 2012), 189 

𝑘𝐶𝑂2 =
𝑘600

(600 𝑠𝑐𝑡⁄ )−0.5       (6), 190 

where -0.5 is assumed due to the turbulent surfaces of streams (Jähne et al., 1987; Ulseth et al., 191 

2019).  192 

Equation 1 was solved assuming steady state conditions using a backwards-difference 193 

finite approximation scheme, 194 

0 = −𝑣 (
𝐶𝑖−𝐶𝑖−1

∆𝑋
) +

1

𝐴
(

∆𝑄

∆𝑋
) (𝐶𝑔𝑤 − 𝐶𝑖) − 𝑘𝐶𝑂2(𝐶𝑖 − 𝐶𝑎𝑡𝑚) + 𝐹𝑤𝑐 + 𝑘ℎ𝑧 ∗ (𝐶ℎ𝑧 − 𝐶𝑖)    (7),  195 

with i and i-1 representing a grid cell and the previous grid cell respectively. From Eq. 1, Fhe was 196 

parameterized using the equation, 197 

𝐹ℎ𝑒 = 𝑘ℎ𝑧(𝐶ℎ𝑧 − 𝐶)        (8), 198 
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where Chz is the molarity of CO2 in the hyporheic zone and khz is the hyporheic zone mass 199 

transfer coefficient (m s
-1

). Using principles of surface renewal theory, khz was calculated using 200 

the parameterization of Grant et al. (2018) as, 201 

𝑘ℎ𝑧 = 0.17𝑢 ∗ 𝑠𝑐−2 3⁄         (9), 202 

where u is the shear velocity (m s
-1

). The assumption that turbulent mixing is the primary process 203 

controlling CO2 production in the stream bed is supported as the short transit times of the flow 204 

paths caused by turbulent mixing are of similar temporal scale to aerobic respiration (Breugem et 205 

al., 2006; Harvey et al., 2019). Additionally, the lower data requirements of this assumption 206 

allow for the model to be highly scalable. The sc term is calculated as,  207 

𝑠𝑐 =
𝑘𝑣

𝐷𝑚
         (10), 208 

where kv is kinematic viscosity of water (m
2
 s

-1
) and Dm is molecular diffusion coefficient of CO2 209 

in water (m
2
 s

-1
). Shear velocity is calculated as, 210 

𝑢 = √𝑔ℎ𝑠        (11), 211 

where s is slope (unitless, m m
-1

), and h is depth (m).  212 

In order to predict pCO2 across the watershed, we solved Eq.7 for every grid cell 213 

sequentially along each reach starting with 1
st
 order streams. The initial Ci in the first grid cell 214 

within 1
st
 order streams was set to Cgw, and Ci values at stream junctions were calculated as the 215 

discharge-weighted mean of all contributing stream model cells. The grid cells were set using 216 

flow line vertices from the NHDplus dataset (U.S. Geological Survey, 2019) which resulted in 217 

variable grid spacing with 392 stream reaches and 7969 model grid cells. Topographic 218 

information for each grid cell such as slope and elevation were retrieved and calculated from a 219 

10m DEM.  220 

Due to ongoing snowmelt in the upper basin that lagged snowmelt in the lower basin, we 221 

used elevation to estimate local contributing runoff (m/s) using a linear regression as snow in the 222 

high elevations led to increased Q (Sup Fig. 1) (Carroll & Williams, 2019). The change in 223 

discharge along stream reach (∆𝑄/∆𝑥  in Eq. 7) was calculated as local runoff multiplied by the 224 

NHDplus reach upstream accumulating area (UAA) per unit length of the stream reach. 225 

Discharge at each grid cell was calculated as the discharge at the previous grid cell plus runoff-226 
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based groundwater inputs, assuming constant gaining conditions. The stream width (w), depth 227 

(h), and velocity (v) in meters were calculated using scaling relationships from Horgby et al. 228 

(2019b) for mountainous streams as,  229 

𝑣 = 0.668 ∗ 𝑄0.365        (12), 230 

ℎ = 0.298 ∗ 𝑄0.222       (13), and 231 

𝑤 = 𝑄 𝑣 ℎ⁄⁄         (14). 232 

The calculated v along with kCO2 was additionally used to determine stream CO2 half-life at each 233 

point using a first order reaction,  234 

ℎ𝑎𝑙𝑓 𝑙𝑖𝑓𝑒 =
 𝑙𝑛(2)

𝑘𝐶𝑂2/𝑣
       (15) 235 

representing the distance over which stream CO2 evades assuming no additional CO2 inputs (Sup 236 

Fig. 2). 237 

 The model was further amended to capture observed field conditions including wetland 238 

and snow plug locations. Specifically, wetlands are often sources of elevated CO2 in 239 

groundwater (Buffam et al., 2010; Hope et al., 2004), and snow plugs may act to trap CO2 in the 240 

stream environment by limiting water-atmosphere interfaces. Snow plugs were defined as large 241 

areas of snow covering the stream, and modeled kCO2 was set to 0 where snow plugs were noted. 242 

Stream sections that were within perennially saturated organic-rich fens were modeled using 243 

Cwetland in place of Cgw, and field measurements of standing fen pools indicated pCO2 above the 244 

EGM-5 calibrated range of 25,000 ppm. Lastly, NHDplus headwater flowlines were trimmed to 245 

match points of stream emergence recorded in the field. 246 

Within all the above model equations there are only three free parameters: CO2 247 

concentrations in GW, wetlands, and the hyporheic zone relative to the stream. To tune the 248 

model, we simulated the model across variable ranges of 5000-50000, 10000-100000, and 0-249 

2000 for CGW, Cwet, and (Chz – C), respectively. We chose the optimized values based on 250 

maximum coefficients of determination (R
2
) and minimum Root Mean Square Error (RMSE) 251 

from model-data comparisons described below. Model R code along with NHDplus hydrography 252 

datasets for the basin are included in the Supplemental Information. 253 

2.4 Statistical Analyses  254 
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In order to compare the model output to our sampled points, GPS locations of the 255 

sampled points were paired with their closest model grid cell. The paired points were filtered to 256 

remove any that were more than 50m apart, or for which there was no NHDplus counterpart 257 

(n=30). Points without NHDplus counterparts comprised seeps and small streams that were not 258 

represented by NHDplus flowlines. The remaining 121 points of which 12, 23, 21, and 65 are 1
st
 259 

– 4
th

 order respectively, were compared using model-data R
2
, RMSE, and t-tests to the stream 260 

network model with and without benthic respiration (BZ) to determine if the addition of internal 261 

processes add predictive power to the model. All calculations were conducted using R (R Core 262 

Team, 2020; Supplemental Information). 263 

A multiple linear regression model (MLRM) predicting pCO2 based on Q, velocity, 264 

slope, elevation, and mean watershed net primary production (NPP) (NASA, 2019) was 265 

determined using a stepwise approach. Using Q, kCO2, velocity, slope, elevation, stream order, 266 

khz, mean watershed NPP, and landcover as the initial inputs, all possible regression 267 

combinations were calculated. The best regression model was chosen based on the lowest AIC 268 

value that contained only significant predictors (p<0.05). The final regression was evaluated by 269 

calculating the mean and variance of the pCO2 predicted as well as comparing the R
2
 and RMSE 270 

values. Additionally, global scale mountainous inland water CO2 fluxes were recently estimated 271 

using an MLRM based on pCO2 data in the European Alps (Horgby et al., 2019b).  The 272 

regression consisted of elevation, Q, and soil organic carbon (SOC) from Hengl et al. (2017). For 273 

comparison, we applied this model to the East River watershed to test the potential scalability of 274 

the Horgby MLRM to different field areas.  275 

Additionally, we compared existing statistical upscaling methods for estimating 276 

watershed-scale CO2 fluxes based on point measurements to integrated model output. Two 277 

common methods of upscaling CO2 evasion fluxes were evaluated against the stream-network 278 

modeled fluxes. The flux estimation methods evaluated used Eq. 16 and the same kCO2, h, w, and 279 

∆x as the stream network model. In the upscaling models, pCO2 was calculated as 1) mean pCO2 280 

from all samples across the watershed; and 2) mean stream pCO2 by Strahler order (Butman & 281 

Raymond, 2011; Raymond et al., 2013). The corresponding CO2 fluxes were compared to stream 282 

network model fluxes for each stream order. The watershed-scale CO2 evasion fluxes (F) were 283 

calculated for the modeled and regression data using the equation,  284 
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𝐹 = ∑(𝐶𝑖 − 𝐶𝑎𝑡𝑚) ∗ 𝑘𝐶𝑂2 ∗ ℎ ∗ 𝑤 ∗ ∆𝑥      (16). 285 

Additionally, we repeated the upscaling methods with flux estimates restricted to the reaches 286 

with sampled data to evaluate model and upscaling performance within well-characterized areas.  287 

3 Results  288 

3.1 Observational Data 289 

 Stream waters across the East River and its tributaries had a mean temperature of 8.1 
o
C 290 

ranging from 2.7 – 14 
o
C at elevations ranging from 2873 – 3521 m. Across all sample points, 291 

the mean dissolved oxygen (DO) was 91% and ranged from 0.4 – 11.4 mg L
-1

. The mean pH was 292 

8.03 ranging from 7.14 – 8.4. Roughly 90% of samples were below 8.3, such that bicarbonate 293 

was the dominant inorganic carbon species present. Conductivity within the data ranged from 294 

11.6 – 263.1 µs cm
-1

 with a mean of 112.4 µs cm
-1

.  295 

Measured pCO2 was consistently elevated above atmospheric concentrations with a mean 296 

of 820 ppm and range of 433-6044 ppm (Fig. 1). First order streams had the highest mean pCO2 297 

at 1963 ppm. Increasing stream order generally corresponded to decreasing mean pCO2, with 298 

2
nd

-4
th

 order streams having mean pCO2’s of 952, 616, and 628 ppm respectively. The minimum 299 

pCO2 within each order showed little variation, ranging from 433-527 with no correlation to 300 

stream order; however, the maximum values decreased with increasing stream order with a pCO2 301 

of 6044, 2074, 1090, and 1040 ppm in 1
st
 – 4

th
 order streams respectively. Additionally, kCO2 was 302 

found to restrict in-stream pCO2 as 95% of sampled points with kCO2 values of greater than 0.005 303 

(m/s) had pCO2<1000, similar to findings in a Swedish catchment system (Fig. 2) (Rocher-Ros 304 

et al., 2019). 305 
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 306 

 307 

Point sample data was used to estimate total watershed CO2 fluxes based on two separate 308 

upscaling methods as described above (Butman & Raymond, 2011; Raymond et al., 2013). The 309 

first method used the mean sampled pCO2 and applied it across the entire stream model using the 310 

modeled stream morphology and kCO2, which resulted in total watershed fluxes of 6.4+11.6 Gg C 311 

yr
-1 

(Raymond et al., 2013). The second method was to predict CO2 fluxes separately for each 312 

stream order using the mean pCO2 within each order as the orders CO2 concentration while 313 

maintaining the other modeled parameters. This predicted pCO2 fluxes of 6.3+5.8 Gg C yr
-1 

with 314 

Figure 2: Stream pCO2 plotted against k600 in m/s with MLRM in green, stream network 

model in blue, Horgby MLRM in gray, and sampled data in red. Lines show values used in 

the upscaling calculations with brown lines representing mean pCO2 in 1
st
 – 4

th
 order streams 

top to bottom and the black line is the mean of all sampled pCO2. Histogram of fluxes are 

shown in the inset with sampled data shown separately so variability can be seen. 
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1
st
-5

th
 orders contributing 2.7+3.5, 0.9+0.8, 0.4+0.4, 0.8+0.4, and 1.5+0.8 Gg C yr

-1
, respectively. 315 

Additionally, flux predictions were restricted to the 2508 m of sampled reaches out of the total 316 

164872 m in the east river. This was done in order to compare upscaling methods to sampled 317 

data on a one-to-one basis (Table 2). This resulted in a prediction of 0.06 Gg C yr
-1 

released from 318 

the sampled reaches based on measured data, 0.15 Gg C yr
-1 

based on mean pCO2, and 0.09 Gg 319 

C yr
-1 

based on mean pCO2 by order showing that the signal mean method predicted fluxes 2.5x 320 

more than sampled data and the mean by order method predicted 1.5x the fluxes of sampled data.   321 

 322 

3.2 Model Results 323 

 The optimization of the model resulted in a CGW pCO2 of 18,000 ppm, Cwet pCO2 of 324 

44,000 ppm, and a hyporheic zone pCO2 elevation (Chz – C) of 600 ppm. The best three 325 

optimizations runs all had the same CGW value, which falls within the range of sub-soil (>30 cm) 326 

growing season pCO2 values measured in a soil profile within the East River (~7,000 – 23,000 327 

ppm; Winnick et al., 2020). Wetland pCO2 measured in the East River was above the 25,000 328 

ppm calibration of the EGM-5 supporting the elevated model optimization value. The hyporheic 329 

zone pCO2 was found to be elevated above stream pCO2 by 600 ppm which was at the upper 330 

range (~0 – 700 ppm) (Sup Fig. 3) of values calculated from measured pH and estimated 331 

alkalinity (Nelson et al., 2019). 332 

The full model predicted pCO2 values and captured observed spatial patterns with a 333 

RMSE of 763 ppm, R
2
 of 0.70 (p<10

-15
) for ln(pCO2), and a paired t-value of 0.30 (df=120, 334 

p=0.76) for pCO2 when compared to observed data (Fig. 3). The GW-only stream network model 335 
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had an RMSE of 1008 ppm, and R
2
 of 0.69 336 

(p<10
-15

) for ln(pCO2), and paired t-value of 337 

0.34 (df=120, p=0.74) for pCO2. The paired t-338 

test suggests a mean underestimation of 31 ppm 339 

between matched points for the GW-only model 340 

and 21 ppm for the full model with neither 341 

model showing significant difference (p>0.05) 342 

from the observed pCO2 values. As the Full 343 

model outperformed the GW-only model in all 344 

three metrics of validity, from this point on we 345 

will refer to the full model.  346 

Stream network model pCO2 was 347 

consistently elevated above atmospheric 348 

concentrations ranging from 416 ppm to 349 

optimized GW values with a mean of 1087 ppm, 350 

compared to the measured range of 433-6044 351 

ppm (Fig. 4). The largest discrepancy between 352 

the model and the sampled data were at highest 353 

observed pCO2 locations; however, 95% of 354 

modeled points were within 400 ppm above and 355 

950 ppm below the sampled points. The highest 356 

pCO2 values were predicted in the headwaters at 357 

points of spring emergence and quickly 358 

approached atmospheric values. Across all 359 

model points, the median calculated CO2 half-360 

Figure 3: Model-data comparisons and 

statistics for the (a) stream network model; 

(b) Horgby MLRM; and (c) MLRM with 2 

points missing as they were negative. The 

dashed lines (red) represent atmospheric 

pCO2 and the solid line (black) is the 1:1 line.  
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life was 11 m. As a 361 

result, model pCO2 was 362 

strongly restricted by 363 

kCO2; 95% of sampled 364 

points with kCO2 values of 365 

greater than ~0.005 (s
-1

) 366 

had pCO2<1000 ppm 367 

(Fig. 2).     368 

Modeled patterns 369 

were similar to 370 

observational data with 371 

mean pCO2 decreasing as 372 

stream order increased: 373 

1
st
-5

th
 order streams had a 374 

mean pCO2 of 1835, 704, 375 

578, 524, and 468, 376 

respectively. Similarly, 377 

the max pCO2 showed a 378 

decreasing pattern with 379 

stream order with 1
st
 -5

th
 380 

orders having 18000, 381 

Figure 4: (A) Stream 

network modeled pCO2 

in the East River shown 

in red; (B) Stream 

network model area-

normalized CO2 fluxes 

shown in blue with 

fluxes >30 kg C/m
2
/yr 

shown in black (~1% of 

stream at locations of 

stream emergence only)   
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8767, 2612, 879, and 535 ppm, respectively. The minimum pCO2 showed no pattern across 382 

orders with 1
st
 -5

th
 order streams having 430, 416, 421, 419, and 419 ppm respectively. 383 

The full stream network model predicted a mean flux of 6.3 kg C m
-2

 yr
-1

 ranging from 0 384 

- 448 kg C m
-2

 yr
-1

 with total watershed fluxes at 1.3 Gg C yr
-1 

(Fig.4, Table. 2). The highest 385 

fluxes were predicted in first order reaches totaling 0.4 Gg C yr
-1

 with mean area-normalized 386 

fluxes of 9.3 kg C m
-2

 yr
-1

. Total fluxes showed a decrease with order until the 3
rd

 order, at which 387 

point fluxes increased with order releasing 0.44, 0.20, 0.19, 0.22, and 0.26 Gg C yr
-1

 in 1
st
-5

th
 388 

order stream respectively. The stream network model suggests that GW is the largest source of 389 

CO2 in river systems accounting for 53% of CO2 emitted, followed by benthic respiration at 390 

47%, and water column respiration at 0.1% (Fig. 5). Absolute GW fluxes show a weak negative 391 

correlation with Q (R=-0.1) whereas benthic respiration showed a strong positive correlation 392 

(R=0.47) with Q. In first order streams, GW contributed 86% of the C fluxes whereas benthic 393 

respiration contributed 14%. In the fourth and fifth order streams benthic respiration was 72% 394 

and 91% of the fluxes compared to the 28% and 8% contributed by GW (Fig. 6). We note that 395 

while precise percent contributions are highly dependent on optimized CHZ values, this overall 396 

pattern is a robust feature of the stream network model matching conceptual models of stream 397 

CO2 sources. 398 



manuscript submitted to Global Biogeochemical Cycles 
 

 401 

 402 

Figure 5: Area-normalized model fluxes from first through fifth order streams with red (left) 

box representing groundwater contributions and blue (right) representing benthic zone 

respiration contributions of CO2. 86 points not shown <0.005.  
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 405 

 406 

The model suggests that 11% of the East River by length has a CO2 flux greater than 10 407 

kg C m
-2

 yr
-1

 (Fig. 7), with 78% of these hotspots in 1
st
 order streams and only 4% in 5

th
 order 408 

streams. However, as headwaters are a disproportionate length of the stream, we compared the % 409 

hotspots within each order to the total stream length of that order. We found that 1
st
 orders are 410 

17% hotspots and that 5
th

 order streams had the second largest proportion of hotspots at 9% with 411 

2
nd

, 3
rd

, and 4
th

 having 4%, 6%, and 4% respectively. Hotspots throughout the East River and 412 

Figure 6: Modeled % benthic zone (BZ) respiration CO2 contributions at each stream location. 
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within each order had significantly higher slope then the mean of the total network or of the 415 

respective order. Groundwater dominated hotspots in 1
st
 – 3

rd
 order streams with the BZ 416 

contributing 7%, 20%, and 16% respectively whereas BZ respiration was a greater % of CO2 417 

fluxes in 4
th

 and 5
th

 order streams at 74% and 93% respectively (Sup Table. 1).  418 

 419 

 420 

Figure 7: Map of modeled CO2 flux hotspots. Stream points with area-normalized fluxes 

greater than 10 kg C m
-2

 yr
-1

 are shown in colored points with streamlines shown in blue.  
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The stream network model outperformed the stepwise MLRM which found Q, velocity, 421 

slope, elevation, and mean watershed NPP to be the only significant predictors of pCO2 (CMLRM), 422 

hence referred to as the MLRM. The MLRM  423 

𝐶𝑀𝐿𝑅𝑀 = 3599.479 ∗ 𝑄 − 8726.124 ∗ 𝑣 − 1226.308 ∗ 𝑠 − 3.409 ∗ 𝑒 − 4.184 ∗ 𝑁𝑃𝑃 +424 

14817.114           (17). 425 

predicted ln(pCO2) with a R
2 
of 0.25 (p<10

-8
) and a RMSE of 518 (Fig. 3). The RMSE of the 426 

MLRM is better than the stream network model as the MLRM preferentially fits the higher pCO2 427 

values; however, the low R
2
 shows that it is worse at predicting pCO2 variability, particularly 428 

below ~1500 ppm, to the point that negative values are predicted within 2.6% of the East River. 429 

Alternatively, the higher RMSE of the stream network model is due to the difficulty in fitting the 430 

higher pCO2 values which is likely due to sensitivity of stream emergence location and spring 431 

velocities. Additionally, the MLRM predicted a smaller range of pCO2 -660 – 3804 ppm than the 432 

observed data and stream network model. Using the MLRM across the east river watershed 433 

resulted in an estimated CO2 flux of 17.7 Gg C yr
-1 

(18.3 Gg C yr
-1  

when excluding negatives)
 

434 

with a mean area normalized flux of 38.5 kg C m
-2

 yr
-1

 (Table 2).  435 

The MLRM used in Horgby et al. (2019b), hence referred to as the Horgby MLRM, was 436 

compared to observations and showed less accuracy when predicting ln(pCO2) with an R
2
 of 437 

0.27 p<10
-12 

RMSE of 1106 (Fig. 3), below the R
2
=0.39 p<0.001 presented in the original paper. 438 

Importantly, the Horby MLRM predicts sub-atmospheric pCO2 values across the watershed in 439 

direct contrast with observations. When used to calculate fluxes, this method therefore predicts 440 

the East River to be a CO2 sink, sequestering 5.9 Gg C yr
-1

 (Table 2) with an area-normalized 441 

mean of 17.7 kg C m
-2

 yr
-1

, which is within the 0 - 27 kg C m
-2

 yr
-1

 predicted to be sequestered in 442 

the region in the original paper. Additional disadvantages of these linear regression models are 443 

that the soil organic carbon map is at courser resolutions (250 m
2
) (Hengl et al., 2017) than 444 

available DEMs. 445 

4 Discussion  446 

4.1 Stream network models versus statistical predictions of pCO2 447 

To the best of our knowledge this paper represents the first stream network model to 448 

predict pCO2, although the methodology is similar to previous nitrogen stream network models 449 

(Gomez-Velez et al., 2015; Gomez-Velez & Harvey, 2014). Here we show that using a high-450 
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resolution 10m DEM and estimated groundwater pCO2, we are able to predict stream pCO2 at 451 

sub-100 m (22 m mean distance between points) resolution across NHDplus flowlines. Notably, 452 

the model is able to capture structural characteristics of stream CO2 observations that emerge 453 

naturally from the representation of physical processes. These include (1) GW CO2 hotspots 454 

based on spring emergence and topographic convergence, in which stream CO2 decays over 455 

spatial scales of ~10
—

10
2
 m depending on the balance of advection and gas exchange (Fig. 4); 456 

(2) diminishing influence of GW inputs with increasing stream size (Fig. 6); (3) atmosphere-457 

super-saturated CO2 in higher-order streams from stream corridor CO2 production (Fig.’s 4,6); 458 

and (4) inverse correlations between gas exchange velocities and pCO2 (Fig. 2). 459 

This ability to capture the qualitative structure of spatial variability is borne out by 460 

significantly stronger model-data correlations for the stream network model (R
2
=0.70) versus the 461 

MLRM (R
2
=0.25) and Horgby MLRM (R

2
=0.27). This structural advantage is even more 462 

pronounced when comparing model-data correlation within Strahler stream order. The stream 463 

network model predicted ln(pCO2) in 1
st
 -4

th
 order streams with a R

2
 of 0.71

*
, 0.57

*
, 0.49

*
, and 464 

0.34
*
 respectively compared to the MLRM’s R

2
 of 0.75

*
, 0.03, 0.01, and 0.13

*
 in first to forth 465 

order streams, asterisk denote significance (Table 2). This shows that the stream network model 466 

has an improved ability to predict pCO2 especially within higher order streams as it has 467 

improved resolution at lower concentrations. While the MLRM features better RMSE values 468 

compared to the stream network model, this is due to the bias of linear regression models to 469 

capture extreme values associated with spring emergence as demonstrated by the high model-470 

data R
2
 value for 1

st
 order streams. Additionally, the MLRM did not correlate with data from 2nd 471 

and 3rd order stream further showing its inability to accurately predict CO2 at lower 472 

concentrations, to the point that negative values are predicted across 2.6% of the East River.  473 

One of the primary reasons MLRM’s are unable to capture the structure of stream CO2 474 

variability across and within stream orders is the implicit treatment of each stream location pCO2 475 

as independent. In reality, pCO2 at any given location within the stream network represents a 476 

combination of local processes and upstream history. Additionally, the inability of MLRM’s to 477 

capture realistic patterns outside of training datasets (negative pCO2 values from the MLRM and 478 

sub-atmospheric pCO2 from the Horgby MLRM) suggests that empirical relationships between 479 

landscape variables and local pCO2 involve a large degree of non-stationarity, limiting their 480 
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potential transferability or scaling potential. This can be seen in the MLRM as negative values 481 

were most common in 1
st
 – 3

rd
 order streams with 30%, 18%, and 48% of negative predictions 482 

respectively, and all negative values were predicted above an elevation of 2958 m. The Horgby 483 

MLRM is strongly dependent on elevation, with sub-atmospheric values predicted above ~3000 484 

m in the original paper (Horgby et al., 2019b). We suggest that this may relate to vegetation in 485 

the European Alps versus the Colorado Rockies, in which a lack of high elevation organic matter 486 

may limit allochthonous CO2 sources in the Alps. 487 

As the stream network model represents physical processes, it has the potential to be 488 

highly transferable across sites, which will be tested in future research. Notably, data 489 

requirements for the stream network model are roughly equivalent to MLRM’s and existing 490 

estimation methods of gas transfer velocities (e.g., Raymond et al., 2012; Ulseth et al., 2019). In 491 

this application, we used stream data observations to optimize free parameters including GW, 492 

wetland, and hyporheic zone pCO2; however, the model may be supplemented in future studies 493 

with site-specific measurements of these quantities or empirical models to estimate how these 494 

parameters vary across environments. Overall, we argue that the stream network model 495 

framework represents a significant improvement over existing empirical methods for estimating 496 

stream pCO2. 497 

4.2 Implications for global stream CO2 fluxes 498 

The improved resolution and pCO2 estimation of the stream network model allow for a 499 

more robust estimation of CO2 fluxes from the East River. Upscaling methods predicted CO2 500 

fluxes to be ~5x larger than the stream network model. The elevated predictions from statistical 501 

upscaling methods likely stem from an overestimation of pCO2 in reaches with high kCO2 as the 502 

estimated CO2 concentrations are likely higher than would be expected at these locations (Fig. 2). 503 

Additionally, the structure of pCO2 data lends itself to further overestimation as it commonly is 504 

right-skewed with few large CO2 concentrations causing the mean and median to be larger than 505 

the mode (Sup Fig. 4). As described above, the Horgy MLRM estimates the East River as a CO2 506 

sink, which suggests their estimates of global mountainous stream CO2 fluxes may be artificially 507 

low. The MLRM predicted a CO2 flux 13x greater than the stream network model even though 508 

13% of the model was predicted to be a CO2 sink, this is likely due to the prediction of pCO2 509 

values in the 2000s at relatively high k600 >0.06 m/s (Fig. 2) as hypothesized by Rocher‐Ros et 510 
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al. (2019). The overestimation of CO2 fluxes seen here confirm that spatial mismatches between 511 

model variables represent an important issue in current stream CO2 emission estimates. 512 

Taken together, these analyses support the idea that current global budgets may 513 

significantly overestimate CO2 fluxes from rivers and streams. While site-based discrepancies 514 

between upscaling and MLRM versus stream network fluxes are high (500-1300%), we note that 515 

these discrepancies are likely maximized due to the mountainous terrain and elevated gas 516 

exchange velocities. Future work will the target the impact of k-pCO2 inverse correlations in 517 

lowland environments and at regional to global scales. Notably, this may result in a significant 518 

downward revision in global stream CO2 estimates, as has recently been suggested (Rocher-Ros 519 

et al., 2019). 520 

4.3 Internal production vs external inputs  521 

 The proportion of external and internal sources of CO2 fluxes in streams is an active area 522 

of research, as relative contributions from GW, the soil zone, water column respiration, and the 523 

hyporheic zone remain uncertain. Quantifying internal and external sources of CO2 is difficult 524 

and requires extensive field experiments to create C budgets for individual reaches (e.g. Rasilo et 525 

al., 2017). This has reduced our broader understanding of CO2 sources as these field and data 526 

intensive studies do not sufficiently cover the range of stream orders, discharges, or landscape 527 

characteristics that control the processes contributing to stream CO2. However, using the full 528 

stream network model, we are able to estimate the proportions of CO2 from internal and external 529 

sources that are consistent with field observations from the East River and larger-scale data 530 

compilations. 531 

 As described above, the model predicts diminishing influence of GW inputs with 532 

increasing stream size, consistent with previous studies (Hotchkiss et al., 2015). Additionally, the 533 

stream network model suggests that water-column respiration contributes minimally to stream 534 

network CO2 fluxes. This result occurs despite the use of relatively high water-column 535 

respiration rates throughout the watershed, and is consistent with the budget analysis of Rasilo et 536 

al. (2017) for 1
st
-3

rd
 order streams in the Cote du Nord region. We note that water-column 537 

respiration likely becomes increasingly important at larger stream sizes as has been noted for 538 

N2O production (Marzadri et al., 2017). 539 
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 Our stream network model further suggests that hyporheic zone respiration within stream 540 

benthic layers is the primary source of CO2 in 4
th

 and 5
th

 order streams, consistent with Rasilo et 541 

al. (2017) and contrasting with Hotchkiss et al. (2015). We note that model-data statistical 542 

agreement is relatively insensitive to the precise value of hyporheic zone pCO2 used, which itself 543 

is likely highly variable across the East River; however, our optimized value agrees well with 544 

previously published benthic zone pore water geochemistry from the main stem of the East River 545 

(Nelson et al., 2019; Supplementary Information). Despite its potential role in controlling higher-546 

order stream CO2 concentrations and fluxes, very few studies have sought to characterize the 547 

dynamics hyporheic zone carbon production, which instead have focused primarily on nitrogen 548 

and oxygen dynamics. Thus, an improved understanding of hyporheic zone CO2 production and 549 

exchange is strongly needed to accurately estimate stream CO2 concentrations and fluxes. 550 

Although overarching patterns of decreasing external contributions with order hold across 551 

the range of modeled HZ pCO2, a mosaic of BZ and GW dominated sections exist within mid 552 

order stream showing that small scale variability plays an important role. This can be seen most 553 

readily within 3
rd

 order streams where 60% of the stream length is GW-dominated (Fig. 5,6). In 554 

2
nd

 and 4
th

 order streams we see less extreme patchiness with 85% and 6% of streams by length 555 

GW dominated respectively. This emphasizes that local conditions may deviate from predicted 556 

patterns, as these transitions within stream systems represent a patchwork dynamic rather than a 557 

smooth gradient.    558 

4.4 Hotspots 559 

The magnitude and spatial distribution of carbon fluxes has been the focus of many 560 

studies, which have found headwaters to be hotspots of CO2 fluxes, defined here as locations 561 

with CO2 fluxes greater than 10 kg C m
-2

 yr
-1

. More recent studies have begun to characterize the 562 

interplay of topographically driven evasion and sources of CO2 which create a mosaic of fluxes 563 

and hotspots through stream systems (Duvert et al., 2018; Rocher‐Ros et al., 2019). In the past, 564 

upscaling and coarse resolution MLRM’s have hindered our ability to parse out where in 565 

landscapes these hotspots are. Using the stream network model, we are able to predict where in 566 

the landscape these hotspots are and their relative contribution to integrated fluxes across stream 567 

orders. From this we can see that first order streams are the largest contributors making up 78% 568 

of the East Rivers hotspots (Fig.7) agreeing with findings from Duvert et al. (2018) which shows 569 
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that headwaters are hotspots of CO2 evasion. However, 5
th

 order streams feature higher 570 

proportional hotspot areas as compared to 2
nd

-4
th

 order streams, making 5
th

 order streams a 571 

potentially important source of CO2 fluxes. Although 5
th

 order streams may have more hotspots 572 

then previously surmised, they are still of a smaller magnitude then 1
st
 order streams as the total 573 

fluxes were still greater in 1
st
 order streams. 574 

Hotspots in the East River were more likely to be in GW dominated sections, with 93% 575 

of hotspots by length receiving greater than 50% of their CO2 from GW. Comparatively, only 576 

75% of the East River length was GW-dominated. This pattern of GW-supplied hotspots held in 577 

1
st
 – 3

rd
 order streams but inverted in 4

th
 and 5

th
 order streams where hotspots were more likely to 578 

be in locations where CO2 was dominantly supplied by BZ respiration. The location of this 579 

inversion has additional significance as 3
rd

 - 4
th

 order streams are where the switch from GW to 580 

BZ dominated inputs occurs, showing that hotspots are not purely groundwater supplied but 581 

instead can be supplied through internally produced pCO2. Additionally, the mean slope of 582 

hotspots is steeper than the mean stream slope of the East River showing that hotspots likely 583 

occur in areas of transition from low to high slopes where CO2 that has built up in low slope 584 

reaches is quickly lost when k increases, similar to previous findings (Rocher-Ros et al., 2019). 585 

As stream network models are able to predict hotspots and parse out CO2 sources and 586 

topographic controls in actual stream environments, they may further provide the ability to guide 587 

target field sampling.   588 

5 Conclusions 589 

 Predicting regional and global stream CO2 emissions remains challenging, and estimates 590 

continue to change due to additional sources of data and methodological improvements (Drake et 591 

al., 2018). Many of these improvements have additional sources of error including mismatches 592 

between data resolution which can become a significant when upscaling (Rocher‐Ros et al., 593 

2019). Here, we tested the ability of a stream network model to improve predictions of stream 594 

CO2 concentrations and fluxes through representation of physical hydrologic processes, 595 

including atmospheric gas exchange, downstream advection, groundwater inputs of CO2, and 596 

benthic respiration driven by turbulent mixing. These process-based predictions outperform 597 

statistical methods within the East River, and future work will test the accuracy of the stream 598 

network model when applied to other systems. The stream network model also provides direct 599 
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estimates of the proportion of external and internal CO2 contributions. The model suggests that 600 

hyporheic exchange needs to be modeled accurately as it represents a significant portion of 601 

stream CO2 contributing 47% in the East River. Finally, through the direct comparison of 602 

existing statistical methods to the stream network model and sample data, we found that 603 

statistical upscaling of pCO2 can cause a significant overestimation of CO2 fluxes within the East 604 

River. Therefore, it is paramount that process-based models be applied at regional and global 605 

scales to accurately constrain the river and stream CO2 emissions. 606 
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Introduction  

Included in this supplementary information are three text-file, three figures, one table, 

and one dataset. Text-file and figures 1 and 2 are in support of modeled parameters, 

including runoff calculations and benthic CO2 concentrations above stream pCO2. Text-

file and figure 3, and table 1 are in support of conclusions depicting the skew often seen 

in pCO2 data and the benthic contributions observed in the model. The dataset included 

are the sampled data from the east river with locations not represented by modeled 

points denoted: 
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Text S1. 

Snowmelt in higher elevation sections of the East River was expected to contribute to 

discharge (Q) within the bases. To correct Q for elevation related snowmelt, data from 

Carroll & Williams (2019) was used to produce a regression between area normalized 

runoff and elevation. Using nine basins ranging in mean elevation from 3305 – 3549, 

areas of 0.9 – 84.0 km2, and Q of 0.008 – 2.734 m3/s; we calculated area normalized 

runoff and found that the equation,  

𝑟 = 2.431 ∗ 10−11 ∗ 𝑒 − 5.567 ∗ 10−8      (1) 

fit the data with an R2 of 0.46 (p = 0.04), where r is runoff in m/s and e is elevation in m. 

This was implemented in the model as the elevation corrected Q was added to stream 

sections discharge by multiplying the additional area by runoff.    

 

Text S2. 

To estimate realistic ranges of hyporheic zone pCO2, we used published 20 cm benthic 

zone pore water geochemistry from the main stem of the East River from Nelson et al. 

(2019). In their study, Nelson et al. (2019) provide % surface water contributions based 

on conductivity measurements to estimate GW influences within the hyporheic zone. We 

calculate relative pCO2 from their data using CrunchFlow reactive transport software 

(Steefel et al., 2015) to speciate the inorganic carbon system. Variable inputs include 

published pH and temperature along with estimated alkalinity based on the charge 

imbalance of published conservative cation (Ca2+, Mg2+, Na+, K+) and anion 

concentrations (Cl-, SO4
2-). While absolute pCO2 estimates are relatively uncertain, this 

exercise provides an estimate of relative pCO2 offsets between the hyporheic zone and 

stream surface waters (SFig. 3). As shown, pore waters originally interpreted to reflect 

~100% surface water (i.e. no GW influence) display elevated pCO2 relative to stream 

waters from 0-1000 ppm, with the majority of values >300 ppm. These estimates 

strongly support our stream network model optimization, which found the best fit with 

observations assuming hyporheic zone pCO2 is 600 ppm higher than stream waters. 

Text S3. 

For the purposes of understanding and comparing, means are a useful method of looking 

at data. However due to the right skew often seen in pCO2 data distributions, the use of 

means in statistical upscaling may lead to elevated flux estimations. This has been 

recognized in Butman & Raymond (2011), where it was stated that in three of the regions 

stream order combinations, the mean of sample pCO2 was an overestimation of the ‘true’ 

mean by up to 3-5%. Additionally, Raymond et al, (2013) used medians as it was noted 

that the mean pCO2 of rivers was ~800 ppm higher then the median. While these 

represent recognition of the problems associated with statistical representations of pCO2 

data we can see in SFig. 4 that both the mean and the median are over representations of 

the mode or the pCO2 values most likely to be seen across the landscape. This highlights 

an inherent problem with statistical upscaling of CO2 fluxes as large quantities of data are 

needed in order to accurately determine the pCO2 values that should be used lending 

additional support to methods such as proses based modeling where predictive power is 

strongest within the rang of pCO2 most commonly measured. 
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Figure S1. Model used to correct runoff due to additional runoff from snowmelt at higher 

elevations. 
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Figure S2. Half life of CO2 within the model with a median of 11.06 m a max of 

27,744,964 m and a min of 0.35 m. 
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Figure S3. Calculated pCO2 relative to minimum stream sample values from the 

Pumphouse reach hyporheic zone based on geochemical measurements of Nelson et al. 

(2019). 
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Figure S4. GLORICH dataset (Hartmann et al., 2014) containing 277,449 data points out 

of and available 283,856 as the data was cut to 50,000 to better show right skew. The 

dotted lines represent data mean (blue), median (green), and mode (red).   
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Table S1. The mean % of pCO2 from benthic respiration across the East River and within 

hotspots for the entire basin and by stream order. The percent of the East River and 

hotspots by length that more than 50% of their CO2 is from groundwater.      

 

Dataset S1. Saccardi and Winnick Data contains the East River sample data including 

chemistry and corrected pCO2 data (n=162) with the included column denoting whether 

data points were represented by NHDplus data point (n=121) and therefore used in the 

model. 

 

Zip folder S1. Spatial Files Used in Model includes all data required to run the model 

including csv files such as ‘catchment areas’, ‘names’, ‘NHId_remBM’ and ‘stream_reach’ 

which contain NHDplus data. The shape files included are used for model calculations 

and graphs and include ‘East_River_Lines’, ‘eastriverpump’, and ‘points’. The tiff filed 

included are a digital elevation model ‘LargeDomain_DEM1’ and the soil organic carbon 

map used in the Horgby MLRM ‘SOC’. The remaining csv’s contain the data for the 

discharge regression, snow plug locations, slope of each modeled point, watershed 

areas, and data used to make Sup Fig 4. Finally the ‘Pointdata’ csv are the data collected 

from the East River and used to validate the model.  

Code S1. Stream Network Model is the R code in an R markdown format including 

directions on the setup and use of the code. This document requires R and RStudio to 

open.   

 


