
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
62
59
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Determination of Emission Factors of Pollutants from Biomass

Burning of African fuels in Laboratory Measurements

Rudra P Pokhrel1, Janica Gordon1, Marc N. Fiddler1, and Solomon Bililign1

1North Carolina A&T State University

November 24, 2022

Abstract

Biomass burning (BB) is a major source of pollutants that impact local, regional, and global climate, air quality, and public

health. However, the influence of burning conditions and fuel type on emission factors of pollutants is still not well understood.

Here, we present the results from a laboratory study of emission factors of pollutants from seven different sub-Saharan African

biomass fuels combusted under a wide range of burning conditions ranging from smoldering to flaming. We found that particulate

matter (PM) and CO emission factors (EF; g (kg wood)-1) are highly sensitive to the burning conditions, with an order of

magnitude variation between flaming and smoldering burning conditions. NO EF shows a fuel type dependence, with higher

NO EF for fuels with larger nitrogen content. We observed a linear correlation between PM and CO EF and proposed that

CO EF could be used as a proxy for estimating PM EF in cookstove emissions. The proposed relationship is valid regardless

of the fuel type, moisture content, stove types, and origin of the fuel. Unlike total PM, EF of inorganic species do not show

dependence on burning conditions. Finally, we showed that burning biomass fuels in a tube furnace would be an exceptional

experimental approach to study BB emission under controlled burning conditions.
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Key Points: 11 

 Particulate matter and CO emission factors are highly sensitive to the burning conditions 12 

of the fuel 13 

  Emission factor of CO could be used as a proxy for estimating emission factor of 14 

particulate matter in cookstove emissions. 15 

 Fuel nitrogen content plays a significant role in the emission factor of NO.  16 
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Abstract 17 

Biomass burning (BB) is a major source of pollutants that impact local, regional, and global 18 

climate, air quality, and public health. However, the influence of burning conditions and fuel 19 

type on emission factors of pollutants is still not well understood. Here, we present the results 20 

from a laboratory study of emission factors of pollutants from seven different sub-Saharan 21 

African biomass fuels combusted under a wide range of burning conditions ranging from 22 

smoldering to flaming. We found that particulate matter (PM) and CO emission factors (EF; g 23 

(kg wood)
-1

) are highly sensitive to the burning conditions, with an order of magnitude variation 24 

between flaming and smoldering burning conditions. NO EF shows a fuel type dependence, with 25 

higher NO EF for fuels with larger nitrogen content. We observed a linear correlation between 26 

PM and CO EF and proposed that CO EF could be used as a proxy for estimating PM EF in 27 

cookstove emissions. The proposed relationship is valid regardless of the fuel type, moisture 28 

content, stove types, and origin of the fuel. Unlike total PM, EF of inorganic species do not show 29 

dependence on burning conditions. Finally, we showed that burning biomass fuels in a tube 30 

furnace would be an exceptional experimental approach to study BB emission under controlled 31 

burning conditions. 32 

1 Introduction 33 

Biomass burning (BB), which includes open burning as well as cookstove emission 34 

(Akagi et al., 2011), emits gaseous and particulate pollutants that impact human health, including 35 

premature deaths and low birth weight. Emissions from BB are associated with a variety of acute 36 

respiratory illnesses such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, 37 

pneumonia, and lung cancer (Delfino et al., 2009; Elliott et al., 2013; Henderson et al., 2011; 38 

Holstius et al., 2012; Johnston et al., 2011; Johnston et al., 2012; Naeher et al., 2007; Rappold et 39 

al., 2011; Smith and Pillarisetti, 2017; Stefanidou et al., 2008; Sutherland et al., 2005). Air 40 

pollution (ambient and household) is a major threat to human health, which increases the risk of 41 

pulmonary and cardiovascular diseases and contributes to an estimated premature death of 7 42 

million people globally (Forouzanfar et al., 2016). BB is the largest source of primary 43 

carbonaceous particles and the second largest source of trace gases in the atmosphere (Andreae, 44 

2019; Andreae and Merlet, 2001; Bond et al., 2004). The impacts of air pollution in Africa are 45 

significant, since Africa is the single largest source of BB emissions; accounting for more than 46 

half of global BB carbon emissions (Ichoku et al., 2016; Ichoku et al., 2008; Lamarque et al., 47 

2010; Roberts et al., 2009; Roberts and Wooster, 2008; Schultz et al., 2008; van der Werf et al., 48 

2010). Emissions from Africa are expected to grow due to a rapid increase in population. By 49 

2100, the population of Africa is predicted to be 40% of the global population (UN, 2017). The 50 

sharp increase in population will increase the use of domestic and commercial combustion 51 

sources, since it is estimated that about 500 million people will remain without access to 52 

electricity by 2030 (IEA, 2020). In 2018, about 900 million people in sub-Saharan Africa relied 53 

on solid fuel and that demand is expected to grow sharply (IEA, 2020). Solid fuels such as wood, 54 

charcoal, animal dung, and crop residue are the main sources of energy in African households 55 

(Beyene and Koch, 2013). Besides health impacts, emissions from Africa will also impact the 56 

global climate. Black carbon (BC), which is only second to CO2 in its climate warming 57 

contribution (Bond et al., 2013; Jacobson, 2001), is the main particulate emitted from BB. Up to 58 

80% of the BC emissions from Africa were attributed to residential solid fuel burning (Bond et 59 

al., 2013). 60 
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Even though Africa is the single largest source of global BB carbon emission, studies 61 

focusing on African BB emission are recent and very limited (Eck et al., 2003; Flamant et al., 62 

2018; Haywood et al., 2020; Redemann et al., 2020; Vakkari et al., 2014). Most of the global 63 

emission inventories available and used for Africa are based on emissions data from North 64 

America, Europe, and Asia (Bond et al., 2007; Bond et al., 2004; Klimont et al., 2009; Klimont 65 

et al., 2013; Lamarque et al., 2010; Streets et al., 2004). The use of such inventories for air 66 

quality and climate modeling studies in Africa resulted in large uncertainties (Assamoi and 67 

Liousse, 2010; Liousse et al., 2014; Liousse et al., 2010). The only way to reduce these 68 

uncertainties is to use emission factors derived from local measurements of African fuels in the 69 

emission inventories. There have been several field studies reporting cookstove emissions in 70 

Africa (Adkins et al., 2010; Beltramo and Levine, 2013; Coffey et al., 2017; Eilenberg et al., 71 

2018; Jary et al., 2014; Johnson et al., 2011; Oluwole et al., 2013; Pennise et al., 2009; Rosa et 72 

al., 2014; Wathore et al., 2017) but most of the studies are limited to only a few air pollutants; 73 

mostly CO and particulate matter (PM) (Thomas et al., 2015). Besides this, the variabilities in 74 

estimated EFs are attributed to factors like stove type, fuel type, moisture content, fuel origin, 75 

etc. which makes direct comparison of the results difficult. Due to a lack of proper 76 

parameterization schemes, there is a significant uncertainty in the emission factors used in air 77 

quality and climate models. 78 

In this study, we report the results of laboratory combustion experiments for studying the 79 

impact of combustion conditions on the emissions of gaseous and particulate air pollutants. 80 

African biomass samples representative of solid fuels used in sub-Saharan African households 81 

were combusted under various burning conditions. We quantified the impact of burning 82 

conditions by burning the same fuel under a variety of burning conditions and by burning 83 

different fuels under the same conditions and comparing the resulting emissions.  84 

2 Materials and Methods 85 

2.1 Sample Preparation and Burning Setup 86 

Six different sub-Saharan African fuels with local names and scientific names listed in 87 

Table 1, and a native eastern North American fuel (white pine) were used for this study. African 88 

fuels were collected from Ethiopia and Botswana, whereas the North American fuel was 89 

collected locally in North Carolina. All the fuels were stored in a fume hood for drying and fuel 90 

moisture content was estimated before the experiments by measuring mass loss in the fuel due to 91 

overnight heating in the oven set at 90 
o
C, as in previous studies (Christian et al., 2003; Pokhrel 92 

et al., 2021). The estimated fuel moisture content in this study was below 10% for all fuels. 93 

The elemental composition of the fuel was estimated by using a carbon, hydrogen, and 94 

nitrogen (CHN) analyzer (CHN analyzer 2400 series II, PerkinElmer, USA) that employs the 95 

Pregl-Dumas method. Each biomass sample was converted into fine dust using a saw then about 96 

5 mgs of the fine powder was weighed on a tin capsule and crimped with tweezers. These 97 

capsule samples were placed inside the autosampler wheel and were introduced to a high 98 

temperature reactor where they were combusted in a temporarily oxygen enriched atmosphere. 99 

CO2, H2O, and nitrogen oxides produced during combustion were carried by helium gas and 100 

passed through a reduction tube where oxides of nitrogen were reduced to molecular nitrogen. 101 

Finally, the gases were homogeneously mixed as they passed through the mixing chamber and 102 

the components of the resulting gas mixture were chromatographically separated before being 103 
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quantified with a thermal conductivity detector. The percentages of elemental composition of 104 

carbon, hydrogen, and nitrogen in the fuel measured in this study are presented in Table 1. CHN 105 

measurements had a manufacturer-specified accuracy of < 0.3% and precision of < 0.2%. 106 

Biomass combustion was conducted at North Carolina Agricultural and Technical State 107 

University (NCAT) indoor burning facility. Details of the burning facility and the experimental 108 

and chamber cleaning procedures are reported in our previous studies (Pokhrel et al., 2021; 109 

Smith et al., 2020a; Smith et al., 2020b; Smith et al., 2019) and only a brief description is 110 

provided here. The schematic of the NCAT burning facility and measurement set up is shown in 111 

Figure S1. Biomass combustion was performed in a tube furnace and the smoke was transported 112 

to the environmental chamber by mixing with zero air supplied to the tube furnace at constant 113 

flow rate (10 standard liters per minute). The furnace was disconnected from the chamber about 114 

10 minutes after ignition and a constant flow of make-up gas (typically 4 L min
-1 

provided by 115 

zero air generator) was supplied to the chamber.  116 

The temperature of the furnace can be set from room temperature to 1000 
o
C, but this 117 

study used combustion temperatures between 450 
o
C and 800 

o
C. A mixing fan located inside the 118 

chamber was turned on for about 15 to 20 minutes after combustion. The temperature and 119 

relative humidity (RH) inside the chamber were monitored using a hygrometer (Traceable 120 

Products, Model 4085; humidity range 5% to 95%). The typical temperature in the chamber 121 

during these experiments ranged from 21 °C – 24 °C and RH below 5%. Following each set of 122 

measurements, the chamber was flushed with zero air at a flow rate of 20 L min
-1

 until the 123 

particle mass reached below 2 µg m
-3

 and nitric oxide and ozone concentrations were below 5 124 

ppbv. 125 

Table 1: The elemental composition of biomass samples used in this work. 126 

 127 

Local / Common Name Scientific Name 

Elemental 

Composition (%) 

C H N 

Girar / Umbrella thorn, Flat-top 

acacia 
Acacia abyssinica 45.8 6.7 0.4 

Bahir Zaf / Eucalyptus  Eucalyptus camaldulensis 46.1 6.6 0.3 

Mopane / balsam tree Colophospermum mopane 46.4 6.8 0.3 

Mukusi / African teak Baikiaea plurijuga 46.6 6.8 0.5 

Woyira /Olive Olea europaea 49.3 6.9 0.2 

Wanza Cordia Africana 45.5 6.5 0.5 

White Pine Pinus strobus 46.8 6.8 0.1 

 128 
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2.2 Instrumentation 129 

We measured the different gas phase species emitted from biomass burning as described 130 

below. Carbon dioxide (CO2) and carbon monoxide (CO) concentrations were measured using a 131 

CO2 analyzer (model 41C Thermo Scientific) and a CO analyzer (model 48C Thermo Scientific), 132 

respectively. These monitors were calibrated before and after the experiments using certified 133 

standard gas cylinders (199.7 ppmv for CO and 5028 ppmv for CO2 from Airgas National 134 

Welders). Nitrogen oxides (NOx) were measured with a Monitor Labs fluorescence analyzer 135 

(model 8840). The NOx monitor was calibrated using a certified standard gas cylinder (53.12 136 

ppmv for NO from Airgas National Welders). Due to a failure in the catalytic converter in the 137 

NOx monitor, we were only limited to NO measurements in this study. A UV photometric ozone 138 

(O3) analyzer (model 49 Thermo Electron) was used to measure the O3 concentrations. The O3 139 

analyzer was calibrated using a gas titration method (DeMore and Patapoff, 1976). Briefly, O3 140 

was produced by passing zero air through the generator having a UV lamp (11SC-1, Spectroline) 141 

and titrated with NO in a ~30 mL glass mixing ball. The reduction in the NO concentration was 142 

measured by the calibrated NOx monitor and O3 concentration was measured based on the loss 143 

in the NO concentration. 144 

We measured the particle size distribution in the range of 14 -720 nm using a Scanning 145 

Mobility Particle Sizer (SMPS, TSI). The SMPS consists of an electrostatic classifier (TSI, 146 

Model 3080), long Differential Mobility Analyzer (DMA, TSI, Model 3081), and a general-147 

purpose water-based Condensation Particle Counter (WCPC, TSI, Model 3787). We also 148 

measured the size-selected particle effective density (ρeff) using an Aerosol Particle Mass 149 

analyzer (APM, Kanomax Inc., Model 3602) by connecting DMA and APM in series. Briefly, 150 

the DMA was used to select the aerosol size based on its electrical mobility and then the size-151 

selected aerosol passed through the APM, which classified the aerosol based on its mass to 152 

charge ratio. The WCPC connected downstream of APM was used to measure the concentration 153 

of the particles at each mass. During this study, the APM was operated in stepping mode where 154 

the rotational speed of the APM was kept constant and the voltage underwent stepwise changes 155 

to produce a series of selected sizes to determine the particle mass distribution. Details of the 156 

operation principle of the APM can be found elsewhere (McMurry et al., 2002; Park et al., 2003; 157 

Park et al., 2004). Particle effective density is calculated using: 158 

ρeff =
6mp

πdm
3           1 159 

where mp is the particle mass and dm is the mobility diameter. 160 

An aerosol chemical speciation monitor (ACSM; Aerodyne Research Inc., USA) was 161 

used to measure submicron non-refractory particulate matter (NR-PM) including organics, 162 

nitrate, sulfate, ammonium, and chloride. Aerosol from the chamber was sampled into the 163 

ACSM through a critical orifice with a diameter of 100 µm at a constant flow rate of 85 mL min
-

164 
1
. The ACSM was calibrated with ammonium nitrate and ammonium sulfate to estimate the 165 

ionization efficiency and relative ionization efficiencies. The recorded data were processed using 166 

the ACSM local toolkit (v. 1.6.0.3) for Igor Pro. Details about the ACSM can be found 167 

elsewhere (Ng et al., 2011). 168 
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2.3 Modified combustion efficiency and emission factor calculation 169 

Emissions from fires can be impacted by many factors such as fuel geometry, moisture content, 170 

and environmental variables (Stockwell et al., 2014). The relative amount of flaming and 171 

smoldering combustion is quantified by calculating modified combustion efficiency (MCE) for 172 

the fire. 173 

MCE =  
∆CO2

∆CO2+∆CO
           2 174 

where ∆CO2, and ∆CO are the background corrected CO2 and CO concentrations, 175 

respectively (Stockwell et al., 2014; Yokelson et al., 2009; Yokelson et al., 1997). Background 176 

concentrations were measured before the ignition of each burn. Though higher MCE values are 177 

attributed to more complete combustion, flaming and smoldering can happen simultaneously. 178 

Typically, an MCE of ⁓ 0.8 is attributed to purely smoldering, an MCE of ⁓ 0.9 represents 179 

roughly equal amounts of flaming and smoldering, and an MCE of ⁓ 0.99 is attributed to purely 180 

flaming combustion (Stockwell et al., 2014). The reported MCE values represent a fire average; 181 

integrated over all stages of combustion, since smoke was introduced into the chamber sampling 182 

the entire burn and measurements from the chamber could not distinguish between different 183 

stages. We adjusted the furnace temperature between 450 °C to 800 °C to achieve the different 184 

burning conditions. During the lower temperature burning cases (450 °C to 500 °C) the 185 

calculated MCE were below 0.9, whereas for the higher temperature burning cases (700°C and 186 

800°C) the calculated MCE were at or above 0.95. 187 

The emission factor (EF) is defined as the amount of pollutant released per unit mass of 188 

the fuel burned. We calculated EFs using carbon mass balance approach; assuming all of the 189 

carbon had been measured and all of the burned carbon was volatilized (Selimovic et al., 2018; 190 

Stockwell et al., 2014; Yokelson et al., 2009; Yokelson et al., 1999): 191 

EF(X) (g kg−1) = 𝐹𝑐 × 1000 ×
MWX

MWC
×

∆X

∆CO+∆CO2
      3 192 

where 𝐹𝑐 is the fuel carbon content; MWC is the molecular weight of carbon; MWX is the 193 

molecular weight of species X; ∆CO, ∆CO2, and ∆X are the background corrected mixing ratios 194 

of CO, CO2, and species X. Due to limitations in our capability to measure non-CO2 and non-CO 195 

carbon emissions, we neglected the carbon emissions other than CO and CO2 in the denominator 196 

of the equation (3). This may lead to overestimation of EFs by a few percent (Akagi et al., 2011; 197 

Andreae and Merlet, 2001). However, this source of error is negligible compared to other 198 

sources of error, such as variations in burning conditions, moisture content, fuel type differences, 199 

etc. The mass ratio of background corrected PM to the background corrected CO was multiplied 200 

by the EF of CO to determine the EFs of PM (g kg
-1

) (Stockwell et al., 2016). Similarly, total 201 

particle number (PN)  EFs (# kg
-1

) is calculated by multiplying the ratio of PN to the CO mass 202 

concentration by the EF of CO. Since number concentrations inside the chamber change rapidly 203 

due to diffusional loss, coagulation, and gravitational settling, we corrected those losses based on 204 

the first order decay rate of the total number concentration, as shown in Figure S2. 205 

2.4 Particulate mass measurement 206 

We converted the particle volume distribution measured by the SMPS to PM mass by 207 

multiplying the particle volume with the effective density of the particle. In this study, the SMPS 208 

sampled from 14-720 nm, so the PM mass estimated in this study would be ⁓PM1. In-software 209 

multiple charging correction was applied. We found that ρeff was size independent for burns with 210 
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MCE < 0.9 (Pokhrel et al., 2021), so for burns with MCE < 0.9, we used the average value of ρeff 211 

calculated from 4-6 different sizes. For burns with MCE > 0.9, ρeff shows a size dependence, with 212 

smaller values of ρeff for larger mobility sizes. So, for MCE > 0.9 cases, we used the mass 213 

mobility exponent relationship to estimate the ρeff at a desired mobility diameter. The mass 214 

mobility exponent relation is expressed as a power-law relationship between mp and dm. 215 

mp = Cdm
Dfm            4 216 

where C is a pre-factor and Dfm is the mass mobility exponent (Park et al., 2003; Park et 217 

al., 2004; Pokhrel et al., 2021). On combining Equations 1 and 4, ρeff can be expressed as: 218 

𝜌𝑒𝑓𝑓 =
6Cdm

Dfm

πdm
3  = C′dm

Dfm−3
         5 219 

where C′ =
6C

π
 is a constant. Based on Equation 4, we first estimated the mass mobility 220 

exponent and the pre-factor then applied those values in Equation 5 to estimate the ρeff at a 221 

particular size. We set the upper limit of ρeff as 2 g cm
-3

 (which is assigned as the density of 222 

primary particles) as in a previous study (Maricq and Xu, 2004). One representative example of 223 

ρeff calculated for a set of DMA midpoint diameters is shown in Figure S3 and the details of the 224 

mass estimation is explained in the supplementary information.  225 

ACSM measurements were used to estimate the mass of NR-PM. A recent study (Lim et 226 

al., 2019) found that the aerosol mass spectrometer collection efficiency depends on the aerosol 227 

volatility, with collection efficiencies ranging from 0.35 to 0.64. So, the use of a constant 228 

collection efficiency would bias the estimated mass concentrations of NR-PM. In addition, due 229 

to a slight difference in size range measured by our SMPS (up to 720 nm) and ACSM (up to 1 230 

µm) and a lack of black carbon mass measurements, we did not estimate the collection efficiency 231 

of the ACSM. We estimated the mass percentage of organic aerosol (OA), nitrate, sulfate, 232 

ammonium, and chloride in NR-PM and used that fraction to estimate the mass of each 233 

component based on SMPS mass measurements by assuming black carbon accounts for 5% of 234 

the total PM for smoldering-dominated fires. Since the fraction of BC mass in flaming 235 

dominated burns is highly variable, we did not estimate the NR-PM mass for those burns. The 236 

mass of NR-PM estimated this way might have some bias if the black carbon mass is more or 237 

less than 5% of the PM mass. 238 

Table 2. Fuel based average modified combustion efficiency and emission factor (g kg
-1

) of 239 

different fuels. Values inside the parentheses represent one standard deviation of the average. 240 

Fuel MCE CO2 EF CO EF NO EF 

Acacia 0.88 (0.07) 1474 (114) 129 (72) 1.19 (0.70) 

Eucalyptus 0.83 (0.09) 1408 (157) 179 (100) 0.72 (0.48) 

Mopane 0.83 (0.11) 1415 (168) 183 (107) 0.98 (0.44) 

Mukusi 0.87 (0.09) 1483 (156) 143 (99) 1.21 (0.53) 

Olive 0.91 (0.07) 1637 (125) 109 (79) 0.703 (0.39) 

Wanza 0.89 (0.05) 1487 (89) 114 (57) 1.89 (0.82) 

White Pine 0.87 (0.07) 1497 (118) 140 (75) 0.67 (0.23) 
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3 Result and Discussion  241 

3.1 Simulation of biomass burning at lab 242 

Seven different fuels were burned under various burning conditions by adjusting the 243 

temperature of the furnace to simulate the different stages of the fire. The temperature of the 244 

furnace was adjusted between 450 °C to 800 °C in this study. The fuel burning condition was 245 

quantified by calculating the MCE of the burn, as discussed in section 2.3. Even though the MCE 246 

can be influenced by other factors other than furnace temperature, we generally found lower 247 

temperature combustion was smoldering-dominated and higher temperature combustion (> 700 248 

°C) typically resulted in MCE > 0.95 that were flaming-dominated. Figure 1 shows the 249 

distribution of the MCE of the different burns in this study and a comparison with previous 250 

laboratory and field studies of open BB and cookstove emissions (Grieshop et al., 2017; Saliba et 251 

al., 2018; Selimovic et al., 2018; Stockwell et al., 2014). We compare the MCE values because 252 

the MCE shows a good correlation with emissions of different gaseous and particulate pollutants 253 

and is used extensively in emission factor measurement studies (Akagi et al., 2011; Bilsback et 254 

al., 2019; Champion et al., 2017; Christian et al., 2003; Liu et al., 2017; Selimovic et al., 2018; 255 

Stockwell et al., 2014; Yokelson et al., 2013; Yokelson et al., 2008; Yokelson et al., 1997). In 256 

comparing a few representative laboratory experiments and field studies, the MCE for the 257 

laboratory studies is skewed towards flaming conditions (MCE > 0.92 or above) as shown by a 258 

very narrow width of the violin plot below MCE = 0.9. As recommended in a recent review 259 

article (Hodshire et al., 2019), more laboratory studies of smoldering fires are needed to study 260 

the emission behavior under lower MCE conditions. Even though a field study of cookstove 261 

emissions shown in Figure 1 is dominated by high MCE, this is not always the case, as shown by 262 

a recent cookstove field study (Eilenberg et al., 2018). With this in mind, we designed 263 

experiments to conduct burns of biomass fuels for a wider and uniformly distributed range of 264 

MCE values, as shown in Figure 1. As indicated by the width of the violin plot, we were able to 265 

conduct burns of biomass fuels from a nearly purely smoldering to a nearly purely flaming 266 

condition in a more controlled way. As explained in more details under section 3.2, despite using 267 

seven different fuels, we were able to burn all the fuels within a similar range of MCE values. 268 

This fact suggests that conducting combustion studies of biomass fuels in a tube furnace could be 269 

an exceptional approach to study emissions from BB as a function of burning conditions. 270 
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 271 

Figure 1. Violin plots showing comparison of MCE for previous laboratory and field studies of 272 

BB and cookstove emissions. Boxes represent the interquartile range with whiskers as the 95
th

 273 

and 5
th

 percentile of the data and the line inside the box is the median. Violins (area enclosed by 274 

red lines) represent the kernel density to show the distribution of MCE. 275 

3.2 Emission of gas-phase species  276 

We conducted a total of 39 different burning experiments with at least 4 burns for each 277 

fuel type, as shown in the axis label of Figure 2. The distribution of the MCE for each fuel type 278 

is shown in Figure 2 (a). The MCE values observed in this study from all fuels were between 279 

0.702 and 0.981 with an average value of 0.870 (0.080). The value inside the parenthesis 280 

represents one standard deviation about the average. These values are consistent with previous 281 

laboratory experiments for biomass burning (McMeeking et al., 2009; Selimovic et al., 2018; 282 

Stockwell et al., 2014) as well as for cookstove emissions (Bilsback et al., 2018; Saliba et al., 283 

2018). For each fuel, the interquartile range of the MCE is slightly different but the average 284 

MCE for each fuel type lies within one standard deviation of the average for all fuels, as shown 285 

in Table 2. Like the MCE, we also observed a similar range of EFs of CO2 and CO for all fuels, 286 

as shown in Figure 2 (b) and (c). Not surprisingly, EFs show a good correlation for CO2 and 287 

anticorrelation for CO with the MCE values, as observed in a previous study (Selimovic et al., 288 

2018). The estimated ranges of CO2 EFs based on all burning experiments lies between 1196 g 289 

kg
-1

 to 1775 g kg
-1

 with an average value of 1484 (146) g kg
-1

 and that of CO lies between 21.39 290 

g kg
-1

 to 323.09 g kg
-1

 with average value of 141.38 (86.98) g kg
-1

. The values in parenthesis 291 

represent one standard deviation about the average. These values lie within the range of EFs of 292 

CO2 and CO for open cooking found in a previous study (Akagi et al., 2011). The range of CO2 293 

and CO EFs based on each fuel type is shown in Table 2. Unlike CO2, the emission factor of CO 294 
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is highly sensitive to the burning conditions, with an order of magnitude increase when changing 295 

the MCE value from ~0.75 to ~0.95 for the same fuel. This suggests that variations in CO EFs 296 

found in different cookstove types (Grieshop et al., 2017; Roden et al., 2006; Wathore et al., 297 

2017) could potentially be due to differences in fuel burning efficiencies, which can be 298 

influenced by factors other than cookstove type (Stockwell et al., 2014). These could include fuel 299 

dryness, surface area, and fuel type. We compare our estimated values of CO2 and CO EFs with 300 

previous laboratory studies (Selimovic et al., 2018; Stockwell et al., 2014) for a wide variety of 301 

fuels as well as a field study focusing on African BB emissions (Barker et al., 2020). In addition, 302 

we also compare the CO EFs with previous cookstove emission studies (Eilenberg et al., 2018; 303 

Grieshop et al., 2017). As shown in Figure S4 (a) & (b), our estimated values compare well with 304 

previous studies and show a similar correlation between MCE and EFs of CO2 and CO. 305 

306 
Figure 2. Box and whisker plots of a) MCE, b) emission factor of CO2, c) emission factor of CO, 307 

and d) emission factor of NO for the different fuels listed on the bottom axis. Numbers inside the 308 

bracket on the bottom axis represent the number of burns for each fuel type. Boxes represent the 309 

interquartile range with whiskers as the 95
th

 and 5
th

 percentile of the data. The line inside the box 310 

is the median and the green diamonds are the mean of the data. 311 

The range of NO EFs found in this study lie between 0.33 g kg
-1

 and 2.95 g kg
-1

 with an 312 

average value of 1.11 (0.71) g kg
-1

, which compares well with the NO EF for open cooking (1.42 313 

(0.42) g kg
-1

) found in a previous study (Akagi et al., 2011). Like CO2 and CO, we also 314 

compared the NO EFs with previous laboratory studies (Selimovic et al., 2018; Stockwell et al., 315 

2014) and found NO EFs derived from African fuels are consistent with those from western US, 316 

as shown in Figure S4 (c). Like in previous studies, we did not observe a good correlation of NO 317 

EFs with the MCE. Unlike CO2 and CO, NO EFs show a fuel type dependence, with some fuels 318 

showing consistently higher values than others. For a similar range of MCE, NO EFs for wanza 319 

is consistently higher than most of the other fuels, as shown in Table 2. As evident from Figure 2 320 

(d), NO EFs for eucalyptus, white pine, and olive are relatively lower than the rest of the fuels, 321 

which aligns well with the relatively lower fuel nitrogen content of those fuels as shown in Table 322 

1. This result is consistent with previous studies concluding that NO emission is dependent on 323 
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the fuel nitrogen content (Andreae and Merlet, 2001; McMeeking et al., 2009; Tihay-Felicelli et 324 

al., 2017). To further explore this, we performed a multiple regression of NO EFs as a function 325 

of MCE, fuel nitrogen content, and an independent term. Multiple regression analysis 326 

significantly improves the correlation with an r2 increase from 0.41 obtained from simple linear 327 

regression with respect to MCE to 0.70 with MCE and nitrogen content. This fact suggests that 328 

the incorporation of fuel nitrogen content can significantly improve the prediction of NO EFs 329 

and that MCE and nitrogen content accounts for 70% of the NO EF dependence. Details of the 330 

regression analysis is presented in the supplementary information. Furthermore, we also explored 331 

the impact of combustion condition on NO emission by burning the same fuel under various 332 

combustion conditions quantified by the MCE values. For the same fuel (wanza), the NO EF 333 

shows a good correlation with MCE value, with larger NO emissions for flaming condition and 334 

lower emissions for smoldering conditions. On changing the MCE from ~0.81 to ~0.96, the NO 335 

EF increased by the factor of 3, as shown in Figure S5. EFs of gas phase species for all burns are 336 

provided on Table S1. 337 

3.3 Emission of particulate matter 338 

Like EFs of CO, EFs of PM also show large variations, with estimated values ranging 339 

from 0.82 g kg
-1

 to 25.10 g kg
-1

 for different burning conditions. Given such a large variation in 340 

EFs (almost two orders in magnitude) and no obvious discrepancies between different fuel types, 341 

we parameterized PM EFs with MCE. PM EFs shows good correlation (r
2
 = 0.76) with MCE (as 342 

shown in Figure S6) having larger PM emissions for smoldering fires and lower PM emissions 343 

for flaming fires. Typically, for flaming-dominated fires (MCE > 0.95) the estimated EFs of PM 344 

are less than 5 g kg
-1

, indicating that efficient burning can significantly reduce PM emissions. 345 

We compare our results with previous laboratory and field studies (Eilenberg et al., 2018; 346 

Grieshop et al., 2017; Hosseini et al., 2013; Jayarathne et al., 2018) of cookstove and biomass 347 

burning emissions and found a consistent relationship. There is some scatter in the data where 348 

some data points fall outside the 95% confidence interval of the best fit line, particularly for 349 

MCE > 0.9, but in general, the proposed relationship shows promising results. The PM mass 350 

calculated in this study is ~PM1 because the upper limit of the SMPS used in this work was 720 351 

nm. Most of the data from previous studies presented in Figure S6 are from PM2.5 but, for fresh 352 

BB emissions, these range of PM are used interchangeably (Akagi et al., 2011) because majority 353 

of the PM mass (80-90%) comes from the diameters less than 1 µm (Reid et al., 2005). From an 354 

air pollution perspective, the study of PM emission is one of the key components needed to 355 

understand the severity of the impact of air pollution. There have been numerous cookstove 356 

emission studies focused on emissions of PM and other gaseous pollutants, and the variabilities 357 

in the estimated PM EFs values are often attributed to the impacts of stove types, fuel moisture 358 

conditions or fuel types (Bilsback et al., 2019; Bilsback et al., 2018; Champion et al., 2017; 359 

Coffey et al., 2017; Corbin et al., 2015; de la Sota et al., 2017; Du et al., 2017; Eilenberg et al., 360 

2018; Grieshop et al., 2017; Islam et al., 2021; Mitchell et al., 2019; Mutlu et al., 2016; Pandey 361 

et al., 2017; Roden et al., 2006; Wathore et al., 2017). Due to large variations in reported PM 362 

EFs without proper parameterization, there will still remain a challenge in representing those 363 

emissions in models.  364 
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 365 

Figure 3. The particulate matter emission factor plotted as a function of CO emission factor. The 366 

solid black line is the linear best fit based on this study and the dotted black lines are the 95% 367 

confidence interval of the fit. Also included (gray filled circle) are the data from the previous 368 

studies. Original data and references for all the studies are provided in the supplementary 369 

information. 370 

A recent review article on stove intervention programs in low- and middle-income 371 

countries found that there were more available measurements of CO than PM (Thomas et al., 372 

2015). This could potentially be due to the fact that CO is substantially easier to measure with 373 

portable instruments compared to PM. There are a few studies which proposed a correlation 374 

between CO and PM EFs (Champion et al., 2017; Grieshop et al., 2017; Roden et al., 2009) but 375 

whether that relationship can still be applied for different stoves, fuels, and fuel moisture values 376 

is still uncertain. With that in mind, we parameterized EFs of PM as a function of EFs of CO 377 

based on this study. As shown in Figure 3, EFs of PM show a good positive correlation (r
2
 378 

=0.78) with EFs of CO from the data measured in this study. In addition, the slope of the 379 

regression (0.102 (0.023) g g
-1

), which also represents the emission ratio of PM with CO, 380 

compares well with the 11-year average PM emission ratio with CO (0.109 (0.01) g g
-1

) 381 

measured at Boise, ID (McClure and Jaffe, 2018) during a western US wildfire season. The 382 

intercept of the regression line is statistically insignificant (p value = 0.12) supporting the fact 383 

that for complete combustion (at CO = 0) there is no production of particulate matter. We 384 

compared the proposed regression based on this study with the data from previous studies. Data 385 
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from the literature includes 11 different studies (Coffey et al., 2017; Du et al., 2017; Eilenberg et 386 

al., 2018; Grieshop et al., 2017; Islam et al., 2021; Jetter et al., 2012; MacCarty et al., 2010; 387 

Mutlu et al., 2016; Roden et al., 2006; Roden et al., 2009; Wathore et al., 2017) with different 388 

fuels (dry and wet wood, dung, coconut shells, and biomass briquette); varieties of stoves types 389 

and 405 different field measurements from the south and east Asia, different parts of Africa, and 390 

laboratory studies (Table S2). As evident from Figure 3, regardless of all the aforementioned 391 

variabilities, the proposed regression based on this study captures the variabilities in the data. 392 

The majority of the literature data fall within the 95% confidence interval of the regression line, 393 

indicating that EFs of CO could be a good proxy for estimating EFs of PM for the cookstove 394 

using biomass fuel. Obviously, there is some scatter in the data which lies outside the 95% 395 

confidence interval ranges, but the majority (65%) lies within. We also examined the predictive 396 

capabilities of our proposed regression model. Based on the EFs of CO, we estimated the EFs of 397 

PM and found that predicted EFs of PM compared well with the measured literature values. The 398 

majority of the predicted EFs of PM lie close to the measured values as evident by highly dense 399 

data points around the one-to-one line, as shown in scatter density plot between predicted and 400 

measured EFs of PM (Figure S7). The mean bias error, mean absolute error, and root mean 401 

square error of the EF of PM are found to be 0.62 g kg
-1

, 2.35 g kg
-1

, and 3.24 g kg
-1

 402 

respectively. 403 

 404 

Figure 4. Emission factors of submicron aerosol species plotted as function of MCE for a) 405 

organic aerosol, b) nitrate, c) sulfate, and d) ammonium and chloride. Also included (open 406 

triangles) are the data from May et al. (2014) that is  based on laboratory and airborne 407 

measurements. 408 

Besides PM measured by the SMPS, we also reported the EFs of NR-PM measured by 409 

the ACSM. EFs of NR-PM as a function of MCE is shown in Figure 4, which also compares the 410 

NR-PM EFs from a previous study (May et al., 2014). As stated earlier in section 2.4, we only 411 

presented that data for smoldering fires (MCE ~0.9 and lower). OA is the major particulate 412 
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species emitted (>90% by mass in most of the burns) and has an order of magnitude higher EFs 413 

than the inorganic species. Such a high OA fraction has also been observed for smoldering fires 414 

in previous studies (Liu et al., 2017; May et al., 2014). The estimated average OA EF (15.33 ± 415 

7.23 g kg
-1

) is in good agreement with the previous study (May et al., 2014) which was measured 416 

during the prescribed montane fires (11.2 ± 2.7 g kg
-1

). However, OA EFs in this study are 417 

significantly larger than chaparral and costal fire values measured by May et al. (2014); 418 

potentially due to the larger observed MCE during those fires. Similar to total PM, EFs of OA 419 

show a burning condition dependence with higher EF for the emissions with lower MCE. 420 

Besides OA, the dominant inorganic nonrefractory species measured by the ACSM includes 421 

sulfate, nitrate, ammonium, and chloride. The estimated average EFs of inorganic nonrefractory 422 

species are 0.032 (0.026), 0.16 (0.08), 0.034 (0.067), and 0.09 (0.175) g kg
-1

 for sulfate, nitrate, 423 

ammonium, and chloride respectively. Although these values are comparable with the previous 424 

study of fuels from the south east coastal plain (May et al., 2014), western US wildfires typically 425 

have larger values (Liu et al., 2017). This could potentially be due to fuel type dependence, as 426 

suggested in previous studies (Christian et al., 2003; Hosseini et al., 2013; May et al., 2014). 427 

Unlike OA, EFs of nonrefractory inorganic species (except nitrate) do not show dependence on 428 

burning conditions as quantified by the MCE except nitrate, which has also been observed in 429 

previous studies (May et al., 2014; McMeeking et al., 2009). 430 

 431 

Figure 5. The particle number emission factor plotted as a function of MCE. Also included are 432 

the particle number emission factors from the previous study as shown in legend. The solid black 433 

line is the best linear fit of the data from this study and the dotted black lines are 95% confidence 434 

intervals of the fit. 435 

 436 
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Besides particle mass, we also estimated the emission factor of particle number emitted 437 

during combustion. Like PM EFs, PN EFs also show dependence on burning conditions with 438 

smoldering fire emitting an order of magnitude larger PN compared to flaming fires as shown in 439 

Figure 5. The range of PN EFs found in this study lies between 0.38 × 1015 kg
-1

 to 14.8 × 1015 440 

kg
-1

 with an average value of 7.18 (4.16) × 1015 kg
-1

. Unlike mass, the number emission factor 441 

only shows a reasonable correlation with MCE as quantified by the r
2
 value of 0.54. All the EFs 442 

and MCE values for each burn are provided in Table S1. We compared our estimated values with 443 

a previous study (Janhäll et al., 2010) reporting PN EFs for different ambient fires and observed 444 

a decrease in PN EF with increasing MCE, while our values were consistently higher. This could 445 

potentially be due to the fact that aircraft measurements of ambient smoke might not sample 446 

fresh (t ~0 minute) smoke and may have sampled smaller particle sizes. Instruments used in their 447 

study were limited to particles greater than 100 nm in size. Our values are consistent with the 448 

previous laboratory study of different BB samples, with an estimated range of PN EFs between 449 

2.88 (2.82) × 1015 kg
-1

 to 24.41 (22.85) × 1015 kg
-1

 (Bhattarai et al., 2018). The values inside 450 

the parentheses represent one standard deviation about the average. 451 

4 Conclusions 452 

We studied the emissions from seven different fuels (six African fuels and one eastern 453 

US native fuel) under a wide variety of burning conditions that range from purely smoldering to 454 

too close to purely flaming, as quantified by the resulting MCE values. We quantified the 455 

emission factors of trace gases (carbon dioxide, carbon monoxide, and nitric oxide), particulate 456 

mass and number as well as nonrefractory particulate matter constituents. The range of MCE 457 

observed in this study for all fuels lies between 0.702 to 0.981, with an average value of 0.870 458 

(0.080). Regardless of fuel types and origin, the range of MCE values were similar for all fuels, 459 

resulting in similar CO and CO2 EFs. The estimated ranges of CO2 EFs based on all burning 460 

experiments lies between 1196 g kg
-1

 and 1775 g kg
-1

 with an average value of 1484 (146) g kg
-1

. 461 

The CO EF range lies between 21.39 g kg
-1

 and 323.09 g kg
-1

 with an average value of 141.38 462 

(86.98) g kg
-1

 . The range of NO EFs found in this study lies between 0.33 g kg
-1

 and 2.95 g kg
-1

 463 

with an average value of 1.11 (0.71) g kg
-1

, which shows a fuel type dependency with 464 

consistency higher EFs for fuels with higher nitrogen content. Even though NO EFs show a poor 465 

correlation with MCE, the incorporation of fuel nitrogen content in a multiple regression scheme 466 

significantly improves the correlation. The fit r
2
 value goes from 0.41 to 0.70 upon inclusion of 467 

nitrogen content information, suggesting its incorporation can significantly improve the 468 

prediction of NO EFs. For the same fuel, emissions of NO show strong positive dependence on 469 

MCE (r
2
 = 0.91) and NO EFs increase by a factor of 3 upon changing the MCE from ~0.81 to 470 

~0.96. Although EFs of PM and OA show good correlation with MCE, nonrefractory inorganic 471 

species do not show a dependence on MCE. We found that the EF of PM is inversely correlated 472 

with MCE and changes by a factor of 30 between purely smoldering and purely flaming 473 

conditions (ranging from 0.82 g kg
-1

 to 25.10 g kg
-1

). Our proposed regression between PM EFs 474 

and CO EFs shows a good consistency with 11 different cookstove emissions studies (Coffey et 475 

al., 2017; Du et al., 2017; Eilenberg et al., 2018; Grieshop et al., 2017; Islam et al., 2021; Jetter 476 

et al., 2012; MacCarty et al., 2010; Mutlu et al., 2016; Roden et al., 2006; Roden et al., 2009; 477 

Wathore et al., 2017) done in different parts of the globe; regardless of fuel types, moisture 478 

content, stove types, and fuel origin. Like PM mass, the PN EF also shows an MCE dependency, 479 

with smoldering fires emitting an order of magnitude higher PN EFs than flaming fires. 480 
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As pointed out by a recent review article (Hodshire et al., 2019), all the laboratory studies 481 

to date are skewed towards flaming fires which necessitates the study of more smoldering fires. 482 

Our combustion setup using a tube furnace allows us to have more control of burning conditions, 483 

with all the fuels burnt with a very similar range of MCE. As shown in Figure 1, the distribution 484 

of MCE in our study, ranging from 0.70 to 0.98, is more uniform and encompasses a greater 485 

variety of burning conditions than previous laboratory studies. This fact suggests that the burning 486 

of fuel in a tube furnace would be an exceptional experimental approach to study BB emission 487 

under controlled burning conditions. 488 
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S1. Particle mass measurement 
For smoldering-dominated burns, the effective density of the particle is 

independent of size (Pokhrel et al., 2021), so we used a constant density for all the 
mobility diameters in the SMPS. We estimated the total mass (M) by using the equation: 

M = ∫ !
"
D# $%

$('()*)
	d(logD)	ρ,--

*!
*"

		      1 
Whereas for flaming-dominated burns, particle effective density is size dependent 

(Pokhrel et al. 2021). We used the mass mobility exponent relationship ( m. = Cd/
*#$) to 

estimate the pre-factor (C) and mass mobility exponent (D-/). We applied these values in 
the following equation 

ρ,-- =
"0$$

%#$

!$$
&           2 

to estimate the effective density at desired mobility diameter in the SMPS. We set 
the upper limit of ρ,-- at 2 g cm-3 (which is assigned as the density of the primary 
particles), as was done in a previous study (Maricq and Xu, 2004) and shown in Figure S3. 
Thus, the effective density determined for each mobility diameter of SMPS is used to 
estimate the total mass using the equation: 

M = ∫ !
"
D# $%

$('()*)
	d(logD)	ρ,--(D)		

*!
*"
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S2. Regression analysis 
 
To explore the dependence of NO EFs on burning condition and fuel nitrogen 

content, we perform simple linear regression of NO EFs with modified combustion 
efficiency (MCE) as: 

EFNO = k0 + k1 MCE        4 
Based on the above equation, we found fitting coefficient as  
k0 = -3.67 (±1.97), k1 = 5.49 (±2.26), and r2 = 0.41. The values inside the 

parenthesis represent the 95% confidence interval of the fitting coefficients. 
 
In addition, we also performed the multiple regression analysis of NO EFs with MCE 

and fuel nitrogen content as: 
EFNO = k0 + k1 MCE + k2 Nitrogen content     5 
 
Based on equation 5, we found the following fitting coefficients with the 95% 

confidence interval presented as a number inside the parenthesis. 
k0 = -4.28 (±1.44), k1 = 5.21 (±1.63), k2 = 2.51 (±0.89), and r2 = 0.70. 

S3. Statistical analysis 
To analyze the performance of proposed regression model of EF of PM as a 

function of EF of CO, we estimated following error as: 
 

Mean Bias Error (MBE) = 1
2
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐸𝐹	𝑜𝑓	𝑃𝑀 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝐸𝐹	𝑜𝑓	𝑃𝑀)2
341   
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Mean Absolute Error (MAE) = 1
2
∑ |(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐸𝐹	𝑜𝑓	𝑃𝑀 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝐸𝐹	𝑜𝑓	𝑃𝑀)|2
341  

 

Root Mean Square Error (RMSE) =A1
2
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝐸𝐹	𝑜𝑓	𝑃𝑀 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝐸𝐹	𝑜𝑓	𝑃𝑀)52
341  

 
 

 
 

 

Figure S1. Schematic of NCAT biomass burning facility and measurement setup used in 
this study. 
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Figure S2. Particle loss adjustment inside the chamber. The black circles and the line 
represent the total particle emission factor without the loss correction in particles kg–1, 
the solid red line represents the loss rate based on first order decay, and the red circle 
markers and line represent the loss-corrected total particle emission factor. 
 
 

 

Figure S3. Particle effective density plotted as a function of mobility diameter for a burn 
with an MCE of 0.960. Black squares are the calculated effective densities using the APM 
and DMA, and the red line is the predicted effective density based on the mass mobility 
exponent and pre-factor using Equation 5 in the main text. 
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Figure S4.  Emission factors of a) CO2, b) CO, and c) NO plotted as a function of MCE. 
Also included are the emission factors from previous laboratory (Selimovic et al., 2018; 
Stockwell et al., 2014), field (Barker et al., 2020), and cookstove (Eilenberg et al., 2018; 
Grieshop et al., 2017) studies that are indicated in legend. 
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Figure S5. EF of NO as a function of MCE for wanza. The red solid line represents the 
best liner fit of the data and dotted red lines are the 95% confidence interval of the 
fitting line. 
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Figure S6. EFs of PM plotted as a function of MCE. The solid black line is the best linear 
fit of the data from this study and the dotted black lines are 95% confidence interval of 
the fit. Also included are the EFs of PM from the previous laboratory and field studies of 
cookstove and biomass burning emissions, as shown in the legend. 
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Figure S7. Scatter density plot between predicted and measured EFs of PM. The 
parameter N represents the number of data points, MBE is the mean bias error, MAE is 
the mean absolute error, and RMSE is the root mean square error between predicted and 
measured EFs of PM. The color bar represents the density of the data. The black solid line 
represents the one-to-one line. 

Table S1. Emission factor (g kg-1) for all fuels. 
Attached as a xlsx file 

Table S2. Literature value used in Figure 3 (main text). 
Attached as a xlsx file 
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