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Abstract

This work provides an updated set of 12 dominant geopotential height fields - or ‘regimes’ - over Aotearoa New Zealand. These

regimes were initially produced by Kidson (2000) and have provided the basis for many other subsequent studies. These maps

provide a guide to the prevailing weather due to the broad equivalence of 1000hPa geopotential height and mean-sea-level

pressure. The results presented here are broadly in agreement with previous work but with some important differences. The

most notable of these being the need to average two blocking regimes together to provide good agreement between this work

and Kidson (2000). These differences are attributed to the software used, improvements to the underlying dataset itself and to

the ‘mixing’ of statistically indistinguishable empirical orthogonal functions - EOFs - in different linear combinations. All data

and code used in this work is publicly accessible and it is hoped that this will provide a catalyst for open discussions on this

topic, particularly with relation to future perturbations to these regimes under climate change.
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2 Williams and Renwick
1 | INTRODUCTION6

The world’s meteorology and climatology is extraordinarily complex in its spatio-temporal variability. Because of7

this, simplifications and methodologies for reducing and communicating this complexity are essential if we are to8

understand it better. Examples are many and various; e.g. the Beaufort scale in wind speed, rainfall probability in a9

weather forecast, cloud clustering in climate models (Williams and Webb (2009)) and classification of El Niño or La10

Niña (e.g. Trenberth (1997) for a review).11

Although these methodologies are of course hugely different in their scope, they all have one fundamental thing12

in common; that of the reduction in the complexity of a system such that it can be better understood by the relevant13

audience. This study is limited only to the region surrounding Aotearoa New Zealand and to one meteorological14

variable, the 1000hPa geopotential height, z , at 0000 and 1200 Coordinated Universal Time, UTC.15

The dataset used is identical to that used in the seminal paper by Kidson (Kidson (2000)) - ‘K2K’ in this work -16

which uses 28,852 fields of z between January 1958 and June 1997 to just 12 dominant synoptic weather regimes.17

These are frequently referred to as ‘Kidson types’, given their wide use in modern (Parsons et al. (2014)) and paleo18

(Ackerley et al. (2011)) studies. The same methods have also been used to study weather regimes in other parts of19

the world such as South America (Solman and Menéndez (2003)).20

Synoptic weather types split the tens of thousands of input data points into 3 regimes; trough, zonal and blocking.21

These are further split into 4, 3 and 5 regimes respectively, making up the final 12. Together, these regimes express22

the dominant weather types over Aotearoa New Zealand. This is possible since the shape of the geopotential height23

field is practically the same as mean sea level pressure in this kind of analysis (Kidson (1994a)) and therefore gives a24

good approximation of the prevailing weather.25

This study gives a more detailed account of the derivation of these synoptic regimes than given previously and26

provides an update to the regimes’ occurrences compared to K2K, which itself builds on many other previous studies,27

for example Kidson (1999), Kidson (1997), Kidson (1994a), Kidson (1994b), Kidson andWatterson (1995) andWard Jr28

(1963). The new results presented are broadly in agreement with those from K2K, however there are some notable29

differences.30

The K2K methodology is widely cited, however the available details on the regimes’ calculation are somewhat31

opaque, particularly to those readers less familiar with statistical analysis and clustering techniques. To aid future32

work, the code used is freely available and a step by step guide is given below for:33

• How the weather types themselves are calculated from a reference dataset, in this case the NCEP/NCAR reanal-34

ysis.35

• How to assign a particular synoptic type to a new observation or model output of z .36

• How to interpret the meaning and derivation of the types from mathematical and geometrical arguments.37

2 | METHODOLOGY38

Themost widely referencedwork in the literature on this subject is K2K. This builds on earlier work (e.g. Kidson (1997)39

and Kidson (1994a)) in order to construct 12 dominant synoptic weather regimes. This section gives a step-by-step40

guide to reproducing these weather types, i.e. Figure 2 in Kidson (2000), which was replotted as Figure 1 in Ackerley41

et al. (2011) using a different map projection.42
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F IGURE 1 Fraction of variance explained by the first 5 EOFs in the time series of zs . Although the first 10 EOFs
are shown, only 5 are used in this analysis (shown by the shaded region).

2.1 | Data and software43

We use the same input data as used in K2K, that is 1000hPa geopotential height data (z ) from the NCEP/NCAR44

reanlysis (Kalnay et al. (01 Mar. 1996)) for January 1958 to June 1997 inclusive at 0000 and 1200 UTC.45

We use the Python programming language exclusively for this work and make use of the open source eofs pack-46

age (Dawson andWales (2019), Dawson (2016)) to calculate the principal components (PCs) and empirical orthogonal47

functions (EOFs). K-means clustering analysis is then carried out on the PCs to obtain the dominant weather regimes48

using the scikit-learn package (Pedregosa et al. (2011)), which relies on NumPy (Harris et al. (2020)) and SciPy (Vir-49

tanen et al. (2020)) for its underlying operation and includes many more functions other than k-means clustering. The50

final clusters themselves are of equal variance, obtained by finding a minimum of the intra-cluster internal coherence51

or ‘inertia‘. A more detailed explanation of the mathematical basis of these packages and methods is beyond the scope52

of this paper.53

2.2 | Mathematical basis54

Firstly, height anomalies are calculated by removing the time mean of the heights (z ):55

zs = z − z . (1)

In the literature, this quantity is sometimes referred to as the ‘standardised’ height, hence the subscript s . Now56

the EOFs are calculated and the first 5 are retained (as in K2K). The fractions of variance explained by the first 5 EOFs57

are given in Figure 1 and together they account for 93.2% of the observed variability. The first 5 EOFs are shown in58

Figure 2 .59
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F IGURE 2 The first 5 EOFs, E, of zs . The contour lines are smoothed and the gridscale of the data used is shown
in the subfigure for EOF 1. The background of the figures shows the local relief (Commons (2020)).

Next the PCs, Pn are calculated and normalised to give Pn :60

P̂n =

(
Pn − Pn

)
σPn

, (2)

where σP is the standard deviation of P across time and 1 < n < 5.61

The fundamental operation here involves projecting the height field onto the EOFs and this is discussed further62

in the context of assigning regimes to arbitrary datasets in Section 4.63

Now, the k-means clustering assigns each zs field to one of 12 clusters. This order of these clusters is arbitrary64

and is chosen purely to match Kidson’s original work. Once each zs field has been assigned a value between 1 and65
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12, the final cluster means, Cz are the time mean of the zs fields assigned to each cluster, that is66

Cz ,i = zi , (3)

where 1 < i < 12.67

The first 10 of these final clusters are shown in Figure 3, along with their equivalents from Kidson (2000). The68

associated winds from the same reanalysis product at the same twice daily sampling frequency are shown in Figure69

4. Although the agreement between the 2 analyses is generally good for the 10 clusters shown in Figure 3, the 270

remaining ones are not shown due to their pronounced differences with the HW and R blocking clusters from K2K.71

These differences are discussed in the next section.72

3 | HOW DO THE NEW SYNOPTIC TYPES DIFFER FROM K2K AND WHY?73

It is clear from Figure 3 that 10 of the synoptic types obtained here are generally in good agreement with those of74

K2K. That being said, the HNW regime is considerably more zonal in the new case, especially at southernmost latitudes.75

The SW regime from K2K is displaced north of the equivalent one from this analysis by approximately 100km and the76

opposite for W. This likely accounts for the factor of approximately 0.5 and 2 difference in occurrence frequency in77

the new case with respect to K2K.78

There are however notable structural differences between the remaining 2 clusters obtained in this work and the79

HW and R blocking clusters in K2K. So much so in fact, that it is dubious to assign the same synoptic weather type in80

these cases. Figure 5 shows the HW and R blocking regimes from K2K along with the 2 remaining clusters from this81

work. The averages of the two remaining regimes are also shown.82

The 2 new regimes shown in Figure 5 (a) and (b) are quite different to the HW and R regimes in K2K (Figure 5 (d)83

and (e)) yet their mean is strikingly similar, as is their combined fractional occurrence of 10.6% versus 10.1%.84

As to why the new regimes found here are somewhat different to those of K2K, we have performed sensitivity85

analysis of the parameters used in the k-means clustering and have found the fractional occurrence of the regimes86

obtained here to be robust. For example, by default the k-means solver is run 10 times using different initial estimates87

and each of these estimates is run through 300 iterations. Figure 6 shows the relationship between the maximum88

number of iterations and the deviation of the final fractional occurrence of the regimes shown in Figures 3 and 5.89

The largest deviation across any of the clusters is approximately 2% and therefore cannot account for the larger90

differences in the SW and W regimes found here compared to K2K (Figure 3 (b) and (g)).91

It is also possible that the dataset used in K2K was affected by the assimilation of incorrect pseudo-observations92

- or PAOBs - in early versions of the reanalysis (e.g. Kidson (1999)).93

It should also be acknowledged that no calculation is perfect and that different implementations of common94

algorithms will inevitably lead to some element of disagreement. This is discussed further with regard to EOF analysis95

in Dawson (2016) and is noted in the documentation for the k-means software used here - https://scikit-learn.96

org/stable/modules/clustering.html#k-means - “Given enough time, K-means will always converge, however this97

may be to a local minimum.”.98

The result shown in Figure 5 is reminiscent of the ‘mixing’ of EOFs or principal components subject to high sam-99

pling variability (e.g. Cheng et al. (01 Jun. 1995)). When the eigenvalues of consecutive EOFs are not statistically100

separate, different linear combinations of those EOFs can appear, as sample size changes. In this case, a similar thing101

https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
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F IGURE 3 The 10 clusters which are deemed to be in close enough agreement with those of K2K to be assigned
the same label (in black). Again the contour lines are smoothed and the original K2K clusters are shown in blue. The
inset boxes show the fraction of time spent in each regime with the font colours matching the contour line colours.
The background of the figures shows the local relief (Commons (2020)).

seems to have occurred within the clustering algorithm and the definition of the cluster means.102

4 | HOW TO MANUALLY ASSIGN NEW DATA TO THE CLUSTER SET103

In this section we use the term ‘observation’ to encompass any new dataset to which clusters are assigned.104

There have been many studies based on the Kidson types and several of these involve fitting new datasets to105

the Kidson types (e.g. Ackerley et al. (2011), Parsons et al. (2014)). In this section the mathematical basis for this106

assignment is given.107
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(a) T (b) SW (c) TNW (d) TSW

(e) H (f) HNW (g) W (h) HSE

(i) HE (j) NE

0 2 4 6 8 10 12 14

wind speed in m s 1

F IGURE 4 Wind streamlines and speeds (m·s−1) for the synoptic regimes shown in Figure 3. The colours show
the windspeed at the gridscale. The thickness of the lines is proportional to the local speed and is consistent across
subfigures.

The first step is to calculate the ‘projection’ of the zs onto the individual EOFs. The dimensions of the EOFs are 5108

× 13 × 11, that is, 5 EOFs over a region with 13 latitude values and 11 longitude values. The zs values have dimensions109

of Nt× 13 × 11, where Nt is the number of timesteps considered. The projection, P, is defined as,110

P =
∑
j k

zs,j k Ej k (4)

and therefore, the dimensions of P are Nt× 5.111

For each observation, we now have a 5 element array (P) and a 12 × 5 element array representing the time mean112
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F IGURE 5 (a)-(b) The remaining 2 regimes from the new analysis which are not shown in Figure 3. Subfigures (a)
and (b) also show the wind fields for the relevant cluster shown. The colour scale is the same as for Figure 4 and the
horizontal density of the streamlines is halved to improve legibility. Subfigure (c) is the average of (a) and (b). (d)-(e)
the HW and R regimes from K2K. Subfigure (f) shows the average of (d) and (e).

of the PCs (Pn ) for each index calculated by the k means clustering algorithm,113

CP ,i = Pi , (5)

where 1 < i < 12. The CP ,i are often referred to in the literature as ‘cluster means’.114

To find out which of the 12 regimes the projection should be assigned to for each observation, the Euclidean115

distance, d , between the projection and each of the 12 height clusters is calculated. The projection and PC clusters116

arrays are normalised and are given by P̂ and ĈP ,n respectively. The minimum of these 12 numbers (i.e. the Euclidean117



Williams and Renwick 9

0 25 50 75

2%

0%

2%

cluster 1

0 25 50 75

2%

0%

2%

cluster 2

0 25 50 75

2%

0%

2%

cluster 3

0 25 50 75

2%

0%

2%

cluster 4

0 25 50 75

2%

0%

2%

cluster 5

0 25 50 75

2%

0%

2%

cluster 6

0 25 50 75

2%

0%

2%

cluster 7

0 25 50 75

2%

0%

2%

cluster 8

0 25 50 75

2%

0%

2%

cluster 9

0 25 50 75

2%

0%

2%

cluster 10

0 25 50 75

2%

0%

2%

cluster 11

0 25 50 75

2%

0%

2%

cluster 12

De
vi

at
io

n 
fro

m
 fi

na
l f

ra
ct

io
na

l o
cc

ur
en

ce

Maximum number of iterations

F IGURE 6 Deviation of the fractional occurrence of each regime as a function of the maximum number of
iterations used in each pass of the k-means clustering algorithm. The largest difference is substantially smaller than
the differences seen in Figure 3 (b) and (g) and therefore cannot account for the differences seen in the occurrences
fractions.

distance in principal component space) gives the index and therefore the weather regime of each observation and its118

fractional occurrence. This can then be directly compared with the values obtained in Figure 3.119

The Euclidean distances dn are given by,120

di =

√√√NE∑
n=1

��P̂n,i − Ĉn,i ��2, (6)

where each of P̂n and ĈP ,n are 1 × 5 arrays and NE is the number of EOFs; i.e. 5 in this work.121

A geometrical illustration of what the minimum Euclidean distance means is shown in Figure 7 for an arbitrary122

observation of z in the NCEP/NCAR reanalysis. It is clear that the figure showing the lowest d value - highlighted lines123

in Figure 7(g) - has lines of P̂ and ĈP which are closest to one another. The value of d can therefore be interpreted124

as a measure of the ‘similarity’ of P̂n and ĈP ,n .125

5 | CONCLUSIONS126

In this work we have sought to provide not only a reassessment of dominant synoptic weather types over Aotearoa127

New Zealand from Kidson (2000), but also to provide detailed information on the calculation of these types, and how128

to assign arbitrary new data to them. Widely-used peer reviewed software packages in the Python programming129

language were used to calculate the EOFs and k means clusters in the manner of K2K. Our results are broadly in line130

with K2K but with some notable differences. The key findings of this work are:131

• Although 10 of the 12 clusters identified in K2K are well reproduced in ‘shape’, 2 of the blocking regimes from132
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(e) d = 4.0
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(f) d = 2.4
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F IGURE 7 Geometrical illustration of how an arbitrary observation of z (here at 0000 UTC on the 6th of April
1997) can be fitted to pre-existing clusters. Each subfigure shows the same arbitrary observation of geopotential
height in the blue contours and the black contours show the 12 separate clusters obtained from this analysis (Figure
3 and Figures 5 (a) and (b)). As shown in the text, we want to find the smallest Euclidean distance, d , between the
projection of the observation onto the EOFs, P̂ (◦), and the cluster means, ĈP (�) as given by Equation 6. The
individual ��P̂ − ĈP ��2 values are also shown (O). The square root of the sum of the ��P̂ − ĈP ��2 values gives theEuclidean distance, d , shown in the subfigure titles and (g) highlights the similarity of the blue and red lines and
hence the lowest d value.

K2K (HW and R) do not have recognisable analogues in the cluster found in this work. See Figure 3.133

• Two of the regimes from K2K differ by factors of approximately 0.5 and 2 respectively with their spatially similar134

regimes from this work. This is attributed to meridional shifts of about 100km in both cases, although in opposite135

directions.136

• The average of the HW and R clusters from K2K are in striking agreement with the equivalent average of cluster137
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11 and 12 from this work, see Figure 5. This is attributed to different levels of EOF mixing in this work and in138

K2K and the sensitivity of the k-means clustering algorithm.139

Future work will apply this methodology to differences in synoptic weather regimes over Aotearoa New Zealand140

in the UK Earth System Model (UKESM, e.g. Sellar et al. (2020)) and in the NZESM (e.g. Behrens et al. (2020)). This141

will be especially pertinent with regards to climate change and its affect on the dominant weather types that can142

be expected to occur in the future. Work is also underway to apply this methodology to the new ERA-5 analysis143

(Hersbach et al. (2019)). This has ∼100 times the areal resolution of NCEP/NCAR and is therefore able to explicitly144

resolve orographic features which are absent in this work.145
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7 | CODE AND DATA AVAILABILITY153

The code used here is publicly available as a Jupyter notebook via GitHub at https://github.com/jonnyhtw/weather-154

types and the NCEP/NCAR reanalysis data is also freely available at https://psl.noaa.gov/data/gridded/data.155

ncep.reanalysis.pressure.html.156

references157

Ackerley, D., Lorrey, A., Renwick, J. A., Phipps, S. J., Wagner, S., Dean, S., Singarayer, J., Valdes, P., Abe-Ouchi, A., Ohgaito, R.158

and Jones, J. M. (2011) Using synoptic type analysis to understand new zealand climate during the mid-holocene. Climate159

of the Past, 7, 1189–1207. URL: https://cp.copernicus.org/articles/7/1189/2011/.160

Behrens, E., Williams, J., Morgenstern, O., Sutton, P., Rickard, G. and Williams, M. J. (2020) Local grid refinement in new161

zealand’s earth systemmodel: Tasman sea ocean circulation improvements and super-gyre circulation implications. Journal162

of Advances in Modeling Earth Systems, 12, e2019MS001996.163

Cheng, X., Nitsche, G. and Wallace, J. M. (01 Jun. 1995) Robustness of low-frequency circulation patterns derived from eof164

and rotated eof analyses. Journal of Climate, 8, 1709 – 1713. URL: https://journals.ametsoc.org/view/journals/clim/165

8/6/1520-0442_1995_008_1709_rolfcp_2_0_co_2.xml.166

Commons, W. (2020) File:equirectangular-projection-topographic-world.jpg — wikimedia commons, the free media repos-167

itory. URL: https://commons.wikimedia.org/w/index.php?title=File:Equirectangular-projection-topographic-168

world.jpg&oldid=502090647. [Online; accessed 28-January-2021].169

Dawson, A. (2016) eofs: A library for eof analysis of meteorological, oceanographic, and climate data. Journal of Open Research170

Software, 4. URL: http://doi.org/10.5334/jors.122.171

Dawson, A. and Wales, S. (2019) ajdawson/eofs: Version 1.4.0. URL: https://doi.org/10.5281/zenodo.2661604.172

https://github.com/jonnyhtw/weather-types
https://github.com/jonnyhtw/weather-types
https://github.com/jonnyhtw/weather-types
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html
https://cp.copernicus.org/articles/7/1189/2011/
https://journals.ametsoc.org/view/journals/clim/8/6/1520-0442_1995_008_1709_rolfcp_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/clim/8/6/1520-0442_1995_008_1709_rolfcp_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/clim/8/6/1520-0442_1995_008_1709_rolfcp_2_0_co_2.xml
https://commons.wikimedia.org/w/index.php?title=File:Equirectangular-projection-topographic-world.jpg&oldid=502090647
https://commons.wikimedia.org/w/index.php?title=File:Equirectangular-projection-topographic-world.jpg&oldid=502090647
https://commons.wikimedia.org/w/index.php?title=File:Equirectangular-projection-topographic-world.jpg&oldid=502090647
http://doi.org/10.5334/jors.122
https://doi.org/10.5281/zenodo.2661604


12 Williams and Renwick
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,173

Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson,174

P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. and Oliphant, T. E. (2020) Array175

programming with NumPy. Nature, 585, 357–362. URL: https://doi.org/10.1038/s41586-020-2649-2.176

Hersbach, H., Bell, W., Berrisford, P., Horányi, A., J., M.-S., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C. and Dee,177

D. (2019) Global reanalysis: goodbye era-interim, hello era5. 17–24. URL: https://www.ecmwf.int/node/19027.178

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,179

Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne,180

R. and Joseph, D. (01 Mar. 1996) The ncep/ncar 40-year reanalysis project. Bulletin of the American Meteorological Society,181

77, 437 – 472. URL: https://journals.ametsoc.org/view/journals/bams/77/3/1520-0477_1996_077_0437_tnyrp_2_0_182

co_2.xml.183

Kidson, J. W. (1994a) An automated procedure for the identification of synoptic types applied to the new zealand region.184

International Journal of Climatology, 14, 711–721. URL: https://doi.org/10.1002/joc.3370140702.185

— (1994b) Relationship of new zealand daily and monthly weather patterns to synoptic weather types. International Journal186

of Climatology, 14, 723–737. URL: https://doi.org/10.1002/joc.3370140703.187

— (1997) The utility of surface and upper air data in synoptic climatological specification of surface climatic variables. Interna-188

tional Journal of Climatology: A Journal of the Royal Meteorological Society, 17, 399–413. URL: https://doi.org/10.1002/189

(SICI)1097-0088(19970330)17:4%3C399::AID-JOC108%3E3.0.CO;2-M.190

— (1999) Principal modes of southern hemisphere low-frequency variability obtained from ncep–ncar reanalyses. Journal of191

Climate, 12, 2808–2830. URL: https://doi.org/10.1175/1520-0442(1999)012%3C2808:PMOSHL%3E2.0.CO;2.192

— (2000) An analysis of new zealand synoptic types and their use in defining weather regimes. International Journal of193

Climatology: A Journal of the Royal Meteorological Society, 20, 299–316. URL: https://doi.org/10.1002/(SICI)1097-194

0088(20000315)20:3%3C299::AID-JOC474%3E3.0.CO;2-B.195

Kidson, J. W. and Watterson, I. G. (1995) A synoptic climatological evaluation of the changes in the csiro nine-level model196

with doubled co2 in the new zealand region. International journal of climatology, 15, 1179–1194. URL: https://doi.org/197

10.1002/joc.3370151102.198

Parsons, S., McDonald, A. J. and Renwick, J. A. (2014) The use of synoptic climatology with general circulation model output199

over new zealand. International journal of climatology, 34, 3426–3439. URL: https://doi.org/10.1002/joc.3919.200

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,201

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011) Scikit-learn: Machine202

learning in Python. Journal of Machine Learning Research, 12, 2825–2830. URL: https://www.jmlr.org/papers/volume12/203

pedregosa11a/pedregosa11a.pdf.204

Sellar, A. A., Walton, J., Jones, C. G., Wood, R., Abraham, N. L., Andrejczuk, M., Andrews, M. B., Andrews, T., Archibald, A. T.,205

de Mora, L. et al. (2020) Implementation of uk earth system models for cmip6. Journal of Advances in Modeling Earth206

Systems, 12, e2019MS001946.207

Solman, S. and Menéndez, C. (2003) Weather regimes in the south american sector and neighbouring oceans during winter.208

Climate Dynamics, 21, 91–104. URL: https://doi.org/10.1007/s00382-003-0320-x.209

Trenberth, K. E. (1997) The definition of el niño. Bulletin of the American Meteorological Society, 78, 2771 – 2778. URL:210

https://journals.ametsoc.org/view/journals/bams/78/12/1520-0477_1997_078_2771_tdoeno_2_0_co_2.xml.211

https://doi.org/10.1038/s41586-020-2649-2
https://www.ecmwf.int/node/19027
https://journals.ametsoc.org/view/journals/bams/77/3/1520-0477_1996_077_0437_tnyrp_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/bams/77/3/1520-0477_1996_077_0437_tnyrp_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/bams/77/3/1520-0477_1996_077_0437_tnyrp_2_0_co_2.xml
https://doi.org/10.1002/joc.3370140702
https://doi.org/10.1002/joc.3370140703
https://doi.org/10.1002/(SICI)1097-0088(19970330)17:4%3C399::AID-JOC108%3E3.0.CO;2-M
https://doi.org/10.1002/(SICI)1097-0088(19970330)17:4%3C399::AID-JOC108%3E3.0.CO;2-M
https://doi.org/10.1002/(SICI)1097-0088(19970330)17:4%3C399::AID-JOC108%3E3.0.CO;2-M
https://doi.org/10.1175/1520-0442(1999)012%3C2808:PMOSHL%3E2.0.CO;2
https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3%3C299::AID-JOC474%3E3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3%3C299::AID-JOC474%3E3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3%3C299::AID-JOC474%3E3.0.CO;2-B
https://doi.org/10.1002/joc.3370151102
https://doi.org/10.1002/joc.3370151102
https://doi.org/10.1002/joc.3370151102
https://doi.org/10.1002/joc.3919
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.1007/s00382-003-0320-x
https://journals.ametsoc.org/view/journals/bams/78/12/1520-0477_1997_078_2771_tdoeno_2_0_co_2.xml


Williams and Renwick 13
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser,212

W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,213

Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,214

Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P. and SciPy 1.0 Contributors215

(2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. URL:216

https://doi.org/10.1038/s41592-019-0686-2.217

Ward Jr, J. H. (1963) Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58,218

236–244. URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845.219

Williams, K. D. and Webb, M. (2009) A quantitative performance assessment of cloud regimes in climate models. Climate220

dynamics, 33, 141–157. URL: https://doi.org/10.1007/s00382-008-0443-1.221

https://doi.org/10.1038/s41592-019-0686-2
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://doi.org/10.1007/s00382-008-0443-1

	introduction
	methodology
	Data and software
	Mathematical basis

	how do the new synoptic types differ from K2K and why?
	How to manually assign new data to the cluster set
	conclusions
	Acknowledgements
	Code and data availability

