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Abstract

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has deployed 194 profiling floats

equipped with biogeochemical (BGC) sensors, making it one of the largest contributors to global BGC-Argo. Post-deployment

quality control of float-based oxygen, nitrate, and pH data is a crucial step in the processing and dissemination of such

data, as in-situ chemical sensors remain in early stages of development. In-situ calibration of chemical sensors on profiling

floats using atmospheric reanalysis and empirical algorithms have been shown to bring accuracy to within 3 μmol O2 kg-1,

0.007 pH units, and 0.5 μmol NO3- kg-1. Routine quality control efforts utilizing these methods can be conducted manually

through visual inspection of data to assess sensor drifts and offsets, but more automated processes are preferred to support

the growing number of BGC floats and reduce subjectivity among delayed-mode operators. Here we present a methodology

and accompanying software designed to easily visualize float data against select reference datasets and assess quality control

adjustments within a quantitative framework. The software is intended for global use and has been used successfully in the

post-deployment calibration and quality control of over 250 BGC floats, including all within the SOCCOM array. Results from

validation of the proposed methodology are also presented which can provide a metric for tracking data adjustment quality

through time.
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Key Points: 6 

 A methodology and related software for visualizing biogeochemical data against 7 

references aids in correcting data for shifts in calibration 8 

 Described methods bring data accuracies to within the range required for climate studies 9 

and remain applicable over the lifetime of a float 10 

 A standardized approach to quality control supports cross-platform data management and 11 

routine monitoring of fleet-wide sensor performance  12 
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Abstract 13 

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has 14 

deployed 194 profiling floats equipped with biogeochemical (BGC) sensors, making it one of the 15 

largest contributors to global BGC-Argo.  Post-deployment quality control of float-based 16 

oxygen, nitrate, and pH data is a crucial step in the processing and dissemination of such data, as 17 

in-situ chemical sensors remain in early stages of development.  In-situ calibration of chemical 18 

sensors on profiling floats using atmospheric reanalysis and empirical algorithms have been 19 

shown to bring accuracy to within 3 µmol O2 kg
-1

, 0.007 pH units, and 0.5 µmol NO3
-
 kg

-1
.  20 

Routine quality control efforts utilizing these methods can be conducted manually through visual 21 

inspection of data to assess sensor drifts and offsets, but more automated processes are preferred 22 

to support the growing number of BGC floats and reduce subjectivity among delayed-mode 23 

operators.  Here we present a methodology and accompanying software designed to easily 24 

visualize float data against select reference datasets and assess quality control adjustments within 25 

a quantitative framework.  The software is intended for global use and has been used 26 

successfully in the post-deployment calibration and quality control of over 250 BGC floats, 27 

including all within the SOCCOM array.  Results from validation of the proposed methodology 28 

are also presented which can provide a metric for tracking data adjustment quality through time.   29 

 30 

Plain Language Summary 31 

The amount of chemical oceanographic data available to researchers is rapidly increasing thanks 32 

to robotic drifting floats such as those deployed through the Southern Ocean Carbon and Climate 33 

Observations and Modeling (SOCCOM) project.  Because these floats live the entirety of their 34 

life at sea, ensuring that the sensors are working as expected and that the quality of the data 35 

returned is fit for scientific use must be done remotely.  This paper describes the approaches and 36 

accompanying software used to assess performance of oxygen, nitrate and pH sensors on 37 

profiling floats and correct for any shifts in sensor performance through the life of the float.  An 38 

independent validation of the proposed methods is also presented which provides an added level 39 

of confidence to the described methods and overall quality of the dataset. 40 

1 Introduction 41 

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has 42 

finished its sixth year reaching a total of 194 biogeochemical (BGC)-Argo profiling floats 43 

deployed throughout the Southern Ocean (Fig. 1).  Funded by the US National Science 44 

Foundation (NSF) Office of Polar Programs, this novel basin-scale network of biogeochemical 45 

sensors has filled one of the largest observational gaps in the global ocean.  Due to the success of 46 

the current program, the SOCCOM project has been renewed for an additional four years, with 47 

the goal of deploying 120 more BGC profiling floats south of 30S.  In addition, the NSF has 48 

funded the Global Ocean Biogeochemistry (GO-BGC) Array, which will extend the current 49 

BGC-Argo program considerably through the deployment of an additional 500 floats throughout 50 

the global ocean.  Emerging data from floats within the SOCCOM array have already expanded 51 

our understanding of the Southern Ocean’s role in the global carbon cycle and have improved the 52 

capability of ocean models to predict future change (Bushinsky et al., 2019a; Gray et al., 2018; 53 

Russell et al., 2018; Swart et al., 2019; Verdy & Mazloff, 2017; Williams et al., 2018).  Key to 54 

these advancements has been the underlying quality of the supporting dataset which relies on 55 
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pre-deployment sensor calibration and post-deployment quality control (QC), bringing sensor 56 

accuracies to within the narrow range required for climate studies (Johnson et al., 2017).  57 

 58 

 59 
Figure 1. Current location (circles) and associated trajectories (lines) from floats within the 60 

SOCCOM array, as of December, 2020.  Both operational (yellow) and inactive (red) floats are 61 

shown.  Historical data from inactive floats remains a valuable part of the SOCCOM dataset. 62 

 63 

Operational procedures for post-deployment processing of CTD data from the Argo array are 64 

well established.  A number of real-time checks constitute the first level of quality control, many 65 

of which have been adopted for BGC data as well (Schmechtig et al., 2016).  Salinity profiles 66 

from Argo floats are also subject to various delayed-mode assessments that typically apply 67 

interpolation methods to relate float data to a climatology (Gaillard et al., 2009; Guinehut et al., 68 

2009; Owens & Wong, 2009; Wong et al., 2003).  Argo salinity data have been estimated to be 69 

accurate to 0.01 PSU, after delayed-mode adjustments, and temperature and pressure data are 70 

generally thought of as acceptable for use in data assimilation and other direct applications prior 71 

to receiving any delayed-mode assessment (Wong et al., 2020).   72 

In contrast, in situ chemical sensors for measuring oxygen, nitrate and pH on BGC-Argo 73 

floats represent newer technologies that require significantly more quality control.  Generally, 74 

the scientific use of raw, unadjusted BGC-Argo float data is not recommended.  The real-time 75 

and delayed-mode adjustment processes greatly improve the quality of the BGC sensor data and 76 

result in a data set that is suited for research in a variety of applications.  Various delayed-mode 77 

methods for BGC sensor recalibration and quality control for oxygen, pH and nitrate have been 78 

suggested (Bittig et al., 2018a; Johnson et al. 2013; 2015; 2017; Takeshita et al., 2013; Williams 79 

et al., 2016) but integrating the suite of methodologies into a coherent framework that can be 80 

used operationally across a fleet has proven challenging.  Producing science-quality 81 
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biogeochemical data requires consistent and traceable correction methods that can be adopted 82 

globally across all data centers.   83 

In this paper we present the methodology developed as part of the SOCCOM program to 84 

assess oxygen, nitrate, and pH sensor gain, drifts and offsets in delayed-mode.  The two 85 

accompanying MATLAB tools, SAGE (SOCCOM Assessment and Graphical Evaluation) and 86 

SAGE-O2, are also described.  The magnitude of required adjustments within the SOCCOM 87 

array and an independent validation of described methods are also discussed. 88 

2 SOCCOM float array 89 

The SOCCOM array of profiling floats includes both Teledyne/Webb Research (TWR) 90 

APEX and Sea-Bird Scientific (SBE) Navis floats.  All SOCCOM floats utilize Iridium two-way 91 

satellite communication and are outfitted with ice-avoidance software developed at the 92 

University of Washington (UW) (Riser et al., 2018; Wong & Riser, 2011).  For profiles taken 93 

while under ice, geographic coordinates cannot be obtained so latitude and longitude are 94 

estimated through linear interpolation.  All SOCCOM floats are programmed to perform the 95 

nominal Argo mission of 10-day profile frequency from a maximum depth of 2000m with an 96 

interim park depth of 1000m. 97 

The SOCCOM floats carry a suite of biogeochemical sensors, with sensor models 98 

varying slightly between the two platforms (Table 1).  The ISUS nitrate (Johnson & Coletti, 99 

2003) and Deep-Sea DuraFET pH (Johnson et al., 2016) sensors used on APEX floats are 100 

primarily built and calibrated at the Monterey Bay Aquarium Research Institute (MBARI).  pH 101 

sensors from SBE are also deployed on APEX floats.  These receive pressure and temperature 102 

calibrations at SBE, and a final pH calibration at MBARI.  All other sensors listed in Table 1 103 

receive factory-calibration direct from the manufacturer.  Both sensor categories (MBARI-104 

calibrated or manufacturer-calibrated) can suffer from shifts in laboratory calibration leading to 105 

changes in performance that manifest as sensor offsets or drifts in the field.  106 

 107 

 108 

Parameter Navis sensor model APEX sensor model 

T, S, P SBE 41N SBE 41CP 

Oxygen SBE 63 Optode 
Aanderaa Optode 

(3830 or 4330) 

Nitrate SUNA
2

 ISUS
1

 

pH 
Deep-Sea DuraFET from 

Sea-Bird 
Deep-Sea DuraFET 

Bio-optics 

WET Labs MCOMS (chl-a 

fluorometer, 700nm 

backscatter, FDOM) 

WET Labs ECO-FLBB AP2 

(chl-a fluorometer, 

700nm backscatter) 
1In-Situ Ultraviolet Spectrophotometer 109 
2Submersible Ultraviolet Nitrate Analyzers 110 

Table 1. Sensor models used on Sea-Bird Navis and MBARI/UW-built Teledyne-Webb APEX 111 

floats in SOCCOM. 112 

 113 

Automatic QC procedures are applied in real-time to flag grossly erroneous data within 114 

the SOCCOM array.  These tests roughly follow the Argo real-time tests for BGC data as 115 

outlined in Schmechtig et al. (2016).   Fig. 2 shows SOCCOM float tracks colored by data 116 
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quality.  Points along a float track marked in purple represent profiles where >50% of the data 117 

has been marked “bad” by one of the automated QC tests.  Of the three parameters shown, pH 118 

sensor data have the highest number of “bad” quality flags, at 35.59% of the data.   119 

 120 

 121 
Figure 2. SOCCOM float tracks colored by data quality for (a) oxygen, (b) nitrate, and (c) pH.  122 

Points along a float track marked in purple (green) represent profiles where >50% of the data has 123 

been marked “bad” (“good”) by one of the automated QC tests.   124 

 125 

After passing the real-time quality checks, oxygen, nitrate and pH data that are 126 

considered adjustable can be brought up to the accuracy level required for global biogeochemical 127 

studies through relatively simple correction procedures (Johnson et al., 2018b; Thierry et. al, 128 

2018b).  This represents the second level of quality control (Bittig et al., 2019).  In the next 129 

sections, the delayed-mode procedures and accompanying software tools used in the adjustment 130 

of oxygen, nitrate and pH data on a SOCCOM float are presented.   131 

3 Adjustment of oxygen data 132 

3.1 Gain adjustments for optodes  133 

The delayed-mode correction procedure for biogeochemical data on a SOCCOM float 134 

begins with oxygen.  This is because the deep reference fields used in nitrate and pH quality 135 

control (described in Section 4) are generated from empirical algorithms that require accurate 136 



Confidential manuscript submitted to Journal of Geophysical Research Oceans 

  6 

 

oxygen measurements (along with other core variables and position information) as input 137 

parameters.  Takeshita et al. (2013) have shown that the raw oxygen data from floats can be in 138 

error by as much as 20% of surface water oxygen saturation due to storage drift.  Following 139 

Johnson et al. (2015), oxygen concentrations can be corrected using a multiplicative gain factor, 140 

G, to reduce the effects of storage drift and improve the accuracy of the sensor (for additional 141 

information on optode storage drift see Bittig et al. (2018a) and D’Asaro & McNeil (2013)): 142 

 143 

[𝑂2]𝑐𝑜𝑟𝑟 = 𝐺 × [𝑂2]𝑟𝑎𝑤      (2) 144 

 145 

There is some evidence in the literature that a slope correction on oxygen concentration could 146 

potentially be improved by the inclusion of an intercept, especially in regions of near-zero 147 

oxygen levels (Bittig & Kortzinger, 2015; Bushinsky et al., 2016; Drucker & Riser, 2016; 148 

Nicholson & Feen, 2017).  However, such corrections appear to be small (<1 µmol kg
-1

), based 149 

on an assessment of 20 floats in the Arabian Sea and Bay of Bengal (Johnson et al., 2019) and 150 

are thus not implemented within the SOCCOM program.  151 

SAGE-O2 is the MATLAB Graphical User Interface (GUI) developed at MBARI to assist 152 

in deriving oxygen optode gain corrections by comparing oxygen data from a float to various 153 

reference datasets, including measurements of oxygen partial pressure in the atmosphere.  An 154 

image of the interface, including the plot display window and user-controlled sidebar is shown in 155 

Fig. 3 for SOCCOM float 9752 (WMO 5904694) in the Southwest Pacific, east of New Zealand.  156 

The top panel of the interface displays a time series of float data (blue) in comparison to the user-157 

selected reference (red).  Details related to the calculation of the gain factor, G, over the lifetime 158 

of a float, as implemented through the software, are described further below. 159 

 160 

 161 
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 162 
 163 

Figure 3. SAGE-O2 software interface showing results of the calibration for sample float 9752, 164 

WMO 5904694.  The map display functionality is also indicated.  165 

 166 

3.1.1 Gain computation using in-air oxygen with NCEP/NCAR Reanalysis 167 

In-air calibration of oxygen optodes onboard profiling floats has been shown to bring 168 

accuracy to within 1% and is currently the operational standard (Johnson et al., 2015).  For floats 169 

with in-air measurement capabilities, an estimate of atmospheric pressure must be available to 170 

compute the local oxygen partial pressure.  The product referenced for oxygen gain computation 171 

within the SAGE-O2 software is NCEP/NCAR Reanalysis-1 six-hourly surface pressure (Kalnay 172 

et al., 1996).  This is a Gaussian gridded product with units of Pascals, which are converted to 173 

hectopascals (millibar equivalent) prior to proceeding.  The NCEP atmospheric surface pressure 174 

(PNCEP) values are interpolated to the time and location of the float’s surfacing.  Values are then 175 

converted to oxygen partial pressure based on the assumption that the atmosphere is 100% 176 
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saturated with water vapor at the sea surface (equation (3)).  The water vapor pressure (𝑝𝐻2𝑂, in 177 

hPa) is calculated using equation (4), where T represents temperature in degrees Celsius 178 

(Aanderaa Instruments, 2017).   179 

 180 

𝑝𝑂2
= (𝑃𝑁𝐶𝐸𝑃 − 𝑝𝐻2𝑂) × 0.20946      (3) 181 

 182 

   183 

𝑝𝐻2𝑂 =  𝑒[52.57− (
6690.9

𝑇+273.15
)−4.681×𝑙𝑛(𝑇+273.15)]

     (4) 184 

 185 

The sensor gain that is estimated from air oxygen for each individual profile, i, is then computed 186 

using equation (5), as outlined in Johnson et al. (2015):  187 

   188 

𝐺𝑖 =  𝑝𝑂2𝑁𝐶𝐸𝑃/𝑝𝑂2𝐹𝐿𝑂𝐴𝑇      (5) 189 

 190 

where 𝑝𝑂2𝑁𝐶𝐸𝑃 follows from equation (2) and 𝑝𝑂2𝐹𝐿𝑂𝐴𝑇 is the partial pressure of oxygen 191 

computed from the float (reported in millibars).  The overall gain factor, G, used to correct all in 192 

water oxygen observations is then the mean of the n individual Gi values. 193 

Mean gain values over the float’s life are displayed within the SAGE-O2 interface in blue 194 

to the right of the plot panels (Fig. 3).  Note that at the start of the SOCCOM program, APEX 195 

floats were programmed to take a single in-air oxygen reading with each surfacing that was 196 

associated with the telemetry phase of the cycle.  A subsequent upgrade to the mission 197 

programming was initialized such that the optodes on APEX floats take a sequence of in-air 198 

measurements at each surfacing at the end of ascent (4 subsurface measurements followed by 8 199 

measurements in air after inflation of the air-bladder).  Therefore, the majority of APEX floats in 200 

the SOCCOM program have 2 sets of in-air measurements: one associated with the telemetry 201 

phase (light blue in the GUI interface), and another larger set associated with the in-air 202 

measurement series (dark blue in the interface).  Both of these are plotted in the GUI for 203 

comparison.  Average gain between the two sets differs by less than 0.1 % fleet-wide. 204 

In the future the SAGE-O2 software may be upgraded to utilize the now real-time 205 

NCEP/DOE-R2 reanalysis product.  Additional reanalysis products from other centers are also 206 

available, including the European Centre for Medium-Range Weather Forecasts (ECMWF) 207 

ERA5 reanalysis.  The ERA5 product utilizes a more state-of-the-art (4D-variational) data 208 

assimilation system but its data latency (3 month lag for quality assured updates) may limit 209 

timely delayed-mode QC operations.  The absolute uncertainty in reanalysis surface pressure 210 

fields from different products can be difficult to fully quantify although a comparison of NCEP 211 

and ECMWF operational models by Salstein et al. (2008) found that rms differences between 212 

surface pressure and shipboard observational stations were between 2 and 5 hPa in Southern 213 

latitudes with minimal difference between the two products, especially in more recent years. 214 

Surface pressure uncertainties of this magnitude roughly translate to less than 0.5% change in 215 

corrected O2 measurements on individual floats. 216 

3.1.2 Gain computation using shipboard bottle data  217 

The SBE63 optodes onboard SOCCOM Navis floats are plumbed in line with the 218 

pumped CTD flow stream and are thus not fully exposed to ambient air during surfacing.  In-situ 219 

calibration of these floats thus relies on comparison to high-quality Winkler titrations from 220 
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shipboard samples taken at the time of float deployment.  The Winkler oxygen are generated 221 

primarily on GO-SHIP cruises or by research groups that regularly participate in GO-SHIP 222 

cruises and they are considered to be of a quality consistent with GO-SHIP measurements (Hood 223 

et al., 2010 state a target accuracy of 2σ less than 0.5% of the largest oxygen concentration found 224 

in the ocean).  Comparisons of the float and bottle data can be viewed through the software (Fig. 225 

4).  We focus on the upper 50m near the surface where oxygen is close to 100% saturated and the 226 

vertical gradients are small.  A comparison of average gain values derived using shipboard 227 

Winkler measurements versus in-air samples for 97 SOCCOM APEX floats shows a mean 228 

difference (float minus bottle) of -0.31% (standard deviation of 2.2%). This suggests that there is 229 

no large systematic bias for Navis floats when optodes are calibrated using bottle data.   230 

In addition to providing an alternative approach to in-situ optode calibration, comparison 231 

to shipboard data offers a simple and independent means for validating gain values derived from 232 

other methods.  The gain correction for the float shown in Fig. 3 was performed using in-air 233 

measurement data as described in Section 3.1.1.  Fig. 4 shows data from this float in profile 234 

view.  Pressure is along the x-axis for all plot panels.  The top two panels show mean float data 235 

(solid blue line) along with GLODAPv2 profile data that are within a 30km radius, and the 236 

computed residuals.  The bottom two panels show the float’s first and second profiles (blue) 237 

along with shipboard Winkler and CTD oxygen data (circles), and computed residuals.  Note that 238 

the ‘QC’ tab is selected, thus all float data in the display have been adjusted using the computed 239 

gain shown in Fig. 3.  If the ‘Raw’ tab was chosen, the float profile would have no adjustments 240 

applied. The small positive bias shown in reference to the bottle data is due to temporal 241 

mismatch between the shipboard data and float measurements within high-gradient regions of the 242 

profile.  The mean residual (bottle-float) is 1.245 µmol kg
-1

.  The mean residual against all 243 

GLODAPv2 data within 30 km is -0.060 µmol kg
-1

, although the range is larger than the 244 

hydrocast data due to the larger time range included in the matchup criteria. 245 

  246 
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 247 

Figure 4. A comparison of adjusted oxygen data to GLODAPv2 (top two panels) and shipboard 248 

hydrocast matchups (lower two panels), as viewed through the SAGE-O2 interface for 249 

UW/MBARI float 9752 (WMO 5904694). 250 

3.1.3 Gain computation using World Ocean Atlas climatology (WOA) 251 

For floats incapable of taking in-air oxygen measurements, and when shipboard reference 252 

data are not yet available, a preliminary optode gain correction factor can be derived within the 253 

SAGE-O2 GUI using WOA percent oxygen saturation in surface water.  This method follows 254 

Takeshita et al. (2013), which suggest an accuracy of 1-3% for sensors calibrated against WOA 255 

values.  Percent saturation from the float is calculated following equation (7) below, where the 256 

solubility of oxygen (𝑂2𝑆𝑜𝑙) is computed as a function of temperature and salinity following 257 

Garcia & Gordon (1992) equation 8
 
(omitting erroneous term [A3*Ts

2
]) and using solubility 258 

constants from Benson and Krause (1984) (see equation 8 and Table 1 in Garcia & Gordon, 259 

1992).  Individual gain values, 𝐺𝑖, are then computed using equation (8), where  %𝑆𝑎𝑡𝑊𝑂𝐴 and  260 

%𝑆𝑎𝑡𝐹𝑙𝑜𝑎𝑡  represent the mean WOA and mean float percent saturation values for the upper 25m 261 

of the profile, respectively.    262 

 263 

%𝑆𝑎𝑡 =  [𝑂2]/[𝑂2𝑆𝑜𝑙] × 100     (7) 264 

 265 

𝐺𝑖 =  %𝑆𝑎𝑡𝑊𝑂𝐴/%𝑆𝑎𝑡𝐹𝑙𝑜𝑎𝑡      (8) 266 
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 267 

The overall gain factor, G, is calculated as the mean of the individual gain values (𝐺𝑖) 268 

computed for each cycle.  A comparison of gain factors computed using WOA percent saturation 269 

versus NCEP reanalysis air pressure as reference for 95 floats with in-air measurement 270 

capabilities shows a bias between the methods of 1.4% with a standard deviation near 2%.  The 271 

largest differences occur in floats near seasonal sea ice or very close to the coast where WOA 272 

reference climatology data is limited and/or seasonally biased.  Note that for many floats within 273 

the global BGC Argo array, this method is the most accessible option for data managers and 274 

should be applied wherever possible as a first-order correction.   275 

3.2 Drift in optode gain 276 

The effects of pre-deployment storage drift are readily apparent across the majority of 277 

optodes used on profiling floats.  Oxygen data from all Aanderaa and Sea-Bird optodes onboard 278 

SOCCOM floats require gain correction, with a fleet-wide mean gain correction of 7.0 ± 4.6 (1σ) 279 

%.   While an optode’s stability once deployed is substantially smaller, it is less predictable 280 

(Bittig & Kortzinger, 2015; Bittig & Kortzinger, 2017; Bushinsky et al., 2016; Johnson et al., 281 

2015).  Bittig et al. (2018a) provides a thorough review on this topic, and suggests that individual 282 

optodes may exhibit significant post-deployment drift of up to +/- 0.6%/yr.  If not accounted for, 283 

such drift could lead to significant biases in certain biogeochemical analyses such as air-sea 284 

fluxes.   285 

Characterizing the amount of optode drift is possible within the SAGE-O2 software 286 

through comparison against reference values over time.  This method was recently put into 287 

practice for select floats within the SOCCOM fleet.  The software allows the user to auto-288 

calculate the drift relative to a reference such as NCEP.  The computed offset (initial gain), b, 289 

and slope (drift), m, are calculated using a model I regression of computed gain on each cycle 290 

against cycle time.    The gain value applied at each cycle (following equation 1) then becomes: 291 

 292 

𝐺𝑖=1:𝑘 =  𝑏 + 𝑚(∆𝑇)       (9) 293 

 294 

where ∆𝑇 is the time, in years, elapsed since the first cycle (or time at which the drift began).  If 295 

the chosen ending node at cycle k is not the final cycle reported from the float upon assessment, 296 

a drift assessment on the subsequent segment (cycles i=k:n) is automatically performed.  The 297 

slope of the second segment, m2, is found by first subtracting the recomputed gain at the end of 298 

the first segment (Gk) from individual gains, gi, of segment 2, and then regressing segment 2 299 

through the origin.  This can be expressed as 300 

  301 

𝑚2 =   
∑ (𝑔𝑖−𝐺𝑘)∗𝑥𝑖

𝑛
𝑖=𝑘

∑ 𝑥𝑖
2𝑛

𝑖=𝑘

      (10) 302 

 303 

where x represents the time elapsed since the ending cycle of segment 2.  This method results in 304 

drifting gains that remain continuous throughout segments.  However, note that drift assessment 305 

within the GUI (and especially multi-segment drifts) should be limited to advanced users.  It is 306 

recommended that drift assessment be performed only after a sufficient amount of data has been 307 

received (optimally at least 2 years).  Care must be taken in order to prevent correcting for an 308 

apparent drift that has been influenced by a seasonal cycle.     309 
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Within the GUI there are two methods to test whether or not a computed drift over the 310 

lifetime of a float is statistically robust.  Upon auto-computation of the drift, a two-tailed T-test is 311 

performed to assess whether the calculated slope is significantly different than zero at the 95% 312 

confidence interval (results are returned on screen).  Additionally, on the right-side panel in the 313 

interface, the GUI reports the computed Bayesian Information Criteria (BIC) (Schwarz, 1978) 314 

following Equation 11 below, where SSR represents the sum of squared residuals of the model, K 315 

is the number of model parameters, and n represents the number of data points.  The BIC weighs 316 

the number of predictors within a model against the goodness-of-fit, allowing the user to prevent 317 

over-fitting of the data (the model with the lowest BIC is always preferred). 318 

 319 

𝐵𝐼𝐶 =  log (
𝑆𝑆𝑅

𝑛
) +

𝐾 log 𝑛

𝑛
      (11) 320 

 321 

In the SOCCOM array, of the 126 floats currently considered candidates for optode drift 322 

correction, 32 exhibited significant drift rates.  Both positive and negative drift rates were 323 

observed, with a mean of -0.07%/yr, a standard deviation of 0.65%/yr and a total range of -1.1 to 324 

1.2 %/yr.  325 

The drift correction proposed here relies on the existence of air oxygen measurements 326 

relative to the NCEP atmospheric reference.  However it does not address the root cause of 327 

sensor drift behavior which is somewhat unsatisfying.  Bittig et al. (2018a) show how inadequate 328 

temperature calibration of the oxygen optode can oftentimes account for in-situ drift rates 329 

apparent in a float’s optode time series.  They describe a correction method (Equation 23 of 330 

referenced publication) that can simultaneously correct for inadequate temperature calibration 331 

and any seawater carryover on the sensor during sampling while in air.  The supplementary 332 

material to their paper highlights the results of applying the method to UW/MBARI float 9313 333 

(WMO 5904474); the strong oxygen-temperature response exhibited by this float is shown to 334 

bias the sensor gain time series and application of the correction method effectively removes the 335 

apparent drift in sensor gain.  However, recent testing demonstrates that the results of this 336 

correction are not consistent across the SOCCOM array.  Fig. 5 plots computed drift in optode 337 

gain against the residual drift in optode gain after temperature compensation with Equation 23 338 

from Bittig et al. (2018a) is applied for 82 SOCCOM floats that have been operational for at least 339 

2 years.  The Model II regression (shown in red) gives an offset of 0 which suggests that the 340 

Bittig et al. (2018a) correction is robust and does not add spurious drift.  The slope of the Model 341 

II regression is 0.797 (different than 1 at the 99% significance level) suggesting that across the 342 

SOCCOM array, the correction reduces the apparent drift in gain by 20.3%.  For certain floats, 343 

the Bittig et al. (2018a) correction tends to underestimate the magnitude of the true drift of the 344 

optode, thus, additional drift correction may be warranted. The mean difference in gain drift 345 

before versus after the correction is -0.021%/year and the standard deviation of the differences is 346 

0.31 %/yr. These results highlight the fact that the optode-temperature response is unique to each 347 

sensor.  This result is in accordance with findings of Johnson et al. (2017) who show that only 348 

20% of the change in gain over time can be accounted for by temperature changes observed by a 349 

float.  Such corrections should therefore not be applied systemically across the whole fleet, but 350 

rather integrated on a float-by-float basis in delayed-mode with statistical indexing to weigh the 351 

benefit of added complexity of the correction, similar to what is currently being done to assess 352 

the need for drift corrections.  These methods may be integrated into the GUI framework in a 353 

similar manner in a future revision.   354 

 355 
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 356 
 357 

Figure 5. Comparison of post-deployment optode drift before and after application of Bittig et 358 

al. (2018a) Eqn 23.  Analysis includes 82 SOCCOM floats.  Dashed line depicts the 1:1 359 

relationship; red line is the Model II regression. 360 

4 Adjustment of nitrate and pH data 361 

Adjustment of nitrate and pH data are performed after oxygen data has been corrected.  362 

Similar to oxygen optodes, nitrate and pH sensors on profiling floats often suffer from initial 363 

calibration shifts that must be corrected prior to scientific use.  Such inaccuracies can manifest as 364 

offsets and/or drifts throughout the data series.  As described in Johnson et al. (2017), pH offsets 365 

and drifts can be attributed to changes to the sensor reference potential (k0) over time, while 366 

those apparent in nitrate usually result from changes in light throughput due to aging or fouled 367 

optical components.  Therefore, adjustments to pH and nitrate are applied as offsets to k0 and 368 

nitrate concentration [μmol kg
-1

], respectively. 369 

The general adjustment process for pH and nitrate is based on evidence that the offsets 370 

and drifts are constant throughout an entire profile (Johnson et al., 2013; 2017).  Corrections then 371 

involve comparison of raw float data to select reference fields at depths below 1000m where 372 

spatial and temporal variability in ocean chemistry is minimal.  The corrections determined at 373 

depth are then applied to the entire profile.  This process is similar to the protocol used to correct 374 

Argo salinity data (Owens & Wong, 2009).  Fig. 6 below shows the SAGE GUI interface where 375 

such comparisons can easily be performed.  Upon selecting a float, default view specifications 376 

are loaded into the GUI, including a profile window encompassing the entirety of the float’s life-377 

span, and a pressure range of 1480 to 1520 m where adjustment assessment is performed.  Float 378 

(blue) and reference (red) data within selected time and pressure ranges are plotted in the top 379 

panels, and the anomaly series (float minus reference) is plotted below in green.  Global Data 380 

Analysis Project v2 (GLODAPv2; Olsen et al., 2020) crossover data is also shown in the upper 381 

panel plots as a climatological reference, but only to assess the consistency of adjusted data.  As 382 

in SAGE-O2, the search distance for GLODAPv2 data from each profile can be set in the GUI. 383 



Confidential manuscript submitted to Journal of Geophysical Research Oceans 

  14 

 

 384 

 385 
 386 

Figure 6. SAGE GUI software interface showing raw nitrate data (blue) from MBARI/UW float 387 

9752 (WMO 5904694).  388 

 389 

Similar to conductivity sensors (Owens & Wong, 2009), drifts and offsets occurring in 390 

data from nitrate and pH sensors often vary linearly over long time periods, and calibration 391 

jumps in the time series are not uncommon.  Oftentimes the largest drift rates occur over the first 392 

few cycles in a float’s life as can be seen in the nitrate anomalies shown in Fig. 6.  Nitrate and 393 

pH anomalies from a float data series are thus best modeled as discontinuous piecewise linear 394 

fits, where both drifts and offsets change independently between segments that are bounded on 395 

either side by defined cycle breakpoints.  In the Fig. 7 schematic, the correction, ΔANOM, at 396 

each cycle breakpoint, j, is calculated as  397 

 398 

𝐴𝑁𝑂𝑀𝑗 =  𝑂𝑗       (12) 399 

 400 

and the data correction for any subsequent cycle, i, within the same segment becomes 401 

 402 

𝐴𝑁𝑂𝑀𝑖 =  𝑂𝑗 + 𝐷𝑗(𝑇𝑖 − 𝑇𝑗)      (13) 403 

 404 

where O and D represent the offset (in µmol kg
-1

) and drift (in µmol kg
-1

 per year), respectively, 405 

of the linear least squares fit to the anomaly data series between cycles located at breakpoints j 406 

and j+1 (not including the latter bounding breakpoint), and T represents time (in years).  For 407 

nitrate data, this modeled correction (represented by gray lines in Fig. 7) is then subtracted from 408 

the original data series.  For pH data, the modeled correction is applied as an offset to the 409 

reference potential (k0) of the sensor as described in Johnson et al. (2017).  A matrix of 410 

correction factors (as shown in the lower left corner of Fig. 6) is stored in a float-specific text file 411 
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along with any derived oxygen corrections for use in reprocessing applications.  This method 412 

constitutes a delayed-mode correction approach that can be revisited and characterized at 413 

periodic intervals throughout the float’s life.  414 

 415 

 416 
Figure 7. Qualitative schematic showing the adjustment model of a theoretical sensor anomaly 417 

series.  The two series breakpoints, identified in purple, occur at cycles 1 and 5.  Gray lines 418 

represent the least-squares fit (adjustment model) to the elements (green dots) within each 419 

segment. 420 

4.1 Reference models for pH and nitrate 421 

Multiple options are available for use in the estimation of deep pH and nitrate reference 422 

fields for comparison against float data.  These include World Ocean Atlas climatological fields 423 

as well as empirical algorithms derived from high-quality shipboard data acquired from GO-424 

SHIP cruises (Bittig et al., 2018b; Carter et al., 2018; Williams et al., 2016).  While the 425 

algorithms provide estimated fields rather than direct measurements, their performance has been 426 

extensively validated.  The set of multiple linear regression models (MLRs) by Williams et al. 427 

(2016) were the first of such reference algorithms available in the Southern Ocean and were 428 

utilized in the quality control of SOCCOM nitrate and pH float data during the early years of the 429 

program.  Nitrate and pH estimates produced using the Williams method rely on MLR equations 430 

specific to two latitudinal bands around the Southern Ocean.  Predictor variables include 431 

pressure, salinity, temperature, and oxygen.  A key distinction between the Williams MLRs and 432 

the other methods available for use within the SAGE software is the lack of global extent in the 433 

Williams MLRs.  In addition, this method is limited in depth space to the range of 1000 to 2100 434 

m.  While this fully encompasses the depth nominally used in quality control for the majority of 435 

SOCCOM floats, sometimes shallower reference depths are required, for example when a float is 436 

under-ballasted and cannot reach 1000 m. Nonetheless, the Williams MLR algorithms perform 437 

very well when used within their specific range limits.  Williams et al. (2016) states root mean 438 
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square errors (RMSE) of 0.3 µmol kg
-1

 and 0.004 total pH units for deep (1500m) nitrate and pH 439 

estimates, respectively.  Additionally, Johnson et al. (2017) show linear regressions between first 440 

nitrate and pH profiles from SOCCOM floats, adjusted to the Williams MLRs at depth, and 441 

shipboard bottle data taken at the time of deployment to be near unity, with midrange differences 442 

(bottle minus float) of -0.1 µmol kg
-1

 and 0.006 pH units, respectively.  These findings are 443 

important as they validate the method as an acceptable reference option for other float programs 444 

in the Southern Ocean.   445 

However, as increasing numbers of BGC floats are being deployed outside of the 446 

Southern Ocean, an alternative reference algorithm with full global extent is now the operational 447 

standard.  This allows for a consistent procedure, homogenous across float arrays.  The current 448 

default choices for estimating nitrate and pH for comparison against SOCCOM float data are the 449 

locally interpolated nitrate regression (LINR) and the locally interpolated pH regression (LIPHR) 450 

(or LIRs, collectively) (Carter et al., 2018).  The LIR algorithms were developed from a series of 451 

MLRs trained using GLODAPv2, resulting in a separate set of coefficients for each 5 degree 452 

latitude and longitude grid box and 33 different depth surfaces.  The derived coefficients at each 453 

grid point then get interpolated onto a float’s location for use in generating a final nitrate or pH 454 

estimate.  As described in Carter et al. (2018), there are 16 possible groupings of predictor 455 

variables available to use in producing a final estimate.  For SOCCOM assessments, LIR 456 

regression #7 is used with depth, salinity, temperature, and dissolved oxygen as input 457 

parameters, in addition to the profile latitude and longitude.  The RMSE of the residuals between 458 

LIPHR and LINR estimates within 1000 and 2000m using predictor set #7 and the test 459 

observations used for algorithm validation were 0.006 pH units and 0.47 µmol kg
-1

, respectively 460 

(Carter et al., 2018).     461 

A third optional reference algorithm is the CArbonate system and Nutrient concentration 462 

from hYdrological properties and Oxygen using a Neural-network, Bayesian approach 463 

(CANYON-B, Bittig et al., 2018b).  This is a neural network mapping performed in a Bayesian 464 

framework, that is, informed by an ensemble of model components at each stage rather than 465 

fixed values.   This model is a revised version of an earlier individual neural-network approach, 466 

CANYON, originally developed by Sauzéde et al. (2017).  In their publication, Bittig et al. 467 

(2018b) compare the performance of CANYON-B with LIR for various parameters, including 468 

nitrate and pH, against a post-GLODAPv2 validation dataset.  The authors stress that, while both 469 

methods perform similarly well in a bulk statistical sense, local estimates can still be quite 470 

different.  Fig. 8 compares differences between pH and NO3
-
 estimates for the SOCCOM array 471 

using CANYON-B and LIR algorithms.  The mean (standard deviation) of the differences at the 472 

depth that QC is performed within SAGE are -0.001 (0.006) for pH and -0.053 (0.278) µmol kg
-1

 473 

for NO3
-
.  Larger differences near the surface are largely due to greater uncertainties of the LIR 474 

algorithms at these depths (although, as noted by Bittig et al., (2018b), estimates from all 475 

algorithms show some level of enhanced uncertainty toward the surface due to difficulty in 476 

accurately capturing seasonal variability and effects of air-sea gas exchange).  The enhanced skill 477 

in near-surface depths exhibited by CANYON-B, relative to LIR, can serve as an independent 478 

validation to the calibration approach.  Surface data from floats corrected at depth using LIR 479 

frequently align well with CANYON-B estimates at the surface, in a qualitative sense.  However, 480 

it should be noted that pH estimates generated by CANYON-B are intended to be in line with pH 481 

calculated from DIC and TA, rather than pH that has been spectrophotometrically measured, 482 

whereas pH measurements using the LIPHR method are the opposite.  While the LIPHR 483 
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algorithm has a flag to apply a linear adjustment that will subsequently produce estimates 484 

consistent with calculated pH, this method should not be used for calibrating a pH measurement 485 

from a float, as ISFET pH is consistent with spectrophotometric pH measurements (Takeshita et 486 

al., 2020).  The differences shown in Fig. 8 were performed after a linear transformation was 487 

applied to CANYON-B estimates following Carter et al. (2018) (Equation 1) to bring estimates 488 

back into alignment with spectrophotometrically measured pH.  489 

 490 

Figure 8. Fleet-wide differences of computed pH (left) and nitrate (right) using CANYON-B and 491 

LIR algorithms.  Data were binned at 10, 50 and 100m pressure intervals for 0-350, 350-1000, 492 

and 1000-2000 db, respectively. The blue line represents the mean difference and the shaded 493 

areas represent +/- 1 standard deviation.   494 

A final note should be made regarding the use of pH estimates that are based on 495 

measurements made over a large time span.  Ocean pH is decreasing due to increasing 496 

atmospheric carbon dioxide concentrations and these effects are sometimes detectable at the 497 

depth range used for pH sensor adjustment (Rios et al., 2015). Each of the algorithms described 498 

here has been trained on shipboard data that may exhibit this effect.  While the LIPHR algorithm 499 

does include a flag for optional application of an ocean acidification adjustment, this is a static 500 

adjustment and does not account for geographic differences in ocean acidification rates, nor does 501 

it account for changes in global ocean acidification rates over time.  This highlights the need for 502 

such reference equations to be periodically updated, utilizing recent training datasets to provide 503 

more accurate algorithm coefficients.   504 

4.2 Computation of correction factors using automated change-point detection 505 

In the initial version of the SAGE software, the user manually chose the location of each 506 

breakpoint (node).  The inherent subjectivity in this approach in addition to the increasing time 507 

investment required by the operator to complete a full adjustment assessment of the SOCCOM 508 

array proved less than optimal.  In the current software version, both the optimal number and 509 

location of each breakpoint can be assigned automatically through an automated multi-step 510 
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process.  First, the binary segmentation method of change-point detection is applied using the 511 

MATLAB function, ischange, which begins by splitting the data series for variable y, of length 512 

n, into two segments separated by a change-point, j (Killick et al., 2012).  The location of j along 513 

the time series is then iteratively shifted until a minimization of the left side of the following 514 

equation is reached: 515 

 516 

𝐶(𝑦1:𝑗) + 𝐶(𝑦(𝑗+1):𝑛) < 𝐶(𝑦1:𝑛)     (14) 517 

 518 

where C represents the cost function 519 

 520 

𝐶(𝑥) = 𝑛𝑉𝑎𝑟(𝑥)      (15) 521 

 522 

where n is the number of data points in the segmented data series, x, and Var is the variance.  523 

This process is then repeated, further splitting up the segments to find the optimal location of an 524 

increasing number of changepoints.  Next, in order to statistically determine the best number of 525 

changepoints of the various groupings tested, a modified BIC is calculated for each model, 526 

following 527 

 528 

𝐵𝐼𝐶 =  log (
𝑆𝑆𝑅

𝑛
+ 𝛼2) +

𝐾 log 𝑛

𝑛
      (16) 529 

 530 

 531 

where the α term is used as a threshold on the mean residual, driven by the basic precision of the 532 

sensor.  In SOCCOM processing operations, α=0.5 (0.005) is used for nitrate (pH) data.  If α is 533 

omitted, equivalent to assuming the sensor has no inherent noise, the changepoint algorithm will 534 

often find an excessive number of change points, which is inconsistent with known sensor 535 

behavior. The location and number of changepoints from the model with the lowest BIC value is 536 

then used to derive offsets and drifts as described in Section 4.  537 

A key concern in the move from a manually-assigned to an automated definition of 538 

breakpoints in the sensor QC process was to maintain the final quality of the adjusted SOCCOM 539 

dataset.  Thus, prior to operational implementation of the automated method, a quality 540 

assessment was performed using two adjusted datasets, one done manually by a trained 541 

biogeochemical float quality control operator and the other performed automatically using the 542 

changepoint detection method described above.  Fig. 9 (a-d) shows that the use of automated 543 

changepoint detection in the SOCCOM QC process results in a fewer number of change-points, 544 

on average, and an overall better model of the anomaly time series, in a statistical sense (lower 545 

BIC value), than the previously employed manual correction method.   546 

However, the absolute difference in BIC between models is small in most cases (mean 547 

differences of 0.658 and 1.165 for nitrate and pH, respectively) with the automated method 548 

showing progressively better performance as model complexity increases (Fig. 9, e-f). It is 549 

generally accepted that when comparing candidate models, a difference in computed BIC less 550 

than 2 is relatively inconsequential, meaning that the two models are statistically similar and 551 

minimal (if any) improvement can be attained by choosing one over the other (Fabozzi et al., 552 

2014; Kass & Raferty, 1995).  When taken in this context, results from this comparison suggest 553 

that the initial manual method of change-point detection for QC across the SOCCOM fleet was 554 

not of poor quality, and that the move to automated changepoint detection sustains such quality 555 

while concurrently reducing the time required to perform an objective fleet-wide assessment.  556 
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  557 

 558 
 559 

Figure 9. (a,b): Histograms showing differences in number of changepoints identified by the 560 

manual (NMAN) versus automated (NAUTO) method for nitrate and pH sensor QC.  (c,d): 561 

Comparison of computed Bayesian Information Criterion (BIC) for manual (red circles) and 562 

automated (blue squares) changepoint identification in nitrate and pH QC. Dashed lines represent 563 

mean BIC values for each method.  (e,f): Difference in computed BIC (manual versus auto) 564 

against mean BIC value for each float, for nitrate and pH.  Solid and dashed lines represent mean 565 

difference +/- 1 standard deviation, respectively.  120 SOCCOM floats were used in each 566 

analysis.  567 

4.3 pH and nitrate adjustments in the SOCCOM array 568 

The magnitude of a required sensor adjustment, as derived from the methods described in 569 

the previous sections, represents the degree to which sensor performance has changed since 570 

laboratory calibration.  A summary of the adjustments required over time across a full array of 571 



Confidential manuscript submitted to Journal of Geophysical Research Oceans 

  20 

 

sensors can unveil any systematic biases and subsequently help identify key areas for which to 572 

focus future development efforts.  While the adjustment methods described in this paper improve 573 

data accuracy, reducing the magnitude of required adjustments to a sensor is the optimal goal.  574 

As described in Section 4, the coefficients to the linear fits of each segmented anomaly series are 575 

included within a single float-specific correction matrix that is used in the data adjustment 576 

process.  The offset associated with the first segment exemplifies sensor performance upon 577 

deployment.  As each segment is treated independently, the value of any subsequent offset can 578 

provide information on sensor health over time when viewed relative to the first offset.   579 

The distributions of the first and second offsets required for nitrate and pH data in the 580 

SOCCOM array are shown in Fig. 10.  The positive skew of the nitrate first offset distribution 581 

demonstrates that the majority of SOCCOM nitrate sensors are biased high upon deployment 582 

while the opposite is true for pH sensors within the array.  The magnitude of the bias is 0.91 583 

µmol kg
-1

 for nitrate, and -0.032 for pH (Table 2).   Distributions of the second offsets (relative 584 

to the first) show reduced spread across both sensor types and an elimination of bias in pH sensor 585 

data.  This behavior is not surprising; oftentimes the largest anomaly is observed on the first 586 

cycle as the sensor re-conditions to an aqueous environment.  Continued exposure to seawater at 587 

1500m helps to stabilize the sensors, particularly the pH sensor.  The optics of the nitrate sensor 588 

are more sensitive to perturbations so jumps in the data series are more often observed.  This is 589 

exemplified by the fact that a small bias (negative) remains in the distribution of second nitrate 590 

offset, showing that a second offset is almost always required to bring nitrate data in line with 591 

climatology.   592 

Also notable in the distributions is that there is a small subset of floats receiving 593 

relatively large first offset corrections for nitrate and pH sensor data.  Currently there is no 594 

operational threshold in place for maximum allowable adjustment.  Floats requiring larger than 595 

normal nitrate or pH adjustments are analyzed on a case-by-case basis and may be grey-listed as 596 

bad or questionable by the delayed-mode operator upon review of laboratory calibration and 597 

sensor diagnostics.  These large offsets may be the result of changes in optical alignment or 598 

sensor contamination during transport. 599 

 600 

 601 
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 602 
 603 

Figure 10. Histograms of first and second offsets (top), and first-year and second-year drift rates 604 

(bottom) for nitrate (a) and pH (b) data.  Offsets were computed as float data minus reference 605 

data at a nominal calibration depth of 1500m; the second offset is relative to the first.  Drift rates 606 

were computed using a Model I regression on the anomaly time series.  607 

 608 

a) Nitrate 1
st
 offset 

(µmol kg
-1

) 

Nitrate 2
nd

 offset 

(µmol kg
-1

) 

Nitrate 1
st
-year drift  

(µmol kg
-1

 yr
-1

 ) 

Nitrate 2
nd

-year drift 

(µmol kg
-1

 yr
-1

 ) 

Median 0.72 -0.95 -0.17 0.08 

Mean 0.91 -0.95 -0.51 -0.09 

Std dev 3.12 1.75 1.52 0.96 

 609 

b) pH 1
st
 offset pH 2

nd
 offset pH 1

st
-year drift  

(yr
-1

 ) 

pH 2
nd

-year drift 

(yr
-1

 ) 

Median -0.020 0.002 0.000 -0.002 

Mean -0.032 0.001 -0.017 -0.005 

Std dev 0.059 0.040 0.060 0.032 

 610 

Table 2. Data adjustment summary statistics for nitrate (a) and pH (b). 611 

 612 

First year and second year sensor drifts for nitrate and pH are also shown in Fig. 10 613 

(lower histograms).  These were computed as the slope of a Model I regression over the first and 614 
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second year of data for each float.  This ensured a uniform time frame for drift comparison 615 

across the array (as the length of each segment within a float’s adjustment matrix can vary).   616 

While drift in the second year is not completely eliminated, there is an 80% (70%) reduction in 617 

mean drift rate across the array for nitrate (pH) sensors from year 1 to year 2.  The reduction in 618 

sensor drift from year 1 to year 2 is not a uniform rate of change.  This can be seen in Fig. 11 that 619 

shows percentiles across the array of computed anomalies at each profile relative to that of the 620 

first profile (top) and percentiles of the rate of change in anomaly by profile (center).  By the 621 

second year, around 25% of nitrate anomalies have drifted beyond 2 µmol kg
-1

 of their initial 622 

value with the majority of sensors drifting negative (measuring low relative to reference fields) 623 

and the largest proportion of drift occurring within the first five cycles (red line).  pH sensors see 624 

both positive and negative drift rates, with close to 50% of the data drifting beyond 0.03 pH units 625 

of their initial value.  However, similar to nitrate sensors, pH sensors are also relatively stable 626 

beyond the first few cycles.  Because both nitrate and pH sensors exhibit the largest rates of in 627 

situ drift within the first 2 months since deployment, it is recommended that initial QC 628 

assessment be performed only after the first 5 cycles have been returned from a float.  629 

 630 

 631 

 632 

Figure 11. Nitrate (a) and pH (b) offset percentiles.  Offsets are computed as the anomaly (float 633 

– reference) at each profile across the array.  Top panels display offsets relative to profile one; 634 

center panels display the rate-of-change (first derivative) in offset from profile to profile 635 

(SOCCOM floats cycle at 10-day intervals); lower panels show the number of floats at each 636 

profile number.  637 

While we see sensor stability improving with time since deployment for individual 638 

sensors, it is also important to understand if adjustment requirements across the array are 639 

improving over each subsequent deployment year.  Fig. 12 shows box plots of the first offsets 640 

required for nitrate (left) and pH (right) data grouped by deployment year.  Median offsets for 641 

nitrate seem to be more or less randomly distributed around zero.  For pH, this is not the case.  642 

Median values remain negative over all deployment years which suggests a systematic negative 643 

bias for this sensor.  pH sensor offset statistics also show a more dramatic change over time, in 644 
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both the location of central tendency and degree of dispersion.  These shifts in offset statistics are 645 

likely linked to changes in sensor design or laboratory calibration procedure.  For example, 646 

significant improvements were seen in 2016 and 2018 in conjunction with the move to a thicker 647 

ISFET covering, and the switch from silver to platinum wire connections on the ISFET 648 

electrode, respectively.  Beginning in 2016 the offset distributions are centered closer to zero 649 

than in previous years, and the 2018 distribution has a much tighter interquartile range, 650 

indicating more consistent sensor behavior. 651 

 652 

 653 

Figure 12. Boxplot summaries of first nitrate (left) and first pH (right) offsets, grouped by 654 

deployment year.  Red lines represent the median, box boundaries represent the interquartile 655 

range (Q3 – Q1), whiskers are the outer range of data, excluding outliers (red stars) which are 656 

defined as data points that are larger than Q3+1.5*(Q3-Q1) or smaller than Q1-1.5*(Q3-Q1). 657 

5 Validating SOCCOM float data adjustments 658 

In this section, we discuss a system for validating our calibration methods.  This involves 659 

comparison of post-corrected float data to data from both high-quality shipboard bottle casts 660 

taken alongside each SOCCOM float at the time of deployment, and nearby stations within the 661 

GLODAPv2 dataset (Olson et al., 2020).  While shipboard data can also be useful for assessing 662 

initial offsets along a profile, it is not essential to float calibration and is typically reserved as an 663 

independent validation of the employed correction methods.   664 

5.1 The use of shipboard bottle data 665 

With the exception of oxygen calibration on Navis floats, the methods described in the 666 

previous sections for adjusting chemical data from a float do not depend on the existence of 667 

shipboard reference data collected alongside a float’s deployment.  This is advantageous in that 668 

any shipboard data taken at the time of deployment can be used to validate the applied in situ 669 

calibration methods.  The SOCCOM program has required shipboard data collection alongside 670 

float deployment wherever possible to support the building of a robust validation dataset.  671 
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However, because it is not essential to sensor quality control, shipboard data collection may be 672 

reduced to select cruises in the future.  673 

Comparisons of SOCCOM quality-controlled float data against shipboard data taken near 674 

the time of deployment are shown in Figs. 13 and 14.  All float data have been interpolated onto 675 

the pressure axis of the hydrocast data.  A portion of the error in the differences can be attributed 676 

to spatial and temporal changes in hydrography between the float profile and bottle samples.  677 

Float deployments typically occur as the ship begins heading away from a sampling station after 678 

the CTD rosette cast has been performed.  This is done to reduce the chances of the ship running 679 

into the float.  An additional lag time exists between deployment and when the float completes 680 

its first profile. Float-to-bottle matchups in the SOCCOM array are on average 23 hours and 8 681 

km apart in time and space because of this.  Nonetheless, the float to bottle matchups show very 682 

good agreement.  The slope of the Model II regression for each parameter is indistinguishable 683 

from the 1:1 line.  The median bottle-minus-float difference for oxygen, nitrate and pH are 0.35 684 

µmol kg
-1

, -0.12 µmol kg
-1

, and 0.002 total pH units, respectively (Table 3).  These values are 685 

very close to the accuracies reported in Johnson et al. (2017).  Oxygen shows the largest 686 

improvement; this can likely be attributed to the implementation of the optode drift correction 687 

which was not yet accounted for at the time of the Johnson et al. (2017) publication. 688 

Additionally, an independent analysis by Mignot et al. (2019) of quality controlled BGC-689 

Argo float data in the Mediterranean Sea shows similar results, stating accuracies for oxygen and 690 

nitrate data (when compared to shipboard measurements) of 2.9 and 0.46 µmol kg
-1

, respectively.  691 

Maximum depths reached by floats in the Mignot et al. (2019) analysis was 1000 m, as opposed 692 

to 2000 m on SOCCOM floats.  The upper water column, therefore, made up a larger relative 693 

proportion of their float-to-bottle dataset; spatio-temporal mismatch due to greater oceanic 694 

variability at these depths likely accounts for the slightly larger biases observed. 695 

 696 

 697 

 698 

Figure 13. Scatter plots of float oxygen (left), nitrate (middle) and pH (right) data versus 699 

shipboard bottle data. The solid and dashed lines represent the 1:1 and Model II least squares fit, 700 

respectively. 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 
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 N 

observations 

mean median standard 

deviation 

maximum minimum 

Oxygen 

(µmol kg
-1

) 

2366 0.94 0.35 6.84 64.50 -41.82 

Nitrate 

(µmol kg
-1

) 

2240 -0.22 -0.12 1.00 7.89 -5.14 

pH (in-situ 

total) 

1145 0.002 0.002 0.015 0.061 -0.096 

 710 

Table 3. Bottle – minus – float matchup summary statistics for oxygen, nitrate and pH. 711 

 712 

Float-bottle matchups in pressure space provide a validation of the assumption that sensor 713 

offsets are constant with depth (Johnson et al., 2013; 2016; 2017).  Fig. 14 shows the bottle-714 

minus-float differences for all oxygen, pH and nitrate matchups, plotted against pressure.  The 715 

blue lines represent binned averages. There are no large trends in the oxygen or nitrate values 716 

with depth, confirming the assumptions in our calibration method.  For pH, the pressure-binned 717 

distribution of mean differences show a negative bias of 5 millipH at depth.  This bias changes 718 

sign toward the surface.  Johnson et al. (2016) show a similar trend in comparison to discrete 719 

data (Fig. 6 in their publication, note trend is reversed as their plot represents float-minus-720 

discrete) which they attribute to an incomplete understanding of carbonate-system 721 

thermodynamics at high pressures.  While the magnitude of this bias is within the limits of stated 722 

uncertainty in the pH correction method (see section 4.2), the depth-dependent nature of the pH 723 

bias, as evident in the data, should be researched further.   724 

 725 

 726 

 727 

Figure 14. Scatterplots of bottle minus float matchups for oxygen (left), pH (center) and nitrate 728 

(right) data, plotted in depth space.  Blue lines represent the mean of data within depth bins. 729 
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5.2 Comparisons to GLODAPv2 730 

 As described in the previous section, SOCCOM data quality validation is performed 731 

primarily in reference to shipboard hydrographic data taken at the time of deployment and is thus 732 

limited in scope to the initial profile returned from each float.  Since in-situ drift is often 733 

observed in nitrate and pH (and to a lesser degree, oxygen) sensors onboard SOCCOM floats, a 734 

logical question is whether or not the quality of the applied adjustments remains stable 735 

throughout the duration of a float’s life.  For nitrate and pH, degradation in the quality of the 736 

adjustment over time could come from either a reduction in accuracy in one of the input 737 

parameters to the reference models (namely, temperature, salinity or oxygen), or a reduction in 738 

the accuracy of the reference algorithm itself due to gradual changes in deep ocean conditions 739 

that challenge the validity of the empirical relationships.  The first possibility poses less of a 740 

threat, as temperature and salinity data on Argo floats are quite stable and require minimal 741 

adjustment.  And, although drift is observed in some optodes onboard SOCCOM floats (see 742 

Section 3.2), comparison to a stable atmospheric reference provides a robust means for 743 

correction. The potential for degradation in data adjustment quality through time due to changes 744 

in the pressure or temperature coefficients of the sensor is more of a concern. If such changes in 745 

calibration occurred, then corrections derived at depth as the sensor aged would not be accurate 746 

near the surface.  747 

The impacts from the issues described in the preceding paragraph can be assessed for the 748 

current SOCCOM dataset through an independent comparison of SOCCOM quality-controlled 749 

data at different stages of a float’s life with hydrographic data from nearby stations in the 750 

GLODAPv2 dataset (Olson et al., 2020).  Fig. 15 shows histograms of GLODAPv2 minus float 751 

data for oxygen, nitrate and pH crossovers within 20km distance of GLODAPv2 station data 752 

with no temporal restrictions; only data below 300 dbar were used to minimize discrepancies due 753 

to seasonal variability in the upper water column.  The upper panels in the figure include 754 

comparisons from floats older than 6 months of age, and the lower panel includes data from 755 

floats greater than two years of age.  A 4 µmol kg
-1

 and 0.02 pH bias between float and 756 

GLODAPv2 data can be observed for oxygen and pH data, respectively.  The consistency of the 757 

biases for young (< 6 months) and old (> 2 years) floats are thus more likely a result of temporal 758 

differences between mean GLODAPv2 data used in the analysis and the corrected SOCCOM 759 

dataset.  The mean age difference between the two datasets is 17.8 years.  A 4 µmol/kg decrease 760 

in oxygen over nearly two decades (0.2 µmol/kg/y) is consistent with reported rates of oxygen 761 

change in the Southern Ocean that are based on shipboard data (Helm et al., 2011).  Additionally, 762 

the observed rate of change in pH across this time frame (0.001 pH/y) is consistent with expected 763 

and observed rates of ocean pH decrease due to increasing atmospheric CO2 (ocean acidification; 764 

Rios et al., 2015; Williams et al., 2018).  Further, as is shown in Johnson et al. (2017), both the 765 

oxygen and pH biases increase with the mean age difference between the GLODAPv2 station 766 

time and the profiling float measurement time. This lends support to our hypothesis that the 767 

biases for oxygen and pH seen in Fig. 15 are the result of dynamic ocean change in the Southern 768 

Ocean in response to global climatic shifts (Bronselaer et al., 2020).  This provides strong 769 

evidence that the quality control methods continue to be accurate over the lifetime of the float.   770 
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 771 

Figure 15. Histograms of GLODAPv2 minus quality-controlled oxygen (left), nitrate (center) 772 

and pH (right) float data.  Upper panels include data from floats older than six months of age; 773 

lower panels include data from floats older than two years of age.  Matchups were restricted to 774 

data that was within 20 km of GLODAPv2 reference stations. 775 

6 Discussion and Conclusions 776 

In this paper, we presented a coherent framework for applying delayed-mode adjustment 777 

procedures to oxygen, nitrate and pH data from SOCCOM biogeochemical profiling floats.  The 778 

software GUIs presented, SAGE (SOCCOM Assessment and Graphical Evaluation) and SAGE-779 

O2, provide a robust way to visualize and assess the quality of these data.  These software are 780 

open source and available through GitHub (https://github.com/SOCCOM-781 

BGCArgo/ARGO_PROCESSING).  The tools are intended to be used periodically throughout a 782 

float’s life to reexamine sensor performance in delayed-mode.  Adjustments derived using the 783 

software can then be applied to existing data and propagated forward in real-time until the next 784 

delayed-mode assessment is completed.  A notable aspect of the procedure is in the relationship 785 

between the oxygen adjustment and that of nitrate and pH.  The collective use of both SAGE-O2 786 

and SAGE offers a clear pathway to adjusted data for oxygen optodes, nitrate and pH sensors, all 787 

of which commonly coexist on biogeochemical profiling float platforms. 788 

The successful expansion of the BGC-Argo program on a global scale, as described by 789 

Roemmich et al. (2019), depends partially on the implementation of standardized data 790 

adjustment methods across float platforms.  The SAGE tools have already been adopted for use 791 

by other Argo data centers and are helping to increase the level of high-quality biogeochemical 792 

profiling float data available to users around the world.  Although these software were developed 793 

specifically for the SOCCOM program, output files can be transformed to Argo NetCDF format 794 

via a separate processing pathway.  Structuring the tools in this way has allowed for flexibility in 795 

adaptation across data centers.  Additionally, this flexibility means that applications are not 796 

limited to Argo float data.  The SAGE tools have the potential for use in post-deployment 797 

calibration of nitrate and pH data from other platforms such as gliders as well (Takeshita et al., 798 

2020).  As Bushinsky et al. (2019b) describe, sustaining multiple types of observational 799 

platforms in the ocean can increase our ability to resolve key processes at different spatial and 800 

temporal scales and in regions particularly susceptible to the effects of global change such as 801 
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coral reef habitats and coastal upwelling zones.  Ensuring that biogeochemical data is 802 

comparable across platforms is therefore essential. 803 

Furthermore, along with performing repeated, standardized QC procedures it is important 804 

to run validation analysis, as described in Section 5, with regularity.  This provides a metric for 805 

tracking improvements to sensor accuracy over time and testing the effects of processing 806 

upgrades or changes in QC methodology on the quality of the dataset.  While data from 807 

biogeochemical sensors onboard profiling floats are revolutionizing capabilities in global ocean 808 

carbon research and modeling (Ford, 2020), the operational limitations of the sensors and the 809 

measurements they provide cannot be overlooked.  Characterizing the uncertainties associated 810 

with such measurements helps to identify gaps in our understanding and guide future research 811 

and development. It is our hope that the calibration methods applied within the SOCCOM 812 

program, as outlined above, will serve as a global model for profiling float quality control, but 813 

also that the validation that follows will help to constrain the scientific questions that can be 814 

asked and provide inspiration for future research in both chemical sensor development and 815 

quality control. 816 
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