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Abstract

The most dynamic electromagnetic coupling between the magnetosphere and ionosphere occurs in the polar upper atmosphere.

It is critical to quantify the electromagnetic energy and momentum input associated with this coupling as its impacts on the

ionosphere and thermosphere system are global and major, often leading to considerable disturbances in near-Earth space

environments. The current general circulation models of the upper atmosphere exhibit systematic biases that can be attributed

to an inadequate representation of the Joule heating rate resulting from unaccounted stochastic fluctuations of electric fields

associated with the magnetosphere-ionosphere coupling. These biases exist regardless of geomagnetic activity levels. To

overcome this limitation, a new multiresolution random field modeling approach is developed, and the efficacy of the approach is

demonstrated using SuperDARN data carefully curated for the study during a largely quiet 4 hours period on February 29, 2012.

Regional small-scale electrostatic fields sampled at different resolutions from a probabilistic distribution of electric field variability

conditioned on actual SuperDARN LOS observations exhibit considerably more localized fine-scale features in comparison to

global large-scale fields modeled using the SuperDARN Assimilative Mapping procedure. The overall hemispherically integrated

Joule heating rate is increased by a factor of about 1.5 due to the effect of random regional small-scale electric fields, which

is close to the lower end of arbitrarily adjusted Joule heating multiplicative factor of 1.5 and 2.5 typically used in upper

atmosphere general circulation models. The study represents an important step towards a data-driven ensemble modeling of

magnetosphere-ionosphere-atmosphere coupling processes.
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Abstract17

The most dynamic electromagnetic coupling between the magnetosphere and ionosphere18

occurs in the polar upper atmosphere. It is critical to quantify the electromagnetic en-19

ergy and momentum input associated with this coupling as its impacts on the ionosphere20

and thermosphere system are global and major, often leading to considerable disturbances21

in near-Earth space environments. The current general circulation models of the upper22

atmosphere exhibit systematic biases that can be attributed to an inadequate represen-23

tation of the Joule heating rate resulting from unaccounted stochastic fluctuations of elec-24

tric fields associated with the magnetosphere-ionosphere coupling. These biases exist re-25

gardless of geomagnetic activity levels. To overcome this limitation, a new multiresolu-26

tion random field modeling approach is developed, and the efficacy of the approach is27

demonstrated using SuperDARN data carefully curated for the study during a largely28

quiet 4 hours period on February 29, 2012. Regional small-scale electrostatic fields sam-29

pled at different resolutions from a probabilistic distribution of electric field variability30

conditioned on actual SuperDARN LOS observations exhibit considerably more local-31

ized fine-scale features in comparison to global large-scale fields modeled using the Su-32

perDARN Assimilative Mapping procedure. The overall hemispherically integrated Joule33

heating rate is increased by a factor of about 1.5 due to the effect of random regional34

small-scale electric fields, which is close to the lower end of arbitrarily adjusted Joule heat-35

ing multiplicative factor of 1.5 and 2.5 typically used in upper atmosphere general cir-36

culation models. The study represents an important step towards a data-driven ensem-37

ble modeling of magnetosphere-ionosphere-atmosphere coupling processes.38

1 Introduction39

The most dynamic electromagnetic coupling between the magnetosphere and iono-40

sphere occurs in the Earth’s polar upper atmosphere. In particular, collisions between41

neutrals and ions drifting under the effect of the elevated high-latitude ionospheric elec-42

tric field are a major source of heating and momentum transfer, making a global impact43

on the upper atmosphere. The resulting energy and momentum deposition leads to the44

acceleration of neutral winds and Joule dissipation, triggering dramatic global upper at-45

mosphere responses, e.g., global temperature and neutral mass density enhancements,46

pole-to-equator general circulation, and atmospheric traveling disturbances (e.g., Schunk,47

2014; Fuller-Rowell, 2014; Burns et al., 2014). Practical effects include altered drag force48

on low-Earth-orbit satellites and debris by sudden changes in neutral mass density, ag-49

gravating our ability to track these objects to mitigate potential collisions; radio wave50

propagating disruption affected by ionospheric density changes, deteriorating reliabil-51

ity of communication, navigation and positioning systems; and geomagnetically induced52

currents in the ground resulting from intensified ionospheric currents, affecting power53

transmission systems, oil and gas pipelines, railway systems, and any other extended ground-54

based conductor systems (e.g., Marcos et al., 2010; Groves & Carrano, 2016; Pulkkinen55

et al., 2017). Accurate knowledge of this energy and momentum source in the polar iono-56

sphere is therefore of great scientific interest and has important economic and societal57

benefits.58

The current general circulation models of the upper atmosphere exhibit system-59

atic biases that can be attributed to the underestimation of the high-latitude energy sources,60

likely resulting from an inadequate representation of the Joule heating rate. These bi-61

ases exist regardless of geomagnetic activity levels. The Joule heating rate is proportional62

to the square of the electric field magnitude and scales linearly with the Pedersen con-63

ductivity. Both of these ionospheric electrodynamics state variables are highly variable64

and heavily influenced by magnetosphere-ionosphere coupling processes that are not usu-65

ally self-consistently solved in the upper atmosphere general circulation models and thus66

have to be empirically parameterized and/or specified as boundary conditions. The em-67

pirical models of high-latitude ionospheric plasma convection designed to characterize68
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the climatological behavior of the global large-scale electric fields are not suited to rep-69

resenting highly variable localized multi-scale electric fields and result in residual fields70

with a magnitude as large as the modeled global fields themselves (e.g., Codrescu et al.,71

2000; Matsuo et al., 2002, 2003; Cousins & Shepherd, 2012). Even with data assimila-72

tive procedures, the instantaneous states of the localized electric fields on scales smaller73

than 500 km and 5 minutes associated with highly transient and regional magnetosphere-74

ionosphere coupling processes are difficult to capture (Matsuo et al., 2005; Matsuo & Rich-75

mond, 2008). As pointed out originally by Codrescu et al. (1995) and elaborated in later76

work (Codrescu et al., 2000; Matsuo & Richmond, 2008; Deng et al., 2009; Zhu et al.,77

2018), the underrepresented electric field variability in the upper atmosphere general cir-78

culation models is considered as one of the primary causes of the underestimation of Joule79

heating rate.80

The volume integrated Joule heating rate is given as81

QJ =

∫∫∫
V

σp(E + U×B)2 dV82

where σp is the Pedersen conductivity which specifies the conductivity associated with83

ionospheric electric currents that flow perpendicular to the geomagnetic field B and par-84

allel to the electric field defined in the reference frame moving at the velocity U (Jack-85

son, 1999). Note that E is the electric field in the Earth frame of reference and essen-86

tially electrostatic on time scales longer than tens of seconds and in the bottomside iono-87

sphere where neutral species predominate over plasma, U is approximately equal to the88

neutral wind velocity (Kelly, 2009). U×B thus represents the dynamo fields resulting89

from an electromotive force induced by the neutral wind traversing the geomagnetic field.90

Because of very high electrical conductivity in the direction of B, a geomagnetic field91

line is effectively equipotential where it traverses the ionosphere and therefore E is nearly92

constant with altitude along the direction of the field line which is nearly radial at high93

latitudes. Note that for the sake of simplicity the radial component of the electric field94

is ignored from discussion in this paper. When the effect of U×B is small, QJ can be95

approximated using the height integrated Pedersen conductivity Σp(=
∫
σp dr) as96

QJ ≈
∫∫∫

V

σpE
2 dV =

∫∫
A

Σp(θ, φ)E2(θ, φ) dθdφ (1)97

where θ is the polar angle (i.e., magnetic co-latitude) and φ is the azimuth angle (i.e.,98

magnetic local time (MLT)). For simplicity, geomagnetic fields are here assumed strictly99

radial. Let us suppose that E can be decomposed into global large-scale electric fields100

and regional small-scale electric fields as101

E(θ, φ, t) = E(θ, φ, t) + E′(θ, φ) , (2)102

and E represents time-dependent mean vector fields and E′ represents stochastic or ran-103

dom vector fields that belong to a certain probabilistic distribution. It is important to104

note that specific instances of E′ are different as E′ are random fields but its statisti-105

cal characteristics of their randomness are assumed to be temporally stationary, thus in106

Equation (2) a dependence on t is dropped. (Note that this assumption is made due to107

the necessity to aggregate data over time in the current study and should be relaxed in108

the future as discussed later.) It is easy to see the underestimation of the Joule heating109

rate could result from not accounting for effects of E′, which can be as large as E at times,110

in the upper atmosphere general circulation models.111

Additional sources of uncertainty in determining the Joule heating rate include neu-112

tral winds U and Pedersen conductivity σp. The contribution of dynamo fields U×B113

to QJ can be as large as 30% especially when neutral winds are driven by elevated iono-114

spheric plasma convection during geomagnetic storms (e.g., Lu et al., 1995; Ridley et al.,115

2003; Sangalli et al., 2009). Depending on the direction of the neutral wind, the dynamo116
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field effect can increase or decrease the total Joule heating rate. For instance, Lu et al.117

(1995) found the neutral winds have approximately a 28% negative effect on Joule heat-118

ing rate on average for the 2-day geomagnetically disturbed period investigated. It is also119

important to note that U is not constant with altitude, thus requiring knowledge of ver-120

tical distributions of both the neutral wind and Pedersen conductivity when computing121

QJ (Thayer, 1998). In addition, ionospheric conductivity varies considerably due to ion-122

ization of the neutral species by solar extreme ultraviolet radiations and auroral ener-123

getic particle precipitations. The effects of auroral ionization can be extremely localized124

and transient, which are difficult to characterize with the currently available auroral mod-125

els (e.g., Newell & Wing, 2009). Furthermore, Dimant & Oppenheim (2011) have pointed126

out that during geomagnetically disturbed conditions the Pedersen conductivity can be127

enhanced considerably due to strong anomalous electron heating and nonlinear electric128

currents resulting from the Farley-Buneman instability (Farley, 1963; Buneman, 1963).129

Part of the instability effect was incorporated into a recent upper atmospheric general130

circulation modeling study by Liu et al. (2016). In spite of recent progress in modeling,131

considerable uncertainty still remains in representing all physical processes responsible132

for Joule heating in current general circulation modeling.133

Spatial and temporal coherence and other properties of randomness of the electric134

field variability affect the estimate of Joule heating rate as they control how effectively135

momentum and energy are transferred from ionospheric plasma to neutral species. Mat-136

suo & Richmond (2008) demonstrated this effect using ensemble modeling and Gaussian137

random fields generated with the space-time covariance model derived from DE-2 ob-138

servations in Matsuo et al. (2002, 2005). If spatiotemporal coherence is taken into ac-139

count when incorporating the effects of electric field variability into an upper atmospheric140

general circulation model, electric field variability becomes more effective in influencing141

the neutral winds and thus affecting the overall Joule heating rate. The analysis of Su-142

per Dual Auroral Radar Network (SuperDARN) plasma drift measurements by Cousins143

& Shepherd (2012) has furthermore revealed scale-dependent non-Gaussian probabilis-144

tic behaviors of the electric field variability. The observed localized transient character-145

istics of electric field variability are difficult to model using currently available standard146

statistical inferential frameworks. In response to the need for a new framework, Fan et147

al. (2018) have developed a multiresolution non-Gaussian random field model by using148

a class of specialized needlet basis functions (Marinucci & Peccati, 2011) that has all the149

desired properties (including smoothness, spatial and frequency localization, frame prop-150

erties), which have enabled for flexible multiresolution reconstruction of scalar electro-151

static potential fields on the sphere. By using the Lyon-Fedder-Mobarry (LFM) magnetosphere-152

ionosphere coupled model simulation results (Wiltberger et al., 2016), Fan et al. (2018)153

have furthermore demonstrated a measurable impact on the Joule heating rate.154

By building on the statistical inferential framework developed by Fan et al. (2018),155

the objective of this paper is to characterise the electric field variability as multiresolu-156

tion non-Gaussian random vector fields from actual SuperDARN observations, and to157

evaluate its impact on the Joule heating rate. The novel elements of the data analysis158

method and modeling technique described in Section 3 are as follows. The work of Fan159

et al. (2018) is extended to vector fields in this study. This is important as existing mul-160

tiresolution bases for dealing with vector fields (such as vector spherical harmonics) do161

not have the spatial localization property and hence are not appropriate for describing162

features that are spatially localized. Since needlets can be represented in terms of spher-163

ical harmonics, in particular through Legendre polynomials, the surface gradient and curl164

operators can be applied to them to yield vectorial needlets that inherit the spatial com-165

pactness, facilitating flexible, multiresolution representations of the curl-free multi-scale166

electrostatic fields. Furthermore, the adaptive Markov-Chain Monte Carlo (MCMC) es-167

timation approach developed in Fan et al. (2018) is used to characterize non-Gaussian168

random electric fields from SuperDARN observations.169
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An additional notable element of the study is a special pre-processing of a stan-170

dard SuperDARN FITACF data designed for the needlet-based approach to modeling171

electric field variability as described in Section 2). Although similar approaches have been172

used in the past (Ruohoniemi & Baker, 1998), this is the first consolidated attempt to173

extract randomness information from the FITACF data product, and can serve as a foun-174

dation for follow-on future studies with more data and validation with independent data.175

The SuperDARN data from a 4-hour period on February 29, 2012 are selected for the176

study with a number of considerations including data coverage and consistency in geo-177

physical conditions, and processed as described in Section 2. As demonstrated in Sec-178

tion 4, and discussed and summarized in Section 5, the study is an important cross-disciplinary179

research and development effort that enables a more comprehensive data-driven approach180

to modeling of magnetosphere-ionosphere-atmosphere coupling processes.181

2 SuperDARN Data182

The SuperDARN is an international network consisting of more than 30 low-power183

HF (3-30 MHz) coherent scatter radars at middle to polar latitudes in both hemispheres184

that look into Earth’s upper atmosphere and ionosphere (Chisham et al., 2007; Nishi-185

tani et al., 2019). The radars measure the line-of-sight (LOS) component of the F -region186

ionospheric plasma drift velocity when decameter-scale electron density irregularities are187

present and oriented favorably to produce backscatter. The irregularity motion here is188

due to E×B drift. Normally, the SuperDARN radars are scheduled for 1-minute or 2-189

minute azimuthal sweeps in the normal mode. The step in azimuth between adjacent190

beams is 3.24o and the range resolution is 45 km. This study uses LOS plasma drift ve-191

locity (vLOS) from SuperDARN radars operating in the normal scan mode from the north-192

ern hemisphere over the four-hour period from 0000 to 0400 Universal Time (UT) on Febru-193

ary 29, 2012. The location of these radars and their field-of-views (FOVs) as well as the194

data coverage are shown in Figure 1. This is a largely quiet period during the rising phase195

of Solar Cycle 24 (F107=100.1) with a minor geomagnetic activity of the Kp index of196

3, the minimum Dst index of about -30 nT, and the Auroral Electrojet (AE) index rang-197

ing from 100 to 420 nT peaking at 0250 UT.198

vLOS(θ, φ) is related linearly to the electrostatic potential ΦE(θ, φ), where E(θ, φ) =199

−∇ΦE(θ, φ), as described in Section 2.1. Both global large-scale mean electric fields E200

and regional small-scale random electric fields E′, expressed in terms of the electrostatic201

potential, are here estimated from SuperDARN LOS velocity data. Among multiple types202

of SuperDARN LOS data products made available by the SuperDARN consortium for203

different scientific applications, the FITACF data product is used for estimating E′ af-204

ter the pre-processing described in Section 2.2. The GRID data product that itself is a205

derived product of FITACF data is used for estimating E using the SuperDARN Assim-206

ilative Mapping (SAM) procedure (Cousins et al., 2013b) as described in Section 2.3. The207

SAM analysis is conducted every two minutes using the GRID data, and global large-208

scale fields’ contribution to the LOS plasma drift velocity is subtracted from FITACF209

LOS velocity data (see Section 3.2). Note that the FITACF data is aggregated over the210

four hours for needlet-based analysis as described in Section 3.211

2.1 SuperDARN Line-of-Sight (LOS) Plasma Drift Velocity212

Assuming that the geomagnetic field is strictly radial (i.e., B = −Br̂), the elec-213

tric field E is expressed as214

E = −∇ΦE = − 1

R

∂ΦE

∂θ
θ̂ − 1

R

1

sin θ

∂ΦE

∂φ
φ̂, (3)215
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Figure 1. (a) The location of SuperDARN radars in the northern hemisphere used in this

study and their FOVs; (b) scatter plot showing the SuperDARN measurement coverage during

the four hour interval on February 29, 2012.

where R is the radius of the ionosphere. The plasma drift velocity v = E × B/B2 is216

thus given as217

v = − 1

BR

∂ΦE

∂θ
φ̂+

1

BR

1

sin θ

∂ΦE

∂φ
θ̂ ,218

where B > 0 is a magnitude of the geomagnetic field that varies over the sphere. The219

LOS component of the velocity v, which is vLOS = v · kLOS where kLOS = kθθ̂ + kφφ̂220

is a unit vector that gives the direction of the line of sight, becomes221

vLOS =
kθ
BR

1

sin θ

∂ΦE

∂φ
− kφ
BR

∂ΦE

∂θ
. (4)222

The SuperDARN data sets include values of kθ and kφ for each vLOS data points.223

2.2 Pre-processing of SuperDARN FITACF Data224

In order to estimate velocity and other parameters from autocorrelation functions225

calculated from the radar backscatter returns for each beam and range gate of a radar,226

the FITACF fitting routine is applied to estimate Doppler velocity, spectral width, and227

backscatter power (Ribeiro et al., 2013). Similar to the criteria used in Cousins & Shep-228

herd (2012), several steps have been taken to ensure that only high-quality LOS plasma229

velocity measurements from the F-region ionosphere are included in the analysis. Pri-230

mary selection criteria include (i) the slant range greater than 600 km, (ii) the backscat-231

ter power or signal-to-noise ratio (SNR) greater than 8 dB, and (iii) the velocity error232

less than 100 m/s. In addition, ground scatters are carefully excluded based on the ground233

scatter flag from the standard SuperDARN data processing and spectral width and ve-234

locity magnitude values. Incidental outlier data with very large velocity values can still235

be commonly found after the above processing, necessitating further processing on data.236

These outliers are excluded by keeping only data from each SuperDARN radar beam and237

gate cell when at least 25% of good samplings are present within a given 10-minute in-238

terval, which usually includes 5-10 scans. Note that a complete cycle through its full set239

of beam-azimuth settings defines a radar scan which usually takes 1-2 minutes. A good240

sample is specifically defined as a weight value W equal or greater than 1.5, which is com-241

puted using a switch function S(bm, gt), where bm is the beam number and gt is the gate242
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number, as follows:243

W(bm, gt) = S(bm, gt)+0.5∗ (S(bm−1, gt)+S(bm+1, gt)+S(bm, gt−1)+S(bm, gt+1)).244

Here S(bm, gt) = 1 when good data points exit in the beam-gate cell, and S(bm, gt) =245

0 when no good data points exit in the beam-gate cell. The median velocity and stan-246

dard deviation of velocities in each beam-gate cell are then computed with at least 25%247

of good samples from all the scans within each 10-minute interval. The standard devi-248

ation computed with a temporal resolution of 10 minutes provides the sense of (preci-249

sion) errors. This pre-processing helps exclude outliers, poor quality data, and data with250

near-range meteor scatter, most E-region scatter and ground scatter from the standard251

FITACF data product, and only clean SuperDARN LOS plasma drift velocity data are252

used for the needlet-based analysis presented in Section 3.253

2.3 Estimation of Global Large-Scale Electric Fields by SuperDARN As-254

similative Mapping (SAM)255

The distribution of global large-scale ionospheric convective electric fields E(θ, φ)256

is determined at 2-minute cadence from the SuperDARN GRID data over 4-minute win-257

dows using the SAM procedure (Cousins et al., 2013b). The SAM uses a set of the spher-258

ical cap harmonics functions developed by Richmond & Kamide (1988), with the spher-259

ical harmonics of the order 12 and non-integer degrees of 72.6 for the 0th order zonally260

symmetric harmonic functions that give the effective resolution of 15o longitude and 2.5o261

latitude in terms of the Nyquist sampling rate. The SAM solves a Bayesian spatial sta-262

tistical prediction problem for ionospheric convective electric fields just as the Assim-263

ilative Mapping of Ionospheric Electrodynamics (AMIE) (Richmond & Kamide, 1988),264

and computes the posterior mean given the prior mean convective electric fields spec-265

ified by Cousins & Shepherd (2010). A major advantage of the SAM over the AMIE is266

the use of prior model error covariance developed from a large volume of SuperDARN267

data in Cousins et al. (2013a) for the prior model of Cousins & Shepherd (2010). The268

LOS plasma drift velocity due to these global large-scale electric fields is computed ac-269

cording to Equation (4) and subtracted from the pre-processed LOS velocity data ex-270

plained in Section 2.2.271

Due to the use of global spherical cap harmonics functions, with a limited resolu-272

tion, in the SAM, it is sufficient to use the GRID data which provide the standardized273

LOS velocity values on an equal-area grid over a fixed period of time of 1 or 2 minutes,274

rather than the FITACF data which contain the LOS velocity measurements recorded275

by individual radars as a function of beam-azimuth range-gate setting. GRID data is a276

highly processed data product derived from FITACF data. A median filter is first ap-277

plied to the individual radar scan data to remove noise to calculate the median LOS ve-278

locities of a particular scan. The LOS vectors are then mapped within the cells of an equal-279

area grid, which is defined in the geomagnetic coordinates system with each cell mea-280

suring 1o in latitude, to eliminate biases that would derive from the much denser sam-281

pling over nearer radar range gates. The vectors contributed by a radar to a particular282

cell are averaged over a fixed period of time to obtain the GRID LOS data product. More283

details of GRID data processing can be found in Section 3 of Ruohoniemi & Baker (1998).284

3 Needlet-based Approach to Modeling Electric Field Variability285

The novel element of the statistical modeling approach presented here is the use286

of a multiresolution tight frame called needlets (Marinucci & Peccati, 2011) to represent287

stochastic fluctuations in the electric field vectors. In the same way wavelets facilitate288

analysis of transient and localized signals, needlets enable us to represent spatially lo-289

calized features of the observed electric field variability in functions defined over a spher-290

ical domain. Needlets have been shown to be more efficient than spherical harmonics in291
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representing spatially localized features on the sphere as linear combinations of spher-292

ical harmonics, through a construction involving Legendre polynomials (Scott, 2011). Fur-293

thermore, the surface gradient operators can be applied on them, thus facilitating mul-294

tiresolution representations of the curl-free multi-scale electrostatic potential fields. In295

Section 3.1, spherical needlets used in this study are briefly defined, and Fan et al. (2018)296

should be referenced for more details.297

3.1 Multiresolution Tight Frame: Spherical Needlets298

Specifically, a needlet function at scale j and location k, ψjk(s), evaluated at a point299

s on the unit sphere takes the following form:300

ψjk(s) =
√
λjk

bMj+1c∑
l=dMj−1e

b

(
l

M j

) l∑
m=−l

Ylm(ζjk)Y lm(s) =
√
λjk

bMj+1c∑
l=dMj−1e

b

(
l

M j

)
2l + 1

4π
Pl(〈ζjk, s〉),

(5)301

where the nonnegative function b(·) is bandlimited and enables a frequency tiling, M >302

1 controls the window size of the frequency tiling, (ζjk, λjk) are quadrature (location,303

weight) pairs for scale j and location k, Ylm’s are the standard orthonormal, complex-304

valued spherical harmonics basis functions corresponding to frequency (degree) index l305

and phase (order) index m, and Pl is the associate Legendre polynomial of degree l. The306

function b is positive on the interval (M−1,M) and satisfies the resolution of identity con-307

dition
∑∞
j=0 b

2(ξ/M j) = 1 for ξ > 0. From Equation (5), it is evident that needlets308

ψjk’s are bandlimited over spherical frequencies ranging from integer index l greater than309

or equal to M j−1 to l less than or equal to M j+1. Hereafter, we choose M = 2 follow-310

ing the prior work [e.g., Fan et al., 2018]. Note that because of the linear representation311

of needlets in the spherical harmonic basis, needlet coefficients of a scalar function can312

be obtained from the spherical harmonics coefficients of the function through a linear313

transformation, since for any L2 (quadratically integrable) function f on ordinary sphere314

S2,315

〈f, ψjk〉 =
√
λjk

bMj+1c∑
l=dMj−1e

b

(
l

M j

) l∑
m=−l

Ylm(ζjk)〈f, Ylm〉 ,316

where 〈f, ψjk〉 and 〈f, Ylm〉 denote the needlet and spherical harmonics coefficients, re-317

spectively.318

3.2 Needlet-based Random Electric Fields Model319

Suppose that there is a total of pd SuperDARN LOS plasma velocity data points320

at locations (θi, φi), i = 1, · · · , pd, in the high-latitude region of the northern hemisphere.321

Note the data points shown in Figure 1(b) are down-sampled as explained later in Sec-322

tion 3.4 before being used for the needlet model estimation. Since these data contain the323

observational noise, they are modeled by the following statistical model324

vfitacf
LOS (θi, φi) = vLOS(θi, φi) + εi,325

where vfitacf
LOS represents the observational data, vLOS represents the underlying true ve-326

locity value, and εi ∼ N (0, τ2
i ) is the observation noise or error with standard devia-327

tion τi. (Note that N (α, β) represents the normal distribution with a mean parameter328

α and a variance parameter β.) For simplicity, τi is henceforth assumed independent of329

the location (i.e., τi = τ , i = 1, · · · , pd). As described later in Section 3.3, τ2 is one330

of the statistical model parameters to be estimated from SuperDARN LOS velocity data.331

According to Equation (4), the velocity field vLOS can be derived from the electro-332

static potential ΦE by applying the differential operators, and the electrostatic poten-333

tial ΦE can be decomposed into two components: global large-scale and spatially local-334

ized regional small-scale components, ΦE,g and ΦE,r, which respectively correspond to335
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E = −∇ΦE,g and E′ = −∇ΦE,r. Therefore, vLOS can also be decomposed into two336

components accordingly, i.e.,337

vLOS = vLOS,g + vLOS,r.338

The SAM procedure described in Section 2.3 is well suited to estimate vLOS,g from the339

SuperDARN LOS plasma velocity data vfitacf
LOS . We subtract the fitted vLOS,g, denoted340

by v̂LOS,g, from vfitacf
LOS , and obtain341

vfitacf
LOS (θi, φi)− v̂LOS,g(θi, φi) ≈ vLOS,r(θi, φi) + εi.342

vLOS,r(θi, φi) is precisely what is modeled in terms of ΦE,r by spherical needlets ψjk’s.343

Since SuperDARN LOS plasma velocity data points are restricted to the high-latitude344

region, the data points are stretched to the entire sphere by mapping observation loca-345

tion points (θi, φi) to (4θi, φi). Since the magnitude of vLOS,r has a strong dependency346

on the latitude, a variance profile, i.e., the variance of the observed LOS velocity field347

as a function of the latitudinal location, is introduced as a function of co-latitude, and348

ΦE,r is modeled by the product of the variance profile and a linear combination of spher-349

ical needlets as follows:350

ΦE,r(θi, φi) = g(4θi)

J∑
j=J0

pj∑
k=1

cjkψjk(4θi, φi), θi ∈ [0, π/4], φi ∈ [0, 2π], (6)351

where g is the variance profile function, and cjk are needlet coefficients, which are ran-352

dom variables. As in Fan et al. (2018), it is assumed that cjk’s are distributed as scale353

multiples of a t-distribution, i.e. cjk ∼ σjt(ν), where t(ν) denotes the t-distribution with354

ν degrees of freedom. The t-distribution has heavier tails in comparison to the normal355

distribution. ν = 3 is used for this study following Fan et al. (2018) wherein ν = 3356

was chosen among 2.5, 3, and 4 in their applications to the LFM model output as it yielded357

the best predictive performance for simulated data. Note that with infinite degrees of358

freedom, the t-distribution approaches to the standard normal distribution. The assumed359

distribution characterizes both scale-dependent variations and spatially localized features360

of the electric field variability. Moreover, cjk’s are assumed to be statistically indepen-361

dent for simplicity. Due to the non-Gaussianity of cjk and the spatial localization of ψjk,362

the resulting field is also non-Gaussian.363

The variance profile function g is assumed to have the representation g(·) = exp(hT(·)η),364

where h(·) are the basis functions specified as cubic B-splines due to their numerical sta-365

bility. To avoid the non-identifiability issue, the first B-spline is dropped in the formula.366

As described later in Section 3.3, the B-spline weights η that control the variance pro-367

file g and the t-distribution population parameters σ2
j , j = J0, · · · , J , that determines368

a probabilistic distribution of needlet coefficients, given a value of ν = 3, are estimated369

from SuperDARN LOS data.370

By the chain rule, we know that371

∂ΦE,r

∂θ
= 4

 ∂g

∂θ′

∣∣∣∣
θ′=4θ

∑
j,k

cjkψjk(4θ, φ) + g(4θ)
∑
j,k

cjk
∂ψjk
∂θ′

∣∣∣∣
θ′=4θ

 ,372

and373

1

sin θ

∂ΦE,r

∂φ
=

sin θ′

sin θ
g(4θ)

∑
j,k

cjk
1

sin θ′
∂ψjk
∂φ

,374

where θ′ = 4θ. Plugging these into (4), we have375

vLOS,s =
1

BR
g
∑
j,k

cjk

(
kθ

sin θ′

sin θ

1

sin θ′
∂ψjk
∂φ
− 4kφ

∂ψjk
∂θ′

)
︸ ︷︷ ︸

ψ
(1)
jk

− 1

BR

∂g

∂θ′

∑
j,k

cjk 4kφψjk︸ ︷︷ ︸
ψ

(2)
jk

.376
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In this way, the spherical needlets are transformed into two new sets of basis functions377

ψ
(n)
jk , n = 1, 2 in the domain of line-of-sight velocities. Recall that378

ψjk(θ′, φ) =
√
λjk

∑
l

b

(
l

M j

)
2l + 1

4π
Pl(xjk sin θ′ cosφ+ yjk sin θ′ sinφ+ zjk cos θ′),379

where (xjk, yjk, zjk) ∈ S2 is the centroid of the needlet ψjk. Then380

∂ψjk
∂θ′

=
√
λjk(xjk cos θ′ cosφ+ yjk cos θ′ sinφ− zjk sin θ′)

∑
l

b

(
l

M j

)
2l + 1

4π

dPl(u)

du

∣∣∣∣
u=u′

,381

and382

1

sin θ′
∂ψjk
∂φ

=
√
λjk(−xjk sinφ+ yjk cosφ)

∑
l

b

(
l

M j

)
2l + 1

4π

dPl(u)

du

∣∣∣∣
u=u′

,383

where u′ = xjk sin θ′ cosφ+ yjk sin θ′ sinφ+ zjk cos θ′. Note that dPl(u)/du can be ef-384

ficiently computed by using a recursive formula.385

The statistical model for vLOS can be summarized as the following matrix-vector386

form:387

vdLOS − v̂LOS,g ≈ (BR)−1(G1A1 + G2A2)c + ε = (BR)−1GAc + ε,388

where G1 = diag{g(4θi), i = 1, · · · , pd}, G2 = diag
{
− ∂g
∂θ′

∣∣
θ′=4θi

, i = 1, · · · , pd
}

, A1389

and A2 are the design matrices constructed by the new basis functions ψ
(n)
jk , n = 1, 2,390

respectively, G = [G1; G2] and A = [A1; A2]. For convenience, we hereafter use D391

to denote (BR)−1GA and z to stand for vdLOS − v̂LOS,g so that392

z = Dc + ε .393

3.3 Adaptive Markov Chain Monte-Carlo Estimation394

This section describes how the parameters σ2
J0
, · · · , σ2

J and η that determine a prob-395

abilistic distribution of needlet coefficients c and the observational noise parameter τ are396

estimated from the residual SuperDARN LOS velocity data z using the adaptive MCMC397

method. These parameters, grouped here as the vector ω = (σ2
J0
, · · · , σ2

J , τ
2,η), are398

assumed a priori independent. The prior distributions of σ2
j and τ2 are the non-informative399

Jeffreys’ priors. The prior distribution of η is assumed to be N (0, τ2
ηI), where the hy-400

perparameter τη is chosen to be sufficiently large such that the prior distribution is nearly401

non-informative. Under these settings, the posterior distribution of the parameters can402

be computed by the following MCMC algorithm.403

Since a t-distribution can be expressed as scale mixture of Gaussians, the proba-404

bility distribution of cjk can be written in a hierarchical form by introducing an auxil-405

iary random variable Vjk406

cjk|Vjk ∼ N (0, Vjk),407

408

Vjk|ν, σj ∼ IG

(
ν

2
,
νσ2

j

2

)
,409

where IG(α, β) represents the inverse gamma distribution with a shape parameter α and410

a scale parameter β. Denote by V the vector consisting of the coordinates Vjk, and σ2
411

to be the vector comprising of σ2
J0
, · · · , σ2

J . We shall employ a Gibbs sampler to obtain412

samples from [c,V,ω|z] so that the full conditional distributions of c,V,σ2 and τ2 have413

closed forms. The full conditional distribution of c (i.e. [c|z,V,ω]) is multivariate Gaus-414

sian, and hence sampling from it requires O(p3) operations, where p is the total num-415

ber of needlets. This is computationally intractable for large p. Nonetheless, numerical416

experiments indicate that the subblocks cj |z,V,ω, j = J0, · · · , J are weakly correlated,417
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where cj = (cj1, · · · , cjpj )T, where pj is the number of needlets at level j. Therefore,418

the sampling step for c is achieved by successive draws from the conditional subblocks419

[cj |z,V,ω, c−j ]. The full conditional distribution of η is not available in closed form.420

Therefore, we sample from [η|z, c,V,σ2, τ2] using an adaptive Metropolis algorithm (An-421

drieu & Thoms, 2008, Algorithm 4) and incorporate it into the Gibbs sampler.422

Suppose Dj denotes the subblock of D corresponding to the j-th level of needlets,423

so that D = (DJ0 , · · · ,DJ), and Vj = (Vj1, · · · , Vjpj )T. Then the aforementioned adap-424

tive Metropolis-within-Gibbs sampler can be summarized as follows:425

1. Sample cj from [cj |z,V,ω, c−j ] = N (µ̂j , Σ̂j), where426

Σ̂j =

(
1

τ2
AT
j D2Aj + diag(Vj)

−1

)−1

,427

and428

µ̂j =
1

τ2
Σ̂jA

T
j D(z−DA−jc−j).429

2. Sample V from [V|z, c,ω], where Vjk|z, c,ω are independent and distributed as430

IG

(
ν + 1

2
,
c2jk + νσ2

j

2

)
.431

3. Sample σ2 from [σ2|z, c,V, τ2,η], where σ2
j |z, c,V, τ2,η are independent and dis-432

tributed as433

G

(
νpj
2
,
ν

2

pj∑
k=1

1

Vjk

)
,434

where G(α, β) represents the gamma distribution with a shape parameter α and435

a rate parameter β.436

4. Sample τ2 from437

[τ2|z, c,V,σ2,η] = IG
(
pd
2
,

(z−DAc)T (z−DAc)

2

)
.438

5. Sample η using the adaptive Metropolis algorithm from439

[η|z, c,V,σ2, τ2] ∝ exp

{
− 1

2τ2
(z−DAc)T (z−DAc)

}
exp

{
− 1

2τ2
η

ηTη

}
.440

The proposal distribution is chosen to be441

Q(η∗|η) ∼ N (η, γΣ),442

where γ is a parameter adaptively tuned with the goal of achieving the optimal443

acceptance rate (Gelman et al., 1996), and Σ is adaptively updated to approxi-444

mate the covariance matrix of the full conditional distribution of η.445

3.4 Down-sampling of SuperDARN LOS Data446

The SuperDARN LOS plasma velocity measurements are down-sampled before be-447

ing applied to estimation of the needlet model parameters. As shown in Figure 1(b), the448

LOS velocity measurements are unevenly distributed over the high-latitude region of the449

sphere. The aim of down-sampling is to assure that the data are evenly distributed and450

the computational cost is manageable. To achieve the goal, we first partition the sphere451

into approximately equal-area regions by applying Voronoi tessellation on the sphere.452

The number of partitioned regions is the same as the number of data points. We then453

calculate the area of each region. The sampling probability of each data point is propor-454

tional to the area of its corresponding region. Roughly speaking, the larger the surface455

area of one region, the further the data point in the region is from the neighboring data456

points. Therefore, a higher probability of retaining the data point is assigned. In this457

way, the data points after down-sampling are approximately uniformly distributed.458
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3.5 Model Performance459

A summary of the performance of MCMC based estimation of the needlet-based460

model parameters described in Sections 3.2-3.3 is given here. We set J0 to 2 since the461

global large-scale components have already been subtracted from the SuperDARN LOS462

plasma velocity data. J is set to 3 given the the computational limitation of the model463

with too high J as well as the SuperDARN data signal-to-noise ratio, thus needlets at464

two resolution levels j = 2, 3 are used. The logarithm of the variance profile function465

g is represented by a linear combination of cubic B-splines with one interior knot π/2.466

The parameter estimates are calculated as the average of 1000 MCMC samples.467

Figure 2 shows the estimated variance profile g as a function of co-latitude. The468

peak is around 75o latitude, consistent with the locations of the high LOS residual ve-469

locity within auroral oval zone. As described in Section 3.4, the needlet model is fitted470

to a subset of the SuperDARN LOS plasma velocity data after down-sampling. We ex-471

amine the model out-of-sample prediction performance on the remaining data, which is472

shown as a scattered plot of LOS velocity magnitudes in Figure 3. The predicted val-473

ues generally align with the observed values as the Pearson correlation coefficient between474

them is approximately 0.33. In terms of the magnitude, the predicted values are mostly475

smaller than the observed values. This can be explained by the following reasons: (i) The476

observed LOS velocity residuals are quite noisy. As shown in the middle plot of Figure477

4, there are clearly some extreme values, not entirely captured by the model; (ii) The478

needlet-based model cannot represent features with resolution higher than J = 3 due479

to the computational limitation; (iii) We have assumed a simplified structure for the un-480

derlying electrostatic field, which is longitudinally (magnetic local time) symmetric with481

a variance profile depending on latitudes only; (iv) Beyond these, in general, the predicted482

values of observations under a Bayesian paradigm (or in a random effects model) tend483

to shrink towards zero, even when the model represents the data perfectly. However, the484

observed LOS velocity residuals exhibit heterogeneous with respect to both longitudes485

and latitudes. These are the unique challenges of modelling the LOS velocity residuals,486

which we will discuss further in Section 5.487

4 Results488

This section summarizes the results of the needlet-based approach to modeling elec-489

tric field variability using SuperDARN data described in Sections 2 and 3, and demon-490

strates how the approach can help better represent the impact of the high-latitude iono-491

spheric electric field variability on Joule heating rate in the upper atmosphere general492

circulation models. It also illustrates how uncertainty in data-driven modeling of elec-493

tromagnetic coupling between the magnetosphere and ionosphere may be represented494

using ensembles.495

4.1 Multiresolution Non-Gaussian Electric Fields496

Figure 5 shows the electrostatic potential fields at different needlet resolution lev-497

els generated using the estimated needlet model parameters (e.g., c, ω) from SuperDARN498

LOS observations. Note that the electrostatic potential fields shown here correspond to499

regional small-scale electric fields E′ = −∇ΦE,r (see Equation (6)). The top row dis-500

plays the mean prediction conditional on the SuperDARN observations, and the mid-501

dle and bottom rows show two instances of random samples conditional on the obser-502

vations. These mean and two random instances are shown to illustrate that the electric503

field variability is in fact modeled as random fields that belong to a certain probability504

distribution that is conditional on the SuperDARN observations in contrast to the past505

studies wherein the sample mean and standard deviations of observations have been of-506

ten used. These two instances are part of a 1000-member ensemble set {Φ(1)
E,r,Φ

(2)
E,r, · · · ,Φ

(1000)
E,r }507

generated from 1000 independent random draws, which are being used for the Joule heat-508
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Figure 2. The fitted variance profile model g defined in Equation (6) to residual SuperDARN

LOS plasma drift velocity data is shown as the latitudinal distribution of velocity standard devia-

tion in m/s.

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Observed

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

F
it
te

d

Pearson corr coef=0.33

Figure 3. Out-of-sample prediction of residual SuperDARN LOS plasma drift velocities versus

observed values in m/s. Pearson correlation coefficient between predicted and observed values is

0.33.
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Figure 4. LOS plasma velocities from one 2-minute scan of SuperDARN radars from 0004 to

0006 UT on February 29, 2012: (Left) The FITACF LOS plasma velocity (vfitacf
LOS ), (Middle) resid-

ual velocity (vfitacf
LOS − v̂LOS,g), and (Right) regional small-scale velocity modeled by the needlet

model (v̂LOS,r).

ing estimation shown in the next subsection. The potential fields at two needlet reso-509

lution levels at j = 2, 3 are shown in the first two columns, and the total potential fields,510

which is a combination of all resolution levels, is shown in the right-most column.511

The smallest scales resolved at these two needlet resolution levels correspond to the512

spherical harmonics frequency (degree) and phase (order) of l = 8, m = 8 and l =513

16, m = 16, respectively, which are equivalent to the spatial scales of 5.6o in latitude514

and 22.5o in longitude for j = 2 and 2.8o in latitude and 11.25o in longitude for j =515

3, with consideration of the factor 4 latitude coordinate stretching of the analysis do-516

main as described in Section 3.2. (Note that an approximate spatial resolution correspond-517

ing to a certain degree and order of the spherical harmonic function is obtained using518

the Nyquist frequency of a half wavelength.) Even though the resolutions of needlets and519

spherical harmonics are comparable, due to needlets’ spatial and frequency localization520

and frame properties that needlet-based model can better represent localized regional521

features that exist in the SuperDARN observations, in comparison to spherical harmon-522

ics with a global support that are designed to capture global structures.523

The SAM used to model global large-scale electric fields from the SuperDARN ob-524

servations (see Section 2.3) can resolve scales up to the spherical harmonics degree and525

order of about l = 72 and m = 12, corresponding to the resolution of 2.5o in latitude526

and 15o in longitude. As shown in Figure 6 for 0300 UT, the SAM field in fact exhibits527

global large-scale features in comparison to regional small-scale features that are present528

in muti-resolution random electrostatic fields estimated from the needlet-based model-529

ing approach (Figure 5). Due to the variance profile, shown in Figure 2, which peaks around530

75o latitude, more distinct features appear between 70o and 80o in regional small-scale531

fields.532

4.2 Impact on Joule Heating Rate533

Figure 7 shows the ensemble mean of the hemispherically integrated Joule heat-534

ing rate computed with the effect of random regional small-scale electric fields E′ (blue)535

as well as the hemispherically-integrated Joule heating without the effect of E′ (black).536

The hemispherically-integrated Joule heating rate with the effect of E′ is integrated over537

the northern hemisphere high-latitude ionosphere from 45o to 90o in latitude, following538
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Figure 5. Electrostatic potential fields at different resolutions generated from the needlet

model. Top row: mean prediction conditional on the observations; Middle row: a random sample

conditional on the observations; Bottom row: a random sample conditional on the observations.

Left: field at level j = 2; Middle: field at level j = 3; Right: total field summed at levels j = 2, 3.
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Figure 6. Global large-scale Electrostatic potential field, estimated from the SuperDARN

GRID data over 4-minute windows using the SAM procedure, at 3:00 UT on February 29, 2012,

around the peak of AE index.

the definition given in Equation (1), as539

Q
(n)
J (t) ≈

∫∫
θ,φ

Σp(θ, φ, t)(E(θ, φ, t) + E′
(n)

(θ, φ))2 dθ dφ , (7)540

where n is an ensemble member index, n = 1, · · · , 1000, the global large-scale electric541

field E is specified by the SAM as described in Section 2.3. Note that a 1000-member542

ensemble set of random regional small-scale electric field {E′(1)
,E′

(2)
, · · · ,E′(1000)} is543

computed from {Φ(1)
E,r,Φ

(2)
E,r, · · · ,Φ

(1000)
E,r } as described in Section 4.1. The hemispherically-544

integrated Joule heating without the effect of E′ is given as545

QJ(t) ≈
∫∫

θ,φ

Σp(θ, φ, t)E(θ, φ, t)2 dθ dφ . (8)546

In Equations (7) and (8), the height-integrated ionospheric conductivity Σp(θ, φ) is spec-547

ified using empirical models of the solar EUV conductance and auroral conductance. The548

solar EUV conductance model is parameterized by solar zenith angle and the solar F10.7549

index (e.g., Moen & Brekke, 1993), and the auroral conductance is based on the Ova-550

tion Prime empirical aurora model (Newell & Wing, 2009) and the empirical relation-551

ship of Robinson et al. (1987). Note that the Ovation Prime model is parameterized with552

respect to the upstream solar wind and interplanetary magnetic field conditions. Except553

for a minor geomagnetic activity, there is no notable geomagnetic activity during the time554

period of 00:00 to 04:00 UT on February 29, 2012. The overall Joule heating rate is thus555

small. In general, the Joule heating rate tracks temporal changes of the AE index (red)556

shown also in Figure 7, which is due to the changes of large-scale electric fields. By tak-557

ing the regional small-scale electric field variability into account, the Joule heating rate558

increases by a factor of about 1.5 which is close to the lower end of an arbitrarily adjusted559

factor of 1.5 and 2.5 typically used in general circulation models. As discussed in Sec-560

tion 1, the biases in the upper atmosphere general circulation models attributed to an561
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Figure 7. Hemispherically integrated Joule heating rate in GW from 00:00 to 04:00 UT on

February 29, 2012. The ensemble mean of the Joule heating rate computed with the effect of ran-

dom regional small-scale electric fields E′(n)
(Equation (7)) is shown in blue solid line, along with

the upper and lower bounds given in terms of two standard deviations shown in blue dash lines.

The Joule heating rate resulting only from global large-scale electric field E without E′ (Equation

(8)) is shown in black line. As a reference, the high-latitude geomagnetic activity, AE index nT,

is overlaid in red.

inadequate representation of the Joule heating rate exist regardless of geomagnetic ac-562

tivity levels. The future study needs to allow for more flexibility in the needlet model563

to account for temporal variation of the variance profile so that the changes of electric564

field variability at different geomagnetic activity levels can be better characterized.565

5 Discussion and Conclusions566

In response to the need for a new statistical inferential framework for data-driven567

modeling of high-latitude ionospheric electric field variability, Fan et al. (2018)’s spher-568

ical needlet-based scalar random fields model is being extended for vector random fields569

and applied to the carefully curated SuperDARN FITACF LOS plasma velocity data set.570

The modeling results for the largely quiet period from 0000 to 0400 UT on February 29,571

2012 show that the approach have the potential to rectify the underestimation of the Joule572

heating rate in the current upper atmosphere general circulation models due to insuf-573

ficient representation of the electric field variability. The study demonstrates how data-574

driven modeling of the magnetosphere-ionosphere-thermosphere coupling can be formu-575

lated in an ensemble modeling framework. Specific findings of the current efforts are sum-576

marized as follows.577

The needlet-based approach to modeling regional small-scale electric field variabil-578

ity can help estimate a distribution of electric field variability conditioned on actual Su-579

perDARN LOS observations. As shown in Figure 5, estimated regional small-scale elec-580

trostatic potential fields at different resolutions exhibit considerably more localized fine-581

scale features in comparison to global large-scale potential fields modeled using the SAM582

procedure (Figure 6). This is enabled by the spherical needlet frames’ spatial localiza-583

tion and overcompleteness properties and reinforces the fact that spherical harmonic ba-584
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sis functions, with global support, are not suited for describing features that are spatially585

localized.586

As shown in Figure 7, the overall hemispherically integrated Joule heating rate is587

increased by a factor of about 1.5 due to the effect of random regional small-scale elec-588

tric fields E′, which is close to the lower end of arbitrarily adjusted Joule heating mul-589

tiplicative factor of 1.5 and 2.5 typically used in upper atmosphere general circulation590

models. The impact of the modeled electric field variability on the Joule heating rate591

is computed using a 1000-member ensemble set of regional small-scale electric fields {E′(1)
,E′

(2)
, · · · ,E′(1000)}.592

This example demonstrates that how the uncertainty of the SuperDARN LOS data can593

be propagated to the estimate of Joule heating rate in general circulation models through594

the needlet-based modeling of the ionospheric electric variability. The approach can also595

be applied to the output from high-fidelity high-resolution numerical simulations that596

may be computationally prohibitive to perform routinely. This study is an important597

step towards a data-driven ensemble modeling of magnetosphere-ionosphere-atmosphere598

coupling processes.599

Some of the methodological shortcomings identified by the current study can be600

addressed in future work. The needlet model can be expanded to account for non-stationarity601

of the electric field variability not only with respect to magnetic latitudes but also MLT.602

By doing so, the electric field variability associated with specific physical processes such603

as convection reversal, and auroral electrojet that appear in localized locations can be604

better represented. As suggested by the out-of-sample prediction of LOS plasma drift605

velocities shown in Figure 3, SuperDARN LOS residual velocities with greater magni-606

tudes (|vfitacf
LOS − v̂LOS,g| > 350 m/s) are not well predicted by the needlet model. This607

is evident in Figure 4. This can be addressed by increasing the needlet resolution level608

from j = 3 to j = 4, equivalent to the spatial scales of 1.4 degrees in latitude and 5.6609

degrees in longitude, ideally to j = 5, corresponding to the scales of 0.7 degrees in lat-610

itude and 2.8 degrees in longitude. Uncertainty resulting from inconsistent model assump-611

tions associated with spatiotemporal stationarity of random fields should be better quan-612

tified using more data.613

These methodological improvements will have to be accompanied with an improved614

uncertainty quantification in the determination of SuperDARN LOS velocity from radar615

backscatter. The availability of SuperDARN data with greater spatial coverage will al-616

leviate the need to aggregate data over time allowing us to drop the assumption of spa-617

tiotemporal stationarity of random fields in the method. In order to increase the needlet618

resolution level to j = 5, SuperDARN data at a higher spatial resolution will be needed.619

Prospects for the availability of such SuperDARN LOS velocity data sets are discussed620

next. With more SuperDARN radars being constructed (e.g., Adak Island East and West621

radars in 2012, Hokkaido West radar in 2014, and Jiamusi radar in 2019 (Nishitani et622

al., 2019)), we could have a better spatial coverage for future work. However, there still623

exist a few challenges on obtaining more SuperDARN data. Firstly, lack of ionospheric624

backscatter in SuperDARN data during the day would cause a data gap in MLT, par-625

ticularly at mid-latitudes (Figure 1b). Secondly, strong particle precipitation during ge-626

omagnetically active times could cause radar signals absorbed by the ionosphere. The627

Local Divergence-Free Fitting technique from Bristow et al. (2016) is able to provide Su-628

perDARN plasma velocity with a spatial resolution (∼50 km) that is comparable to the629

LOS velocity measurements. The LDFF technique uses all LOS velocities within a user-630

defined region to produce local plasma convection which can resolve finer-scale structures631

such as plasma flows associated with auroral arcs. This technique can be used in the fu-632

ture to obtain time-dependent (mean) vector fields E at much finer scales than the SAM,633

which is expected to improve the signal-to-noise ratios of residual SuperDARN LOS ve-634

locity data for the method presented in this study.635
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