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Abstract

Low-cloud based emergent constraints have the potential to substantially reduce uncertainty in Earth’s Equilibrium Climate

Sensitivity, but recent work has shown that previously-developed constraints fail in the latest generation of climate models,

suggesting that new approaches are needed. Here, we investigate the potential for emergent constraints to reduce uncer-

tainty in regional cloud feedbacks, rather than the global-mean cloud feedback. Strong relationships are found between the

monthly/interannual variability of tropical clouds and the tropical net cloud feedback. These relationships are combined with

observations to substantially narrow the uncertainty in the tropical cloud feedback and demonstrate that the tropical cloud

feedback is likely $> 0$. Promising relationships are also found in the 90$ˆ\circ$-60$ˆ\circ$S and 30$ˆ\circ$-60$ˆ\circ$N

regions, though these relationships are not robust across model generations and we have not identified the associated physical

mechanisms.
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Abstract19

Low-cloud based emergent constraints have the potential to substantially reduce20

uncertainty in Earth’s Equilibrium Climate Sensitivity, but recent work has shown that21

previously-developed constraints fail in the latest generation of climate models, suggest-22

ing that new approaches are needed. Here, we investigate the potential for emergent con-23

straints to reduce uncertainty in regional cloud feedbacks, rather than the global-mean24

cloud feedback. Strong relationships are found between the monthly/interannual variability25

of tropical clouds and the tropical net cloud feedback. These relationships are combined26

with observations to substantially narrow the uncertainty in the tropical cloud feedback27

and demonstrate that the tropical cloud feedback is likely > 0. Promising relationships28

are also found in the 90◦-60◦S and 30◦-60◦N regions, though these relationships are not29

robust across model generations and we have not identified the associated physical mecha-30

nisms.31

1 Introduction32

Emergent constraints are a promising tool for constraining uncertainty in Earth’s re-33

sponse to increased CO2 concentrations. The power of emergent constraints lies in relating34

observable variables with some aspect of the climate system’s forced response to substan-35

tially narrow the uncertainty in the projected climate response. The canonical example of36

an emergent constraint was proposed by Hall and Qu [2006], who demonstrated a strong37

correlation across climate models between the amplitude of the seasonal cycle in Northern38

Hemisphere snow cover and the reduction in Northern Hemisphere snow cover per degree39

of local warming. This strong correlation has proven to be robust across multiple climate40

model generations and, when combined with observations of the amplitude of Northern41

Hemisphere snow cover’s seasonal cycle, has allowed tight constraints to be placed on the42

sensitivity of Northern Hemisphere snow cover to warming [Qu and Hall, 2014; Thackeray43

et al., 2018].44

A number of emergent constraints have been proposed for narrowing uncertainty in45

Earth’s Equilibrium Climate Sensitivity (ECS), which can be broadly grouped into three46

categories: (1) constraints based on historical warming rates (e.g., Jiménez-de-la Cuesta47

and Mauritsen [2019]; Nijsse et al. [2020]; Flynn and Mauritsen [2020] ), (2) constraints48

based on historical temperature variability (e.g., Cox et al. [2018]; Nijsse et al. [2019]),49
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and (3) process-based constraints, often using the variability of subtropical low clouds50

(e.g., Qu et al. [2014] Sherwood et al. [2014]; Brient et al. [2016]; Brient and Schneider51

[2016]; Siler et al. [2018]; Lutsko and Takahashi [2018]). We focus here on the third type52

of emergent constraint. Several cloud-based emergent constraints on ECS developed using53

CMIP5 data proposed that constraining specific cloud processes could substantially reduce54

uncertainty in ECS; however, when these constraints are re-calculated using CMIP6 data55

the correlations between the metrics of cloud variability and models’ ECS are much lower56

[Schlund et al., 2020]1. This puts the utility of cloud-based emergent constraints into ques-57

tion, and suggests that temperature-based constraints may be more fruitful approaches for58

constraining Earth’s ECS.59

One potential explanation for why cloud-based emergent constraints perform poorly60

in CMIP6 is that multiple factors are responsible for the spread in ECS across CMIP661

models. Zelinka et al. [2020] have shown that the high climate sensitivities of many CMIP662

models can be attributed in part to extratropical cloud feedbacks, including a less negative63

cloud feedback over the Southern Ocean, though tropical clouds still play a role. By con-64

trast, subtropical low clouds are the main source of intermodel spread in climate feedbacks65

across the CMIP5 models (e.g., Andrews et al. [2012]; Vial et al. [2013]; Sherwood et al.66

[2014]; Caldwell et al. [2016]). If multiple cloud-types and regions are responsible for the67

spread in CMIP6 models’ cloud feedback, then a single metric will struggle to constrain68

the global-mean cloud feedback, and hence will struggle to constrain ECS.69

These issues suggest that emergent constraints based on cloud variability cannot be70

used to narrow the spread of ECS among CMIP6 models, but emergent constraints may71

still be of use in more limited, local contexts. For example, an emergent constraint based72

on subtropical low cloud variability could be used to constrain the subtropical low cloud73

feedback, even if it could not be used to constrain the global-mean cloud feedback. Simi-74

larly, new emergent constraints could be developed for the cloud feedback over the South-75

ern Ocean. With this motivation, we propose here a new set of emergent constraints on76

regional cloud feedbacks. To develop these constraints, we have used the same metrics of77

cloud variability in each region: the regression of deseasonalized monthly surface temper-78

ature onto deseasonalized monthly Cloud Radiative Effect (CRE, αm), and the regression79

1 Some cloud-based emergent constraints even perform poorly when applied to CMIP5 models not included in the origi-

nal analysis [Caldwell et al., 2018].
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of annual-mean surface temperature onto annual-mean CRE (αa). Using the same metrics80

allows us to simplify the interpretation and methodology, as new metrics do not have to81

be developed from scratch for each region. Instead, we can standardize the procedure for82

calculating the emergent constraints and using them to update the probability density func-83

tions (PDFs) of the regional cloud feedbacks. Using two predictor variables also allows84

us to check for consistency, as the results of emergent constraints developed with monthly85

variability should be consistent with the results of emergent constraints developed with86

interannual variability.87

Taking this approach, we have investigated the links between αm and αa and re-88

gional cloud feedbacks in the CMIP5 and CMIP6 models. First, we demonstrate that cloud89

feedbacks in multiple regions contribute to the spread in CMIP6 models’ ECS, whereas90

tropical clouds are the primary source of spread in CMIP5 model’s ECS (section 3). This91

confirms the difficulty of constraining ECS in CMIP6 models using low-cloud based emer-92

gent constraints and motivates our regional approach. We then evaluate the relationships93

in each region between αm and αa, and the long-term regional cloud feedback (section 4).94

We do this for both CMIP5 and CMIP6 models to check whether viable emergent con-95

straints are robust to the choice of models. Finally, in section 5 we use an information-96

theoretic approach to estimate posterior PDFs of the regional cloud feedbacks in those97

regions where strong correlations are found between the predictor variables and the re-98

gional cloud feedbacks. The posterior PDFs account for observational constraints on the99

regional cloud feedbacks, and our information-theoretic approach ensures that models that100

are inconsistent with observations have a small influence on the posterior PDFs.101

2 Data and Methods102

2.1 Observational data103

To estimate the variability of regional cloudiness in observations we have taken 17104

years of monthly TOA radiative fluxes, spanning the years 2003-2019, from the Clouds105

and the Earth’s Radiant Energy System (CERES-EBAF) dataset. These are matched to106

surface air temperatures taken from the ERA5 dataset [Copernicus Climate Change Service107

Climate Data Store (CDS), 2017].108
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2.2 CMIP data109

Data are taken from 21 CMIP6 models and 22 CMIP5 models, listed in the Sup-110

plementary Material. To estimate the regional cloud feedbacks we take 500 years of data111

from a pre-industrial control simulation and 150 years of data from an abrupt4XCO2 sim-112

ulation with each model. The data include monthly-mean values of surface air temper-113

ature, both clear-sky and all-sky TOA fluxes, and vertical pressure velocities at 500hPa114

(see section 4.3). To estimate αm and αa we use linearly de-trended data from a historical115

simulation with each model, and we repeat our analyses on three non-overlapping 17-year116

segments for each set of models (1963-1980, 1980-1997, 1997-2014 for CMIP6 and 1954-117

1971, 1971-1988, 1988-2005 for CMIP5), then average the results.118

2.3 Estimating regional cloud feedbacks119

We have calculated long-term cloud feedbacks in five regions: 90◦S-60◦S, 60◦S-120

30◦S, 30◦S-30◦N, 30◦N-60◦N and 60◦N-90◦N. In each region, we calculate the net cloud121

feedback using the Gregory method [Gregory et al., 2004]. First, we linearly detrend the122

surface temperature and net (longwave plus shortwave) CRE fields, averaged over each re-123

gion, from the preindustrial control simulations, then subtract these climatological values124

from the 4XCO2 data. The long-term regional cloud feedbacks are obtained by regress-125

ing the anomalous annual-mean surface temperature onto the anomalous annual-mean net126

CRE in each region for years 1-150 of the 4XCO2 simulations.127

Gregory regressions are often performed for years 20-150 of 4XCO2 simulations128

when estimating a model’s ECS, to account for the change in slope as the global-mean ra-129

diative feedback evolves [Winton et al., 2010; Geoffroy et al., 2013; Andrews et al., 2015;130

Armour, 2017]. However, there are no clear changes of slope in the regional Gregory131

CRE plots (Supplemental Figure 1), and performing the regressions for years 1-150 gives132

similar values to performing the regressions for years 20-150, though the uncertainties are133

smaller when more data are used. This is consistent with the change in the net climate134

feedback being caused by the evolving pattern of the surface temperature response, rather135

than by changes in the local feedbacks [Armour et al., 2013; Andrews et al., 2015].136

We also note that the change in regional CRE per degree of regional warming is not137

strictly-speaking the “cloud feedback", and does not account for cloud-masking [Soden138
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et al., 2004]. Nevertheless, for ease of presentation we will refer to it as the cloud feed-139

back hereafter.140

2.4 Calculating posterior PDFs of regional cloud feedbacks141

The goal of the emergent constraint methodology is to update the joint multi-model142

prior PDF of long-term regional feedbacks Pi , based on the raw model data, using obser-143

vational data to obtain a posterior joint multi-model PDF Pf . We do this following the144

Brient and Schneider [2016] procedure, with one notable difference.145

The Brient and Schneider [2016] procedure uses an information-theoretic distance146

measure between the PDFs of the observed and model regression coefficients to assign147

a weight wx to each model x, where
∑

x wx = 1. “Good" models, which have similar148

regression coefficients to the observations, are weighted more heavily, and “bad" models,149

whose regression coefficients are far from the observations, are given less weight. In this150

way, the influence of bad models, which can exert a large leverage on regression slopes, is151

minimized.152

The joint multi-model PDFs Pi and Pf are calculated using Gaussian kernel density153

estimates. That is, as a weighted sum of the kernel value Kx associated with each model:154

P(C) =
∑
x

wxKx(C), (1)

where C is the long-term cloud feedback in a given region and155

Kx(C) =
1
N

∑
z=1,N

1
h
√

2π
e−0.5( (Cx−Cz )

h )2 . (2)

N is the number of models, Cx is the regional cloud feedback for model x, Cz is the re-156

gional cloud feedback for model z and h is a bandwidth parameter, set to 0.5 in all calcu-157

lations, which we found gave a good compromise between smoothing the PDFs and mini-158

mizing error. The prior PDF Pi is calculated by assigning each model an identical weight159

of wx =
1
N , and hence does not distinguish between good or bad models.160

Calculating the posterior weights requires PDFs for αm and αa for each climate161

model and for the observational data. We assume in both models and observations that the162

PDFs of αm and αa are Gaussian, and can be characterized by their mean values and stan-163

dard deviations. The mean values of αm and αa are given by the regression coefficients of164

the monthly or annual regional surface temperature onto the regional CRE. The standard165

deviations are estimated by multiplying the standard errors of the linear regressions by the166
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square root of the sample sizes (
√

204 for the monthly data and
√

17 for the annual data).167

We note that Brient and Schneider [2016] used a bootstrapping procedure to estimate the168

standard deviations in their metric of low cloud variability, but this is difficult to use here169

because of the small number of samples for the annual-mean data.170

Together with the mean values of the regression slopes, the standard deviations are171

used to generate Gaussian PDFs of αm and αa for each model and for the observations.172

The model PDFs are denoted by Mm,x and Ma,x for the monthly and annual variability,173

respectively, and the observational PDFs are denoted by Om and Oa. Note that we calcu-174

late three sets of model PDFs, one for each 17-year interval.175

Next, we calculate the Kullback-Leibler divergence for each model PDF:

∆x =

∫
O(α)log

(
O(α)
Mx(α)

)
dα, (3)

where we have dropped the m and a subscripts for convenience, but note that two sets176

of ∆x values are calculated for each 17-year period. ∆x is the relative entropy between177

O and Mx , and measures how much information is lost if Mx is used to approximate O.178

Importantly, this assumes the time-series used to estimate Mx is the same length as the179

time-series used to estimate O. The likelihood of model x giving rise to the observed dis-180

tribution O is the exponential lx = exp(−∆x), so that normalized weights can be calculated181

as wx =
lx∑
x lx

. Similar to weights in Bayesian model averages, the values of wx can be in-182

terpreted as the posterior probability that model x is the best model for the data according183

to the Kullback–Leibler measure [Brient and Schneider, 2016].184

3 Sources of Intermodel Spread in ECS191

The regional cloud feedbacks, calculated as described in section 2.3, can be used to192

quantify the contributions different regions make to the intermodel spread in ECS. For ex-193

ample, the top row of Figure 1 demonstrates that in CMIP5 the tropical cloud feedback194

is highly correlated with ECS (r2 = 0.54, all ECS values are taken from Zelinka et al.195

[2020]), while the cloud feedbacks in all other regions are not well correlated with ECS.196

Hence the tropical cloud feedback is the main source of uncertainty in CMIP5 models’197

ECS.198

By contrast, in CMIP6 the cloud feedbacks in multiple regions are well correlated199

with ECS (bottom row of Figure 1; we define a correlation as statistically significant if its200
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Figure 1. ECS values of the 22 CMIP5 (top) and 21 CMIP6 (bottom) models, plotted versus the regional

cloud feedbacks in the five regions. r2 values for correlations between ECS and the regional cloud feedbacks

are written in each panel, with bold values and asterisks denoting correlations with p-values less than 0.05,

which we take as a measure of statistical significance. The panels for 60◦-30◦S and 30◦S-30◦N also show r2

values for correlations over models with ECS<4K, and the 60◦-90◦N panels show r2 values for correlations

over models with ECS>2K.

185

186

187

188

189

190

associated p-value is less than 0.05 ). The correlation between the tropical cloud feedback201

and ECS again has a high r2 value of 0.56, but the correlation between the cloud feedback202

in the Southern Hemisphere mid-latitudes and ECS is also statistically significant (r2 =203

0.24). Interestingly, the Arctic cloud feedback shows a strong relationship with ECS when204

an outlier model (INM-CM4-8) which has an ECS of less than 2K, is ignored (r2 = 0.29).205

To investigate these relationships further, we have divided the CMIP6 models into206

high sensitivity (ECS > 4K) and low sensitivity (ECS < 4K) models. Repeating the cor-207

relations, we find that the tropical cloud feedback is not well correlated with the low sen-208

sitivity models’ ECS (r2 = 0.14, Figure 1), while the correlation with the Southern Hemi-209

sphere mid-latitude cloud feedback is stronger for the low sensitivity models (r2 = 0.31;210

the tropical and Southern Hemisphere mid-latitude clouds feedbacks are poorly correlated211

among the low ECS models). Thus in CMIP6, tropical cloud feedbacks can distinguish212

very high climate sensitivity models from lower sensitivity models, but cannot distinguish213

between a 2K and a 4K model. Conversely, the Southern Hemisphere mid-latitudes can214

distinguish between 2K and 4K models, but are less useful for evaluating high climate215

sensitivities.216
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Figure 2. Mean values of αm (top row) and αa (bottom row) in the five geographic regions plotted versus

the net cloud feedback in each region for 21 CMIP6 models. Only the regression coefficients calculated using

the last 17 years of each historical simulation are shown. The shaded regions show 5-95% confidence inter-

vals for estimates of the linear regressions from CERES-EBAF data, with the solid lines showing the mean of

the observational regression estimates.

225

226

227

228

229

These results demonstrate why low-cloud based emergent constraints perform poorly217

in CMIP6: a model with a large positive tropical cloud feedback likely has a high ECS,218

but a model with a negative tropical cloud feedback, or a tropical cloud feedback close to219

zero, could have an ECS of 2K or 4K. In contrast, dividing the CMIP5 models into high220

and low sensitivity models still gives robust relationships between tropical clouds and ECS221

(Figure 1).222

4 Evaluating Regional Emergent Constraints223

4.1 Robust relationships224

There are several robust relationships between the metrics of variability αm and230

αa and the regional cloud feedbacks. Most notably, the regression coefficients for both231

monthly and interannual variability in the tropics (30◦S to 30◦N) are highly correlated232

with the tropical cloud feedback in both sets of models (Table 1, Figure 2, Supplemental233

Figure S2). Other notable relationships are seen for the 90◦-60◦S region in CMIP6, and234

the 30◦-60◦N region in CMIP5. In both cases, two out of the three correlations are statis-235

tically significant, while the p-value for the third correlation is just over the 0.05 thresh-236

old.237
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Table 1. r2 values for correlations across the models between αm/αa in each region and the long term

regional cloud feedbacks. Columns 2 and 3 show three sets of values, one for each 17-year period of the

historical simulations. Columns 4 and 5 show correlations when αm and αa are estimated using the last 50

years of each simulation. Correlations with a p-value less than 0.05, which we use as a measure of statistical

significance, are in bold.

238

239

240

241

242

Region 17-year αm 17-year αa 50-year αm 50-year αa

CMIP6

90◦S-60◦S 0.25/0.19/0.27 0.12/0.10/0.19 0.23 0.19

60◦S-30◦S 0.08/0.08/0.01 0.08/0.08/0.00 0.31 0.34

30◦S-30◦N 0.37/0.60/0.47 0.28/0.50/0.43 0.44 0.59

30◦N-60◦N 0.11/0.11/0.16 0.04/0.21/0.01 0.20 0.08

60◦N-90◦N 0.05/0.07/0.01 0.03/0.10/0.05 0.0 0.02

CMIP5

90◦S-60◦S 0.0/0.0/0.0 0.18/0.02/0.07 0.08 0.09

60◦S-30◦S 0.0/0.0/0.01 0.03/0.18/0.29 0.09 0.33

30◦S-30◦N 0.47/0.35/0.51 0.59/0.42/0.36 0.60 0.60

30◦N-60◦N 0.15/0.27/0.26 0.03/0.28/0.17 0.35 0.26

60◦N-90◦N 0.02/0.0/0.0 0.04/0.08/0.0 0.03 0.01

Joint

90◦S-60◦S 0.03/0.01/0.02 0.09/0.03/0.09 0.11 0.08

60◦S-30◦S 0.01/0.00/0.00 0.13/0.01/0.13 0.13 0.38

30◦S-30◦N 0.41/0.39/0.42 0.46/0.42/0.38 0.49 0.59

30◦N-60◦N 0.15/0.23/0.23 0.00/0.21/0.06 0.28 0.19

60◦N-90◦N 0.01/0.03/0.00 0.02/0.1/0.00 0.02 0.03
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The observed αm values for the 30◦-60◦N region are outside the intermodel spread243

in CMIP5 (Supplemental Figure 2), implying that all models struggle to simulate cloud244

variability in this region and that we should be cautious about using this relationship to245

update the regional cloud feedback. Nevertheless, the observations and implied relation-246

ship do suggest that the regional cloud feedback in this region is more positive than is247

simulated by the models. For the 90◦-60◦S region, there is one outlier model (CNRM-248

CM6-1) which is far from the observations and from the other models. Disregarding this249

model increases the correlation between αm and the regional cloud feedback slightly (not250

shown), but our methodology will anyways assign a small weight to this model when cal-251

culating the posterior PDF.252

As another test of the robustness of these relationships, we have taken correlations253

across the joint ensemble of CMIP5 and CMIP6 data. The r2 values of these correlations254

are consistent with the findings from the individual ensembles (third set of rows in Table255

1), with the exception of the 90◦-60◦S region, for which the high correlations found in256

CMIP6 disappear in the joint ensemble. This is not surprising, since the correlations in257

this region are very low in CMIP5, but suggest further caution.258

4.2 Using longer time-series259

17 years of observational data is a short record with which to search for robust260

correlations, but the methodology used to calculate the posterior PDFs requires that the261

model and observational time-series have the same lengths. To investigate whether more262

robust relationships emerge with longer datasets, we have also calculated the variability263

coefficients αm and αa using the last 50 years of the historical simulations (1964 – 2014264

in CMIP6 and 1955 – 2005 in CMIP5). Correlating these new coefficients with the re-265

gional cloud feedbacks gives stronger relationships than the 17 year coefficients (Table 1,266

Supplemental Figures S3 and S4), with statistically significant relationships between αm267

and/or αa and the cloud feedbacks in all regions except for the high northern latitudes268

(60◦-90◦N).269

The strong correlations for the 60◦S-30◦S region2 are of particular interest, as the270

Southern Hemisphere mid-latitudes have been identified as one of the causes of the high271

2 The low correlation for the CMIP5 αms is due to an outlier model. See Supplemental Figure S4.
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climate sensitivities in certain CMIP6 models [Zelinka et al., 2020]. The calculations in272

section 3 further demonstrate the importance of this region for the spread in ECS among273

CMIP6 models. However, our previous calculations demonstrated that the relationships274

between monthly/interannual variability of surface temperature and CRE in the South-275

ern Hemisphere mid-latitudes cannot be robustly identified from 17 years of observational276

data, so we cannot use observations and the methodology described in section 2.4 to con-277

strain the cloud feedback in this region. Moreover, the large observational uncertainty in278

this region suggests that emergent relationships are unlikely to be of practical use for con-279

straining the 60◦S-30◦S cloud feedback in the near future, even with other methodologies.280

4.3 Explaining the high correlations in the tropics281

Emergent constraints are sometimes criticised as being the result of data mining282

(Caldwell et al. [2014, 2018]; Hall et al. [2019]), with no physical basis for the proposed283

relationships. Here, our starting assumption is that the intermodel spread in cloud physics284

is time-scale invariant (note that we are not assuming the cloud physics itself is invariant,285

but that the causes of intermodel spread are invariant). This is reasonable in the tropics,286

where previous emergent constraints have linked the variability of specific tropical and287

subtropical clouds to the net cloud feedback (e.g., Zhai et al. [2015]; Brient and Schneider288

[2016]; Lutsko [2018]). Moreover, our results demonstrate that the unforced variability of289

the tropical-mean cloud feedback, which includes contributions from all tropical cloud-290

types, is related to the forced tropical-mean cloud feedback. This suggests that the same291

clouds are responsible for intermodel spread in the variability and in the cloud feedback.292

To confirm this, we have binned the net CRE and surface temperature values based on293

the corresponding pressure velocities at 500hPa (ω500), which is an effective method for294

separating out different cloud regimes in the tropics, where high clouds tend to form in295

regions of large-scale ascent and low clouds tend to form in regions of large-scale descent296

[Bony et al., 2004; Bony and Dufresne, 2005]. The left panels of Figure 3 show the trop-297

ical cloud feedback in each ω500 bin, and the right panels show correlations between the298

monthly/annual variability of tropical net CRE in each ω500 bin and the monthly/annual299

variability of tropical-mean net CRE over the historical simulations. Clouds in regimes300

of weak-to-moderate descent clearly make the largest contributions to the tropical cloud301

feedback (left panels) and also have the highest correlations with the tropical-mean CRE302

(right panels), consistent with the large statistical weight of these subtropical low clouds303
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Figure 3. a) Long-term CMIP5 tropical cloud feedback in ω500 bins, calculated following Bony and

Dufresne [2005] by dividing the long-term tropical net CRE trend in each 5hPa bin over years 1-150 of

abrupt4XCO2 simulations by the long-term surface temperature trend in each bin. The black markers show

the multi-model mean values and the gray shading shows ±1 standard deviation. b) r2 values for correla-

tions in the CMIP5 models between the monthly (blue) and annual-mean (red) CRE in each 5hPa bin and the

tropical-mean CRE over the final 50 years of the historical simulations. The markers show the multi-model

mean values and the shadings show ±1 standard deviation. c) Same as panel a but for CMIP6 models. d)

Same as panel b but for CMIP6 models.
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[Bony and Dufresne, 2005]. Hence in both sets of models, our simple metrics of tropical304

cloud variability mostly reflect the contributions of low clouds to monthly and interannual305

cloud variability, and these clouds are also the main source of uncertainty in the long-term306

tropical cloud feedback.307

These results are consistent with Lutsko [2018], who showed that (in models) the316

variations in tropical CRE during the ENSO cycle are mostly due to low clouds, with high317

and mid-level clouds making minor contributions. So, while high and mid-level clouds318

may show substantial differences in spatial organization on monthly, annual and ENSO319

time-scales, they make relatively small contributions to the variability of the tropical-mean320

radiation budget.321

The physical mechanisms linking variability in other regions and the regional cloud334

feedbacks are less clear, and may be more difficult to identify, given the larger seasonal335
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Figure 4. a) Prior and posterior PDFs of the tropical cloud feedback in CMIP6. The green bars show the

raw model distribution of tropical cloud feedbacks and the green curves show the prior PDFs estimated using

Gaussian kernel estimates. The black curves show the posterior PDFs obtained using monthly variability,

following the procedure described in section 2.4. b) Same as panel a but the posterior PDF is obtained using

interannual variability. c) Prior and posterior PDFs of the cloud feedback in the 90◦-60◦S region in CMIP6.

The blue bars show the raw model distribution of regional cloud feedbacks and the blue curves show the prior

PDFs estimated using Gaussian kernel estimates. The black curves show the posterior PDFs obtained using

monthly variability, following the procedure described in section 2.4. d) Same as panel a but for the CMIP5

models. e) Same as panel b but for CMIP5 data. f) Prior and posterior PDFs of the cloud feedback in the

30◦-60◦N region in CMIP5. The red bars show the raw model distribution of regional cloud feedbacks and

the red curves show the prior PDFs estimated using Gaussian kernel estimates. The black curves show the

posterior PDFs obtained using monthly variability, following the procedure described in section 2.4.
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cycles at higher latitudes. We leave it to future work to identify the mechanisms, but note336

again that the results for 90◦-60◦S and 30◦-60◦N should be taken with caution until physi-337

cal mechanisms can be identified.338

5 Constraining Regional Cloud Feedbacks339

Section 4 established the existence of robust relationships between the variability340

of tropical cloudiness on monthly and interannual time-scales, and the long-term tropi-341

cal cloud feedback. Statistically significant relationships were also found in the CMIP6342
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models between the monthly variability of cloudiness and the regional cloud feedback at343

90◦-60◦S and in CMIP5 between the monthly variability of cloudiness and the regional344

cloud feedback at 30◦-60◦N, though these relationships are less robust, particularly since345

they are only found in one generation of models. Using the procedure described in section346

2.4, we have estimated posterior PDFs for the cloud feedbacks in the three regions, with347

the results shown in Figure 4 (the posterior weights are listed in Supplemental Tables S1348

and S2).349

In both sets of models, the monthly and interannual results for the tropics are re-350

markably similar. Panels a and d show that using αm and αa with the CMIP6 data re-351

sults in very similar posterior tropical cloud feedback PDFs, while panels b and e show352

the same for the CMIP5 data. In both sets of models, and for both αm and αa, the poste-353

rior PDFs are weighted more heavily towards positive values than the prior PDFs. This is354

particularly true in the CMIP6 models, where the posterior PDF is considerably narrower:355

in CMIP6 the 5-95 percentile confidence intervals go from -0.65 - 1.26 Wm−2 / K in the356

prior PDF to 0.06 - 1.37 Wm−2 / K in the posterior PDF obtained using annual data or357

-0.09 - 1.18 Wm−2 / K in the posterior PDF obtained using monthly data. In CMIP5 the358

5-95 percentile confidence intervals go from -0.77 - 1.38 Wm−2 / K in the prior PDF to359

-0.39 - 1.44 Wm−2 / K in the posterior PDF obtained using annual data or -0.32 - 1.40360

Wm−2 / K in the posterior PDF obtained using monthly data. The shifts of the posterior361

PDFs towards more positive values are consistent with other lines of evidence pointing to362

a positive tropical cloud feedback [Myers and Norris, 2016; Klein et al., 2018; Scott et al.,363

2020; Sherwood et al., 2020]. We have not investigated why the posterior PDFs are nar-364

rower when using the CMIP6 data than when using the CMIP5 data, but note that the365

distribution of tropical cloud feedbacks in CMIP5 is more bimodal than in CMIP6, with366

maxima close to 0Wm−2/K and near 0.8Wm−2/K. The posterior PDFs retain this bimodal-367

ity, but with more weight on the maximum at 0.8Wm−2/K.368

For the other two regions, the posterior PDF for 90◦S-60◦S has a strong peak at369

around -0.5Wm−2/K and is substantially narrower than the prior; while the posterior PDF370

for 30◦-60◦N is only slightly narrower than the prior. Thus an emergent constraint based371

on the monthly variability at 90◦S-60◦S has the potential to strongly constrain the cloud372

feedback in this region, though more work is needed to confirm this result. It will be dif-373

ficult to use emergent constraints for the feedback at 30◦-60◦N since the models do a poor374

job at reproducing the variability in this region.375
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6 Conclusion376

The results presented here demonstrate that both the monthly and the interannual377

variability of cloudiness in the tropics can be used to constrain the tropical cloud feed-378

back, with CMIP5 and CMIP6 results suggesting that the tropical cloud feedback is on the379

higher end of the intermodel range, and likely greater than zero. This is consistent with380

recent work using cloud-controlling factors to constrain the tropical cloud feedback [My-381

ers and Norris, 2016; Klein et al., 2018; Scott et al., 2020]. At higher latitudes, we have382

tentatively shown that emergent constraints can be applied to the regional cloud feedbacks383

at 90◦-60◦S and 30◦-60◦N; with the variability in the 90◦-60◦S region showing particular384

promise as the basis for an emergent constraint. However, the high correlations between385

the monthly variability and cloud feedbacks in these regions are not robust across both386

generations of models, and we have not identified the physical mechanisms responsible for387

the relationships.388

Another factor which limits the effectiveness of cloud-based emergent constraints389

is the relatively short length of the satellite record (∼17 years). Using 50 years of model390

data, we have found statistically significant relationships between cloud variability and391

regional cloud feedbacks in all regions except for 60◦-90◦N. This hints that the cloud feed-392

back in the Southern Hemisphere mid-latitudes (60◦-30◦S), a key region for the high cli-393

mate sensitivities of CMIP6 models, could be constrained using the local unforced vari-394

ability. Unfortunately, our metrics of variability have the highest observational uncertainty395

in this region, and more data will be needed before emergent constraints can be used to396

constrain the cloud feedback in the Southern Hemisphere mid-latitudes. Other approaches,397

for example which focus on the simulation of specific cloud properties (e.g., Ceppi et al.398

[2016]), may be more successful moving forward.399

Cloud-based emergent constraints developed in CMIP5 consistently indicated ECS is400

on the higher end of the intermodel range (3-4◦C, see Bretherton and Caldwell [2020]), in401

contrast to recent temperature-based emergent constraints which generally indicate lower402

ECS values (2-3◦C, e.g., Cox et al. [2018]; Jiménez-de-la Cuesta and Mauritsen [2019]).403

Reconciling these two opposing lines of evidence is of crucial importance for improving404

our confidence in ECS estimates. While the failure of cloud-based emergent constraints in405

CMIP6 does not rule out the possibility of high ECS values, it does suggest that a more406
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nuanced approach, moving cloud-type by cloud-type and region-by-region, will be required407

to reduce uncertainty in Earth’s cloud feedback.408
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Contents of this file

1. Figures S1 to S4

2. Tables S1 and S2

Introduction The supplementary material contains four figures and 2 tables. The first

figure shows an example of the the regional “Gregory” plots which are used to estimate

the regional cloud feedbacks. The second figure repeats Figure 2 of the main text, but

shows the results for the CMIP5 models. Supplemental Figures S3 and S4 repeat Figure

2 of the main text, but show the results when αm and αa are calculated using the last 50

Corresponding author: N. J. Lutsko, Scripps Institution of Oceanography, University of Cali-

fornia at San Diego, La Jolla, California (nlutsko@ucsd.edu)

1Scripps Institution of Oceanography,

University of California at San Diego, La

Jolla, California.

2Laboratoire de Météorologique
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years of each historical simulation, rather than the last 17 years. Supplemental Figure S3

shows the results for the CMIP6 models and Supplemental Figure S4 shows the results

for the CMIP5 models. Table S1 shows the weights used to generate the posterior PDFs

for the CMIP5 data and Table S2 shows the weights used to generate the posterior PDFs

for the CMIP6 data.

The CMIP5 models used in the analysis are: BNU-ESM, CanESM2, CNRM-

CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-

E2-R, HadGEM2-ES, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR,

MIROC5, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3,

NCAR-CCSM4, NorESM1-M.

The CMIP6 models used in the analysis are: BCC-CSM2-MR, BCC-ESM1,

CanESM5, CNRM-CM6-1, CNRM-ESM2-1, FGOALS-f3-L, GFDL-CM4, GFDL-

ESM4, GISS-E2-1-G, GISS-E2-1-H,HadGEM3-GC31-LL,INM-CM4-8, IPSL-CM6A-LR,

MIROC6, MIROC-ES2L, MPI-ESM1.2-HR,MRI-ESM2-0, NCAR-CESM2, NCAR-

CESM2-WACCM, NorESM2-LM, UKESM1-0-102LL. Note that the required data for

the ω500 binning in Figure 3 of the main text were not available for the following models

at the time of the analysis (January 2021): UKESM1-0-LL, MIROC-ES2L, INM-CM4-8,

NorESM2-LM, MPI-ESM1-2-HR, MIROC6 and FGOALS-f3-L.
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Figure S1. Example of regional “Gregory” CRE plots for the CanESM5 model. The solid

lines show linear least-squares regressions to the annual-mean data shown by the open circles.
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Figure S2. Values of monthly and annual linear regressions of CRE on surface temperatures

in the five geographic regions plotted versus the net cloud feedback in each region for 23 CMIP5

models. The regression coefficients are calculated using the last 17 years of the historical simula-

tions. The shaded regions show 5-95% confidence intervals for estimates of the linear regressions

from CERES-EBAF data, with the solid lines showing the mean of the observational regression

estimates.
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Figure S3. Same as Figure 2 in the main text, but the regression coefficients are calculated

using the last 50 years of data in the historical simulations.
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Figure S4. Same as Supplementary Figure S2, but the regression coefficients are calculated

using the last 50 years of data in the historical simulations.

D R A F T February 10, 2021, 4:39pm D R A F T



X - 6N. J. LUTSKO, M. POPP, R. H. NAZARIAN, A. L. ALBRIGHT: REGIONAL EMERGENT CONSTRAINTS

Table S1. Weights (in %) used to generate the posterior PDFs for the CMIP5 models. Weights

are given for each 17-year segment, and the final posterior PDFs are obtained by averaging the

three posterior PDFs obtained from each 17-year segment.

Model αm 30◦S-30◦N αa 30◦S-30◦N αm 30◦-60◦N
BNU-ESM 0.0/9.7/0.7 3.0/7.4/3.4 0.0/0.0/0.0
CanESM2 0.0/0.0/8.3 4.6/0.5/8.5 16.8/3.8/0.0

CNRM-CM5 0.0/0.0/0.0 0.3/0.1/0.0 14.0/3.8/0.0
CSIRO-Mk3-6-0 3.7/11.6/3.8 10.3/6.6/8.9 0.0/0.0/12.8

GFDL-CM3 19.4/0.3/12.1 9.1/7.2/7.5 8.2/0.1/1.4
GFDL-ESM2G 0.0/0.0/0.0 1.0/0.2/0.7 13.1/5.1/0.0
GFDL-ESM2M 0.0/16.6/0.0 0.1/7.2/0.5 4.7/0.0/21.7
GISS-ESM-H 0.0/0.0/0.0 0.0/0.0/0.0 0.1/0.0/0.1
GISS-ESM-R 0.0/2.4/0.0 0.0/2.7/0.0 12.5/0.0/0.0

HADGEM2-ES 15.0/13.7/10.7 11.5/7.0/6.6 0.0/0.7/2.7
INMCM4 7.1/0.2/11.3 6.6/4.9/7.6 16.1/33.3/21.0

IPSL-CM5A-LR 0.0/0.0/8.5 1.6/0.0/7.6 0.0/0.0/0.0
IPSL-CM5A-MR 6.4/0.0/10.2 11.6/3.6/8.5 0.0/0.0/0.0
IPSL-CM5B-LR 18.3/0.1/9.1 4.7/4.8/4.8 5.6/0.0/0.0

MIROC5 9.5/1.3/0.0 6.2/3.1/5.5 0.0/0.0/9.4
MIROC-ESM 1.7/11.4/1.6 9.4/7.3/7.2 0.0/0.0/0.0
MPI-ESM-LR 0.0/18.0/0.0 0.1/8.1/0.1 0.0/7.6/0.0
MPI-ESM-MR 0.1/3.0/8.3 3.2/7.4/3.7 8.5/0.0/0.0
MPI-ESM-P 0.0/2.7/0.0 3.8/7.7/1.5 0.0/0.5/0.5
MRI-CGCM3 18.6/0.2/3.0 10.9/5.2/7.6 0.0/0.0/0.2

NCAR-CCSM4 0.0/2.0/12.5 0.8/3.4/8.2 0.0/9.4/23.1
NorESM1-M 0.0/6.8/00 1.3/5.7/1.1 0.0/35.4/7.0
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Table S2. Weights (in %) used to generate the posterior PDFs for the CMIP6 models. Weights

are given for each 17-year segment, and the final posterior PDFs are obtained by averaging the

three posterior PDFs obtained from each 17-year segment.

Model αm 30◦S-30◦N αa 30◦S-30◦N αm 60◦-90◦S
BCC-CSM2-MR 0.1/12.5/0.5 6.8/4.7/8.0 0.0/0.7/2.2

BCC-ESM1 0.0/4.3/0.1 6.5/8.7/9.7 0.0/4.0/0.2
CanESM5 12.2/12.9/0.6 10.7/9.5/10.0 0.0/1.2/0.6

CNRM-CM6-1 0.1/9.6/12.4 3.8/3.7/0.7 98.0/60.9/8.5
CNRM-ESM2-1 15.9/7.6/4.3 0.8/4.7/3.7 1.7/2.1/0.0
FGOALS-f3-L 2.4/0.0/0.0 0.2/0.0/0.1 0.0/0.0/0.0
GFDL-CM4 0.9/5.9/12.7 7.6/8.8/9.3 0.0/0.0/0.0
GFDL-ESM4 3.5/12.9/1.8 5.2/1.9/8.9 0.0/0.0/0.0
GISS-E2-1-G 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0
GISS-E2-1-H 0.0/0.0/0.0 0.0/0.1/0.0 0.0/0.0/0.0

HadGEM3-GC31-LL 1.3/0.7/3.9 3.1/3.8/8.4 0.2/2.6/1.4
INM-CM4-8 0.0/0.0/0.0 0.0/0.0/1.6 0.0/0.0/3.9

IPSL-CM6A-LR 13.1/8.9/11.5 9.7/9.9/4.3 0.0/27.0/0.0
MIROC6 17.5/5.1/14.4 4.8/7.1/1.0 0.0/0.0/0.0

MIROC-ES2L 3.1/0.0/11.1 0.0/0.0/0.0 0.0/0.0/0.0
MPI-ESM1.2-HR 1.9/0.0/10.2 2.8/0.3/9.4 0.0/0.0/0.0

MRI-ESM2-0 10/3.5/2.2 6.9/1.7/1.3 0.0/0.1/0.9
NCAR-CESM2 5.5/1.9/4.3 10.3/7.8/8.6 0.0/0.1/0.0

NCAR-CESM2-WACCM 4.9/2.7/2.0 9.9/8.6/9.0 0.0/0.2/0.0
NorESM2-LM 7.7/8.2/8.1 8.3/9.1/4.5 0.0/0.6/82.2

UKESM1-0-102LL 0.0/2.3/0.0 2.7/9.6/1.6 0.0/0.1/0.0
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