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Abstract

Past and projected changes in global hydroclimate in Earth system models have been examined. The Budyko framework that

relates the partitioning of precipitation into evaporation to a location’s aridity has been modified to account for the effect of

interannual terrestrial water storage and compared to traditional methods. The new formulation better fits climate model

data over most of the globe. Old and new formulations are used to quantify changes in the spatial patterns of hydroclimate

based locally on year-to-year variations water and energy cycle variables. Focus is on multi-model median responses to changing

climate. The changes in hydroclimate from preindustrial to recent historical (1965-2014) conditions often have different patterns

and characteristics than changes due only to increasing CO2. For simulations with gradually increasing CO2, differing model

treatments of vegetation are found specifically to have categorically different impacts on hydroclimate, particularly altering

the relationship between aridity and the fraction of precipitation contributing to evaporation in models that predict vegetation

changes. Models that predict vegetation phenology have consistently different responses to increasing CO2 than models that

do not. Dynamic vegetation models show more widespread but less consistent differences than other models, perhaps reflecting

their less mature state. Nevertheless, there is clearly sensitivity to vegetation that illustrates the importance of including the

representation of biospheric shifts in Earth system models.
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Abstract 28 

Past and projected changes in global hydroclimate in Earth system models have been examined. 29 

The Budyko framework that relates the partitioning of precipitation into evaporation to a 30 

location’s aridity has been modified to account for the effect of interannual terrestrial water 31 

storage and compared to traditional methods. The new formulation better fits climate model data 32 

over most of the globe. Old and new formulations are used to quantify changes in the spatial 33 

patterns of hydroclimate based locally on year-to-year variations water and energy cycle 34 

variables. Focus is on multi-model median responses to changing climate. The changes in 35 

hydroclimate from preindustrial to recent historical (1965-2014) conditions often have different 36 

patterns and characteristics than changes due only to increasing CO2. For simulations with 37 

gradually increasing CO2, differing model treatments of vegetation are found specifically to have 38 

categorically different impacts on hydroclimate, particularly altering the relationship between 39 

aridity and the fraction of precipitation contributing to evaporation in models that predict 40 

vegetation changes. Models that predict vegetation phenology have consistently different 41 

responses to increasing CO2 than models that do not. Dynamic vegetation models show more 42 

widespread but less consistent differences than other models, perhaps reflecting their less mature 43 

state. Nevertheless, there is clearly sensitivity to vegetation that illustrates the importance of 44 

including the representation of biospheric shifts in Earth system models.  45 

 46 

Plain Language Summary 47 

“Hydroclimate” means aspects of climate related to the water cycle, like the fraction of 48 

precipitation that evaporates back into the atmosphere (evaporation ratio), or how dry a location 49 

is (aridity). Such hydroclimate parameters are not independent of one another: evaporation ratio 50 

and aridity are strongly coupled via the Budyko relationship, with consequences for water 51 

resources, groundwater recharge, river flows and vegetation health. The Budyko relationship 52 

itself varies spatially due to climate, soil properties, terrain and vegetation. Hydroclimate 53 

changes in a changing climate, but vegetation adds an extra layer of complexity. We find that 54 

hydroclimate changes from only CO2 increases do not resemble historical changes in a large 55 

suite of climate models, due to added effects from vegetation as well as aerosols and other 56 

climate forcings. As CO2 increases, models that predict seasonal to interannual fluctuations in 57 

vegetation phenology (greenness, canopy density, etc.) have consistently different responses than 58 

simpler models that do not. Models that also predict the extinction and migration of biomes show 59 

even more widespread but less consistent differences in the evolution of hydroclimate. Careful 60 

consideration needs to be given to the role vegetation plays in hydroclimate, as water resources 61 

will not only be affected by future warming. 62 

63 
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1 Introduction 64 

Over periods of at least one year (i.e., neglecting the seasonal cycle), fluctuations in the 65 

storage of water below the land surface are generally small relative to the fluxes inward 66 

(precipitation) and outward (evapotranspiration and runoff). The same is true for heat, where the 67 

primary input is absorbed solar radiation, and outputs are net longwave radiation and turbulent 68 

heat fluxes. These two quasi-equilibrium budgets are linked, in that energy that escapes the land 69 

surface as turbulent latent heat flux is the energy used to remove water from the land in the form 70 

of evapotranspiration (E) into the atmosphere. The functional relationship between E, 71 

precipitation and net radiation derived by Budyko (1974) has the essential characteristics that in 72 

arid regions 𝑅𝑛𝑒𝑡/𝜆𝑃 ≫ 1, where  𝑅𝑛𝑒𝑡 is average net radiation, 𝑃 is average precipitation and 𝜆 73 

is the latent heat of evaporation. A consequence is that nearly all precipitation is lost to land as 74 

evaporation in arid regions. In humid regions where 𝑅𝑛𝑒𝑡/𝜆𝑃 ≪ 1, E approaches its potential 75 

rate, which is limited by lack of available energy.  76 

The quasi-equilibrium Budyko perspective is thus built around these two limits: energy 77 

limitations on E in humid regions and moisture limitations on E in arid regions (Sposito, 2017). 78 

Lacking any temporal variability in precipitation or net radiation, a location having 𝑅𝑛𝑒𝑡 = 𝜆𝑃 79 

might be expected to experience no limitations on E. In reality this is not the case. Locations 80 

where long-term 𝑅𝑛𝑒𝑡/𝜆𝑃 ≅ 1 are often locations that experience a seasonal cycle that oscillates 81 

between energy and moisture limitations on E, experiencing a wet season with significant runoff 82 

and a dry season when soil moisture declines toward the wilting point. As a result, long term 83 

rates of E can be well below the limits suggested by either energy or moisture limitations (Milly, 84 

1994). Storage of water below the land surface can moderate this seasonality, extending the 85 

hydrologic time scale and supplying more water for E and runoff during the dry season than 86 

contemporaneous precipitation would allow. Yet other physical restrictions also limit E, such as 87 

the finite depth of plant roots and plant physiological responses to environmental stresses within 88 

the diurnal cycle (Ye et al., 2015). 89 

The assumptions and limits inherent in the Budyko relationship underpin much of the 90 

theory of land-atmosphere (L-A) interactions (Santanello et al., 2018). Namely, soil moisture can 91 

act as a regulator of surface heat fluxes, controlling the partitioning of net radiation between 92 

latent and sensible heat flux (and thus the rate of E) at places and times when net radiation is 93 

abundant. Otherwise, the available energy from net radiation is itself the controlling factor on E. 94 

Concomitant modulation of sensible heat fluxes affects boundary layer development in the lower 95 

troposphere, with consequences for atmospheric thermodynamics, convective cloud formation, 96 

and the general circulation (Betts, 2004). 97 

Applications of the Budyko model in the phase-space portrayed by the evaporation ratio 98 

(or E ratio: 𝐸/𝑃) as a function of aridity (𝑅𝑛𝑒𝑡/𝜆𝑃) fall into three categories. First is the local 99 

climatological application at one or more specific locations. A single location may be a flux 100 

tower where the three essential quantities 𝑃, 𝐸, and 𝑅𝑛𝑒𝑡 are measured directly, a hydrologic 101 

catchment where at least 𝑃 and perhaps 𝑅𝑛𝑒𝑡 are measured but 𝐸 is inferred from 𝑃 and 102 

streamflow measurements at the exit of the catchment, or a grid cell from a climate model or 103 

ecohydrologic model. In this case, data are gathered over many years to determine a single point 104 

for the values of aridity versus E ratio space, which provides a two-parameter definition of that 105 

location’s hydroclimate (Destouni et al., 2013; Oudin et al., 2008; D. Wang & Tang, 2014; L. 106 

Zhang et al., 2004). 107 
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The second category is a variation of the first, wherein interannual variations in E ratio 108 

versus aridity space are charted to determine the hydroclimatic variability of the location over 109 

time, typically applied at an annual time step hydroclimate (Jiang et al., 2015; R. D. Koster & 110 

Suarez, 1999; Ning et al., 2019; D. Yang et al., 2009; Hui Yang et al., 2018; Ye et al., 2015). If 111 

variations are normally distributed, means and standard deviations can provide sufficient 112 

information to characterize hydroclimatic variability in time. But frequently the time distribution 113 

of these parameters is not normal, especially for the aridity index in dry regions, which can 114 

become extremely large in drought years. Medians and quartiles provide a more robust 115 

characterization of such variability. 116 

In the third category, the first approach is applied over many locations, and the 117 

climatological values plotted to portray the spatial variations of E ratio versus aridity (Carmona 118 

et al., 2016; Dirmeyer & Zeng, 1999; Greve et al., 2020; Li et al., 2018; Miralles et al., 2016; 119 

Porada et al., 2011; Xu et al., 2013). This also allows maps of aridity and E ratio to be produced 120 

(Kumar et al., 2016; Zhou et al., 2015). Furthermore, the direct relationships between other water 121 

and energy balance terms to the central Budyko variables allow for other useful applications 122 

(e.g., Koster 2015; Roderick and Farquhar 2011; Brubaker et al. 1993; Burde and Zangvil 2001). 123 

The result of either categories 2 or 3 is a distribution of points in the (𝑅𝑛𝑒𝑡/𝜆𝑃, 𝐸/𝑃) 124 

plane.  Many physically motivated but ultimately empirical functions have been derived to fit the 125 

distribution of points as if 𝐸/𝑃 were a monotonic function of 𝑅𝑛𝑒𝑡/𝜆𝑃. Budyko’s original 126 

formulation took the form: 127 

𝐸

𝑃
= [

𝑅𝑛𝑒𝑡
𝜆𝑃

(1 − 𝑒−𝑅𝑛𝑒𝑡 𝜆𝑃⁄ ) tanh (
𝜆𝑃

𝑅𝑛𝑒𝑡
)]

1/𝜔𝐵

, 𝜔𝐵 = 2.0 

where the exponent 𝜔𝐵 was a fixed number. Subsequently, many formulations have been 128 

proposed in order to provide flexibility to optimize the fitting of the function to data (cf. Yang 129 

and Yang 2011). One popular formation is that of Fu as described by Zhang et al. (2004): 130 

𝐸

𝑃
= 1 +

𝑅𝑛𝑒𝑡
𝜆𝑃

− [1 + (
𝑅𝑛𝑒𝑡
𝜆𝑃

)
𝜔𝐹

]

1 𝜔𝐹⁄

 

where 𝜔𝐹 is a tunable parameter that implicitly represents hydrologic characteristics of 131 

the location, such as subsurface water storage capacity and seasonality in aridity. Most such 132 

tunable formulations of the Budyko relationship rely on a single parameter. Given the 133 

assumptions that the function converges asymptotically to the energy and water limits at low and 134 

high aridity respectively, the single parameter controls how closely the function conforms to the 135 

limits in the neighborhood of 𝑅𝑛𝑒𝑡/𝜆𝑃~1. A number of variations on the single parameter 136 

Budyko formulation have been proposed (e.g., Choudhury 1999; Zhang et al. 2001, 2004; Wang 137 

and Tang 2014) with the goal of better fitting the relationship to observed data for various 138 

applications.  139 

As the tuning parameter effectively moves the fitted curve closer or farther from the 140 

limits described above, the parameter itself becomes an index of the hydroclimatology described 141 

by annual mean fields of precipitation, ET and net radiation at a given location. In a changing 142 

climate, wherein assumptions of hydrologic stationarity are violated (Milly et al., 2008, 2015),  143 

there is no reason to assume that the hydroclimatological distributions described by the Budyko 144 

relationship should not change as well. Previous studies have examined this using climate model 145 
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simulations from the fifth Climate Model Intercomparison Project (CMIP5; Taylor et al. 2012) to 146 

quantify future hydrologic sensitivity (Kumar et al., 2016; Singh & Kumar, 2015), spatial 147 

hydroclimate variability (category 3 above; Li et al. 2018), and projected runoff changes (Milly 148 

& Dunne, 2016; Osborne & Lambert, 2018; Zheng et al., 2018).  However, application of the 149 

parameter itself as an index of hydroclimatic change has been limited. Yang et al. (2018) 150 

recognized the application of such an index as an indicator of the water retention characteristics 151 

at the catchment scale, as well as noting the potential influence of vegetation responses to 152 

increasing CO2 and temperature as a factor in its change. In fact, many different possible 153 

influences are agglomerated into such a single parameter. 154 

In this study, we examine the use of such a hydroclimatic index taken as a single 155 

parameter from various formulations of the Budyko relationship as an integrative indicator of 156 

climate change impacts on the hydrologic cycle. Using data from CMIP6 (Eyring et al., 2016), 157 

we examine how the hydroclimatological position and interannual variability in Budyko space of 158 

any location may change from past to present and as a result of ever-increasing greenhouse gas 159 

concentrations in the atmosphere. We examine how well different climate models agree on the 160 

positions and spatial patterns of the hydroclimatic index estimated from a best fit to model data, 161 

using a curve-fitting procedure at each location through yearly values in Budyko space, and 162 

determine multi-model consensus estimates. Finally, we attempt to attribute changes in aridity, E 163 

ratio and the 𝜔 parameter to changes in CO2 and vegetation. 164 

The data used, models considered, and analysis methods are described in section 2.  165 

Results are shown in sections 3 and 4, showing first the variability of aridity and E ratio, then 166 

examining three formulations of the Budyko curve to synthesize hydroclimate impacts. The 167 

potential role of vegetation and its simulation in different Earth system models is examined in 168 

section 5, and a summary of results is presented in section 6. 169 

2 Methodology and Data 170 

2.1 Fitting of Budyko formulations 171 

Using annual mean data calculated from the monthly output of 37 CMIP6 models (see 172 

Tables 1 and S1), we find median values and interquartile ranges (IQR) of both aridity and E 173 

ratio for every land grid cell on each models’ native output grid for each of four periods taken 174 

from three DECK simulations described below. We also use the time series of annual values of 175 

aridity and E ratio to produce scatter plots in Budyko space through which several different 176 

single parameter formulations of the Budyko relationship are fit, using a basic least-squares 177 

difference minimization approach to find the optimum value of the 𝜔 parameter.  178 

Several different formulations are explored. The Fu formulation described above has 179 

been used in this curve-fitting context in many previous studies and we use it here, estimating 180 

values of the parameter 𝜔𝐹 as a function of location for each model and experiment situation 181 

described below. We also use the original Budyko formulation but allow the parameter 𝜔𝐵 to 182 

vary so that it can be used for better fitting of the function. 183 

Because of the extreme heteroscedasticity of data in Budyko space at many locations, 184 

obtaining a good fit to the data is challenging. That was a primary motivation for exploring more 185 

than one formulation. Furthermore, we have found that specific formulations tend to perform 186 

better in some climate regimes than others. Here we describe problems faced in applying the Fu 187 
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and modified Budyko formulations, and how that has led us to a novel formulation that appears 188 

to fit the range of data best. All three are used in our analyses and are ultimately compared. 189 

As mentioned above, the classical Budyko relationship depicts evaporation ratio 𝐸/𝑃 as a 190 

function of aridity 𝑅𝑛𝑒𝑡/(𝜆𝑃). In this framework. Hydroclimatological limits suggest that for any 191 

period with a duration of an integer number of years ≥1, 𝐸/𝑃 ≤ 𝑅𝑛𝑒𝑡/(𝜆𝑃) for 𝑅𝑛𝑒𝑡/(𝜆𝑃) < 1, 192 

and 𝐸/𝑃 ≤ 1 for 𝑅_𝑛𝑒𝑡/(𝜆𝑃) > 1. For CMIP6 models, the first limit appears to be obeyed 193 

rather firmly but the second frequently is not. So, in all cases, points that exceed 𝐸/𝑃 > 1.2 are 194 

removed from the sample before parameter optimization. Also, over very dry locations, 195 

extremely large values of 𝑅𝑛𝑒𝑡/(𝜆𝑃) can result – often exceeding 100. Points at such high aridity 196 

can greatly impact the curve fitting, so all values of 𝑅_𝑛𝑒𝑡/𝜆𝑃 > 8 are also removed from the 197 

sample. For purposes of representing the Budyko framework, it is the values of E ratio closer to 198 

𝑅𝑛𝑒𝑡/𝜆𝑃~1, where the second derivative of fitting functions is largest, that provide the most 199 

information about the effects of soil water retention, vegetation, etc., on E – runoff partitioning 200 

(Kumar et al., 2016).  201 

Some examples of fits through data at single points are shown in Figure 1. We find that 202 

the Fu formulation does very well in wet and moderate regions but struggles in arid locations. It 203 

appears that often the E ratio begins dropping at relatively high values of aridity, nor does it 204 

appear to asymptotically approach the 𝐸/𝑃 = 𝑅𝑛𝑒𝑡/(𝜆𝑃) limit in wetter situations. This may be 205 

due to a propensity for rainfall in such arid regions to come in infrequent but heavy downpours 206 

that contribute to large runoff, or easily permeate sandy soils becoming unavailable to 207 

evaporation. However, the Budyko formulation with a variable exponent 𝜔𝐵 attains something of 208 

a sigmoid shape for 𝜔𝐵 < 2, which nicely adapts to the data distributions in arid locations.  209 

Conversely, the variable exponent Budyko formulation struggles to fit data from humid 210 

regions, especially when there are frequently values of 𝐸/𝑃 > 1. The best fit is often attained for 211 

values of 𝜔𝐵 > 2, wherein the fitted curve violates the energy-constrained limit 𝐸/𝑃 ≤212 

𝑅𝑛𝑒𝑡/(𝜆𝑃). These problems prompted a search for a new formulation that would work well in all 213 

climates.  214 

We found that applying a moving average of 3 or 5 years lessened but did not remove 215 

instances of 𝐸/𝑃 > 1 for most models in most locations, yet removed variability, suppressed the 216 

tails in the distribution along the aridity axis, and reduced the number of degrees of freedom in 217 

the time series hampering statistical significance. Annual 𝐸/𝑃 > 1 is an indicator of substantial 218 

water storage, which is a hydrological characteristic of the system that should not be completely 219 

removed from consideration. Since years having 𝐸/𝑃 > 1 appear to be a common occurrence, 220 

we relaxed the constraint that the function must not exceed unity, although an asymptotic 221 

approach to unity is a clearly desirable characteristic for semiarid and arid climates. The best 222 

formulation we found was another slight variant on the original Budyko formula: 223 

𝐸

𝑃
=
𝑅𝑛𝑒𝑡
𝜆𝑃

(1 − 𝑒−𝑅𝑛𝑒𝑡 𝜆𝑃⁄ ) tanh (
𝜆𝑃

𝑅𝑛𝑒𝑡
)𝜔𝑍 
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Here, the parameter 𝜔𝑍 is a multiplicative factor rather than in an exponent. It retains the 224 

sigmoid at small aridity values, approaches the limit 𝐸/𝑃 = 1 for 𝜔𝑍 ≤ 1, but is free to exceed 225 

that limit for 𝜔𝑍 > 1. Example results for this Budyko formulation without the 𝐸/𝑃 constraint 226 

are shown in the bottom row of Figure 1. 227 

2.2 CMIP6 model data 228 

We use output from three of the DECK experiments: piControl, historical, and 1pctCO2. 229 

However, there are four distinct periods and situations for which indices are calculated: 230 

1. All years from piControl (~600 years): PI 231 

2. The last 50 years of historical, representing late 20th and very early 21st century 232 

conditions): HL50 233 

3. Years 21-70 of 1pctCO2, which will lie in the range of 21st century CO2 levels, out to 234 

circa 2070 based on current projections: 1%21-70 235 

4. Years 91-140 of 1pctCO2, which approach the 4xCO2 levels, representing the first half 236 

of the 22nd century if little is done to ameliorate emissions: 1%91-140  237 

The historical simulation differs from the others in that it includes not only greenhouse 238 

gas forcings, but also observed land use changes, detailed trends in volcanic and anthropogenic 239 

aerosols, trace atmospheric constituents and solar forcing. With these four temporal samples, 240 

differences found between specific pairs are indicative of specific changes and sensitivities in the 241 

hydroclimate at locations for the various models. Specifically, we consider several pairings that 242 

address the following questions: 243 

1. How has the hydroclimate changed since pre-industrial times [HL50 – PI]? 244 

2. How is hydroclimate affected by a steady increase in atmospheric CO2 to an approximate 245 

doubling [1%21-70 – PI]? 246 

3. How might hydroclimate change from a doubling to a quadrupling of atmospheric CO2 247 

[1%91-140 – 1%21-70]? 248 

To keep all models on equal footing, only one ensemble member from each model is 249 

included (r1i1p1f1, unless that member is not available, in which case the next lowest variant 250 

that is available for all variables in an experiment is used – see Table 1 for details). Past results 251 

with CMIP5 suggest such indices are rather robust within experiments and not sensitive to the 252 

choice of ensemble member, nor the use of all members, when compared to differences between 253 

experiments or between models. Furthermore, the majority of the experiments for the models 254 

only provide a single simulation, so this choice puts all models on an equal footing regarding 255 

sample size. 256 

Most models predict intraseasonal, seasonal and interannual variations in vegetation 257 

coverage and greenness, referred to as vegetation phenology. Several include a dynamic 258 

vegetation model (DVM) that can simulate the multi-year evolution and migration of biomes in 259 

response to climate changes (see supplemental Table S1). Not all the models’ treatments of 260 

vegetation could be determined, as discussed in section 5. 261 

At the time of analysis, 37 models provided the monthly mean data required to depict the 262 

three necessary quantities for describing model hydroclimatology in Budyko space, namely total 263 

precipitation (CMIP variable: pr), total evaporation (expressed as a latent heat flux: hfls) and net 264 

radiation (estimated as the sum of hfls and sensible heat flux: hfss). Note that in several 265 
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instances, more than one version of a model from the same institution is included. It can be 266 

debated whether, in multi-model analyses, each model should be given equal weight or rather 267 

each institution, as there is often great similarity between results from related models. We note 268 

that the models used by many institutions are themselves descended from a small number of 269 

pioneering Earth system modeling efforts. Thus, the genetic differences, so to speak, among 270 

models are not simply discerned by the institution names listed here.  We present multi-panel 271 

depictions of results from all models in the supplemental material for visual comparison, so the 272 

reader can judge the degrees of diversity represented among model results.  273 

2.3 Multi-model analysis 274 

In order to perform direct comparisons and produce multi-model statistics, median and 275 

IQR of aridity, E ratio, and estimates of 𝜔𝐵, 𝜔𝐹 and 𝜔𝑍 are interpolated to a common high-276 

resolution longitude by Gaussian latitude grid (2560 x 1280 grid cells) to preserve the spatial 277 

detail and coastlines of each model (Dirmeyer et al., 2013b). A nearest-neighbor interpolation is 278 

used for each model including only land grid cells from each model; at least 90% of the models 279 

must project an ice-free land cell into each high-resolution grid cell for the value to be retained – 280 

otherwise it is assumed to be an open water or ice covered point and is masked.  281 

Multi-model statistics are mainly based on medians to prevent outlier models from overly 282 

affecting the multi-model result. When examining the changes in the five file pairings described 283 

above, three approaches have been examined at each grid cell. The simple change in the multi-284 

model median has been considered but found to be rather noisy. The median of the 37 changes in 285 

the individual models is found to give a more robust depiction of changes. Finally, the method of 286 

Dirmeyer et al. (2013a,b) has been used to determine the number of models showing a change of 287 

a particular sign, regardless of magnitude, and the significance of the distribution. The null 288 

hypothesis for the final method is that the change projected by each model is a random fair coin 289 

toss. Each possible split 𝑛 ∶ 37 − 𝑛 has an associated probability of occurring by chance, which 290 

provides a significance of consensus that complements the changes in medians used to quantify 291 

the magnitudes of changes. 292 

3 Aridity and Evaporation Ratio 293 

Before investigating the Budyko curve estimations, we first examine the climatologies 294 

of aridity and E ratio. Figure 2 shows, for the PI experiment, the multi-model median of these 295 

two quantities, along with the inter-model standard deviation and the normalized difference 296 

between the mean and median. The last quantity is an indication of skewness in the distribution 297 

across models. Given that the Budyko relationship describes a monotonic relationship between 298 

aridity and E ratio, it is no surprise that the maps of their medians are very similar. Humid 299 

regions have low values of both aridity and E ratio and dry regions have high values. Semi-300 

humid to semi-arid transition regions tend to have high values of E ratio but relatively moderate 301 

aridity, reflecting the classical shape of the Budyko curve. Figures S1 and S2 show the temporal 302 

medians for each model – the multi-model statistics are calculated from the individual model 303 

medians.  304 

The pattern of standard deviation of these quantities among models in Figure 2 largely 305 

mirrors their magnitudes. The difference between multi-model mean and median, normalized by 306 

standard deviation, shows some interesting patterns. For aridity this quantity is predominantly 307 

positive, indicating a positive skewness, i.e., there are a few models that tend towards very large 308 
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values of aridity. This is especially strong over the desert regions of North Africa and Asia, but 309 

also over much of India, regions in and around the Andes, and relatively semi-arid regions 310 

surrounding the Ethiopian highlands. For E ratio, weak negative values cover most land areas, 311 

suggesting a negative skewness in the distribution across models. The notable exception is across 312 

the core of the Sahara where strong positive skewness extends. There are also areas of strong 313 

positive values along coastal margins of deserts, which could reflect large variations among 314 

models’ quantification of dew and its evaporation where oceanic winds carry humid air over arid 315 

coastlines. However, these may also be an artifact of model treatments of coastal points or 316 

inaccuracies in our determination of land-sea masks for some models that did not supply such 317 

information, we cannot rule out that oceanic evaporation for some models may be counted as 318 

terrestrial. The investigation of skewness of the distributions provides another reason to focus on 319 

medians throughout this study. 320 

Figure 3 depicts the year-to-year variability in PI for the aridity and E ratio at each 321 

location, again shown in terms of multi-model median, inter-model standard deviation and the 322 

normalized difference between the mean and median. The quantity used is inter-quartile range 323 

(IQR) – the difference between the 75
th

 and 25
th

 percentile in the distribution of all annual values 324 

across all years of the piControl simulation for each model. The spatial pattern of the multi-325 

model median of IQR for aridity closely resembles the median and standard deviation from 326 

Figure 2, but the IQR for E ratio is rather different. Whereas aridity IQR appears large across all 327 

arid regions, for E ratio it is largest around upper Egypt and lands surrounding the Persian Gulf 328 

and Arabian Sea. Most arid regions have relatively modest IQR for E ratio, on par with semi-arid 329 

and humid regions. 330 

Inter-model standard deviation for IQR is again highest in arid regions, but more limited 331 

in extent for E ratio. India is again an area of pronounced disagreement among models, given 332 

that much of it is not arid. Model agreement is high for both quantities in tropical rainforest 333 

areas, west-central China, the Canadian Rockies, Quebec and Scandinavia. Skewness tends to be 334 

large and positive over many areas for aridity IQR over arid and semi-arid regions, but also 335 

mountainous and coastal regions of South America, yet generally low over North America and 336 

Europe. For the IQR of E ratio, skewness in the model distribution is large and positive over the 337 

Sahara, southeastern Arabia, the coasts of southwestern Asia including the Indus valley, and the 338 

Tarim Basin.  339 

Changes from past to present and for different intervals along the 1pctCO2 experiment 340 

for aridity and E ratio are shown in Figures 4 and 5 respectively. Changes are displayed in two 341 

ways – as the median of changes among all models, and as the fraction of models displaying a 342 

positive or negative change, colored by the likelihood of such a distribution occurring by chance. 343 

The latter gives a clear indication of significance of agreement among models, while the former 344 

conveys information about the magnitude of the change.  345 

Aridity changes are large but often rather meaningless over the interior of North Africa 346 

and Arabia, given the very large medians and standard deviations there already; strong coloring 347 

in the bottom panels suggest where changes may be consequential. For instance, ongoing 348 

increases in aridity along the coastal regions of North Africa and the Mediterranean appear to be 349 

significant. 350 

For HL50 – PI there are generally decreases in aridity and accompanying E ratio over 351 

large areas of the Northern Hemisphere that include forest regions in North America and Eurasia, 352 
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and areas that experienced expanded agriculture: much of the Indian subcontinent, eastern China, 353 

central North America, and much of central and eastern Europe extending east across the 354 

Eurasian steppes. The decrease in aridity is especially strong in magnitude over the upper Indus 355 

Basin, but that region, like much of the Indian subcontinent, mainly sees an increase in E ratio, 356 

possibly due to the increased irrigation being correctly represented in many of the climate 357 

models. At lower latitudes, there is strong consensus for a decrease in aridity over much of 358 

tropical Africa, the Pampas of South America and Uruguay, as well as parts of western Australia. 359 

E ratio also decreases over the Nordeste region of Brazil, but increases over the eastern Amazon 360 

Basin, the Orinoco Basin, and across much of the subtropics. 361 

The trends in the two intervals of the 1pctCO2 case, 1%21-70 – PI (middle columns of 362 

Figures 4 and 5) and 1%91-140 – 1%21-70 (right columns of Figures 4 and 5), resemble each other 363 

with the main difference being changes in the later interval are generally stronger. Some of these 364 

features are seen in HL50 – PI as well, but some are not. For instance, the broad areas of 365 

decreasing aridity and E ratio over much of North America, Eurasia and central Australia in 366 

HL50 – PI reverse to increases in 1%21-70 – PI. All three show decreasing aridity over the Indus 367 

Valley, although there is great variability in model agreement patterns over South Asia among 368 

intervals. All show decreasing aridity and E ratio over central Africa. Aridity also decreases over 369 

much of China, Patagonia and the Pampas, while E ratio decreases over the Nordeste. All show 370 

increasing aridity and E ratio over Mesoamerica, northern South America, the Mediterranean and 371 

much of southern Africa. 372 

For the two intervals that represent pathways of a changing climate from preindustrial 373 

conditions, we see some similarities that may be attributable to comparable increases in 374 

atmospheric CO2. The CO2 concentration in 1%21-70 is greater than in HL50, averaging 447.2 ppm 375 

in the 50-year period versus 354.2 ppm in HL50, and indeed the common features are generally 376 

stronger for 1%21-70 – PI than for HL50 – PI. The different features noted may be due to the 377 

additional forcings in the historical experiment – this is explored further in section 5. 378 

4 Budyko Curves 379 

Next, the spatial distributions of the shape of the three Budyko curves, specified by 380 

different one-parameter formulations, are investigated. There is not a one-to-one correspondence 381 

between the magnitude of the parameters 𝜔𝐵, 𝜔𝐹 and 𝜔𝑍, so we emphasize the spatial patterns 382 

over their values. However, each has the same general characteristics such that for lower 383 

parameter values, the curve sits lower in Budyko-space, i.e., a lower value of E ratio for a given 384 

value of aridity. For high parameter values, the curve approaches 𝐸/𝑃 = 𝑅𝑛𝑒𝑡/𝜆𝑃 when 385 

𝑅𝑛𝑒𝑡/𝜆𝑃 < 1. For the variable exponent Budyko formulation and Fu formulation, large 386 

parameter values lead to 𝐸/𝑃 → 1 when 𝑅𝑛𝑒𝑡/𝜆𝑃 > 1, but this limitation is not in place for the 387 

formulation without the upper limit on 𝐸/𝑃 (see Figure 1).  388 

Figure 6 shows the multi-model median values of, from left to right, 𝜔𝐵, 𝜔𝐹 and 𝜔𝑍, as 389 

well as the standard deviation among models of the median, and the skewness index described 390 

previously. All three formulations tend towards low values of 𝜔 over arid regions, and high 391 

values in tropical forests. Beyond that there are some stark differences. Outside the tropics, the 392 

Budyko formulation with the tunable exponent has the highest values of 𝜔𝐵 in transitional 393 

regions, not the most humid locations. The Fu formulation places the lowest values of 𝜔𝐹 in 394 

mountainous and Arctic locations, not in deserts. Some of the lowest values of 𝜔𝐹 are in 395 

extratropical rainforests. The Budyko formulation without the 𝐸/𝑃 constraint tends to resemble a 396 
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map of 𝑅/𝑃 in spatial pattern, where R is runoff. Interestingly, it also results in much smoother 397 

spatial patterns compared to the other formulations, and except for alpine and arctic climates it 398 

has much reduced inter-model variability (middle row of Figure 6). Estimates of 𝜔𝐵 and 𝜔𝐹 399 

show global positive skewness (bottom row of Figure 6) whereas 𝜔𝑍 shows a mix of positive and 400 

negative skewness, with pronounced negative skew over the Sahara and Arabia.  401 

Figure 7 shows which of the three formulations has the best fit at each location, 402 

quantified as the lowest root mean square error (RMSE) of the curve through all yearly points in 403 

the Budyko space (𝐸/𝑃 versus 𝑅𝑛𝑒𝑡/𝜆𝑃). The RMSE maps for each formulation are shown in 404 

Figure S3. The Budyko formulation without the 𝐸/𝑃 constraint is the best formulation in the 405 

majority of locations, especially in the subtropics and areas that are not at either extreme (not 406 

very wet nor arid). The Budyko formulation with tunable exponent is generally most trustworthy 407 

in arid regions and a number of high-latitude locations. The Fu formulation is particularly good 408 

across northern Europe, some tropical regions, and a smattering of other locations. It should be 409 

noted that the Budyko formulation without the 𝐸/𝑃 constraint will necessarily have 𝜔𝑍 ≲ 1 in 410 

locations where aridity 𝑅𝑛𝑒𝑡/𝜆𝑃 > 1 predominates and will have 𝜔𝑍 > 1 where 𝑅𝑛𝑒𝑡/𝜆𝑃 < 1 411 

even when 𝐸/𝑃 < 1 is always true. This is because the fitting of the function to the distribution 412 

of points is optimized in these situations.  413 

Figure S4 gives a pairwise comparison of the multi-model median values of RMSE of the 414 

best fit for the three formulations in the Budyko-space (𝐸/𝑃 versus 𝑅𝑛𝑒𝑡/𝜆𝑃) as a set of three 415 

scatter diagrams for all land grid cells in the PI case. The coloring shows the median aridity of 416 

each grid cell; RMSE generally increases with aridity, as was also evident in Figure S3. The left 417 

panel compares the Fu formulation to the variable exponent Budyko formulation. There is little 418 

overall advantage of one formulation over the other, but the preponderance of dark blue points 419 

toward the upper left-hand corner illustrates how the Fu formulation struggles in some wet 420 

climates. It also tends to do slightly more poorly in fitting very dry climates (pink) but tends to 421 

be better in the semi-humid to semi-arid regime (green). The other two panels of Figure S4 422 

compare the new unconstrained Budyko formulation (y-axis) to the others. While the fit is 423 

generally a bit poorer in very humid regions, it tends to excel in all others except some very arid 424 

locations relative to the original Budyko formulation with the tunable exponent.  425 

As a final measure of the goodness of fit of each of the formulations, Figure S5 shows the 426 

displacement of the multi-model median values of aridity and E ratio from the nearest point on 427 

the best fit Budyko curve using the multi-model median value of 𝜔. Because of the nonlinear 428 

nature of the Budyko curves, there is no expectation that the means should fall on the curve, let 429 

alone the medians. Nevertheless, we see for all three formulations the displacement in Budyko 430 

space tends to be large in arid regions, moderate in semi-arid regions, and highly variable 431 

elsewhere. 432 

Changes in the 𝜔 parameter between CMIP6 experiments for each formulation of the 433 

Budyko curve are shown in Figure 8. There are common features to each formulation: A broad 434 

reversal in changes between the Northern Hemisphere versus low latitudes and the Southern 435 

Hemisphere, and many regional features. As with aridity and E ratio, the global pattern of 436 

changes in 1%91-140 – 1%21-70 are largely an amplified version of the changes in 1%21-70 – PI, yet 437 

the resemblance between 1%21-70 – PI and HL50 – PI is limited. 438 

There is a tendency for relatively stronger changes at higher latitudes than low latitudes 439 

in 𝜔𝑍 for HL50 – PI, whereas the other two formulations have more evenly distributed 440 
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magnitudes of changes around the globe. Specifically, 𝜔 changes have similar patterns between 441 

the tunable Budyko formulation and the Fu formulation, but the Budyko formulation without the 442 

𝐸/𝑃 constraint differs in many areas. Recalling that an increase in 𝜔 connotes a relationship 443 

between 𝐸/𝑃 and 𝑅𝑛𝑒𝑡/𝜆𝑃 hews closer to the energy limits for all three formulations, the 444 

relationship moves closer to the water limit incidentally for 𝜔𝑍 only where 𝜔𝑍 ≲ 1. For 𝜔𝑍 > 1 445 

the moisture constraint is neglected. Thus, we see an increase in 𝜔𝑍 over much of the eastern US 446 

for HL50 – PI but decreases in 𝜔𝐵 and 𝜔𝐹. If we look instead at the significance in the agreement 447 

among models (Figure 9), the discrepancies do not look as stark. Where signs of changes for 𝜔𝑍 448 

disagree with the other formulations, typically one or the other formulation is not significant. The 449 

three formulations agree most for the 1%91-140 – 1%21-70 changes, which also have the strongest 450 

and most widespread significant shifts in 𝜔. For HL50 – PI and 1%21-70 – PI there is strong 451 

resemblance between patterns for 𝜔𝐵 and 𝜔𝐹, while 𝜔𝑍 has clear differences concentrated in 452 

more humid regions of the globe. 453 

5 Interpretation of the Role of Vegetation 454 

As noted earlier, the historical experiment contains many more specified climate drivers 455 

than the DECK experiments. As a result, we see changes from PI to HL50 differ from those in PI 456 

to 1%21-70 in many locations (Figures 4, 5, 8 and 9). Clearly the other forcings are exerting more 457 

impact on hydroclimate than are greenhouse gas changes. Disentangling the specific drivers of 458 

hydroclimatic shifts in CMIP6 simulations is beyond the scope of this study. There are model 459 

intercomparison projects that investigate such impacts in more detail; those relevant to 460 

hydroclimate namely involve land use change (LUMIP; Lawrence et al. 2016) and soil moisture 461 

variations (LS3MIP; van den Hurk et al. 2016).  462 

However, there is sufficient information to sort most models based on how they simulate 463 

vegetation. Some portion of the changes seen in the historical experiment come from progressive 464 

land use change. In the DECK experiments, the only specified evolving boundary condition is 465 

atmospheric CO2 concentration, but other components of the Earth system can evolve in 466 

response including, if a model’s land surface scheme allows it, vegetation.  467 

The CMIP6 models fall into three distinct categories regarding vegetation modeling: 468 

those that include predicted phenology and dynamic vegetation (9 models); those that include 469 

only predicted phenology (13 models), and those that have neither (8 models). Specific model 470 

information is included in Table S1 in the supplementary material, including a fourth category 471 

excluded from this part of the analysis: models for which this information could not be reliably 472 

determined from discovered published literature (7 models).  473 

We group model results into the first three categories to isolate the hydroclimate 474 

responses to predicted phenology and dynamic vegetation. Studies have suggested vegetation 475 

variations can be an important determinant for changes in the Budyko parameter 𝜔 (Donohue et 476 

al., 2012; Ning et al., 2019; S. Zhang et al., 2016, 2018). Changes in hydroclimate can be 477 

expressed in Budyko space in terms of variations or trends in aridity and E ratio relative to the 478 

Budyko curve (Jiang et al., 2015; D. Wang & Hejazi, 2011). Specifically, changes can be 479 

visualized as having two perpendicular axes – one parallel to the Budyko curve, and one 480 

perpendicular to it (D. Yang et al., 2009). Variations along the first axis imply that the curve 481 

itself is unchanging over time (i.e., the estimated value of 𝜔 is fairly constant) and any trends in 482 

the distribution of aridity and E ratio amount to a translation along the curve. Changes 483 

perpendicular to the Budyko curve imply the value of 𝜔 is changing. Figure 10 illustrates such 484 
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changes schematically, keeping in mind that there is not perfect consistency between changes in 485 

multi-model median 𝜔 (shifts in Budyko curves) and changes in multi-model median aridity and 486 

E ratio (Figure S5). 487 

Yang et al. (2009) have suggested that movement along the Budyko curve represents 488 

changes in the climate but not in the landscape, whereas a shift normal to the Budyko curve 489 

indicates the natures of water storage, evapotranspiration and/or runoff have changed. For 490 

example, a shift in vegetation, changes in soil properties, active management of water resources 491 

or land use changes including agricultural expansion ought to alter the value of 𝜔 more than 492 

changes in mean temperature, humidity, precipitation or soil moisture. Thus, the role of 493 

vegetation in climate change ought to project predominantly on the perpendicular component. 494 

To understand hydroclimatic changes in this context, we have taken the multi-model 495 

median values of aridity and E ratio at each grid cell for each CMIP6 experiment and the 496 

estimated values of 𝜔𝐵, 𝜔𝐹 and 𝜔𝑍 from their corresponding formulations, and decomposed the 497 

three temporal changes (HL50 – PI, 1%21-70 – PI, and 1%91-140 – 1%21-70) into changes parallel and 498 

perpendicular to the Budyko curve. The following process is used, also portrayed in Figure 10. 499 

First, because the median values of aridity and E ratio are not guaranteed to be a point that lies 500 

exactly on the best fit Budyko curve (Figure S5), the nearest point on the Budyko curve is found, 501 

and the slope of the Budyko curve at that point is used to establish a rotation of axes. For most 502 

points along the curves for all three formations, changes parallel to the curve correspond mainly 503 

to changes in aridity, increasingly so as aridity increases. However, for low aridity the slopes of 504 

the curves become steeper and the E ratio projects more strongly onto the axis parallel to the 505 

curve. For the Budyko formulation without the 𝐸/𝑃 constraint, as well as the variable exponent 506 

Budyko formulation when 𝜔𝐵 < 2, the curves flatten out again at very low aridity (see Figure 1). 507 

The rotated axes are translated so the origin is at the point of median aridity and E ratio 508 

for the earlier time period of each climate change comparison. The change in Budyko space to 509 

the new median for the later period is then reckoned as a distance parallel to the Budyko curve 510 

and a distance perpendicular to the curve. Figure S6 shows the ratio, parallel distance over 511 

perpendicular distance, for each formulation and the three change intervals. In each row, grid 512 

cells are only shown where the direct distance between the two median points is less than 2 times 513 

the standard error estimated from the multi-model median year-to-year variability during the 514 

earlier of the two periods. Masked out areas are considered not to be distinguishable from natural 515 

variability. Most changes are, in Budyko space, parallel to the estimated Budyko curve for the 516 

location. There is very little perceptible difference between maps for the different formulations. 517 

Overall, while shifts along the Budyko curve predominate, their relative magnitude tends to 518 

follow aridity itself, consistent with Figures 4 and 5. It is also apparent from the separate 519 

components (Figures S7 and S8) that movement along the Budyko curve, due to its overall 520 

positive slope, corresponds to synchronized increases or decreases in both aridity and E ratio. 521 

Figure 11 shows how changes in 𝜔𝑍 between the indicated pairs of experiments differ 522 

among models without predicted vegetation phenology or dynamic vegetation (left column), with 523 

predicted phenology but no dynamic vegetation (middle column) and with both dynamic 524 

vegetation and predicted phenology (right column). We use the significance in agreement among 525 

models projecting changes in 𝜔𝑍 of the same sign to try to ameliorate the smaller sample sizes 526 

and the plethora of other differences between models.  527 
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There are significant regional changes of either sign as a result of both predicted 528 

phenology and DVMs, and there is more similarity in patterns within columns (i.e., in the 529 

evolution from PI to 1%21-70 to 1%91-140) than across columns. There appears to be a significant 530 

decrease in 𝜔𝑍 over western Europe, coastal Australia, Mesoamerica, northern South America 531 

and much of southern Africa. Systematic increases are mainly confined to eastern Asia at middle 532 

and high latitudes. Broadly, models without any prognostic vegetation component (left column) 533 

show the weakest changes in 𝜔𝑍 in most locations. Regions where changes are consistent in sign 534 

and significance across both time intervals are more likely to be genuine, but the global field 535 

significance (area of change of a particular sign and significance compared to what would be 536 

expected by random chance) is marginal, especially for decreases in 𝜔𝑍. Increases over many 537 

cold-winter regions are likely the signature of changes in annual snow cover affecting water 538 

storage – a process largely independent of vegetation. 539 

The inclusion of predicted phenology in climate models appears to have a profound effect 540 

in the Amazon Basin, where models strongly agree on a decrease in 𝜔𝑍 over a large area. 541 

Otherwise, there are many scattered locations of changes of both signs that cover much more 542 

area than in the left column. Addition of a DVM (right column) leads to additional significant 543 

(90% confidence or better) changes over about two-thirds of ice-free land, but no large areas of 544 

extremely high significance as seen in the middle column. This may reflect the less mature status 545 

of dynamic vegetation modeling compared to phenology modeling, and thus reduced consistency 546 

among the climate models including DVMs. Lastly, the tendency for changes in the 1%91-140 –547 

 1%21-70 case to be stronger than for 1%21-70 – PI is weak in this analysis. 548 

If changes in climate alone result in changes of aridity and E ratio that tend not alter 𝜔, 549 

while landscape changes shift values of 𝜔, there should be evidence by recalculating changes in 550 

Budyko space relative to axes parallel and perpendicular to the Budyko curve sorted by the 551 

sophistication of model vegetation parameterizations. Figures 12 and 13 show the ratio of 552 

changes (parallel over perpendicular) respectively comparing models with and without predicted 553 

phenology, and having predicted phenology but with and without DVMs. The right column of 554 

each figure shows the ratio of the ratios. Blue colors (ratios less than 1) indicate that shifts 555 

perpendicular to the Budyko curve, which result in changes in 𝜔𝑍, are larger than shifts along the 556 

curve. In the left two columns, which show the changes for the indicated subsets of models, the 557 

majority of significant changes are colored in shades of red, suggesting that overall, the shifts in 558 

hydroclimate are predominantly attributable to changing climate. However, we would expect 559 

more blue area in models with predicted phenology than without (Figure 12), and that is in fact 560 

evident in both time intervals. The histograms of the area in each ratio range help display this. 561 

Furthermore, the ratio of ratios (right column) tends to be predominantly blue: there is 562 

significantly more area < 1 than > 1. Similar results are seen for the effect of DVMs (Figure 13) 563 

although interestingly the tendency for hydroclimatological shifts perpendicular to the Budyko 564 

curve is not as strong as for the impact of predicted phenology. Nevertheless, the skewness in the 565 

histograms in the right column is also significant, suggesting DVMs also increase the likelihood 566 

of changes in 𝜔𝑍. 567 

6 Conclusions 568 

37 CMIP6 models have been examined regarding their portrayal of changes in 569 

hydroclimate, quantified via the Budyko framework that relates the partitioning of precipitation 570 

into evaporation at any location to that location’s aridity. Alongside traditional formulations of 571 
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the Budyko equation, we have employed a new formulation that accounts for the fact that 572 

frequently evaporation is not constrained by total precipitation on annual time scales due to 573 

various terrestrial reservoirs of moisture (Figure 1). We have quantified the multi-model 574 

climatology (Figures 2, 3, 6) and changes in aridity 𝑅𝑛𝑒𝑡/(𝜆𝑃), evaporation ratio (𝐸/𝑃) and the 575 

parameter quantifying the local climatological relationship (𝜔) between the two across the 576 

models for preindustrial, historical, and projected 1% per year increases in atmospheric CO2 577 

concentration, concentrating on multi-model medians and degree of model consensus (Figures 4, 578 

5, 8, 9). The Budyko formulation without the 𝐸/𝑃 constraint provides the best fit to data over 579 

more than half of the globe compared to two other common formulations (Figure 7).  580 

We find that changes from preindustrial to recent historical (1965-2014) conditions are 581 

often inconsistent with changes ascribable only to increasing CO2. The historical simulations 582 

include many other factors including atmospheric aerosols and land cover changes. We are able 583 

to use model documentation to determine for most models whether or not they predict vegetation 584 

phenology (rather than prescribe it as a boundary condition) and whether they employ dynamic 585 

vegetation models (DVMs) that predict spatial changes in biomes in response to changing 586 

climate. Theory suggests different meanings for changes in aridity and E ratio along the Budyko 587 

curve than perpendicular to it, with perpendicular trends being ascribed to changes in landscape 588 

(Figure 10).  589 

There are clear differences in hydroclimate response depending on model treatment of 590 

vegetation (Figure 11). CMIP6 models with predicted vegetation phenology consistently show 591 

significantly larger changes in hydroclimate perpendicular to the Budyko curve, with a high 592 

degree of inter-model consensus over large parts of the globe (Figure 12). The implication is that 593 

models that do not predict phenology may be missing a key aspect of climate change. Models 594 

containing DVMs also show widespread differences from those that do not, but the degree of 595 

consensus among models is weaker (Figure 13). This may reflect the less mature state of these 596 

models, which have not yet converged toward consistent and accurate representation of biome 597 

responses to disturbance and climate change. Nevertheless, there is clear sensitivity that points to 598 

the importance of representing biospheric shifts in Earth system models.  599 
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There are several caveats regarding the potential role of vegetation in this comparison. 600 

First, the treatment of vegetation is far from the only difference among these sets of models. 601 

However, it is unlikely that other parameterization differences would sort out exactly along the 602 

same lines as vegetation, so vegetation should contribute most of the signal determined. Second, 603 

the number of models in each category is different, so while variations in significance thresholds 604 

are accounted for, signal and noise in each set varies as well. Third, phenology and especially 605 

dynamic vegetation are not represented in the same way across models, so responses to climate 606 

change may not be consistent. This may account for more widespread but less consistent impact 607 

of the inclusion of DVMs on projected hydroclimate. Furthermore, we refrain here from 608 

validating any model or group of models as more accurate. There is a growing body of literature 609 

on ecological emergent constraints that provide convincing evidence for such vegetation-climate 610 

connections (Cox et al., 2013; Fisher et al., 2018; He et al., 2020; Lian et al., 2018; X. Wang et 611 

al., 2020; Wu et al., 2015). Nevertheless, we conclude that vegetation modeling is an important 612 

but possibly underappreciated aspect of climate change projections that can have important 613 

consequences for adaptation, especially regarding water resources and land management. 614 
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AWI AWI-CM-1-1-MR 20191015 r1i1p1f1 384x192 10.22033/ESGF/CMIP6.359 

BCC BCC-CSM2-MR 20181015 r1i1p1f1 320x160 10.22033/ESGF/CMIP6.1725 

BCC BCC-ESM1 20190613 r1i1p1f1 128x64 10.22033/ESGF/CMIP6.1734 

CAMS CAMS-CSM1-0 20190708 r1i1p1f1 320x160 10.22033/ESGF/CMIP6.1399 

CCCma CanESM5 20190429 r1i1p1f1 128x64 10.22033/ESGF/CMIP6.1303 

NCAR CESM2 20190425 r1i1p1f1 288x192 10.22033/ESGF/CMIP6.2185 

NCAR CESM2-WACCM 20190425 r1i1p1f1 288x192 10.22033/ESGF/CMIP6.10024 

NCAR CESM2-WACCM-FV2 20200226 r1i1p1f1 144x96 10.22033/ESGF/CMIP6.11282 

CNRM-CERFACS CNRM-CM6-1 20180626 r1i1p1f2 256x128 10.22033/ESGF/CMIP6.1375 

CNRM-CERFACS CNRM-ESM2-1 20181018 r1i1p1f2 256x128 10.22033/ESGF/CMIP6.1391 

E3SM-Project E3SM-1-0 20190718 r1i1p1f1 360x180 10.22033/ESGF/CMIP6.2294 

EC-Earth-Consortium EC-Earth3 20200727 r1i1p1f1** 512x256 10.22033/ESGF/CMIP6.181 

EC-Earth-Consortium EC-Earth3-Veg 20200325 r1i1p1f1 512x256 10.22033/ESGF/CMIP6.642 

CAS FGOALS-g3 20191215 r1i1p1f1 180x80 10.22033/ESGF/CMIP6.1783 

GFDL GFDL-CM4 20180701 r1i1p1f1 288x180 10.22033/ESGF/CMIP6.1402 

GFDL GFDL-ESM4 20180701 r1i1p1f1 288x180 10.22033/ESGF/CMIP6.1407 

NASA-GISS GISS-E2-1-G 20180905 r1i1p1f1 144x90 10.22033/ESGF/CMIP6.1400 

NASA-GISS GISS-E2-1-H 20190403 r1i1p1f1 144x90 10.22033/ESGF/CMIP6.1421 

MOHC HadGEM3-GC31-LL 20190620 r1i1p1f3* 192x144 10.22033/ESGF/CMIP6.419 

MOHC HadGEM3-GC31-MM 20200115 r1i1p1f3* 432x324 10.22033/ESGF/CMIP6.420 

INM INM-CM4-8 20200226 r1i1p1f1 180x120 10.22033/ESGF/CMIP6.1422 

INM INM-CM5-0 20190530 r1i1p1f1 180x120 10.22033/ESGF/CMIP6.1423 

IPSL IPSL-CM6A-LR 20180727 r1i1p1f1 144x143 10.22033/ESGF/CMIP6.13581 

NIMS-KMA KACE-1-0-G 20190916 r1i1p1f1 192x144 10.22033/ESGF/CMIP6.2241 

U. Arizona MCM-UA-1-0 20190731 r1i1p1f1 96x80 10.22033/ESGF/CMIP6.2421 

MIROC MIROC-ES2L 20190823 r1i1p1f2 128x64 10.22033/ESGF/CMIP6.902 

MIROC MIROC6 20181212 r1i1p1f1 256x128 10.22033/ESGF/CMIP6.9121 

HAMMOZ-Consortium MPI-ESM-1-2-HAM 20190628 r1i1p1f1 192x96 10.22033/ESGF/CMIP6.1622 

MPI-M DWD DKRZ MPI-ESM1-2-HR 20190710 r1i1p1f1 384x192 10.22033/ESGF/CMIP6.741 

MPI-M AWI MPI-ESM1-2-LR 20190710 r1i1p1f1 192x96 10.22033/ESGF/CMIP6.742 

MRI MRI-ESM2-0 20190308 r1i1p1f1 320x160 10.22033/ESGF/CMIP6.621 

NUIST NESM3 20190707 r1i1p1f1 192x96 10.22033/ESGF/CMIP6.2021 

NCC NorCPM1 20190914 r1i1p1f1 144x96 10.22033/ESGF/CMIP6.10843 

NCC NorESM2-LM 20190815 r1i1p1f1 144x96 10.22033/ESGF/CMIP6.502 

SNU SAM0-UNICON 20190323 r1i1p1f1 288x192 10.22033/ESGF/CMIP6.1489 

AS-RCEC TaiESM1 20200225 r1i1p1f1 288x192 10.22033/ESGF/CMIP6.9684 

MOHC NERC NIMS-

KMA NIWA 
UKESM1-0-LL 20190406 r1i1p1f2 192x144 10.22033/ESGF/CMIP6.1569 

* piControl alone is r1i1p1f1    ** r3i1p1f1 for 1pctCO2 and r8i1p1f1 for 4xCO2  800 
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 801 

Figure 1. Comparison of the best fits (blue curves) through yearly data from a piControl simulation of a CMIP6 model at three 802 

different locations (labeled columns) for three formulations of the Budyko curve. Top row: Budyko formulation with tunable 803 

exponent; middle row: Fu (1981) formulation; bottom row: Budyko formulation without E/P constraint. Values of the single 804 

tunable exponent are shown in each panel, as are the theoretical energy and water limits (dashed red lines). Units of the axes are 805 

dimensionless.  806 

  807 
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 808 

Figure 2. Multi-model statistics of aridity (left column) and E ratio (right column) calculated from each model’s time-median from the 809 

piControl simulation. Top row: median at each location of individual model time-medians; middle row: standard deviation at each 810 

location of individual model time-medians; bottom row: The difference between the mean and median of individual model time-811 

medians normalized by the standard deviation of individual model time-medians. All units are dimensionless. 812 

 813 

  814 
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 815 

Figure 3. As in Figure 2 but applied to each model’s inter-quartile ranges across all piControl years instead of each model’s time 816 

medians. 817 

 818 

 819 

  820 
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 821 

 822 

 823 
Figure 4. Changes in aridity from PI to HL50 (left column); PI to 1%21-70 (middle column); 1%21-70 to 1%91-140 (right column). The top 824 

row shows the median change across all models at each location. The bottom row shows the significance of the fraction of models 825 

agreeing on the sign of the change (red for positive change, blue for negative change).  826 

  827 
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 828 
Figure 5. As in Figure 4 for E ratio. 829 
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 831 

Figure 6. As in Figure 2 but for the single parameter of the indicated formulations: 𝜔𝐵 (left column); 𝜔𝐹 (middle column); 𝜔𝑍 (right 832 

column).  833 

 834 

 835 

  836 
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 837 

Figure 7. Colors indicate which formulation of the Budyko curve best fits the distribution of annual values of 𝐸/𝑃 and 𝑅𝑛𝑒𝑡/𝜆𝑃 838 

across all models for the piControl experiment: 𝜔𝐵 indicates the Budyko formulation with the tunable exponent, 𝜔𝐹 is the Fu 839 

(1981) formulation, and 𝜔𝑍 is the Budyko formulation without the 𝐸/𝑃 constraint. 840 

 841 
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 842 
Figure 8. Changes from PI to HL50 (top row); PI to 1%21-70 (middle row); 1%21-70 to 1%91-140 (bottom row) for the single parameter of 843 

the indicated formulations: 𝜔𝐵 (left column); 𝜔𝐹 (middle column); 𝜔𝑍 (right column).  844 

 845 

 846 

  847 
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 848 

Figure 9. As in Figure 8 for the significance of the fraction of models agreeing on the sign of the change in 𝜔 (red for positive 849 

changes, blue for negative changes).  850 

 851 

852 
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 853 

Figure 10. Schematic showing two Budyko curves (blue and red) representing choices of 𝜔 that best fit the scatter of annual values of 854 

aridity and E ratio at a grid cell for two different periods in DECK simulations, or between PI and HL50 simulations. The main 855 

panel zooms in on the box indicated in the inset. The multi-model median values of aridity and E ratio for the different periods are 856 

shown by the large dots, and the best fit curves in their neighborhood are shown by solid lines of matching color. For the earlier 857 

period (Period 1 in blue), the nearest point on the Budyko curve to the median values is shown as a purple diamond. The slope of 858 

that curve is used to rotate the coordinate system to project the difference to median in the later period (Period 2 in red) into 859 

perpendicular and parallel components. 860 

861 
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 862 

Figure 11. Significance of model agreement in the changes in 𝜔𝑍 from PI to 1%21-70 (top row) and 1%21-70 to 1%91-140 (bottom row) 863 

only for models without predicted vegetation phenology or dynamic vegetation (left column), with predicted phenology but no 864 

dynamic vegetation (middle column) and with both dynamic vegetation and predicted phenology (right column). 865 

866 
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 867 
 868 

Figure 12. The ratio of change parallel to the Budyko curve to change perpendicular to the Budyko curve from PI to 1%21-70 (top row) 869 

and 1%21-70 to 1%91-140 (bottom row) only for models with predicted phenology but no dynamic vegetation (left column) without 870 

predicted phenology or dynamic vegetation (middle column) and the ratio of values from the left column over the middle column 871 

(right column). The inset histogram with each panel shows the proportion of ice-free land area in each color band, indicated by the 872 

color bar at the bottom of the figure. 873 

874 
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 875 
 876 

Figure 13. As in Figure 12, except the left column is only for models with both predicted phenology and dynamic vegetation, and the 877 

middle column is only for models with predicted phenology but no dynamic vegetation. 878 

 879 
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CMIP Label DVM Phen Full Citation 

AWI-CM-1-1-MR No Yes Semmler, Tido; Danilov, Sergey; Rackow, Thomas; Sidorenko, Dmitry; Barbi, Dirk; Hegewald, Jan; Sein, 

Dmitri; Wang, Qiang; Jung, Thomas (2018). AWI AWI-CM1.1MR model output prepared for CMIP6 CMIP. 

Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.359. 

BCC-CSM2-MR ? Yes Xin, Xiaoge; Zhang, Jie; Zhang, Fang; Wu, Tongwen; Shi, Xueli; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, 

Jinghui; Ma, Qiang; Wei, Min (2018). BCC BCC-CSM2MR model output prepared for CMIP6 CMIP. Earth 

System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1725. 

BCC-ESM1 No Yes Zhang, Jie; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, 

Qiang; Wei, Min (2018). BCC BCC-ESM1 model output prepared for CMIP6 CMIP. Earth System Grid 

Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1734. 

CAMS-CSM1-0 ? ? Rong, Xinyao (2019). CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP. Earth System Grid 

Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1399. 

CanESM5 No Yes Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan 

P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, 

Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, 

Barbara; Sigmond, Michael (2019). CCCma CanESM5 model output prepared for CMIP6 CMIP. Earth System 

Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1303. 

CESM2 No Yes Danabasoglu, Gokhan (2019). NCAR CESM2 model output prepared for CMIP6 CMIP. Earth System Grid 

Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.2185. 

CESM2-WACCM No Yes Danabasoglu, Gokhan (2019). NCAR CESM2-WACCM model output prepared for CMIP6 CMIP. Earth System 

Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.10024. 

CESM2-WACCM-

FV2 

No Yes Danabasoglu, Gokhan (2019). NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP. Earth 

System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.11282. 

CNRM-CM6-1 No No  Voldoire, Aurore (2018). CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 CMIP. Earth 

System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1375. 

CNRM-ESM2-1 No ? Seferian, Roland (2018). CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP. Earth 

System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1391. 

E3SM-1-0 No Yes Bader, David C.; Leung, Ruby; Taylor, Mark; McCoy, Renata B. (2019). E3SM-Project E3SM1.0 model output 

prepared for CMIP6 CMIP. Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.2294. 

EC-Earth3 No ? EC-Earth Consortium (EC-Earth) (2019). EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 

CMIP. Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.181. 
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CMIP Label DVM Phen Full Citation 

EC-Earth3-Veg Yes Yes EC-Earth Consortium (EC-Earth) (2019). EC-Earth-Consortium EC-Earth3-Veg model output prepared for 

CMIP6 CMIP. Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.642. 

FGOALS-g3 Yes Yes Li, Lijuan (2019). CAS FGOALS-g3 model output prepared for CMIP6 CMIP. Earth System Grid Federation. 

doi: https://doi.org/10.22033/ESGF/CMIP6.1783. 

GFDL-CM4 Yes Yes Guo, Huan; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; 

Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, 

Thomas; Underwood, Seth; Vahlenkamp, Hans; Bushuk, Mitchell; Dunne, Krista A.; Dussin, Raphael; Gauthier, 

Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, 

Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, 

Daniel M; Seman, Charles J; Shao, Andrew; Silvers, Levi; Wyman, Bruce; Yan, Xiaoqin; Zeng, Yujin; Adcroft, 

Alistair; Dunne, John P.; Held, Isaac M; Krasting, John P.; Horowitz, Larry W.; Milly, P.C.D; Shevliakova, 

Elena; Winton, Michael; Zhao, Ming; Zhang, Rong (2018). NOAA-GFDL GFDL-CM4 model output. Earth 

System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1402. 

GFDL-ESM4 Yes Yes Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, 

Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; 

Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; 

Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malyshev, Sergey; Naik, Vaishali; 

Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; 

Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, 

Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Xie, 

Yuanyu; Zhao, Ming (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP. Earth 

System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1407. 

GISS-E2-1-G No No NASA Goddard Institute for Space Studies (NASA/GISS) (2018). NASA-GISS GISS-E2.1G model output 

prepared for CMIP6 CMIP. Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1400. 

GISS-E2-1-H No No NASA Goddard Institute for Space Studies (NASA/GISS) (2018). NASA-GISS GISS-E2.1H model output 

prepared for CMIP6 CMIP. Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1421. 

HadGEM3-GC31-LL No No Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim (2018). MOHC HadGEM3-

GC31-LL model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.419. 

HadGEM3-GC31-

MM 

No No Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim (2019). MOHC HadGEM3-

GC31-MM model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.420. 
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INM-CM4-8 ? Yes Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; 

Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana (2019). INM INM-

CM4-8 model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.1422. 

INM-CM5-0 ? Yes Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; 

Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana (2019). INM INM-

CM5-0 model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.1423. 

IPSL-CM6A-LR No Yes Boucher, Olivier; Denvil, Sébastien; Caubel, Arnaud; Foujols, Marie Alice (2020). IPSL IPSL-CM6A-LR-INCA 

model output prepared for CMIP6 AerChemMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.13581. 

KACE-1-0-G Yes Yes Byun, Young-Hwa; Lim, Yoon-Jin; Sung, Hyun Min; Kim, Jisun; Sun, Minah; Kim, Byeong-Hyeon (2019). 

NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.2241. 

MCM-UA-1-0 No No Stouffer, Ronald (2019). U of Arizona MCM-UA-1-0 model output prepared for CMIP6 CMIP. Earth System 

Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.2421  

MIROC-ES2L No Yes Hajima, Tomohiro; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, 

Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; 

Yamazaki, Dai; Ito, Akihiko; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru (2019). 

MIROC MIROC-ES2L model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.902. 

MIROC6 No No Takemura, Toshihiko (2019). MIROC MIROC6 model output prepared for CMIP6 AerChemMIP. Earth System 

Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.9121. 

MPI-ESM-1-2-HAM Yes Yes Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, 

Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, 

Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; 

Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike (2019). HAMMOZ-Consortium MPI-

ESM1.2-HAM model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.1622. 
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CMIP Label DVM Phen Full Citation 

MPI-ESM1-2-HR No Yes Jungclaus, Johann; Bittner, Matthias; Wieners, Karl-Hermann; Wachsmann, Fabian; Schupfner, Martin; 

Legutke, Stephanie; Giorgetta, Marco; Reick, Christian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; 

Raddatz, Thomas; Esch, Monika; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; 

Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, 

Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; 

Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; 

Peters, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, 

Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich (2019). MPI-M 

MPIESM1.2-HR model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.741. 

MPI-ESM1-2-LR Yes Yes Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, 

Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de 

Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; 

Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, 

Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; 

Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; 

Peters, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, 

Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich (2019). MPI-M 

MPIESM1.2-LR model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.742. 

MRI-ESM2-0 No No Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, 

Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, 

Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa (2019). MRI MRI-ESM2.0 model output prepared for 

CMIP6 CMIP. Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.621. 

NESM3 Yes Yes Cao, Jian; Wang, Bin (2019). NUIST NESMv3 model output prepared for CMIP6 CMIP. Earth System Grid 

Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.2021. 

NorCPM1 ? ? Bethke, Ingo; Wang, Yiguo; Counillon, François; Kimmritz, Madlen; Fransner, Filippa; Samuelsen, Annette; 

Langehaug, Helene Reinertsen; Chiu, Ping-Gin; Bentsen, Mats; Guo, Chuncheng; Tjiputra, Jerry; Kirkevåg, Alf; 

Oliviè, Dirk Jan Leo; Seland, Øyvind; Fan, Yuanchao; Lawrence, Peter; Eldevik, Tor; Keenlyside, Noel (2019). 

NCC NorCPM1 model output prepared for CMIP6 CMIP. Earth System Grid Federation. doi: 

https://doi.org/10.22033/ESGF/CMIP6.10843. 
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NorESM2-LM No Yes Seland, Øyvind; Bentsen, Mats; Oliviè, Dirk Jan Leo; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise 

Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkevåg, Alf; Schwinger, Jörg; Tjiputra, 

Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, 

Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; 

Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; 

Schulz, Michael (2019). NCC NorESM2-LM model output prepared for CMIP6 CMIP. Earth System Grid 

Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.502. 

SAM0-UNICON No Yes Park, Sungsu; Shin, Jihoon (2019). SNU SAM0-UNICON model output prepared for CMIP6 CMIP. Earth 

System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1489. 

TaiESM1 No Yes Lee, Wei-Liang; Liang, Hsin-Chien (2019). AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP. 

Earth System Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.9684. 

UKESM1-0-LL Yes Yes Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, 

Jeremy; Jones, Colin (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP. Earth System 

Grid Federation. doi: https://doi.org/10.22033/ESGF/CMIP6.1569. 

 55 

 56 


